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Abstract

Community networks (CNs) or “Do-It-Yourself ’’ networks have gained mo-
mentum in the last few years in response to the growing demand for net-
work connectivity in rural and urban communities. These networks, owned
and managed by volunteers, offer various services to their members. Seam-
less computing and service sharing in CNs have gained momentum due to
the emerging technology of community network micro-clouds. By putting
services closer to users, community network micro-clouds pursue not only a
better service performance, but also a low entry barrier for the deployment of
mainstream Internet services within the CN. Unfortunately, the provisioning
of the services is not so simple. Due to the large and irregular topology, high
software and hardware diversity, asymmetric quality of wireless links in CNs,
this requires a challenging effort to ”carefully” assess and optimize the service
and network performance.

In order to understand the micro-cloud based service performance, we per-
form deployment, feasibility analysis and in-depth performance assessment
of micro-cloud services such as distributed storage, live video-streaming and
discovery service. We characterize and define workload upper bounds for
successful operations of such services in micro-clouds and perform cross-layer
analysis and optimizations to improve the service performance. This deploy-
ment experience supports the feasibility of community micro-clouds, and our
measurements contribute to understand the performance of services and ap-
plications in this challenging environment.

On the network level, in order to optimize the performance of the services
by the network over which a service host provides a service to client nodes,
it is necessary to continuously adapt the logical network topology to both
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external (e.g., wireless connectivity, node availability) and internal (e.g., ser-
vice copies, demand) factors. To achieve this, we propose to leverage state
information about the network to inform service placement decisions, and to
do so through an i) exploratory algorithm PASP that minimizes the service
overlay diameter, while fulfilling service specific criteria and ii) through a
fast and low-complexity service placement heuristic BASP, which maximizes
bandwidth and improves user QoS.

Our results show that PASP and BASP consistently outperforms the ex-
isting in-place and naturally fast strategy in Guifi.net, with respect to end-
to-end bandwidth and client response time when used with real micro-cloud
services. Since this improvement translates in the QoE perceived by the user,
our results are relevant for contributing to higher quality of experience, a
crucial parameter for using services from volunteer-based systems.

Keywords

community networks; community micro-clouds; service placement;

iv



List of Publications

The research results from this thesis have led to the following publications:

Journal Articles

[Sel+15a] Mennan Selimi, Felix Freitag, Llorenç Cerdà-Alabern, and Luís Veiga.
“Performance evaluation of a distributed storage service in community
network clouds”. In: Concurrency and Computation: Practice and Ex-
perience 28.11 (2015). (JCR IF: 0.942, Q3), pp. 3131–3148.

[Sel+15b] Mennan Selimi, Amin M Khan, Emmanouil Dimogerontakis, Felix
Freitag, and Roger Pueyo Centelles. “Cloud services in the Guifi.net
community network”. In: Computer Networks 93.P2 (Dec. 2015). (JCR
IF: 1.446, Q2), pp. 373–388.

Conference Proceedings

[Sel+16a] Mennan Selimi, Davide Vega, Felix Freitag, and Luís Veiga. “Towards
Network-Aware Service Placement in Community Network Micro-
Clouds”. In: 22nd International Conference on Parallel and Distributed
Computing (Euro-Par 2016). (CORE Rank A). Grenoble, France, 2016,
pp. 376–388.

[Sel+16b] Mennan Selimi, Llorenç Cerdà-Alabern, Liang Wang, Arjuna Sathi-
aseelan, Luís Veiga, and Felix Freitag. “Bandwidth-aware Service Place-
ment in Community Network Micro-Clouds”. In: 41st IEEE Conference
on Local Computer Networks (LCN 2016). (CORE Rank A) (Short pa-
per). Dubai, UAE, 2016.

v



[Sel+16c] M. Selimi, N. Apolónia, F. Olid, F. Freitag, L. Navarro, A. Moll, R.
Pueyo, and L. Veiga. “Integration of an Assisted P2P Live Stream-
ing Service in Community Network Clouds”. In: 2015 IEEE 7th In-
ternational Conference on Cloud Computing Technology and Science
(CloudCom 2015). Nov. 2016, pp. 202–209.

[Sel+15] M. Selimi, F. Freitag, R. P. Centelles, A. Moll, and L. Veiga.
“TROBADOR: Service Discovery for Distributed Community Net-
work Micro-Clouds”. In: 2015 IEEE 29th International Conference
on Advanced Information Networking and Applications (AINA 2015).
(CORE Rank B). Mar. 2015, pp. 642–649.

[Sel+14] M. Selimi, F. Freitag, R. P. Centelles, and A. Moll. “Distributed Storage
and Service Discovery for Heterogeneous Community Network Clouds”.
In: 2014 IEEE/ACM 7th International Conference on Utility and Cloud
Computing (UCC 2014). Dec. 2014, pp. 204–212.

Pending Review

The following papers have been submitted for review.

[Sel+17] Mennan Selimi, Llorenç Cerdà-Alabern, Marc Sanchez-Artigas, Felix
Freitag, and Luís Veiga. “Practical Service Placement Approach for
Microservices Architecture”. In: 17th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid 2017). Sub-
mitted for review (CORE Rank A). Madrid, Spain, June 2017.

Other Publications

The background research to this thesis has led to the following publications:

Conference Proceedings

[KSF14] Amin M Khan, Mennan Selimi, and Felix Freitag. “Towards Distrib-
uted Architecture for Collaborative Cloud Services in Community Net-
works”. In: 6th International Conference on Intelligent Networking and
Collaborative Systems (INCoS 2014). Salerno, Italy: IEEE, Sept. 2014.

vi



[SF14a] Mennan Selimi and Felix Freitag. “Tahoe-LAFS Distributed Storage
Service in Community Network Clouds”. In: 2014 IEEE Fourth In-
ternational Conference on Big Data and Cloud Computing (BDCloud
2014). 2014, pp. 17–24.

[SF14b] Mennan Selimi and Felix Freitag. “Towards Application Deployment
in Community Network Clouds”. In: 14th International Conference on
Computational Science and Its Applications (ICCSA 2014), Guimarães,
Portugal, June 30 - July 3, 2014. 2014, pp. 614–627.

Abstracts, Demos & Posters

[Bai+15] Roger Baig, Rodrigo Carbajales, Pau Escrich Garcia, Jorge L. Florit,
Felix Freitag, Agustı́ Moll, Leandro Navarro, Ermanno Pietrosemoli,
Roger Pueyo Centelles, Mennan Selimi, Vladimir Vlassov, and Marco
Zennaro. “The cloudy distribution in community network clouds in
Guifi.net”. In: IFIP/IEEE International Symposium on Integrated Net-
work Management, (IM 2015), Ottawa, ON, Canada, 11-15 May, 2015.
2015, pp. 1161–1162.

[Sel+14a] Mennan Selimi, Jorge L Florit, Davide Vega, Roc Meseguer, Ester
Lopez, Amin M Khan, Axel Neumann, Felix Freitag, Leandro Navarro,
Roger Baig, Pau Escrich, Agusti Moll, Roger Pueyo Centelles, Ivan Vil-
ata, Marc Aymerich, and Santiago Lamora. “Cloud-Based Extension
for Community-Lab”. In: 22nd International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS 2014). (CORE Rank A). Paris, France: IEEE, Sept. 2014,
pp. 502–505.

[Sel+14b] Mennan Selimi, Felix Freitag, Daniel Martı́, Roger Pueyo Centelles,
Pau Escrich Garcia, and Roger Baig. “Experiences with distributed
heterogeneous clouds over community networks”. In: Proceedings of the
2014 ACM SIGCOMM workshop on Distributed cloud computing (DCC
2014), Chicago, Illinois, USA, August 18, 2014. (CORE Rank A). 2014,
pp. 39–40.

vii





Contents

Abstract i

List of Publications vii

List of Figures xiv

List of Tables xv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 13
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Community Clouds . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Service Performance Evaluation . . . . . . . . . . . . . . . . . . 18

2.3.1 Distributed Storage Service . . . . . . . . . . . . . . . . . 18
2.3.2 Live-video Streaming Service . . . . . . . . . . . . . . . . 20
2.3.3 Service Discovery . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Service Placement . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Service Placement in Data Centre Environment . . . . . 22
2.4.2 Service Placement in Decentralized Clouds . . . . . . . . 23

ix



2.4.3 Service Placement in Wireless Networks . . . . . . . . . . 24
2.4.4 Service Placement through Migration . . . . . . . . . . . 25

3 Micro-Cloud Service Performance 27
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Current State of Service Deployment in Guifi.net . . . . . 29
3.1.2 Cloudy: Community Cloud-in-a-Box . . . . . . . . . . . . 33
3.1.3 Cloudy Services . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Distributed Storage . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Tahoe-LAFS . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . 43

3.4 Live-video Streaming . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 PeerStreamer . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.2 PeerStreamer Assumptions and Notation . . . . . . . . . 46
3.4.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . 48
3.4.4 Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . 51

3.5 Service Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . 55
3.5.2 Our Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . 59

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Topology-aware Service Placement 67
4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Network structure . . . . . . . . . . . . . . . . . . . . . . 68
4.1.2 Allocation model and architecture . . . . . . . . . . . . . 69
4.1.3 Service quality parameters . . . . . . . . . . . . . . . . . 71

x



4.2 Service Placement Algorithm . . . . . . . . . . . . . . . . . . . . 72
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Network behaviour and algorithmic performance . . . . . 75
4.3.2 Deployment in a real production Community Network . 77

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Service Placement Heuristic 83
5.1 Network Characterization . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 QMP Network: A Brief Background . . . . . . . . . . . . 84
5.1.2 Device Availability . . . . . . . . . . . . . . . . . . . . . . 85
5.1.3 Bandwidth characterization . . . . . . . . . . . . . . . . . 87
5.1.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Context and Problem . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.1 Network Graph . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.2 Service Graph . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.3 Service Placement Problem . . . . . . . . . . . . . . . . . 92
5.2.4 Proposed Algorithm: BASP . . . . . . . . . . . . . . . . . 93

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . 98
5.4.1 Cloudy: A Service Hub . . . . . . . . . . . . . . . . . . . 98
5.4.2 Evaluation in Real Production Community Network . . . 99

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6 Conclusion 109
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.1 Composite Service Placement . . . . . . . . . . . . . . . . 110

xi



6.1.2 Distributed Decision Making . . . . . . . . . . . . . . . . 110
6.1.3 Service Migration . . . . . . . . . . . . . . . . . . . . . . 111
6.1.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Bibliography 113

xii



List of Figures

1.1 Guifi.net inbound and outbound traffic (Dec 2014 - Dec 2016). 3
1.2 Guifi.net bandwidth distribution . . . . . . . . . . . . . . . . . 5
1.3 Rackspace bandwidth distribution . . . . . . . . . . . . . . . . . 5
1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Community network resources . . . . . . . . . . . . . . . . . . . 14
2.2 Micro-cloud resources . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Cloudy architecture . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Tahoe-LAFS deployed in the Community-Lab testbed . . . . . . 41
3.3 ECDF of the average throughput for two clients . . . . . . . . . 42
3.4 Performance of write operation . . . . . . . . . . . . . . . . . . . 44
3.5 Performance of read operation . . . . . . . . . . . . . . . . . . . 44
3.6 Summary of all storage benchmark operations for different tests

in the Guifi.net . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Average Peer Receive Ratio . . . . . . . . . . . . . . . . . . . . . 52
3.8 Average Chunk Loss . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.9 Average Chunk Playout . . . . . . . . . . . . . . . . . . . . . . . 54
3.10 Average Chunk Loss with different parameters . . . . . . . . . . 55
3.11 Throughput of the nodes . . . . . . . . . . . . . . . . . . . . . . 56
3.12 Single service discovery time (Scenario 1) . . . . . . . . . . . . . 60
3.13 Responsiveness of service discovery (Scenario 2) . . . . . . . . . 60
3.14 Partial screenshot of Cloudy’s Service discovery (Scenario 2) . . 61
3.15 Number of Cloudy services discovered by clients (Scenario 3) . . 62

4.1 Guifi.net nodes and links in Barcelona . . . . . . . . . . . . . 69

xiii



4.2 Guifi.net topology . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3 ECDF of node availability . . . . . . . . . . . . . . . . . . . . . 75
4.4 ECDF of node latency . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 PASP-Availab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.6 PASP-Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7 PASP-Closeness . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.8 QMP topology (2015) . . . . . . . . . . . . . . . . . . . . . . . . 78
4.9 Average client reading times . . . . . . . . . . . . . . . . . . . . 78

5.1 QMP devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 QMP network topology (2016) . . . . . . . . . . . . . . . . . . . 85
5.3 Node sysUptime . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Node and link presence . . . . . . . . . . . . . . . . . . . . . . . 86
5.5 Bandwidth distribution . . . . . . . . . . . . . . . . . . . . . . . 87
5.6 Bandwidth in the three busiest links . . . . . . . . . . . . . . . . 87
5.7 Bandwidth asymmetry . . . . . . . . . . . . . . . . . . . . . . . 87
5.8 Average bandwidth to the cluster heads . . . . . . . . . . . . . . 97
5.9 Centrality measures for cluster heads . . . . . . . . . . . . . . . 98
5.10 Neighborhood connectivity in QMP network . . . . . . . . . . . 99
5.11 Cloudy architecture . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.12 Average video chunk loss in QMP . . . . . . . . . . . . . . . . . 101
5.13 UpdateActivity when web server placed Randomly . . . . . . . 102
5.14 UpdateActivity when web server placed with BASP . . . . . . . 102

xiv



List of Tables

3.1 List of network-focused Guifi.net services in Catalonia area . . . 30
3.2 List of user-focused Guifi.net services in Catalonia area . . . . . 30
3.3 Nodes in the cluster and their location . . . . . . . . . . . . . . 49
3.4 Summary of our Scenario Parameters . . . . . . . . . . . . . . . 50
3.5 Nodes, their location and RTT from the client node . . . . . . . 56
3.6 Services used for the experiments . . . . . . . . . . . . . . . . . 58

4.1 Summary of the used network graphs . . . . . . . . . . . . . . . 70
4.2 Service-specific quality parameters . . . . . . . . . . . . . . . . . 73

5.1 Input and decision variables . . . . . . . . . . . . . . . . . . . . 91
5.2 Cloudsuite benchmark results . . . . . . . . . . . . . . . . . . . 103

xv





1
Introduction

Since early 2000s, community networks (CNs) or “Do-It-Yourself ’’ networks
have gained momentum in response to the growing demands for network con-
nectivity in rural and urban communities. The main singularity of CNs is that
they are built “bottom-up’’, mixing wireless and wired links, with communit-
ies of citizens building, operating and managing the network. The result of
this open, agglomerative process is a very heterogeneous network, with self-
managing links and devices. For instance, devices are typically “low-tech”,
built entirely by off-the-shelf hardware and open source software, which com-
municate over wireless links. This poses several challenges, such as the lack
of service guarantees, inefficient use of the available resources, and absence of
security, to name a few.

These challenges have not precluded CNs from flourishing around. For in-
stance, Guifi.net*, located in the Catalonia region of Spain, is a successful
example of this paradigm. Guifi.net is defined as an open, free and neut-
ral CN built by its members. That is, citizens and organizations pool their

*http://guifi.net/
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resources and coordinate efforts to build and operate a local network infra-
structure. Guifi.net was born in 2004, and until today, it has grown into
a network of more than 32, 000 operational nodes. This makes it the largest
CN worldwide [Bai+15].

Services running in community networks face specific challenges intrinsic
to these infrastructures, such as the limited capacity of nodes and links, their
dynamics and geographic distribution. Because Guifi.net nodes are geo-
graphically distributed, given a set of local services, we need to decide where
these services should be placed in a network. Obviously, without taking into
account the underlying network resources, a service may suffer from poor
performance, e.g, by sending large amounts of data across slow wireless links
while faster and more reliable links remain underutilized.

1.1 Motivation

Guifi.net is a ”crowdsourced network” i.e., a network infrastructure built
by citizens and organisations who pool their resources and coordinate their
efforts to make these networks happen. In these networks the infrastruc-
ture is established by the participants and is managed as a common resource
[Bai+16]. Guifi.net is the largest and fast growing community network
worldwide. Some measurable indicators are the number of nodes (> 32, 000),
the geographic scope (> 50, 000𝑘𝑚 of links), Internet traffic etc. Regard-
ing the Internet traffic, Figure 1.1 depicts the evolution of the total inbound
(pink) and outbound (yellow) traffic to the Internet for the last two years. A
mere inspection of this figure tells us that Guifi.net traffic has tripled(3𝐺𝑏𝑝𝑠
peak). Traffic peaks correspond to the arrival of new users and deployment
of bandwidth-hungry services in the network.

Guifi.net ultimate aim is to create a full digital ecosystem that covers
a highly localized area. But this mission is not so simple, because a quick
glance at the type of services that users demand reveals that the percentage
of Internet services (proxies and tunnel-based) is higher than 50% [Sel+15c].
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Figure 1.1: Guifi.net inbound and outbound traffic (Dec 2014 - Dec 2016).

This confirms that Guifi.net users are typically interested in mainstream
Internet services, which imposes a heavy burden on the “thin’’ backbone links,
with users experiencing high service variability.

Among other issues, this question spurred the invention of “alternative’’ ser-
vice deployment models to cater for users in Guifi.net. One of these models
was that based on micro-clouds†. A micro-cloud is nothing but a platform to
deliver services to a local community of citizens within the vast CN. Services
can be of any type, ranging from personal storage to video streaming and
P2P-TV [Sel+15b]. Observe that this model is different from Fog computing,
which extends cloud computing by introducing an intermediate layer between
devices and datacenters. Micro-clouds take the opposite track, by putting
services closer to consumers, so that no further or minimal action takes place
in Internet. The idea is to tap into the shorter, faster connectivity between
users to deliver a better service and alleviate overload in the backbone links.

Micro-clouds differ in which hardware resources they incorporate, ranging
from resource constrained devices such as home gateways, routers, embedded
devices etc., to desktop-style hardware used in office mesh networks. Given
the characteristics of communication over a wireless channel, unreliable net-
work and user devices at non-optimal locations, the physical topology of the
mesh network where the micro-clouds are deployed is in a constant state of
flux. In order to guarantee that the network is operational at all time, it is
necessary to continuously adapt the logical configuration of the network, e.g.,
routing paths and neighborhood lists to the conditions in the physical world.

†http://cloudy.community/
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This has been the research focus of the past decade i.e., optimizing the routing
of packets between the nodes of the mesh network, thus resulting in a great
variety of reactive, proactive and hybrid routing protocols [NLN15] [03].

Taking a more service-centric view on mesh networks, the distinction
between clients and servers still exists as part of the logical network structure
whenever certain nodes request services provided by other nodes. Therefore,
the question arises whether the performance of the mesh network (i.e., service
performance) such as Guifi.net can be optimized by carefully choosing exactly
which of the nodes it is going to host the particular service. Key factors to
take into account when answering this question are the connectivity between
individual nodes, availability of the nodes, service demand and the suitability
of services for being migrated between nodes.

The question of determining the location of deployment for micro-clouds
is referred to as the service placement problem, whose goal is to establish an
optimal or near-optimal service configuration, i.e., selection of nodes to host
the instances of the service which is optimal in regard to some service-specific
metric.

1.2 Problem Statement

The network topology in a wireless community network such as Guifi.net is
organic and different with respect to conventional ISP networks. The current
network deployment model in this mesh network is based on geographic sin-
gularities rather than QoS. The resources in the network are not uniformly
distributed [CNE13a]. Furthermore, wireless links are with asymmetric qual-
ity for services and there is a highly skewed traffic pattern and highly skewed
bandwidth distribution. Figure 1.2 depicts the bandwidth distribution in
Guifi.net for the first five months of 2016. Figure reveals that 50% of links
have a bandwidth smaller than 10 Mbps and the other 50% of the links in the
network have a bandwidth between 10 − 100 Mbps.

The highly skewed bandwidth distribution at Guifi.net is not the case in
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the data center network such as Rackspace or Amazon EC2 [LaC13]. Figure
1.3 reveals that in Rackspace data center there is very little spatial variation.
In fact, every path has a throughput of almost exactly 300 Mbps. This implies
that if a tenant were placing a single service on the Rackspace network, there
would be virtually no variation for the service placement algorithms to exploit.

Furthermore, in contrast to the data center environment, the infrastruc-
ture in Guifi.net is highly unreliable and heterogeneous. Devices and the
network are very heterogeneous comparing to data centers where they are
homogeneous. In terms of demand distribution, in community networks the
demand comes directly from the edge so there are no central load balancers
as in the cluster environments.All these factors makes the problem of service
placement even more challenging

The main challenge when deploying micro-clouds in the mesh network is
that of the optimal placement of micro-clouds within the mesh network to
overcome suboptimal performance i.e., the existing in-place strategy perform-
ance. Obviously, a placement algorithm that is agnostic to the state of the
underlying network may lead to important inefficiencies. Although conceptu-
ally straightforward, it is challenging to calculate an optimal decision due to
the dynamic nature of CNs and usage patterns.

The problem of service placement in micro-clouds deployed over the com-

5



munity mesh networks can be stated as follows: ”Given a service and network
graph, how to place a service on a network as to maximize user QoS and QoE,
while satisfying a required level of availability for each node (𝑁) and consid-
ering a maximum of 𝑘 service copies ?

The cost function to maximize user QoS or QoE may include metrics such
as network bandwidth, service overlay diameter or other service-dependent
quality metrics. The choice of the cost function is mandated by the service
placement policy. A placement policy states the goal that a service placement
system to achieve. The type and the consequences of placement policy vary
depending on the service type in the mesh network. A very fundamental
placement policy and in the fact the one we will consider mostly in this work
is the overall maximizing of the bandwidth required for the service provision-
ing. Other goals, may be pursued in more specialized service scenarios. For
example, in urban wireless mesh network the placement policy may aim at
a reduction of service access time (i.e., client response time). Alternatively,
in mesh network with nodes in non-optimal locations, a regionally diverse
service placement of service instances may be preferable.

Because of this, in order to adapt to zone-specific service demand, it is
advantageous if the service can be provided by multiple service instances
each of which is hosted on a different micro-cloud nodes. A service instance is
an exact copy of the software component that provides the service, including
the executable binary and the application-level data. Each of these service
instances is capable of providing the complete service on its own. These
service instances do not differ between them except for which node of the
mesh network they are hosted on.

The concept of service instances gives rice to a distinction between cent-
ralized and distributed services. It is technically infeasible to create multiple
instances for for the centralized services hence there is only a single service
instance (e.g., identical with the server in traditional client/server architec-
ture). On other side, for the distributed services is possible to create multiple
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instances (i.e., storage nodes in the distributed storage service or source node
in the video streaming service). However, they incur an additional overhead
in the mesh network which is not present in the case of centralized services.

1.2.1 Assumptions

Deploying service placement algorithms in community network micro-clouds
relies upon several assumptions about the context in which the wireless mesh
networks are deployed and about the capabilities of the nodes. The assump-
tions are as follows:

• Bounded heterogeneity of devices: This work takes the network
characteristics into account, while most of the service placement ap-
proaches generally consider only device characteristics (CPU, memory
etc). However, the heterogeneity of the devices with regard to their
capabilities needs to be bounded. We assume, most, if not all, nodes in
the network possess sufficient resources (CPU and memory) to host a
service instance.

• Cooperation between nodes: Since we are dealing with a contribut-
ory computing environment like wireless community networks, service
placement relies upon the assumption that the nodes are willing to co-
operate with each other in order to achieve a common goal. This as-
sumption is used also in the core of routing protocols that are used and
service placement applies to the area of service provisioning.

1.3 Research Questions

Measuring the performance of services in community network micro-clouds is
very important in order to guarantee that the services will run successfully
and not disrupt the proper function of the network. The approach for per-
formance assessment of services in community network micro-clouds is to set
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the experimental conditions as seen from the end user: experiment in produc-
tion community networks, focus on metrics that are of interest for end users
and deploy services on real nodes integrated in community networks. To this
end, the first question that needs to be addressed is the following one:

Q1: Is it feasible to run services in community network
micro-clouds ?

Not all services can be deployed in the community network micro-clouds.
However, those services that can be deployed have different QoS require-
ments. For instance, bandwidth intensive services (e.g., distributed storage)
and latency sensitive services (e.g., live-video streaming) can operate success-
fully upon different workloads. Hence, the following question emerges as a
consequence:

Q1.1: What are the service workload upper bounds for successful
operation of bandwidth-intensive and latency-sensitive services

?

Metrics that quantify the success of a different service type of operation
are important to be included in the service placement algorithms. We address
this issue by answering the following question:

Q1.2: Which metrics should be applied for analysis ?

The placement of the components in a distributed services depends largely
on the interactions and the semantics between the service components. Based
on that, services that require intensive inter-component communication (e.g
streaming service), can perform better if the replicas (service components) are
placed close to each other in high capacity links. On other side, bandwidth-
intensive services (e.g., distributed storage, video on-demand) can perform
much better if their replicas are as close as possible to their final users (e.g.
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overall reduction of bandwidth for service provisioning). The service compon-
ents of bandwidth-intensive and latency-sensitive services deployed create a
service overlay graph. Therefore, we should tackle the following question:

Q2: What is the impact of the service overlay diameter on the
service performance ?

As services become more network-intensive, they can become bottle-necked
by the network, even in well-provisioned clouds. In the case of community
network micro-clouds, network awareness is even more critical due to the lim-
ited capacity of nodes and links, and an unpredictable network performance.
Without a network-aware system for placing services, locations with poor net-
work paths may be chosen while locations with faster, more reliable paths
remain unused, resulting ultimately in a poor user experience. To fulfil this
need, we should tackle the following question:

Q3: Given a community network micro-cloud infrastructure, what
is an effective and low-complexity service placement solution

that maximises end-to-end performance ?

1.4 Contributions

In this section, we outline the major contributions of the thesis by mapping
each contribution to the associated research question. The major contribu-
tions of the thesis are listed as follows:

C1: A performance evaluation of a distributed storage service, live-video
streaming and discovery service in a community network micro-cloud plat-
form. First, this contribution identifies the requirements of deploying these
type of services in micro-cloud environment. This part specifically addresses
the question Q1. Second, we characterize and define workload upper bounds
for successful operation of such services and this addresses the question Q1.1.
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Third, we conduct cross-layer analysis and optimizations on the service level
to improve the service performance in a community network micro-cloud en-
vironment, which addresses the question Q1.2. We discuss this contribution
in Chapter 3.

C2: A service placement algorithm PASP that explores different placements
searching for the local minimal service overlay diameter, while at the same
time fulfilling different service type quality parameters. The algorithms finds
the minimum possible distance in terms of number of hops between two fur-
thest selected resources (i.e. service components), without the need to verify
the whole solution space. In addition to minimizing service overlay diameter,
the PASP exploratory algorithm considers the latency and availability metric
for the latency-ensitive services and closeness metric for bandwidth-intensive
services. This contribution specifically addresses the question Q2, and we
discuss it in Chapter 4.

C3: A placement heuristic called BASP (Bandwidth and Availability-aware
Service Placement), which uses the state of the underlying community net-
work to optimize service deployment. In particular, it considers two sources
of information: i) network bandwidth and ii) device availability to make op-
timized decisions. Compared with brute-force search, which it takes of the
order of hours to complete, BASP runs much faster; it just takes a few seconds,
while achieving equally good results. This contribution addresses the question
Q3 and we discuss it in Chapter 5.

1.5 Scope

The goal of this research project is to assess the current service placement in
effect in a representative community network, analyse its inefficiencies, and
propose and evaluate a feasible and effective solution to improve it. The
algorithms are designed to interact closely with the domains of routing and

10



service discovery. There are several other, closely related areas of research,
which we will not consider in depth in this work:

• Incentives for cooperation: it is out of scope to establish under which
motivation nodes of the micro-clouds should decide to host service or
forward packets for other nodes. The assumption that nodes are willing
to cooperate to achieve a common goal is widely used in research into
wireless mesh network. However, we we can reference the work of Khan
[KBF13] that is particular done for our scenario.

• Security: It is beyond the scope of our current work to make the system
or algorithms robust against attacks from malicious nodes.

1.6 Outline of the Thesis

Figure 1.4 shows the chapters where we discuss the contributions. Further-
more, the figure shows also the publications accepted and how they match
with the chapters. Based on that, this thesis work is structured as follows:

We begin with a review of the fundamentals of wireless community networks
and service placement in Chapter 2. In this chapter, we give brief definitions
for the terms that we have introduced informally in the whole thesis. We
also present an in-depth review of the state of the art of service placement
problem and classify current proposals by their architectural approach and
applicability environment.

Chapter 3 presents the current state of service deployment in Guifi.net
community network and the performance assessment of three type of popular
services in these environments. This chapter presents the first part of our
contribution, which is the feasibility and in-depth performance assessment of
distributed storage, video streaming and discovery service.

In Chapter 4 we present our PASP algorithm, i.e., exploratory algorithm
that finds all the optimal and sub-optimal service overlay placements. First
we study the effectiveness of our approach in simulations using real-world
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node and usage traces from Guifi.net nodes. Subsequently, we deploy our
algorithm, driven by these findings, in a real production community network
and quantify the performance and effects of our algorithm with a distributed
storage service.

In Chapter 5 we present our low-complexity service placement heuristic
called BASP that maximises the bandwidth allocation when deploying a com-
munity network micro-clouds. We present algorithmic details, analyse its
complexity, and carefully evaluate its performance with realistic settings.

Chapter 6 concludes the thesis and indicates future directions.

Community Network Micro-Cloud

Front End Layer

Distributed 
Storage

Live-video 
Streaming

Service  
Discovery

Topology-aware 
Service Placement

Service Placement 
Heuristic

Core Layer

Hardware and Networking Layer

Chapter 3

Chapter 4 Chapter 5

[Sel+15a] [Sel+16c]
[Sel+15b]

[Sel+15]

[Sel+16b][Sel+16a]

Chapter 2

Publications

Publications

Service Layer

Middleware Layer
Network-aware Service Placement

Figure 1.4: Outline of the thesis
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2
Background

Community network micro-clouds are a social collective model, and need con-
tribution from its participants for its sustainability and growth. This requires
addressing the service deployment requirements and the challenging problem
of effective service placement. In this chapter, first we give brief definitions for
the terms introduced in the thesis. Then, we present an in-depth review of the
state of the art of service placement problem and classify current proposals
by their architectural approach and applicability environment.

2.1 Definitions

We start by introducing the terms used throughout this chapter and the rest
of the thesis.

Community Network (CN) Decentralized and self-organized communica-
tion networks built and operated by citizens for citizens. In these networks
the infrastructure is established by the participants and is managed as a
common resource. The infrastructure consists of mesh routers, mesh clients
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Figure 2.1: Community network resources Figure 2.2: Micro-cloud resources

and optionally gateways as shown in Figure 2.1. The routers (i.e., outdoor
routers) communicate with each other via radio transmissions and employ
special-purpose routing protocols as BMX6 or OLSR [NLN15]. Mesh clients
access the network via one of the routers, while gateways provide connectivity
to the Internet. Client nodes consists of home gateways, laptops or desktop
PCs. The main goal of community networks is to satisfy community’s demand
for Internet access and information and technology services. Most of them
are based on Wi-FI technology.

Community Network Micro-Cloud (CNMC) Built on top of the community
networks. In this model, a cloud is deployed closer to community network
users and other existing infrastructure. The micro-cloud is deployed over a
single or set of user nodes, and comparing to the public clouds it has a smaller
scale, so one still gets high performance due to locality and control over applic-
ation placement. The devices forming micro-clouds are co-located in either
users homes (as home gateways, routers, laptops etc., as shown in Figure
2.2) or within other infrastructures distributed in the community networks.
The concept of micro-clouds can also be introduced in order to split deployed
community network nodes into different groups. For instance, a micro-cloud
can refer to these nodes which are within the same service announcement and
discovery domain. Different criteria can be applied to determine to which
micro-cloud a node belongs to. Applying technical criteria (e.g. RTT, band-

14



width, number of hops, resource characteristics) for micro-cloud assignment
is a possibility to optimize the performance of several applications. But also
social criteria may be used, e.g. bringing in a micro-cloud cloud resources
together from users which are socially close may improve acceptance, the
willingness to share resources and to maintain the infrastructure.

Service A service is a software component executed on one or several nodes
of the wireless community network. It consists of both service-specific logic
and state. A service is accessed by local or remote clients by the means of
issuing service request that, in case of remote clients are transmitted across the
network. In our case the services are running in a Docker and LXC containers.
Several attributes of a service are of special interest in the context of service
placement:

• Centralized vs. distributed services The service placement is ap-
plicable to both centralized and distributed services. For centralized
services i.e., running on one node, service placement it controls which
node should host the service. For distributed services, the service place-
ment algorithm it also manages the granularity with which the service
is to be split up, i.e, the number of service components that are to be
distributed in the network.

• Monolithic vs. composite services If a service can be decomposed
into multiple independently deployable subservices, each of which con-
tributes a different aspect of the overall service, then it is a composite
service. In contrast, a monolithic service cannot be split into subservices
either due to semantics or implementation concerns. The main focus of
this work is on monolithic services.

Service overlay When service components are deployed on the micro-clouds
they create a service overlay graph. Our service placement algorithm searches
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in a large space of solutions, looking for those that minimize the overlay
diameter (i.e., number of hops) between two selected resources.

Network Topology The physical network topology (i.e., network graph)
refers to the connectivity between nodes that form the wireless community
network. The network graph is subject to continues change due to node
churn, mobility and changing properties of wireless links. The network graph
of Guifi.net has a mesh-based topology. The logical network topology (i.e.,
service graph) consists of links created from communication of services.

Offline and Online Service Placement Throughout this thesis, we say that
a service placement is offline when our goal is to place a single or a set of
service graphs ”in one shot”. In contrast, an online service placement is the
case where we have an incoming stream of service graphs, which have to be
sequentially placed onto the network graph as each service graph arrives.

2.2 Community Clouds

Carving our path towards community clouds in community networks, we must
consider the cloud essential characteristics, as described in [MG11]. Broad
network access is already offered by the community networks and resource
pooling should be an outcome of the resource sharing described above. Meas-
ured services are very important in order to guarantee that the services will
not disrupt the proper function of the network. On-demand self-service is a
higher-level concept concerning the responsiveness and the transparency of
the system; thus, this is an important feature but of secondary priority. Sim-
ilarly, rapid elasticity of the resources offered is a welcome property; yet, it
should not be considered an essential one due to its complexity because of
the highly distributed environment.

The idea of collaboratively built community clouds follows earlier dis-
tributed voluntary computing platforms, such as BOINC [And04], Fold-
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ing@home [Beb+09], PlanetLab [Chu+03], and Seattle [Cap+09], which
largely rely on altruistic contributions of resources from users, functioning as
research platforms. There are only a few research proposals for community
cloud computing [MB09], and most of them do not go beyond the architecture
level, whereas very few present a practical implementation.

The Cloud@Home [DP12] project aims to harvest resources from the com-
munity for meeting the peaks in demand, working with public, private, and
hybrid clouds to form cloud federations. The Clouds@Home [Yi+11] project
focuses on providing guaranteed performance and ensuring quality of service
(QoS), even when using volatile Internet volunteered resources. The P2PCS
[BMT12] project has built a prototype implementation of a decentralised peer-
to-peer cloud system. It uses Java JRMI technology and builds an IaaS system
that provides very basic support for creating and managing virtual machines.
These implementations, to our knowledge, are not actually deployed inside
real community networks, considering the infrastructure diversity, and are
not aiming to satisfy end-user needs.

Social cloud computing [Cha+12] is a relevant research field that takes
advantage of the trust relationships between members of social networks to
motivate contribution towards a cloud storage service. Users trade their ex-
cess capacity to earn virtual currency and credits that they can utilise later,
and consumers submit feedback about the providers after each transaction,
which is used to maintain the reputation of each user. Social clouds have been
deployed in the CometCloud framework by federating resources from multiple
cloud providers [Pun+13]. The social compute cloud [Cat+14], implemented
as an extension of the Seattle platform [Cap+09], enables the sharing of in-
frastructure resources between friends connected through social networks and
explores bidirectional preference-based resource allocation.

Among federated cloud infrastructures, Gall et al. [GSF13] have explored
how an InterCloud architecture [BRC10] can be adapted to community clouds.
Further, Esposito et al. [Esp+13] presented a flexible federated Cloud archi-
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tecture based on a scalable ’publish and subscribe’ middleware for dynamic
and transparent interconnection between different providers. Moreover, Zhao
et al. [ZLL14] explored efficient and fair resource sharing among the parti-
cipants in community-based cloud systems. In addition, Jang et al. [Jan+14]
implemented personal clouds that federate local, nearby, and remote cloud
resources to enhance the services available on mobile devices.

2.3 Service Performance Evaluation

Development and deployment of services in micro-clouds it can be very challen-
ging. The feasibility of running services in micro-clouds can be demonstrated
by carefully performing measurements taking into account different data work-
loads on these cloud infrastructure. The services used in the thesis are selected
according to their potential relevant for community network users. The most
popular open source services we are taking into account are the distributed
storage service, live-video streaming and discovery service [Sel+15c].

2.3.1 Distributed Storage Service

After basic connectivity, storage is the most general service being fundamental
for cloud take-up in community network scenarios. In terms of providing
cloud storage services in WAN settings, Chen’s paper [Che+13] is the most
relevant to our work. The authors deployed open source distributed storage
services such as Tahoe-LAFS [WW08], QFS [16m], and Swift [16j] in a multi-
site environment and measured the impact of WAN characteristics on these
storage systems. The authors deployed their experiments on a multi-site data
center with very different characteristics to our scenario. Our approach is
to assess the distributed storage service (i.e., Tahoe-LAFS) performance in
the real context of community networks, and we use heterogeneous and less
powerful machines as storage nodes.

The authors in [Gra+13] present a measurement study of a few Personal
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Cloud solutions such as DropBox, Box, and SugarSync. The authors examine
central aspects of these Personal Cloud storage services to characterize their
performance, with emphasis on the data transfers. They report that they
found interesting insights such as the high variability in transfer performance
depending on the geographic location; the type of traffic, namely inbound or
outbound; the file size; and the hour of the day. Their findings regarding
the impact of location on the performance is relevant for our work to better
understand network dependence of distributed storage services.

Another work [Tse+12] implements a distributed file system for Apache
Hadoop. The original Hadoop distributed file system is replaced with the
Tahoe-LAFS cloud storage. The authors investigated the total transmission
rate and download time with two different file sizes. Their experiment showed
that the file system accomplishes a fault-tolerant cloud storage system even
when parts of storage nodes had failed. However in the experiments only
three storage nodes and one introducer node of Tahoe-LAFS were used, and
their experiments were run in a local context, which is an unrealistic setting
for our scenario. Another paper [SD12] evaluates XtreemFS [16s], Ceph [16b],
GlusterFS [16d] and SheepDog [16p], using them as virtual disk image stores
in a large-scale virtual machine hosting environment. The StarBED testbed
with powerful machines is used for their experiments. Differently, we target
a distributed and heterogeneous set of storage nodes.

The paper of Roman [10] evaluates the performance of XtreemFS under the
IO load produced by enterprise applications. They suggest that XtreemFS has
a good potential to support transactional IO load in distributed environments,
demonstrating good performance of read operations and scalability in general.
XtreemFS is an alternative candidate for implementing a storage service upon.
Tahoe-LAFS, however, more strongly addresses fault-tolerance, privacy and
security requirements.

From the review of the related work it can be seen that the experimental
studies regarding the distributed storage, were not conducted in the context

19



of community networks. In our work, we emphasized the usage of distributed
storage services, i.e., Tahoe-LAFS, XtreemFS etc, in a real deployment within
community network clouds, to understand its performance and operational
feasibility under real network conditions.

2.3.2 Live-video Streaming Service

The work of Baldesi et al. [BML14a; BML14b], evaluates PeerStreamer [16k],
a P2P video streaming platform, on the Community-Lab, the wireless com-
munity network (WCN) testbed of the EU FIRE project CONFINE [14b].
Their experiments highlight the feasibility of P2P video streaming, but they
also show that the streaming platform must be tailored ad-hoc for the WCN
itself to be able to fully adapt and exploit its features and overcome its limit-
ations. However they evaluated with a limited number of nodes (16 Guifi.net
nodes), which were located in the city of Barcelona and they do not use live-
video streaming. A recent PhD dissertation [Ala13] includes some discussion
on P2P streaming on WCNs, but does not elaborate on live streaming, but
consider streaming of Video on Demand (VoD) retrieval.

Another work [Tra+12] studies different strategies to choose neighbours in
a P2P-TV system (PeerStreamer). The authors evaluate PeerStreamer on
a cluster and on Planetlab. In wireless networks PULLCAST [RC13], is a
cooperative protocol for multicast systems, where nodes receive video chunks
via multicast from a streaming point, and cooperate at the application level,
by building a local, lightweight, P2P overlay that supports unicast recovery
of chunks not correctly received via multicast.

The impact of uncooperative peers on video discontinuity and latency dur-
ing live video streaming using PlanetLab is studied in [Oli+13]. The paper
in [Cou+11] investigates the impact of peer bandwidth heterogeneity on the
performance of a mesh based P2P system for live streaming.

In our work we emphasis on studying the video streaming applications in a
real deployment scenario within community networks, in order to understand
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their performance and operation feasibility under real network conditions.

2.3.3 Service Discovery

In terms of examining the dependability aspects of decentralized service dis-
covery concepts in unreliable networks, Dittrich’s and Salfner’s paper [DS10]
is the most relevant to our work. The authors evaluate the responsiveness
of domain name system (DNS) based service discovery under influence of
packet loss and with up to 50 service instances. Their empirical results show
that the responsiveness of the used service discovery mechanisms decreases
dramatically with moderate packet loss of around 20 percent. However their
experimental evaluation is based on simulations and has not been applied
to wireless scenarios. The research described in [DMQ07] presents an altern-
ative approach to extend the limit of Zeroconf beyond the local link. Here,
the robustness of existing discovery mechanism is evaluated under increasing
failure intensity. However, responsiveness is not covered in particular. The
z2z toolkit [Lee+07] combines the Zeroconf with the scalability of DHT-based
peer-to-peer networks allowing services to reach beyond local links. z2z con-
nects multiple Zeroconf subnets using OpenDHT. Robustness of service dis-
covery with respect to discovery delay times is addressed in [Oh+04]. The
work of [CG06] describes and compares through simulation the performance
of service discovery of two IETF proposals of distributed DNS: Multicast DNS
and LLMNR (Link-Local Multicast Name Resolution). The authors propose
simple improvements that reduce the traffic generated, and so the power con-
sumption.

In wireless mesh network settings, the work of Wirtz [Wir+12] proposes
DLSD (DHT-based Localized Service Discovery), a hierarchy of localized DHT
address spaces that enable localized provision and discovery of services and
data. Another work[Dit+14] proposes a stochastic model family to evaluate
the user-perceived responsiveness of service discovery, the probability to find
providers within a deadline, even in the presence of faults. From the review of
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the related work it can be seen that the reviewed experimental studies related
to service discovery were not conducted in the context of the community
networks, which we address as scenario.

2.4 Service Placement

Service placement is a key function of cloud management systems. Typically,
by monitoring all the physical and virtual resources on a system, service place-
ment aims to balance load through the allocation, migration and replication
of tasks. We look at the service placement in three different environments:
data centre, distributed clouds and wireless networks.

2.4.1 Service Placement in Data Centre Environment

Choreo [LaC13] is a measurement-based method for placing applications in
the cloud infrastructures to minimize an objective function such as application
completion time. Choreo makes fast measurements of cloud networks using
packet trains as well as other methods, profiles application network demands
using a machine-learning algorithm, and places applications using a greedy
heuristic, which in practice is much more efficient than finding an optimal
solution. In [Her10] the authors proposed an optimal allocation solution for
ambient intelligence environments using tasks replication to avoid network
performance degradation. Volley [Aga+10] is a system that performs auto-
matic data placement across geographically distributed datacenters of Mi-
crosoft. Volley analyzes the logs or requests using an iterative optimization
algorithm based on data access patterns and client locations, and outputs mi-
gration recommendations back to the cloud service. A large body of work of
service placement has been devoted to finding heuristic solutions [Gha+14].

Most of the work in the data center environment is not applicable to our
case because we have a strong heterogeneity given by the limited capacity of
nodes and links, as well as asymmetric quality of wireless links. The differ-
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ence/asymmetry in the link capacities across the network makes the service
placement a very different problem than in a mostly homogeneous cloud data-
center. Our measurement results demonstrate that 25% of the links have a
symmetry deviation higher than 40% [SelimiArxiv2099].

2.4.2 Service Placement in Decentralized Clouds

When the service placement algorithms decide how the communication
between computation entities is routed in the substrate network, then we
speak of network-aware service placement, i.e., closely tied to Virtual Network
Embedding (VNE).

There are few works that provides service placement in distributed clouds
with network-aware capabilities. The work in [SG12] proposes efficient al-
gorithms for the placement of services in distributed cloud environment. The
algorithms need input on the status of the network, computational resources
and data resources which are matched to application requirements. In [KIH12]
authors propose a selection algorithm to allocate resources for service-oriented
applications and the work in [AL12] focuses on resource allocation in distrib-
uted small datacenters. Another example of a network-aware approach is
the work from Moens in [Moe+14] which employs an Service Oriented Archi-
tecture (SOA), where applications are constructed as a collection of services.
Their approach performs node and link mapping simultaneously. The work
in [SBL15] extends the work of Moens et al. in wireless settings taking into
account IoT. Another work is Mycocloud [Dub+15], which provides elasticity
through self-organized service placement in decentralized clouds.

The recent work in [Tär+16] simultaneously and holistically take into ac-
count rapid user mobility and vast resource cost- and capacity-heterogeneous
infrastructures when placing applications in Mobile Cloud Networks (MCN).
Based on their proposed system model, a globally optimal placement of static
and mobile applications is designed. Their optimal solution achieves a 25%
reduction in cost compared to the naive methods.
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Most of the work in the distributed clouds consider micro-datacenter, where
in our case the CN micro-clouds consists of constraint/low-power devices such
us home gateways. Furthermore, in our case we have a partial information
regarding the computational devices, so their approaches are not applicable
to our environment.

2.4.3 Service Placement in Wireless Networks

To the best of our knowledge, not many works exist regarding the service
placement in wireless environment. Some of the works that we find similarities
with our work in this thesis are the following below.

The authors in [Wit10] propose a service placement framework as a novel ap-
proach to service placement in wireless ad hoc network. Their 𝑆𝑃𝑖 framework
takes advantage of the interdependenices between service placement, service
discovery and the routing of service requests to minimize signaling overhead.
They propose two service placement algorithms: one for centralized services
with a single instance, and one algorithm for distributed services with variable
number of instances. The 𝑆𝑃𝑖 framework employs these algorithms to optim-
ize the number and location of service instances based on usage statistics and
a partial network topology derived from routing information. The examine
the performance of their algorithms in simulations, emulations and real-world
experiments on a IEEE 802.11 wireless testbed.

Another work in [Cab14] tries to optimize the resource selection for service
allocation in the contributory computing model. The claim that by using
historical availability behavior to select nodes in the system, can lead to higher
service availability levels. Thus, user impression is improved and more users
and services could be attracted to contributory environments. Furthermore,
they design a network-aware methodology to allocate service replicas in a
network graph aiming to minimize the distances from each client to its closest
service replica. They model the problem as a Facility Location Problem, on
which service replicas are facilities (with a set up cost) and the clients in the
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network are customers. Then, the goal is to minimize the sum of distances
and set up costs of the selected replicas.

The work in [Nov+15] analyzes network topology and service dependencies,
and combined with set of system constraints determines the placement of
services within the wireless network. The authors use a multi-layer model to
represent a service-based system embedded in a network topology and then
apply an optimization algorithm to this model to find where best to place or
reposition the services as the network topology and workload on the services
changes. This technique improves the reachability of services when compared
to uninformed placements.

The work of Davide et.al [Veg+14] introduces a service allocation algorithm,
that from being optimal in computation time, provides near-optimal overlay
allocations without the need to verify the whole solution space. This is work
is related to ours since it is done in Guifi.net community network. Their al-
gorithm uses the static data from the Guifi.net community network to identify
node traits and propose several algorithms that minimize the coordination and
overlay cost along a network.

The focus of our work in this thesis however is to design a low-complexity
service placement heuristic for community network micro-clouds to maximise
bandwidth and improve user QoS and QoE.

2.4.4 Service Placement through Migration

Regarding the service migration in distributed edge clouds, few works came
out recently. The authors in [Wan+15b] and [Wan+15a] study the dynamic
service migration problem in mobile edge-clouds that host cloud-based ser-
vices at the network edge. They formulate a sequential decision making prob-
lem for service migration using the framework of Markov Decision Process
(MDP) and illustrate the effectiveness of their approach by simulation using
real-world mobility traces of taxis in San Francisco. The work in [Urg+15]
studies when services should be migrated in response to user mobility and
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demand variation. Another work [Mac+16] proposes a three-layer framework
for migrating running applications that are encapsulated either in virtual
machines (VMs) or containers. They evaluate the migration performance of
various real applications under the proposed framework.
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3
Micro-Cloud Service Performance

Internet and communication technologies have lowered the costs to collaborate
for communities, leading to new services like user-generated content and so-
cial computing and, through collaboration, collectively built infrastructures,
such as community networks. Internet access is often considered the main
service of community networks, but the provision of services of local interest
within the network is a unique opportunity for community networks, which
is currently predominantly unexplored. The consolidation of today’s cloud
technologies offers community networks the possibility to collectively build
community micro-clouds, building upon user-provided networks, and extend-
ing towards an ecosystem of cloud services. In this chapter first we present the
current state of service deployment in community networks through a study
of Guifi.net, and identify the popular services within this network. Then,
we conduct real deployments of micro-clouds in the Guifi.net community
network and evaluate cloud-based applications such as distributed storage,
live-video streaming and service discovery. This deployment experience sup-
ports the feasibility of community micro-clouds (i.e., research question Q1)
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and our measurements demonstrate the performance of services and applica-
tions running in these community micro-clouds (i.e., research questions Q1.1
and Q1.2). Our results encourage the development and operation of collab-
orative cloud-based services using the resources of a community network. We
anticipate that such services can effectively complement commercial offers and
have the potential to boost innovation in application areas in which end-user
involvement is required.

3.1 Background

The predominant trend in many community networks is to use the available
resources as a means to access external services provided elsewhere on the
Internet. This might be seen as a contradiction to their spirit since traffic
within the community network is freely available, while Internet access is
charged or restricted to some extent (bandwidth limitations apply or packets
exit through proxies). Ubiquitous cloud services, such as private data stor-
age and backup, instant messaging, media sharing, social networking, etc.,
are generally operated by well-known Internet service vendors. Community
network participants are thus increasingly affected by the problems and dis-
advantages of this model (privacy, security, property, legislation, dependency,
etc.).

In some cases, Internet cloud services have equivalent alternatives that are
owned and operated at the community level; in other cases, however, there
are no locally driven alternatives, yet. Possible reasons for the absence of
these community-owned services can be found in the difficulty to deploy such
services and the shortage or lack of individuals, organisations, or companies
interested in the commercial operation of these services.

As we describe next, since community networks have become popular, there
have been efforts to develop and promote different services and applications
from within community networks but without significant adoption. One of
the reasons identified is the technological barrier. Before providing content,
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users willing to share information with the community must first take care
of the technical aspects, such as the deployment of a server with a set of
services. For example, the key characteristic of the Guinux [16h] distribution,
explained below, was a set of scripts that automatised the configuration pro-
cess. End users were only asked for a few parameters, such as their e-mail
address and the node identifier. Shortly after the distribution was made avail-
able, the number of end users sharing resources proliferated. Thus, it became
clear that lowering (or removing) the technological entry barrier encouraged
users to provide more services and share their resources with the community.
Nevertheless, community networks are still typically used to access external
Internet services, as presented later. We believe that this is a result of the
lack in number, diversity, and user-friendliness of services as well as perform-
ance disadvantages of non-commercial distributed applications compared to
Internet cloud services.

3.1.1 Current State of Service Deployment in Guifi.net

To obtain the dimension of the current situation, we analyse the list of ser-
vices published (i.e., publicly announced) by the Guifi.net community net-
work. We do so by means of the list of services available on the Guifi.net web
page for the Catalonia region of Spain, the origin and most dense location of
Guifi.net [16g].

Tables 3.1 and 3.2 [16g] indicate the network-focused and user-focused ser-
vices, respectively, of Guifi.net and the proportion of each service in the ser-
vices offered. We consider that the number of instances of a service implies the
demand of the service inside the network. Comparing the tables, we notice
that the services related to the network operation itself slightly outnumber
the services intended for end-users. Considering that network management
is of interest only to a fragment of the network members compared to user-
focused services, which could be of interest to all users, we would expect user-
focused services to be more developed. Moreover, the most frequent of all
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Services Catalonia
Network graph server 219 39.24%
DNS server 198 35.48%
NTP server 96 17.20%
Bandwidth measurement 36 6.45%
Logs server 4 0.71%
LDAP server 3 0.53%
Wake on LAN 2 0.35%

Total 558

Table 3.1: List of network-focused Guifi.net services in Catalonia area

Services Catalonia
Proxy server (Internet access) 275 53.50%
Web pages 57 11.08%
VoIP / audio / video / chat / IM 48 9.33%
Data storage server 41 7.97%
Radio / TV stations 18 3.50%
P2P server 17 3.50%
Linux mirrors 15 2.91%
Webcam 12 2.33%
Tunnel-based Internet access 10 1.94%
Mail server 6 1.16%
Weather station 6 1.16%
Games server 5 0.97%
CVS repository 2 0.38%
Server virtualisation (VPS) 2 0.38%

Total 514

Table 3.2: List of user-focused Guifi.net services
in Catalonia area
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the services, whether user-focused or network-focused, are the proxy services.
Specifically for the user-focused services, the percentage of Internet access
services (proxies and tunnel-based) is higher than 55%, confirming that the
users of Guifi.net are typically interested in accessing the Internet. We can
also claim that there is a diverse set of services inside Guifi.net, even though
their adoption is overshadowed by Internet access.

It is important to point out that this situation is not unique to Guifi.net.
Other community networks exhibit similar situations, where the network is
typically used to access the Internet, and the few services available within the
community network are similar to those available in Guifi.net. For instance,
Elianos et al. [Eli+09] presented similar information regarding AWMN [16a].
The authors mainly focused on user-oriented services, which are quite similar
to the Guifi.net services. The most popular services are web hosting, data
storage, VoIP, and video streaming.

The services provided by Guifi.net can be categorised under cloud com-
puting service models (though not following the traditional cloud elastic on-
demand service approach): IaaS, PaaS and SaaS. Concerning IaaS, follow-
ing the global trend, the popularity of virtualisation technologies is rising in
Guifi.net. Currently, almost all critical services are run on virtualised en-
vironments, frequently using Proxmox [16l]. Guifi.net also provides specific
hardware infrastructure and software, supporting virtual networks and tunnel-
ling. Additionally, some efforts have been made in the past to provide the end
users with tools to help them with the deployment and expansion of the com-
munity network from the software and services perspective. This was the case
of Guinux, a GNU/Linux distribution for end users allowing them to deploy
servers with services useful for community networking, namely Proxy, DNS,
and SNMP (Simple Network Management Protocol) graphs servers. Simil-
arly to PaaS, a diverse set of services has been deployed, such as automated
node configuration, user authentication, service monitoring (servers and net-
work), and an on-line service directory as well as network information and

31



administration databases. Finally, taking into account the SaaS model in the
context of community networks, data storage services have been sporadically
deployed by enthusiastic users who wanted to share some of their content
(pictures, documents, etc.) with the rest of the community [Sel+14]. In some
cases, users have also enabled uploading to folders, allowing other users to
upload their files for sharing with the community. Despite this, it should not
be considered a data storage service for end users. Moreover, Guifi.net users
have developed GuifiTV [16e], a project initially conceived to harmonise the
captured video formats and the content from seminars and workshops, which
later included video streaming services.

The services described above are representative examples of those usually
deployed in community networks. Nevertheless, both network-oriented and
user-oriented services are centralised and offered by individuals. Distribu-
tion and decentralisation are concepts that are closely related to the com-
munity network philosophy; nonetheless, since centralised solutions are gen-
erally much easier to develop and deploy, in most of the cases they end up
being implemented according to the classical client-server approach. As a
result, basic cloud service requirements, as described in [MG11], are not ful-
filled. Most importantly, there is no common pool of resources but instead a
set of separate resources, since the same services are deployed independently
and not coordinated in a common way. As a result, service coordination and
resource sharing mechanisms are the first milestones towards creating cloud
services for community networks, which are provided by the cloud framework
we propose.

Our effort targets fostering the deployment of micro-clouds and cloud-based
services on top of community networks. Based on the experiences of current
community networks, providing end users with the appropriate applications
has proven to be an effective way of encouraging them to use, provide, and
promote services.
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3.1.2 Cloudy: Community Cloud-in-a-Box

As we discussed earlier in Section 3.1, we believe that the failure of services
gaining traction in community networks was largely due to the difficulty of
implementing the services and for the end-users to consume these services. To
overcome these issues, we provide a community cloud distribution, codenamed
Cloudy [Clo16]. Cloudy is a tool that fosters the adoption and uptake of
micro-cloud services among the users.

The current prototype of Cloudy implements the modules/layers shown in
Figure 5.11. This distribution contains the platform and application services
of the community cloud system. Cloudy is the core software of our micro-
clouds, because it unifies the different tools and services of the cloud system
in a Debian-based Linux distribution. Cloudy is open-source and can be
downloaded from public repositories*. A Cloudy instance can be run directly
on a bare metal machine or on a virtual machine. Independent of the hardware
that Cloudy runs on, connectivity to other Cloudy instances is needed in order
to fully exploit the potential of Cloudy.

3.1.3 Cloudy Services

Cloudy comprises a number of services, designed to help build cloud-based ser-
vices in community networks. Cloudy’s main components can be considered
a layered stack with services residing both inside the kernel and higher up at
the user-level. All of the software included in the Cloudy platform is open-
source. All service accesses are assisted and managed through the main panel
of the Cloudy GUI. The following three groups classify Cloudy services.

Infrastructure Services

Virtualisation is the main enabling technology for cloud computing. As such,
providing community network users the resources to deploy virtual machines

*http://repo.clommunity-project.eu/images/
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Figure 3.1: Cloudy architecture

with a few clicks is a very convenient way to bring the cloud closer to their
premises. This allows the non-experienced user to focus on the services and
applications themselves rather than on learning how to cope with the under-
lying infrastructure.

OpenVZ [15f] is an operating system-level virtualisation technology for
Linux based on containers. OpenVZ allows creating multiple secure, isolated
operating system instances called containers (commonly known as VPSs) on
a single physical machine enabling better server utilisation and ensuring that
applications do not conflict with each other. Each container performs and
executes exactly like a stand-alone server (which can have root access, users,
IP addressing, memory, files, etc.) and can be started and stopped independ-
ently from the others and from the host machine. OpenVZ is the preferred
solution for providing virtual machines in Cloudy with low to mid-end hard-
ware as only a negligible portion (1-2%) of the CPU resources is spent on
virtualisation. The Cloudy distribution includes a script that downloads and
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installs all the required OpenVZ packages in one click and Cloudy instances
can be run on the virtual machines created using the OpenVZ Web Panel.

Other virtualisation methods used in Cloudy are LXC and Docker. This
approach adds special support for IaaS, as the cloud nodes are able to create
multiple virtual machine instances for other purposes in addition to the ones
dedicated to Cloudy. The infrastructure services of Cloudy enable resource
sharing inside the community network.

Service Discovery and Network Coordination Services

Cloudy provides custom decentralised services for network coordination and
service discovery. Network coordination ensures visibility between the nodes
that participate in the cloud. Service discovery is a crucial building block in
Cloudy for enabling distributed services to be orchestrated to provide plat-
form and application services. Service discovery is based on the network
coordination component.

For service discovery, Cloudy includes a customised version of Avahi [15a]
to provide decentralised service discovery at Layer 2, which is needed to dis-
cover other services that will be used to provide higher-level services. The
multicast-based design does not allow the Avahi service to reach beyond the
local link, which is the case in community networks, where services are spread
over different nodes that belong to different broadcast domains. While in this
environment, it would not be possible for Avahi packets to be directly ex-
changed from one node to another; this problem is solved by the network
coordination component.

For the network coordination component, we adopt TincVPN [15k], a vir-
tual private network (VPN) daemon that uses tunnelling and encryption to
create a secure private Layer 2 network between hosts of different domains.
This Layer 2 connectivity is needed between nodes, since they may reside on
different administrative domains and even be located behind firewalls. The
TincVPN is automatically installed and configured on every Cloudy node,

35



ready to be activated. After its activation, a VPN daemon is started in order
to reach other Cloudy instances via the established Layer 2 network; thus,
Avahi can communicate transparently with other nodes. To easily install and
configure a system with TincVPN, a tool called Getinconf [16c] has been
developed, which is integrated into Cloudy.

Cloudy also includes Serf [Ser16], a lightweight tool to announce and dis-
cover services in community networks. Serf is a decentralised solution for
cluster membership, failure detection, and orchestration. It relies on an effi-
cient and lightweight gossip protocol to communicate with other nodes that
periodically exchange messages between each other. This protocol is, in prac-
tice, a fast and efficient method to share small pieces of information. An ad-
ditional by-product of having this service distributed all over the community
cloud is that it allows the evaluation of the quality of the point-to-point con-
nections between different Cloudy instances. This way, Cloudy users can
decide which service provider to choose based on network metrics, such as
round trip time (RTT), number of hops, or packet loss. The combination of
Avahi, TincVPN, Getinconf, and Serf in Cloudy facilitates the coordination
of the resources and the services in the community cloud.

User Services

Platform as a Service (PaaS). Providing attractive platform services to
community members, such as a distributed file system, highly available key-
value store, file synchronisation, video streaming, video-on-demand, VoIP,
network address translation (NAT) traversal support, and many more, is of
high importance.

One of the promising services for storage is Tahoe-LAFS [WW08]. Tahoe-
LAFS is a free, open, and secure cloud storage system. Tahoe-LAFS allows
community users to share their storage with other members. A Tahoe-LAFS
cluster consists of a set of storage nodes, client nodes, and a single coordinator
node called the introducer. The storage nodes connect to the introducer and
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announce their presence, and the client nodes connect to the introducer to
obtain the list of all connected storage nodes [SF14]. The configuration of
Tahoe-LAFS and the process of deploying a whole storage grid are assisted
by the Avahi and Serf service discovery tools using the web interface of Cloudy,
where the user only needs to introduce some basic information. The Tahoe-
LAFS service can also be used to provide higher-level file sharing applications.

Etcd [15c], a highly available key value store for shared configuration and
service discovery, and Syncthing [15j], an open-source file synchronisation
client/server application, are already included in the Cloudy distribution.

Software as a Service (SaaS). Cloudy allows the user services to be
present inside the community network and to be easily deployed and managed
via the Cloudy interface. Users can deploy their preferred services and share
them with others. One of these multimedia services included in Cloudy is
PeerStreamer [15h], an open source live streaming platform. PeerStreamer
includes a streaming engine for the efficient distribution of media streams,
a source application for the creation of channels, and player applications to
visualise the streams. Streaming is assisted by Cloudy by supporting the
user in publishing a video stream or connecting to a peer (assisted by Serf
or Avahi). Services that enable users to find and watch video content on-
demand at any time, such as Gvod [BD10], a decentralised search service,
such as Sweep [15i], and a distributed key-value store, such as CaracalDB
[15b] are additional services that are part of the Cloudy.

3.2 Experiments

In this section, we explain our work on deploying and evaluating the com-
munity network micro-clouds. In order to have a realistic community net-
work setting, which includes geographically distributed nodes, we have used
the Community-Lab [14a] testbed nodes for setting up our community cloud
infrastructure. Community-Lab is a distributed infrastructure developed by
the Community Networks Testbed for the Future Internet (CONFINE) pro-
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ject [Bra+13], where researchers can deploy experimental services on several
nodes deployed within merged community networks. The Community-Lab
testbed is currently deployed on the nodes from Guifi.net and the AWMN
community networks. This allows us to run our experiments on nodes from
both the community networks, which has the added advantage that we can
test how Cloudy performs in a combined community network environment,
as well as how Cloudy services perform over large geographical distances.

In the Community-Lab, Guifi.net and the AWMN community networks are
connected on the IP layer though the Federated E-infrastructure Dedicated
to European Researchers (FEDERICA) [15d], enabling the federation of both
networks. Most Community-Lab nodes are built with a Jetway device that
is equipped with an Intel Atom N2600 CPU, 4GB of RAM and 120GB SSD.
Nodes in the Community-Lab testbed run a custom firmware (based on Open-
WRT [15g]) provided by CONFINE, which allows running several container
instances on one node simultaneously implemented as LXC. We deploy the
Cloudy distribution in these containers on the nodes in Community-Lab.

We exhibit results from our experiments related to distributed storage, live-
video streaming and discovery service.

We choose to experiment with distributed storage service, based on Tahoe-
LAFS. Tahoe-LAFS has features that are very important for the community
network environment, such as like data encryption at the client side, coded
transmission and data dispersion among a set of storage nodes. This approach
of Tahoe-LAFS results in high availability (e.g., even if some of the storage
nodes are down or taken over by an attacker, the entire file system continues
to function correctly, while preserving privacy and security).

Regarding the live-video streaming service, we are experimenting with Peer-
Streamer. PeerStreamer is an open source live P2P video streaming service,
and mainly used in our Cloudy distribution as the live streaming service ex-
ample. This service is built on a chunk-based stream diffusion, where peers
offer a selection of the chunks that they own to some peers in their neighbour-
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hood.
We choose to experiment with service discovery, based on Avahi-TincVPN

and Serf, since it is a crucial building block of Cloudy that enables distributed
services to be orchestrated in order to provide platform and application ser-
vices. All the services inside Cloudy use these two service discovery protocols
to publish and discover services. Our goal is not to compare Avahi-TincVPN
and Serf, as both of them are available in Cloudy and can be used by users
for different scenarios. One of them is lightweight and fast (Serf), the other
is not scalable and is suitable and preferable for environments with a smaller
number of nodes (Avahi-TincVPN).

3.3 Distributed Storage

After basic connectivity, storage is the most general service being fundamental
for cloud take-up in community network scenarios. Allowing users in a com-
munity network to share and use the storage of other users in a reliable, secure,
and privacy-preserving way, is of a great importance. For this reason, we use
Tahoe-LAFS as a main storage service in Cloudy. Understanding the perform-
ance of Tahoe-LAFS from an experimental scenario that represents real use
case situations is highly important because it informs the end users regarding
the application performance they will receive. Such performance results are
needed to pave the way for bringing applications such as Tahoe-LAFS as well
as other applications into community networks.

3.3.1 Tahoe-LAFS

Tahoe-LAFS [WW08] is a decentralised storage system with provider-
independent security. This feature means that the user is the only one
who can view or modify disclosed data. The data and metadata in the cluster
is distributed among servers using erasure coding and cryptography. The
erasure coding parameters determine how many servers are used to store each
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file, which is denoted as 𝑁 , and how many of them are necessary for the files
to be available, denoted as 𝐾. The default parameters used in Tahoe-LAFS
are 𝐾 = 3 and 𝑁 = 10 (3-of-10). The Tahoe-LAFS cluster consists of a
set of storage nodes, client nodes, and a single coordinator node called the
introducer. The storage nodes connect to the introducer and announce their
presence, and the client nodes connect to the introducer to obtain the list of
all connected storage nodes. The introducer does not transfer data between
clients and storage nodes, but the transfer is done directly between them.
The introducer is a first-point-of-contact for new clients or new storage peers,
because they need it for joining the storage grid. When the client uploads a
file to the storage cluster, a unique public/private key pair is generated for
that file, and the file is encrypted (on the client side prior to upload), erasure
coded, and distributed across storage nodes (with enough storage space)
[WW08]. The location of erasure coded shares is decided by a server selection
algorithm that hashes the private key of the file to generate a distinct server
permutation. Then, servers without enough storage space are removed from
the permutation, and the rest of the servers are contacted in sequence and
asked to hold one share of the file. To download a file, the client asks all
known storage nodes to list the number of shares of that file they hold, and
in the subsequent rounds (second round-trip), the client chooses which share
to request based on various heuristics such as latency, node load, etc.

Bringing Tahoe-LAFS into Community-Lab: For our experiments
we are using some nodes from the Community-Lab testbed. The nodes run a
custom OS based on OpenWrt provided by the CONFINE project which al-
lows running on one node several slivers simultaneously implemented as Linux
containers (LXC) [15e]. A sliver is defined as the partition of the resources of
a node assigned to a specific slice (group of slivers). We can think of slivers
as containers inside a node. To deploy Tahoe-LAFS in the Community-Lab
nodes, we use the Cloudy distribution, which contains Tahoe-LAFS, and place
the introducer, storage, and client nodes of Tahoe-LAFS inside the slivers (i.e.,
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Figure 3.2: Tahoe-LAFS deployed in the Community-Lab testbed

containers) of the testbed. Figure 3.2 shows the resulting Tahoe-LAFS archi-
tecture used by our experiments in the Community-Lab testbed.

3.3.2 Experiment Setup

All tests were conducted using the IOzone [16i] cloud storage benchmark.
IOzone is a filesystem benchmark tool, which generates the cloud storage
workload and measures various file operations. The benchmark tests file in-
put/output (I/O) performance of many important storage-benchmarking op-
erations, such as read, write, re-read, re-write, random read/write, etc. We
run all 13 IOzone tests and vary the file size from 64KB to 128MB and record
length of 128 KB. An -a flag allows us to run all 13 tests. We add the -b
flag to write the test output in binary format to a spreadsheet. We use a
FUSE (Filesystem in Userspace) kernel module in combination with SSHFS
(SSH Filesystem), an SFTP client that allows filesystem access via FUSE, to
mount a Tahoe-LAFS directory to the local disk of the client. Tahoe’s SFTP
frontend includes several workarounds and extensions to make it function cor-
rectly with SSHFS. When mounting with SSHFS, we disable the cache and
use direct I/O and synchronous writes and reads, using the parameters -o
cache=no, big_writes, direct_io, and sshfs_sync. We observe that the -o
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Figure 3.3: ECDF of the average throughput for two clients

big_writes option to SSHFS improves write performance without affecting
the read operations [RG10]. Results presented in this work with regard to
performance are measured in MB/s and are referred to as operation speed.
Tests with concurrent reading and writing were not conducted.

To better understand the impact that the network imposes on a community
network environment, we established a Tahoe-LAFS cluster of 30 nodes geo-
graphically distributed in the Guifi.net community network and connected
to the outdoor routers [CNE13b]. Connections to the nodes from the clients
have been done hourly (ten samples obtained per day), during the whole
month of February 2015, where 300 samples are obtained for each client. Fig-
ure 3.3 shows the empirical cumulative distribution function (ECDF) of the
average throughput for the two clients. On the top of the figure, the minim-
um/mean/maximum throughput values are shown.

Two sets of tests were conducted. One is when the writes/reads are initiated
from a client that has the best connectivity in the network, such as best RTT
to other nodes and the best throughput, and this is our baseline case; the
other is when they are initiated from a client node, which is the farthest node
in the network (in terms of number of hops, RTT, and throughput to other
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nodes), and this is referred as a set1 case in the graphs.

3.3.3 Experimental Results

Figures 3.4 and 3.5 show the best and worst client write/read performance.
Figure 3.6 depicts the summary of all tests performed with the IOzone bench-
mark. Median, first and third quartile values of read and write operations are
plotted in Figure 3.6. A few observations are noted below.

• In terms of network connectivity, both clients in the community network
perform differently. This is related to the fact that the two clients are not
connected in the same way to other nodes. The client in the baseline is
better connected and is much closer in terms of RTT to the other nodes
than the client in set 1.

• In terms of write performance, the baseline client performs better. Write
performance for the baseline is higher and more stable than the read
performance. As the file size increases, the write performance of the
baseline client slightly decreases (minimum throughput achieved is 1.15
MB/s when writing a 4 MB file). The higher throughput is achieved
(1.28 MB/s) when writing a small file (128 KB file), as shown in Figure
3.4.

It is interesting to note that when writing smaller files, Tahoe-LAFS
performs better, and this can be attributed to the fact that the default
stripe size of Tahoe-LAFS is well optimised for writing small objects (the
stripe size determines the granularity at which data is being encrypted
and erasure coded). The same thing happens with the set 1 client, where
the maximum write throughput achieved is 0.86 MB/s when writing a
128 KB file, and the minimum write throughput is 0.72 MB/s when
writing a 2 MB file. Furthermore, write performance is affected by
another factor; when writing new objects, Tahoe-LAFS generates a new
public/private key, which is a computationally expensive operation.
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Figure 3.4: Performance of write operation Figure 3.5: Performance of read operation

• Read operations are accomplished by submitting the request to all stor-
age nodes simultaneously; hence, the relevant peers are found with one
round-trip to every node. The second round-trip occurs after choos-
ing the peers from which to read the file. The intention of the second
round-trip is to select which peers to read from, after the initial negoti-
ation phase, based on certain heuristics. When reading from the storage
nodes, the performance of both clients drops significantly as the file size
increases as shown in Figure 3.5.

This is because when reading a file of 128 MB, a client must contact
more Tahoe-LAFS storage peers in order to complete the shares of the
file. In addition, reading the file system meta-object (i.e., the mutable
directory objects) every time an object is accessed results in overhead,
thus influencing the results.

• Figure 3.6 shows the summary of all tests performed with the IOzone
benchmark. The benchmark tested file I/O performance for the 13 op-
erations as shown in Figure 3.6. As shown, the baseline client performs
better than the set 1 client, reaching an average operation speed of 0.74
MB/s for all 13 tests performed.
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Figure 3.6: Summary of all storage benchmark operations for different tests in the Guifi.net

To summarise, Tahoe-LAFS is a relevant application for community net-
works, since it offers privacy and security, as it encrypts data already on
the client side, and it offers fault-tolerance regarding storage node failures
due to erasure coding (replication factors). A general important result from
the experiments is that Tahoe-LAFS performed correctly in uploading and
retrieving all the different file sizes under the challenging conditions of the
community network, which make Tahoe-LAFS a promising application to
consider for preserving privacy, and secure and fault-tolerant storage in the
dynamic environment of community networks Furthermore, the process of de-
ploying a whole storage grid is assisted by Cloudy, which allows a user easily
to join or offer a storage grid.

3.4 Live-video Streaming

Among the services that are very appealing in community networks, P2P live
streaming is an important candidate, as can be seen by the growing success
and usage of commercial systems such as PPLive, SopCast [16q], etc. P2P
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live streaming systems allow to watch live streams such as events or televi-
sion channels over a network, granting anyone to become a content provider.
To enable these types of services within CN nodes is very challenging, since
community networks are diverse and dynamic networks with limited capacity
of wireless links and often low-resource and cheap devices. Streaming applica-
tions, however, have high demands of bandwidth, they require low and stable
latency and only withstand low packet loss.

We evaluate the performance of PeerStreamer as a P2P live streaming ser-
vice deployed over geographically distributed real community network nodes.
We then study the effects of different parameters of PeerStreamer on its per-
formance in the community network environment.

3.4.1 PeerStreamer

PeerStreamer [16k] is an open source live P2P video streaming service, and
mainly used in our Cloudy distribution as the live streaming service example.
This service is built on a chunk-based stream diffusion, where peers offer a
selection of the chunks that they own to some peers in their neighbourhood.
The receiving peer acknowledges the chunks it is interested in, thus minimizing
multiple transmissions of the same chunk to the same peer. Chunks consists
of parts of the video to be streamed (by default, this is one frame of the video).
At the beginning of the streaming process, these chunks are all from the same
peer (since only one peer is the source), then the source sends 𝑚 copies of the
chunks to random peers (𝑚 = 3 by default), creating an overlay topology with
all peers in order to exchange chunks between them. The whole architecture
and vision of PeerStreamer is described in detail in [B+11].

3.4.2 PeerStreamer Assumptions and Notation

We call the community network the underlay to distinguish it from the overlay
network which is built by PeerStreamer. The underlay network is supposed
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to be connected and we assume each node knows whether other nodes can be
reached (next hop is known). We can model the underlay graph as:

𝐺𝑢𝑔 = (𝑆, 𝐿𝑢𝑔) (3.1)

where S is the set of super nodes present in community network and 𝐿𝑢𝑔

is the set of wireless links that connect them. This is the global level.
In the micro-cloud level we have a set of outdoor routers (OR) that are

connected to each other in the same micro-cloud as shown in Figure ??,

𝐺𝑢𝑚 = (𝑂𝑅, 𝐿𝑢𝑚) (3.2)

where OR is the set of outdoor routers present in the micro-clouds of the
CNs and 𝐿𝑢𝑚 is the set of wireless links that connects them.

The nodes of the underlay (connected to super nodes through outdoor
routers) run an instance of the PeerStreamer and are called peers. Each peer
𝑃𝑖 at time 𝑡 chooses a subset of the other peers as a set of neighbours that are
called 𝑁𝑖(𝑡). The peer 𝑃𝑖 exchange video frames (chunks) only with peers in
𝑁𝑖(𝑡), and the union of all the 𝑁𝑖(𝑡) and the related links defines the network
topology of the application, also represented as graph and called overlay. The
overlay built by PeerStreamer is a directed graph:

𝐺𝑜𝑔(𝑡) = (𝑃𝑠𝑒𝑡, 𝐿𝑜𝑔(𝑡)) (3.3)

where 𝑃𝑠𝑒𝑡 is the set of peers and

𝐿𝑜𝑔(𝑡) = (𝑃𝑖, 𝑃𝑗) ∶ 𝑃𝑗 ∈ 𝑁𝑖(𝑡) (3.4)

is the set of edges that connect a peer to its neighbours. The main difference
between the overlay and the underlay is that the underlay is determined by
the network topology, on which PeerStreamer does not have control, while
the overlay is generated by PeerStreamer.
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3.4.3 Experiment Setup

For the experimental research, our main configuration includes geographically
distributed CN nodes from Guifi.net in Spain, AWMN in Greece and Ninux
in Italy. These nodes are co-located in either users homes (as home gateways,
set-top-boxes etc) or within other infrastructures around each city. Two CNs
(Guifi.net and AWMN) are connected on the IP layer via the FEDERICA
infrastructure, enabling network federation. The nodes of Ninux CN in Italy
are not connected to FEDERICA, therefore we experiment with them sep-
arately (without including other CN nodes). In our experiments the nodes
from UPC (Technical University of Catalonia) are a subset of Guifi.net CN
nodes which are distributed in our UPC campus in Barcelona. We use these
nodes as a baseline in order to be able to better understand the effects of the
network given by the statistical data gathered from the community networks.

Our experimental evaluation is comprised of 55 physical nodes distributed
across Europe, among the working nodes available from the three CNs. Table
3.3 shows the number of nodes used in three community networks, their loc-
ation and type of devices deployed.

In our experiments we connect a live streaming camera (maximum 512 kbps
bitrate, 30 fps) to a local PeerStreamer instance which acts as the source for
the P2P streaming. We choose as a source a stable node with good connectiv-
ity and bandwidth to the camera in order to minimize the video frame loss
from the networked camera. The source is responsible for converting the video
stream into chunk data that is sent to the peers. In the default configurations
of PeerStreamer a single chunk is comprised of one frame of the streaming
video. Also, the source PeerStreamer node sends three copies (𝑚 = 3) of the
same chunk to the peers, meaning that only three peers receive the chunks
directly from the source at a given time. Thus, each peer that receives the
chunks exchange with other peers in order to form the P2P exchange network.

The evaluation metrics presented were chosen in order to understand the
network behavior, quality of service and quality of experience. On the qual-
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Nr. of nodes Cat. Location Type
23 UPC Barcelona, Spain Physical nodes and VMs
8 Guifi.net Catalonia, Spain Physical nodes
12 AWMN Athens, Greece Physical nodes
12 Ninux Rome, Italy Physical nodes

Table 3.3: Nodes in the cluster and their location

ity of service side, we measure the number of chunks that are received by
peers and the chunk loss percentage in order to understand the impact of the
network on the reliable operation of this type of service. On the quality of
experience, we gather statistical data from the chunks that are played out
locally by each of the peers to understand the quality of the images that the
edges show to the users. These metrics, show the impact of such networks
when using streaming services while also guaranteeing the image quality that
each node can display on average. Regarding the network interference is-
sues of other users’ concurrent activity which can impact the results of the
experiments, we reference to [CNE13a] and is out of the scope of this work.

3.4.4 Scenarios

To assess the applicability of PeerStreamer in CNs, the following describes a
chosen scenario that reflects a use case of live video streaming in CNs. Also,
we augment our findings with a scenario reflecting different parameters of
PeerStreamer usage, in order to understand possible improvements of the
overlay network created by the PeerStreamer instances. The parameters used
in the scenarios are summarized in Table 3.4.

For the first scenario we choose the default parameters of PeerStreamer and
run in the challenging environment of CNs. One of the nodes, which has the
best connectivity to the camera stream is chosen to be the source peer, while
the rest of the available nodes will initially contact the source in order to enter
the P2P network for chunk exchange. Since the Ninux group of nodes do not
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Scenario 1 and 2
Total number of nodes 55

Groups of nodes UPC, Guifi.net, AWMN, Ninux
Tests time-frame T1 = 30m | T2 = 1h | T3 = 2h

Source 1 Send Rate (chps) T1 = 31 | T2 = 32 | T3 = 31
Source 2 Send Rate (chps) T1 = 55 | T2 = 55 | T3 = 49

Metrics
Peer Receive Ratio, Chunk Loss

Chunk Playout, Neighborhood Size

Table 3.4: Summary of our Scenario Parameters

have connectivity in IPv4 to other CNs (they are not part of FEDERICA),
we deliberately executed the experiment apart from the other CNs, in order
to understand different CNs network behaviors. The experiment ran on this
group was different because of the non-connectivity to the camera stream,
therefore another solution was devised. We introduced a live TV streaming
channel as the streaming source, transcoded to 512 kbps bitrate, 30 fps on
average similar to the camera stream. However, this stream also included
audio, which made the exchange of data between peers higher than the peers
of other CNs. Each experiment is composed of 20 runs, where each run has
10 repetitions, and averaged over all the successful runs (90% of the runs were
successful). In the 10% of the runs the source was not able to get the stream
from the camera, so peers did not receive the data. The measurements we
present consists of 3 weeks of experiments, with roughly 300 hours of actual
live video distribution and several MBytes of logged data.

We then establish three experiments shown for 30 minutes, 1 hour and 2
hours of continuous live streaming from the PeerStreamer source. This was
done in order to gather statistical information within different time-frames
and to use as initial step towards live events coverage on CNs. Other nodes
were started at the same moment in time, 10 seconds after the source started,
in order for the source to gather enough data to be able to exchange with the
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peers. This also allows the randomization of the nodes that the source Peer-
Streamer will first push the chunks to, and thus on all experiments the peers
that begin receiving chunks from the source will be different (PeerStreamer
overlay topology changes in every run of experiments). In all experiments we
try to guarantee the number of nodes to remain constant. However, since
we are dealing with a very dynamic and challenging environment, there is an
issue of churn rate of nodes. This happens in the CNs because most of the
nodes are connected wirelessly and their connectivity depends on many factors
(such as weather, electric failures, router connectivity, among others). Peer-
Streamer for its own overlay performs operations to manage the peer churn
rate by constantly updating each peer neighborhood, an important feature
for the potentially unstable and dynamic nodes that we find in community
networks.

For our second scenario, the evaluation performed includes the findings of
different configuration parameters of PeerStreamer, which results in better
quality streaming. This was done in order to understand the different beha-
viors of the PeerStreamer algorithms such that the overlay network that it
constructs can be optimized. The different parameters chosen include send-
ing different amount of copies of the chunks from the PeerStreamer source
(𝑚 = 5, 𝑚 = 1); keeping the best peers in the neighborhood in between
topology updates of the overlay that PeerStreamer creates (𝑇 𝑜𝑝𝑜𝐾𝑒𝑒𝑝𝐵𝑒𝑠𝑡);
and the addition of the peers that can be selected to the neighborhood by
extending the default 𝑅𝑇 𝑇 (10 ms) of the peer selection metric [B+11] to 20
ms.

3.4.5 Experimental Results

Figure 3.7 depicts the amount of chunks on average the peers receive. Know-
ing that Source 1, sends out to the peers around 31 chunks per second (chps),
we notice that the distant groups (Guifi.net and AWMN) in relation to the
source, receive less chunks than the closer group (UPC), in relation to the

51



source. This is because of the network impact on the delivery time of the
chunks. Thus, more chunks arrive out of the time allotted, the farther the
chunks have to travel. We also notice that the number of chunks received on
average increases with longer time-frames, this occurs because the peers can
gather more statistical information about each other and therefore update
their neighboring peers accordingly, while securing a subset of peers in which
they can rely on to receive the chunks in the time allotted to be displayed.

Figure 3.7: Average Peer Receive Ratio

We also show that on Ninux side the amount of chunks received tends to
be higher that of the other CNs. This is due to the fact that we use a different
stream (Live TV channel stream), in which Source 2 sends around 55 chps
instead (accounting with the added audio part of the stream). We also notice
a drop of receiving chunks for longer times, because of the inherited instability
of this group of nodes, where the loss of data is more constant/visible when
dealing with longer times.

Figure 3.8 shows the average chunk loss for each group of peers. We can see
that the loss is greater for shorter time-frames (loss in UPC 7%, Guifi.net 9%
and AWMN 13%) and are amortized for longer time-frames (loss in UPC 2%,
Guifi.net 3% and AWMN 7%). We also notice that distant groups (distant
from the source stream) are more affected by the diminished rate of chunks
received, which demonstrates the influence the network has to the amount of
data that is lost (either by losses on the network or by not arriving on time to
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be displayed). As for the Ninux group, as previously mentioned, the network
behavior is more volatile since there is a higher packet loss. Therefore, we
notice that since Source 2 sends more chunks per second (around 55) than
Source 1, the loss of chunks in the peers is greater than in other groups and
in longer time-frames the network instability has a higher impact on the data
exchanged (34% loss).

Figure 3.8: Average Chunk Loss

Figure 3.9 illustrates the quality (chunks played) of video offered on the
peers side. The closer groups display more chunks, because the loss between
farther nodes is greater than closer nodes and since the network plays a big
role on the delivery of chunks. We also notice that the longer time-frames
have on average a better chunk playout because more chunks arrive on time to
be displayed (UPC 98%, Guifi.net 98%, AWMN 92%). For the Ninux group
we see a more stable chunk playout for each of the time-frames, which means
that since the network instability occurs during the whole evaluation the same
amount of chunks (on average 71%) arrive to be displayed, also meaning that
the network bandwidth/throughput between nodes (on average) is lower than
on other CNs and remains constant over time.

Figure 3.10 demonstrates the chunk loss gathered during 30 minutes exper-
iment, with different parameters given to the PeerStreamer. The parameters
shown (𝑇 𝑜𝑝𝑜𝐾𝑒𝑒𝑝𝐵𝑒𝑠𝑡, 𝑅𝑇 𝑇 = 20𝑚𝑠 and 𝑚 = 5) have been selected in order
to predict the behavior and improvements that PeerStreamer can have when
executed in CNs. We notice that increasing the 𝑅𝑇 𝑇 for the overlay topo-
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Figure 3.9: Average Chunk Playout

logy gives the peers higher probability to receive chunks in time and therefore
decreasing the chunk loss in each of the groups. The other parameters have
a higher impact on losing chunks, especially when the source only sends one
copy (𝑚 = 1) of the chunks to peers (not shown in the figure). We also notice
that keeping the best neighbors on topology overlay updates, lowers groups
loss chunks (as in UPC case) that have nodes closer to each other, in which
the selection of peers for exchanging chunks will have higher probability to
choose the best nodes from previous topology updates. For the Ninux group
we notice that when keeping the best nodes on topology updates there is a
greater improvement (23% in loss, comparing with default parameters where
we got 32% loss), because the probability of choosing the best nodes will be
higher, since the nodes on this CN have worst connectivity. Also for Ninux,
giving a 𝑅𝑇 𝑇 of 20 ms has mostly the same average as the previous exper-
iments (with default parameters) since the nodes are farther apart (in RTT
terms), meaning that there will be no significant changes in the neighborhood
created for these peers. We also show that there is improvement when chan-
ging the number of chunk copies Source 2 sends to peers (𝑚 = 5). This is
because of the resources that Source 2 has at its disposal, which makes it able
to send more copies without losing bandwidth and computation time (against
Source 1 as a low-power device); and also, since the network has more packet
loss than in other CNs, flooding the network with more copies makes a higher
probability for peers to be able to receive more chunks on time.
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Figure 3.10: Average Chunk Loss with different parameters

3.5 Service Discovery

Cloud service discovery is essential for allowing cloud usage and user parti-
cipation. Service discovery involves service providers publishing services and
clients being able to search and locate service instances. Since community
cloud nodes are distributed all over the network and administrated by their
owners, a mechanism is needed that allows the cloud users to discover services
offered by other community cloud nodes and announce their own services. We
experiment with the Avahi-TincVPN and Serf search service of Cloudy that
offers service announcement and discovery to community users.

3.5.1 Experiment setup

For our service discovery experiment we use 25 nodes spread between two
community networks (Table 3.5). We use 20 nodes from the Guifi.net com-
munity network, where 13 of the nodes are located in the city of Barcelona
(UPC) and seven of them are located in the Catalonia region of Spain. From
AWMN we use five nodes, which are located in Athens, Greece.

Figure 3.11 shows the throughput of three categories of nodes in our cluster.
Network measurements have been obtained connecting by SSH to each node
and measuring the average aggregated throughput from the client nodes. For
some scenarios we use more than one client node. The clients are located
in the Guifi.net community network. Connections to the nodes have been
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Table 3.5: Nodes, their location and RTT from the client node

Number of
nodes

Community
Network

Location RTT

13 Guifi.net (UPC) Barcelona 1–7 ms
7 Guifi.net Catalonia 10–20 ms
5 AWMN Athens 90–100 ms

Figure 3.11: Throughput of the nodes

done every half hour (12 hours per day), during the entire month of January
2015 where 720 samples are obtained for each category of nodes. All obtained
samples are plotted in the graph. The average throughput obtained for the
Guifi.net nodes in UPC is 10.5 Mbps, Guifi.net nodes is 4.8 Mbps, and AWMN
nodes is 1.9 Mbps.

The objective of the experiments is to understand the responsiveness of the
discovery mechanism. We consider responsiveness to be the probability of
successful operation within deadlines, which, when applied to our case, refers
to successful service discovery within the given time limits. Furthermore, we
attempt to understand how the clients perceived responsiveness changes when
they are located in different parts (zones) of the Guifi.net community network.
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We run the discovery requests from three client nodes that are searching
and locating service instances. All other nodes acted as service providers
responding to discovery requests. All service providers are spread between
two community networks. Discovery times are measured on the clients dir-
ectly before the request was sent and directly after responses were received to
measure user-perceived responsiveness. No nodes joined or left the network;
therefore, no configuration on the network layers occurred during measure-
ments which would interfere with the discovery operation. We consider the
discovery successful when all instances have been discovered. Discoveries were
aborted and considered failed if no responses arrived until an experiment ran
with a deadline of 25 seconds in the Community-Lab testbed. This value was
chosen because in Zeroconf [15l], the time between retries doubles after each
retry to reduce the network load. Therefore, for example, after 20 seconds, we
have reached five discovery requests, and the next one would be sent after 41
seconds. Depending on the scenarios that we consider, each service discovery
experiment is comprised of several runs (normally between 15 to 20) and is
averaged over all the successful runs. Each run consists of 20 repetitions.

In Avahi, when publishing and discovering, no entries are cached per inter-
face; thus, no caching is used. After service discovery, a client should have
enough information to contact a service instance. Hence, discovery in our case
means resolving the IP address and port for every service instance. During
the experiments we use different Cloudy services to publish and discover as
summarised in Table 3.6.

3.5.2 Our Scenarios

In order to judge the applicability of decentralised discovery mechanisms in
community networks, three scenarios are chosen that reflect common use cases
of service discovery.

Scenario 1: Single service discovery. Our first goal is to measure the
responsiveness of single service discovery. In this scenario, the service network
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Table 3.6: Services used for the experiments

Service Description
PeerStreamer Live-video streaming service
Tahoe-LAFS Decentralised cloud storage service
Syncthing File synchronisation service
Serf Cluster membership and discovery service
OWP Container-based virtualisation service
Proxy3 Guifi.net proxy service
SNP Service Guifi.net network graph service
DNS Service Guifi.net DNS service

consists of one client and one provider. The client is allowed to wait up to
ten seconds for a positive response. This is a common scenario for service
discovery and can be considered the baseline. Only one answer needs to be
received and there is enough time to wait for it. In this case, the client
discovers a Tahoe-LAFS distributed storage service and contacts the service.
For this scenario, a service provider from the Guifi.net community network is
considered. Both Avahi-TincVPN and Serf are used for this scenario.

Scenario 2: Timely service discovery of the same service type. Service net-
works are populated with multiple instances of the same service type. The
clients need to discover as many instances as possible and will then choose
one that optimally fits their requirements. The faster discovery is better.
In this scenario, we have one service client and 25 service providers (from
Guifi.net and the AWMN community network). The discovery is successful
if all provided service instances of the same type have been discovered. We
measure how responsiveness increases with time. The faster we reach a high
value, the better. In this scenario, the providers publish one or more Peer-
Streamer live-video streaming services. The client waits 15 seconds to receive
responses. In this scenario only the service discovery based on Serf is used.
The total number of services published by providers is 40.

58



Scenario 3: Client perceived responsiveness. In this scenario, we have
three service clients and 20 service providers that publish five popular ser-
vices of Cloudy such as PeerStreamer, Tahoe-LAFS, Syncthing, DNSService,
and OpenVZ. The total number of the five Cloudy services published is 23
(seven PeerStreamer services, three Tahoe-LAFS services, six Syncthing ser-
vices, three DNSServices and four OpenVZ services). The clients are located
in different parts of Guifi.net, and they need to discover 23 instances of dif-
ferent service types. Considering the dynamic environment of the Guifi.net
community network, the discovery is successful if all clients discover the same
number of services (23) published by service providers. For this scenario, the
service discovery based on Serf is used. The clients are allowed to wait 20
seconds.

3.5.3 Experimental Results

In this section, the results for the three scenarios described above are presen-
ted.

Scenario 1: Single service discovery. The discovery of a single service
instance within ten seconds proved to be reasonably responsive. This exper-
iment is comprised of 15 runs, where each run has 20 repetitions. In Figure
3.12, the standard deviation error bars per round are plotted on the mean val-
ues obtained. The values are obtained using Avahi-TincVPN and Serf. Due
to the efficient and lightweight gossip protocol that Serf uses, it decreases
the discovery time for 3x, reaching an average of two seconds for a single
service discovery compared to the Avahi-TincVPN combination that reaches
six seconds.

Scenario 2: Timely service discovery of the same service type. Figure 3.13
illustrates that the discovery of services increases rapidly with time. The
standard deviation error bars are plotted on the mean values. In the first six
seconds the client discovers 75% of the published services, which is equal to
30 PeerStreamer video-streaming services. The last 25% of the services are
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Figure 3.12: Single service discovery time (Scenario 1)

Figure 3.13: Responsiveness of service discovery (Scenario 2)

discovered from seconds six to ten. These ten services are from the AWMN
community network. The eventually consistent gossip model of Serf with no
centralised servers allows the client to discover in a very fast and extremely
efficient way all the nodes for a PeerStreamer service based on the tags their
agent is running. However, the structure and diameter of the community
network graph (topology), fluctuations in the network due to load, and faults
can increase the discovery time [Veg+12].

Figure 3.14 shows a partial screenshot of the Cloudy web interface, de-
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Figure 3.14: Partial screenshot of Cloudy’s Service discovery (Scenario 2)

picting the service discovery section. The five PeerStreamer video-streaming
services discovered are shown. The user will choose one that optimally fits the
user’s requirements. The services are ranked according to Cloudy’s QoS-aware
service selection algorithm, where colour represents service quality: darker col-
our indicates poorer service quality.

Scenario 3: Client perceived responsiveness. Figure 3.15 demonstrates the
number of services discovered by three clients. The standard deviation error
bars are plotted on the mean values. As shown, the three clients perceive a
different number of services. Only Client 2 discovers all services (23). Client 1
is missing one PeerStreamer service and one DNSService. Client 3 is missing
just one PeerStreamer service. Missing services can be subject to the high
diversity of the quality of wireless links, the availability of nodes, and the
location of client nodes. Heterogeneous low-resource hardware, slow wireless
links, and packet loss between nodes also can impact the service performance
[CNE13b].

3.6 Discussion

Distributed Storage: We evaluated how the Tahoe-LAFS storage system
performs when it is deployed over distributed community micro-cloud nodes
in a real community network. We observed that the write operation of Tahoe-
LAFS resulted in better performance than the read operation. Read opera-
tion is a more expensive operation which is done in two round-trips. In the
first round-trip the relevant peers holding the shares are found, and second
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Figure 3.15: Number of Cloudy services discovered by clients (Scenario 3)

round trip occurs after choosing the peers from which to read. Specifically for
the community network environment such as Guifi.net, successfully running
the distributed storage as Tahoe-LAFS is a trade-off between the replication
settings and read performance. Keeping the default Tahoe-LAFS replication
setting in 3-of-10 (N=10, K=3) and workload limit to 128 MB works satisfact-
orily when having up to 30 nodes in the network. In order to have a better
fault-tolerance and lower response times while using bigger workloads, tak-
ing network characteristics into account when deciding placement of storage
nodes is a must. Chapter 4 and Chapter 5 addresses this issue.
Live-video Streaming: We started our evaluation by demonstrating the per-
formance PeerStreamer has on community networks, with the default para-
meters, in order to understand what improvements can be achieved. We
found that PeerStreamer neighborhood selection lacks accountability for net-
work instability and therefore PeerStreamer can perform poorly in community
networks. The metric for randomly selecting a subset of peers for the neigh-
borhood reduces the probability to receive chunks in time, since peers can
select the worst neighbors. We also found that while modifying the number
of chunk copies that the source sends, can have beneficial results, guarantee-
ing that the chunks will travel to more nodes and be available to be traded in
the P2P network over more peers. However, since the wireless links in com-
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munity network are with high diversity in bandwidth, this issue can arise and
should be studied more thoroughly. Regarding the amount of data exchanged
between peers, we consider that in current wireless community networks using
the high quality video streams (i.e., 1080p) affects the service performance
since more data or sizable data needs to pass through the network to the
peers, and may even congest it. While using standard quality video streams,
as shown in our evaluation the amount of loss is lower and more efficiently
exchanged between peers in the network.
Service Discovery: Service discovery operates in parallel at both the global
community network cloud level and at the micro-cloud level. At the micro-
cloud level, a number of Cloudy instances are federated and share a common,
private Layer 2 over Layer 3 network. At that level, Avahi was used for
announcement and discovery. Originally this solution was to be applied to the
whole community network but as more Cloudy instances started to appear
it became clear that the solution would not scale further than the tens of
nodes as we explain in [Sel+15a]. However, in the context of an orchestrated
micro-cloud, it can be used not only for publishing cloud services but also
other resources like network folder shares, etc. Because of the scaling issues
Serf, a decentralized solution for cluster membership, failure detection, and
orchestration was used, This protocol is, in practice, a very fast and extremely
efficient way to share small pieces of information. An additional byproduct
is the possibility of evaluating the quality of the point-to-point connection
between different Cloudy instances.

3.7 Summary

Community networks would greatly benefit from the additional value of ap-
plications and services deployed inside the network through community micro-
clouds. However, such clouds in community networks have not yet been
demonstrated in related studies as operational systems, missing proof of feas-
ibility, which would enable exploring further innovations.
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In this chapter, a deployed community micro-cloud operating in the
Guifi.net community network was demonstrated, supporting the feasibility
of such a system. In addition, performance measurements were conducted,
which demonstrate the usability of cloud-based services for end users. The
micro-cloud environment was materialised by the implementation of the
Cloudy distribution. Using Cloudy and the hardware infrastructure available
in the community network, the community micro-cloud was deployed in
Guifi.net, demonstrating the community cloud feasibility.

We identified three services to focus on, considering their importance for
the system operation and the end users. On the user-level we evaluated dis-
tributed storage service Tahoe-LAFS and live-video streaming service Peer-
Streamer. Tahoe-LAFS performed correctly in uploading and retrieving all
the files under the challenging conditions of the community network and ap-
peared to be a promising application to consider for preserving privacy, and
for secure and fault-tolerant storage in community clouds. PeerStreamer, a
P2P live streaming service was deployed over geographically distributed real
community network nodes. We then studied the effects of different parameters
of PeerStreamer on its performance in the community network environment.
We experimented with service discovery based on Avahi and Serf, and the res-
ults exhibited their proper functioning. These system-level services allowed
users to discover services offered by other community cloud nodes as well as
announce their own services.

Performance measurement of services and applications provided by the
micro-clouds were conducted in order to assess their usability by end users.
Our results demonstrated the operation of the community network micro-
cloud in the community network and the usability of services.

Notes

The research discussed in this Chapter 3 was included in the following public-
ations:
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4
Topology-aware Service Placement

Cloud services in community networks have been enabled by micro-cloud pro-
viders. They form community network micro-clouds (CNMCs), which grow
organically, i.e. without being planned and optimized beforehand. Services
running in community networks face specific challenges intrinsic to these infra-
structures, such as the limited capacity of nodes and links, their dynamics and
geographic distribution. CNMCs are used to deploy distributed applications,
such as streaming and storage services, which transfer significant amounts of
data between the nodes on which they run. Currently there is no support
given to users for enabling them to chose better or the best option for spe-
cific service deployments. This chapter looks at the next step in community
network cloud service deployments, by taking network characteristics into ac-
count when deciding placement of service instances. The main contributions
of this chapter can be summarized as follows:

• We introduce a service placement algorithm that provides optimal ser-
vice overlay allocations without the need to verify the whole solution
space. The algorithm PASP finds the minimum possible distance in
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terms of the number of hops between two furthest selected resources,
and at the same time fulfil different service type quality criteria (i.e.,
research question Q2).

• We extensively study the effectiveness of our approach in simulations us-
ing real-world node and usage traces from 30, 000 Guifi.net nodes. From
the results obtained in the simulation study, we are able to determine
the key features of the network and node selection for different service
types.

• Subsequently, we deploy our algorithm, driven by these findings, in a
real production community network and quantify the performance and
effects of our algorithm with a distributed storage service.

4.1 System Model

4.1.1 Network structure

The Guifi.net community network consists of a set of nodes interconnec-
ted through mostly wireless equipment that users, companies, administra-
tions must install and maintain in addition to its links, typically on building
rooftops. The set of nodes and links are organized under a set of mutually
exclusive and abstract structures called administrative zones, which represent
the geographic areas where nodes are deployed. Figure 4.1 shows as example
the nodes and links of Guifi.net in the city of Barcelona. Figure 4.2 shows the
topology structure followed in Guifi.net. Client nodes are connected to the
super-nodes. These super-nodes interconnect through wireless links different
administrative zones.

We have collected network description data through CNML files [16f] (ob-
tained January 2016). CNML (Community Networks Markup Language) is an
XML-based language used to describe community networks. Guifi.net pub-
lishes a snapshot of its network structure every 30 min with a description
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Figure 4.1: Guifi.net nodes and links in
Barcelona Figure 4.2: Guifi.net topology

of registered nodes, links and their configurations. In the CNML description,
the information is arranged according to different geographical zones in which
the network is organised. Furthermore, we used a Node database: a dump of
the community network database that, in addition to the data described in
CNML, includes other details about dates and people involved in the creation
and update of the configuration of nodes and links.

The CNML information obtained has been used to build two topology
graphs: base-graph and core-graph. The base-graph of Guifi.net is construc-
ted by considering only operational nodes, marked in Working status in the
CNML file, and having one or more links pointing to another node in the
zone. Additionally, we have discarded some disconnected clusters. All links
are bidirectional, thus, we use an undirected graph. We have formed what
we call the core-graph by removing the terminal nodes of the base graph (i.e.,
client nodes). Table 4.1 summarizes the main properties of base and core
graphs that we use in our study e.g., number of nodes, node degree, diameter
(number of max hops in the sub-graph) and number of zones traversed in core
and base-graph.

4.1.2 Allocation model and architecture

In order to generalize the placement model for community services, we made
the following assumptions that give to our model the flexibility to adapt to
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nodes/edges node degree
max/mean/min diameter zones

BaseGraph 13636/13940 537/2.04/1 35 129

CoreGraph 687/991 20/2.88/1 32 85

Table 4.1: Summary of the used network graphs

many different types of real services. In our case, a service is a set of 𝑆
generic processes or replicas (with different roles or not) that interact or ex-
change information through the community network. The service can also be
a composite service (e.g., three-tier service) built from simpler parts. These
parts or components of a service would create an overlay and interact with
each other to offer more complex services. Each of the service replicas or
components will be deployed over a node in the network, where each node
will host only one process no matter which service it belongs to.

It is important to remark that the services aimed in this work should be at
infrastructure level (IaaS), as cloud services in current dedicated datacenters.
Therefore the services are deployed directly over the core resources of the
network (nodes in the core-graph) and accessed by base-graph clients. Services
can be deployed by Guifi.net users or administrators. The architecture that
we consider is based on a hybrid peer-to-peer model with three hierarchical
levels of responsibility. On each level, members are able to share information
among themselves.

The coordination is managed by some peer (i.e., as a super-peer) designated
from the immediate upper layer. Three types of peers can be identified:

1. Community Nodes: are the computing equipment placed along the
wireless community network by users. Besides contributing to the net-
work quality and stability, they share all or part of their physical re-
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sources with other community members in an infrastructure as a service
(IaaS) fashion. In terms of type and amount of resources, our model as-
sumes the nodes are different. This means that from service point of
view there is allocation preference.

2. Zone Managers: are single nodes - only one within each zone, selected
among all the Community nodes with the extra responsibility to manage
local zone services and coordinate inter zones aggregated information.
In our model we do not explicitly identify these managers and we assume
the existence of at least one of them in each area.

3. The Controller: is a unique centralized entity in our system. The
role of the controller is to manage all the service allocation requests
from the users and update service structures by pulling the configura-
tion information for the zone managers. The allocation algorithms are
implemented in the controller.

4.1.3 Service quality parameters

Resource dispersion in a community network scenario can be a drawback
or an advantage, as the Nebula [Ryd+14] authors claim in their research.
The overlay created by composite services abstracts from actual underlying
network connections. Based on that, services that require intensive inter-
component communication (e.g streaming service), can perform better if the
replicas (service components) are placed close to each other in high capacity
links [Sel+15b]. On other side, bandwidth-intensive services (e.g., distributed
storage, video on-demand) can perform much better if their replicas are as
close as possible to their final users (e.g. overall reduction of bandwidth for
service provisioning).

If we have some information about the application SLAs in community
networks and node behaviour from the underlying network, decisions can be
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made accordingly, in order to promote that certain types of applications are
executed in certain type of nodes with better QoS.

Our algorithm considers the following network and graph metrics as shown
in Table 4.2, when allocating different type of services.

• Availability: The availability of a node is defined as the percentage of
ping requests that the node replies when requested by the graph-server
system. Graph-servers are distributed in Guifi.net and are responsible
for performing network measurements between nodes. This is an im-
portant metric for service life-cycle and is considered for two service
types. It is measured in percentage (%).

• Latency: The latency of a node is defined as the time it takes for a
small IP packet to travel from the Guifi.net graph-servers through the
network to the nodes and back. It is an important metric for latency-
sensitive service in CNMCs. It is measured in milliseconds (ms).

• Closeness: The closeness is defined as the average distance (number of
hops) from the solution obtained from the algorithm to the clients. It
is an important metric for bandwidth-sensitive services. It is measured
in number of hops.

In terms of graph centrality metrics, we consider closeness and betweenness
centrality. Closeness centrality is a good measure of how efficient a partic-
ular node is in propagating information through the network. Betweenness
centrality quantifies the number of times a node acts as a bridge along the
shortest path between two other nodes.

4.2 Service Placement Algorithm

We designed an algorithm that explores different placements searching for
the local minimal service overlay diameter while, at the same time, fulfilling
different service type quality parameters. Algorithm 4.1 relies on the method
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Type of service Examples of services Network metrics Graph metrics

Bandwidth-intensive
distributed storage, video-on-demand

network graph server, mail server
availability
closeness

closeness
centrality

Latency-sensitive
VoIP, video-streaming

game server, radio station server
availability

latency
betweenness

centrality

Table 4.2: Service-specific quality parameters

𝑃𝐴𝑆𝑃() to evaluate the different service placements in different zones and
generate the solutions. The algorithm tries to find a solution in each zone
by applying Breadth-First Search (BFS) and utilizing the 𝐼𝑠𝐵𝑒𝑡𝑡𝑒𝑟 method
to choose the best solutions by applying service policies shown at Table 4.2.
In the case of equal diameter allocations, the mean out-degree (the mean
boundary of the nodes in the service overlay with the nodes outside of it) is
taken. The service allocation with smallest diameter and largest mean out-
degree fulfilling different service quality parameters is kept as the optimal.

The algorithm iterates using Breadth-First-Search algorithm (BFS) in the
network graph, taking as root the given node and selecting the first 𝑆 − 1
closest resources to it. The node with high degree centrality is initially chosen
as root. Degree centrality is the fraction of nodes that a particular node is
connected to. In the case of several nodes at the same distance, nodes are
selected randomly, distributing thus uniformly. Thanks to this feature, our
algorithm performs faster than a pure exhaustive search procedure, since size
equivalent placements are not evaluated. It is worth noting that the same
set of nodes might be obtained from different root nodes, since placements
in nearby network areas would involve the exact same nodes. We avoid re-
evaluating these placements with a cache mechanism, that improves algorithm
efficiency. After the placement solutions for different number of services are
returned from BFS, the solutions are compared regarding the service quality
parameters.

For each solution set obtained, we check our defined service-specific policies
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Algorithm 4.1 Policy-Aware Service Placement (PASP)
Input: 𝑁(𝑉𝑛, 𝐸𝑛) ▷ Network graph
Input: 𝑍(𝑉𝑧, 𝐸𝑧) ▷ Zones graph
Input: 𝑍𝑜𝑛𝑒 ▷ Search solution zone
Input: 𝑆 ▷ Number of nodes in the service
Input: 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃𝑜𝑙𝑖𝑐𝑦 ▷ Service specific policies

1: procedure PASP(𝑁, 𝑍, 𝑍𝑜𝑛𝑒, 𝑆, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃 𝑜𝑙𝑖𝑐𝑦)
2: 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 ← 𝑉𝑛 ∈ 𝑉𝑧𝑖
3: 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑛𝑢𝑙𝑙
4: for all 𝑛𝑜𝑑𝑒 ∈ 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 do
5: 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ←BreadthFirstSearch(𝑁, 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦, 𝑛𝑜𝑑𝑒, 𝑆)
6: if isBetter(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃𝑜𝑙𝑖𝑐𝑦) then
7: 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ← 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
8: end if
9: end for

10: return 𝐵𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
11: end procedure
12: procedure isBetter(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃𝑜𝑙𝑖𝑐𝑦)
13: for all 𝑝 ∈ 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑃𝑜𝑙𝑖𝑐𝑦 do
14: 𝑟𝑒𝑠𝑢𝑙𝑡 ←CheckPolicy(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑏𝑒𝑠𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑝)
15: end for
16: return 𝑟𝑒𝑠𝑢𝑙𝑡
17: end procedure

and then accordingly we calculate different scores (e.g., latency or availability
score). Once we have the these scores for each solution set, we utilize the
𝐼𝑠𝐵𝑒𝑡𝑡𝑒𝑟 method to compare the solutions and to choose the new best place-
ment solution according to different service types. Currently, the algorithm
has not been optimized regarding the computation time, but it provides near-
optimal overlay allocations, as our results show, without need of verifying the
whole solution space.
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4.3 Experimental Results

4.3.1 Network behaviour and algorithmic performance

Our service placement algorithm proposed in Section 5.2.4 is used to simulate
the placement of different services in Guifi.net. Our goal is to determine the
key features of the network and its nodes, in particular to understand the
network metrics that could help us to design new heuristic frameworks for
smart service placement in CNMCs.

From the data obtained, our first interest is to analyse the availability and
latency of Guifi.net nodes. This can be used as an indirect metric of quality
of connectivity that new members may expect from the network.

Figure 4.3 shows that 40% of the base-graph nodes are reachable from the
network 90% or less of the time. The situation seems to be even worse with
the core-graph nodes, which are supposed to be the most stable part of the
network (20% of the core-graphs have availability of 90% or less). Base-graph
nodes have higher availability because they are closer to users, and is of high
interest to users to take care of them. It is interesting to note that 20% of
the core-graph nodes have availability between 98-100%, and those are most
probably the nodes that comprise the backbone of the network and connect
different administrative zones. Since the service placement is done on the
core-graph nodes, selecting the nodes with higher availability (e.g., 90-100%)
is of high importance.
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Figure 4.4 depicts the Empirical Cumulative Distribution Function (ECDF)
plot of the node latency. Similar to the availability case, the latency of base-
graph nodes is slightly better. For both cases, 30% of the nodes have latency of
480 ms or less, which makes the other 70% of the nodes to have higher latency.
The availability and latency graph demonstrate the importance of, and indeed
the need for, a more effective, network-aware placement in CNMCs. By not
taking the performance of the underlying network into account, applications
can end up sending large amounts of data across slow wireless links while
faster and more reliable links and nodes remain under-utilized.

In order to see the effects of the network-aware placement in the solutions
obtained, we compare two versions of our algorithm. The first version i.e.,
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, allocates services just with the goal of minimizing the service over-
lay diameter without considering node properties such as availability, latency
or closeness. The second version of the algorithm called 𝑃𝐴𝑆𝑃 , tries to
minimize the service overlay diameter, while taking into account these node
properties.

The availability and latency of the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 solutions are calculated by
taking the average of nodes in the optimal solutions (after the optimal solution
is computed), where the optimal solution is the best solution that minimizes
the service overlay diameter, that can only be calculated exhaustively offline.

We allocate services of size 3, 5, 7, 9, 11 and 15. Figure 4.5 and Figure 4.6
reveal that nodes obtained in the solutions with 𝑃𝐴𝑆𝑃 have higher average
availability and lower latency than with 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒, with minimum service
overlay diameter. On average, the gain of 𝑃𝐴𝑆𝑃 over 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is 8% for the
availability, and 45 ms for the latency (5-20% reduction).

We find that our 𝑃𝐴𝑆𝑃 algorithm is good in finding placement solutions
with higher availability and lower latency, however the service solutions ob-
tained might or might not be very close (in terms of number of hops) to
base-graph clients. Because of this we also developed another flavour of
PASP algorithm called 𝑃𝐴𝑆𝑃 − 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠. Figure 4.7 shows the number
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Figure 4.5: PASP-Availab. Figure 4.6: PASP-Latency Figure 4.7: PASP-Closeness

of solutions obtained that are 1-hop close to the base-graph clients. When
𝑃𝐴𝑆𝑃 − 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 algorithm allocates three services, on average there are
three solutions whose internal nodes (e.g, any of the nodes) are at 1-hop dis-
tance to any of the base-graph client nodes, contrary to the 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 where on
average there is one solution whose nodes are at 1-hop distance to base-graph
clients.

Overall, in the two algorithms, there is a trade-off between latency and
closeness. For bandwidth-intensive applications closeness seems to be more
important when allocating services (e.g., 𝑃𝐴𝑆𝑃 − 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 can be used),
while for latency-sensitive applications it is the latency the one that naturally
seems to be more important (e.g., 𝑃𝐴𝑆𝑃 − 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 can be used).

4.3.2 Deployment in a real production Community Network

In order to understand the gains of our network-aware service placement al-
gorithm in a real production community network, we deploy our algorithm
in real hardware connected to the nodes of the QMP [16o] network, which is
a subset of Guifi.net located in the city of Barcelona. Figure 4.8 depicts the
topoloqy of the QMP network. Furthermore, a live QMP monitoring page
[16n] updated hourly is available in the Internet.

We use 16 servers connected to the wireless nodes of QMP. The nodes and
the attached servers are geographically distributed in the city of Barcelona.
The hardware of the servers consists of Jetway devices, which are equipped
with an Intel Atom N2600 CPU, 4 GB of RAM and 120 GB SSD. They run
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an operating system based on OpenWRT, which allows running several slivers
(VMs) on one node simultaneously implemented as Linux containers (LXC).

The slivers host the Cloudy operating system. Cloudy contains some pre-
integrated distributed applications, which the community network user can
activate to enable services inside the network. Services include a streaming
service, a storage service and a folder synchronizing service, among others. For
our experiments, we use the storage service, which is based on Tahoe-LAFS.
Tahoe-LAFS is an open-source distributed storage system with enforced se-
curity and fault-tolerance features, such as data encryption at the client side,
coded transmission and data dispersion among a set of storage nodes.

As the controller node we leverage the experimental infrastructure of
Community-Lab. Community-Lab provides a central coordination entity
that has knowledge about the network topology in real time. Out of the
16 devices used, three of them are storage nodes and 13 of them are clients
(chosen randomly) that read files. The clients are located in different geo-
graphic locations of the network. The controller is the one that allocates
the distributed storage service in these three nodes and clients access this
service. On the client side we measure the file reading times. We monitored
the network for the entire month of January 2016. The average throughput
distribution of all the links for one month period was 9.4 Mbps.

Figure 4.9 shows the average download time for various file sizes (2-64 MB)
perceived at the 13 clients, after allocating services using 𝑅𝑎𝑛𝑑𝑜𝑚 algorithm
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(i.e., currently used at Guifi.net) and using our 𝑃 𝐴𝑆𝑃 algorithm. The experi-
ment is composed of 20 runs, where each run has 10 repetitions, and averaged
over all the successful runs. Standard deviation error bars are also shown.

Regarding the network interferences that may be caused by other users
concurrent activities which can impact the results of our experiments, we
reference to our earlier work [CNE13a] which investigated these issues.

Allocation of services using 𝑅𝑎𝑛𝑑𝑜𝑚 algorithm by Controller is done
without taking into account the performance of the underlying network. It
can be seen for instance that when using our 𝑃 𝐴𝑆𝑃 algorithm for allocation,
it takes around 17 seconds for the clients on average to read a 8 MB file. In
the random case, the time is almost doubled, reaching 28 seconds for reading
a file from the clients side. We observed therefore that when allocating
services, taking into account the closeness and availability parameters in the
allocation decision, on average (for all clients) our algorithm reduces the
client reading times for 16%. Maximum improvement (around 31%) has been
achieved when reading larger files (64 MB). When reading larger files client
needs to contact many nodes in order to complete the reading of the file.

4.4 Discussion

From working with the Guifi.net data, we found that augmenting the service
overlay diameter solutions with service specific metrics has a direct impact
on the service performance. We found that the optimal flooding radius in
Guifi.net is small, i.e. 2 hops. This means that it is always possible to find an
optimal service placement with an overlay diameter of 2 hops within Guifi.net.
Additionally, the average solutions diameter increases as the number of nodes
that composes the services does.

Furthermore, we observed some patterns in the node features that conforms
optimal placements. We saw that the solution overlay diameter depends on
the nodes degree centrality. Minimum degree centrality can be used to se-
lect the first node that composes the service (the solution). We saw that
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most of the solutions obtained are concentrated on a small set of of average
centrality values. Selecting the next nodes in a particular range of closeness
centrality (for bandwidth-intensive services) and betweenness centrality (for
latency-sensitive services) is specially useful to obtain more optimal overlays.

4.5 Summary

We addressed the need for network-aware service placement in community
network micro-cloud infrastructures. We looked at a specific case of improving
the deployment of service instance on micro-servers for enabling an improved
distributed storage service in a community network.

As services become more network intensive, the bandwidth, latency etc.,
between the used nodes becomes the bottleneck for improving performance.
In community networks, the limited capacity of nodes and links and an un-
predictable network performance becomes a problem for service performance.
Network awareness in placing services allows to chose more reliable and faster
paths over poorer ones.

In this chapter we introduced a service placement algorithm that provides
improved overlay service selection for distributed services considering service
quality parameters, without the need for exploring the whole solution space.
For our simulations we employed a topological snapshot from Guifi.net to
identify node traits in the optimal service placements. We deployed our ser-
vice placement algorithm in a real network segment of Guifi.net, a production
community network, and quantified the performance and effects of our al-
gorithm. We conducted our study on the case of a distributed storage service.
We found that our PASP algorithm reduces the client reading times by an
average of 16% (with a max. improvement of 31%) compared to the currently
used organic placement scheme. Our results show how the choice of an appro-
priate set of nodes, taken from a larger resource pool, can influence service
performance significantly.

In next steps we plan to develop and implement a decentralized version of
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our investigated service placement algorithm. Service migration should also
be addressed to support performance objectives in the case of user mobility
and within dynamic changes in the network.

Notes

The research discussed in this Chapter 4 was included in the following public-
ations:

[Sel+16] Mennan Selimi, Davide Vega, Felix Freitag, and Luís Veiga. “Towards
Network-Aware Service Placement in Community Network Micro-
Clouds”. In: 22nd International Conference on Parallel and Distributed
Computing (Euro-Par 2016). (CORE Rank A). Grenoble, France, 2016,
pp. 376–388.
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5
Service Placement Heuristic

Community networks (CNs) have gained momentum in the last few years
with the increasing number of spontaneously deployed WiFi hotspots and
home networks. These networks, owned and managed by volunteers, offer
various services to their members and to the public. To reduce the complex-
ity of service deployment, community micro-clouds have recently emerged as
a promising enabler for the delivery of cloud services to community users. By
putting services closer to consumers, micro-clouds pursue not only a better
service performance, but also a low entry barrier for the deployment of main-
stream Internet services within the CN. Unfortunately, the provisioning of
the services is not so simple. Due to the large and irregular topology, high
software and hardware diversity of CNs, it requires of a ”careful” placement
of micro-clouds and services over the network. To achieve this, this chapter
proposes to leverage state information about the network to inform service
placement decisions (i.e., research question Q3), and to do so through a fast
heuristic algorithm, which is vital to quickly react to changing conditions.
We contribute in this chapter a new placement heuristic called BASP (Band-
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width and Availability-aware Service Placement), which uses the state of the
underlying community network to optimize service deployment. In particular,
it considers two sources of information: i) network bandwidth and ii) device
availability to make optimized decisions. Compared with brute-force search,
which it takes of the order of hours to complete, BASP runs much faster; it
just takes a few seconds, while achieving equally good results.

5.1 Network Characterization

Our service placement strategy considers two aspects: device availability and
network bandwidth. As the first step it is vital to understand the behaviour
of these two dimensions in a real CN. We achieve this by characterizing a
production wireless CN such as a QMP network over a five month period.
Our goal is to determine the key features of the network (e.g. bandwidth
distribution) and its nodes (e.g. availability patterns) that could help us to
design new heuristics for intelligent service placement in CNs.

5.1.1 QMP Network: A Brief Background

QMP network, began deployment in 2009 in a quarter of the city of Barcelona,
Spain, called Sants, as part of the Quick Mesh Project (QMP) [16o]. QMP
is an urban mesh network and it is a subset of the Guifi.net CN sometimes
called GuifiSants. At the time of writing, QMP has around 71 nodes. There
are two gateways (proxies) distributed in the network that connect QMP to
the rest of Guifi.net and Internet (see Figure 5.2). A detailed description of
QMP can be found in [CNE13a].

Typically, QMP users have an outdoor router (OR) with a Wi-fi interface
on the roof, connected through Ethernet to an indoor AP (access point) as
a premises network. The most common OR in QMP is the NanoStation
M5 as shown in Figure 5.1, which is used to build links on the network and
integrates a sectorial antenna with a router furnished with a wireless 802.11an
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Figure 5.1: QMP devices
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Figure 5.2: QMP network topology (2016)

interface. Some strategic locations have several NanoStations, that provide
larger coverage. In addition, some links of several kilometers are set up with
parabolic antennas (NanoBridges). ORs in QMP are flashed with the Linux
distribution which was developed inside the QMP project which is a branch
of OpenWRT and uses BMX6 as the mesh routing protocol [NLN12].

The user devices connected to the ORs consists of Minix Neo Z64 and
Jetway mini PCs, which are equipped with an Intel Atom CPU. They run the
Cloudy operating system, which allows running services in Docker containers.

Methodology and data collection: Measurements have been obtained
by connecting via SSH to each QMP OR and running basic system commands
available in the QMP distribution. This method has the advantage that no
changes or additional software need to be installed in the nodes. Live meas-
urements have been taken hourly over a 5 months period, starting from July
2016 to November 2016, and our live monitoring page and data is publicly
available in the Internet*. We use this data to analyse main aspects of QMP
network.

5.1.2 Device Availability

The quality and state of the heterogeneous hardware used in QMP, influences
the stability of the links and network performance. Availability of the QMP

*http://dsg.ac.upc.edu/qmpsu/index.php
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Figure 5.3: Node sysUptime
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Figure 5.4: Node and link presence

nodes is used as an indirect metric for the quality of connectivity that new
members expect from the network.

Figure 5.3 shows the Empirical Cumulative Distribution Function (ECDF)
plot of the sysUpTime collected from the SNMP service snapshots from the
QMP network, on a random day in 2016. The Linux kernel counter of sysUp-
Time resets to zero every time a node is rebooted or shut down, independently
of the reason that causes this. In a CN such as QMP, users do not tend to
deliberately reboot the device unless they have to perform an upgrade, which
is not very common. Hence, the number of days reported by the sysUpTime
is a relatively good measure of the device availability due to random failures.

We also took into account the last time a node had been rebooted, volun-
tarily or not, which gave us a direct measure of its availability. Figure 5.3
depicts that, there is a high number of nodes (about 10%) that have been
restarted during the last day, while there are also some nodes that had not
been reset for almost one year. When we compare the system uptime repor-
ted in a similar study and environment on PlanetLab [VP11], a QMP node
has a higher probability of being disconnected or not reachable from the net-
work. The fact that PlanetLab showed a higher average sysUpTime on its
nodes may be because it is an experimental testbed running on much more
stable computers and environment. Furthermore, the QMP members are not
only responsible for the maintenance of their nodes, but also for ensuring a
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minimum standard of connectivity with other parts of the network.
Figure 5.4 depicts the node and link presence during captures. We define

the presence as the percentage a given node or link is observed (i.e., is reach-
able) over the captures. A capture is an hourly network snapshot that we
take from the QMP network for a five months period (2718 captures in total).
Figure shows that QMP is growing. Overall, 77 different nodes were detected.
From those, 71 were alive during the entire measurement period. Around
6 nodes were missed in the majority of the captures. These are temporar-
ily working nodes from other mesh networks and laboratory devices used for
various experiments. Figure 5.4 also reveals that on average 175 of links used
between nodes are bidirectional and 34 are unidirectional. For bidirectional
links, we count both links in opposite direction as a single link.

In summary, device availability is important to identify those nodes that
will minimize service interruptions over time. Based on the measurements,
we assign availability scores to each of the devices. The high available devices
are the possible candidates for deploying on them the micro-clouds.

5.1.3 Bandwidth characterization

A significant amount of applications that run on QMP and Guifi.net net-
work are network-intensive (bandwidth and delay sensitive), transferring large
amounts of data between the network nodes [Sel+15c]. The performance of
such kind of applications depends not just on computational and disk re-
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sources but also on the network bandwidth between the nodes on which they
are deployed. Therefore, the placement of such services in the network is of
high importance.

We characterize the wireless links of the QMP network by studying their
bandwidth. Figure 5.5 shows the average bandwidth distribution of all the
links. The figure shows that the link throughput can be fitted with a mean of
21.8 Mbps. At the same time Figure 5.5 reveals that the 60% of the nodes have
10 Mbps or less throughput. The average bandwidth of 21.8 Mbps obtained
in the network can allow many popular bandwidth-hungry service to be run
without big interruptions. This high performance can be attributed to the
802.11an devices used in the network.

In order to see the variability of the bandwidth, Figure 5.6 shows the band-
width averages in both directions (upload vs. download) of the three busiest
links. The nodes of three busiest links are highlighted on the top of the figure.
We noted that that the asymmetry of the bandwidths measured in both dir-
ections it not always due to the asymmetry of the user traffic (not shown in
the graphs). For instance, node GSgranVia255, around 6am, when the user
traffic is the lowest and equal in both directions, the asymmetry of the links
bandwidth observed in Figure 5.6 remains the same. We thus conclude that
even though bandwidth time to time is slightly affected by the traffic, the
asymmetry of the links that we see might be due to the link characteristics,
as level of interferences present at each end, or different transmission powers.

In order to measure the links asymmetry, Figure 5.7 depicts the bandwidth
measured in each direction. A boxplot of the absolute value of the deviation
over the mean is also depicted on the right. The figure shows that around
25% of the links have a deviation higher than 40%. At the same time, the
other 25% of the links have a deviation less than 10%. After performing some
measurements regarding the signaling power of the devices, we discovered that
some of the community members have re-tuned the radios of their devices,
trying to achieve better performance (transmission power, channel and other
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parameters), thus, changing the characteristics of the links. Thus, we can
conclude that the symmetry of the links, an assumption often used in the
literature of in wireless mesh networks, is not very realistic for our case and
service placement algorithms definitely need to take into account.

5.1.4 Observations

Here are some observations (features) that we have derived from the measure-
ments in QMP network:

Dynamic Topology: QMP network is highly dynamic and diverse due to
many reasons, e.g., its community nature in an urban area; its decentralised
organic growth with extensive diversity in the technological choices for hard-
ware, wireless media, link protocols, channels, routing protocols etc.; its mesh
nature in the network etc. The current network deployment model is based
on geographic singularities rather than QoS. The network is not scale-free.
The topology is organic and different w.r.t. conventional ISP network.

Non-uniformly distributed resources: The resources are not uniformly
distributed in the network. Wireless links are with asymmetric quality for
services (25% of the links have a deviation higher than 40%). We observed
a highly skewed traffic pattern and highly skewed bandwidth distribution
(Figure 5.5).

Currently used organic (random) placement scheme in QMP and Guifi.net
in general, is not sufficient to capture the dynamics of the network and there-
fore it fails to deliver the satisfying QoS. The strong assumption under random
service placement, i.e., uniform distribution of resources, does not hold in such
environments.

Furthermore, the services deployed have different QoS requirements. Ser-
vices that require intensive inter-component communication (e.g streaming
service), can perform better if the replicas (service components) are placed
close to each other in high capacity links [Sel+15b]. On other side, bandwidth-
intensive services (e.g., distributed storage, video-on-demand) can perform
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much better if their replicas are as close as possible to their final users (e.g.,
overall reduction of bandwidth for service provisioning) [Sel+16].

Our goal is to build on this insight and design a network-aware service place-
ment algorithm that will improve the service quality and network performance
by optimizing the usage of scarce resources in CNs such as bandwidth.

5.2 Context and Problem

First we describe our model for network and service graph. Subsequently we
build on this to describe the service placement problem. The symbols used
are listed in Table 5.1.

5.2.1 Network Graph

The deployment and sharing of services in CNs is made available through
community network micro-clouds (CNMCs). The idea of CNMC is to place
the cloud at the edge closer to community end-users, so users can have fast
and reliable access to the service. To reach its full potential, a CNMC needs
to be carefully deployed in order to utilize the available bandwidth resources.

In a CNMC, a server or low-power device (i.e, home gateway) is directly
connected to the wireless base-station (ORs) providing cloud services to users
that are either within a reasonable distance or directly connected to base-
station.

We call the CN the underlay to distinguish it from the overlay network
which is built by the services. The underlay network is supposed to be con-
nected and we assume each node knows whether other nodes can be reached
(i.e., next hop is known). We can model the underlay graph as: 𝐺 ← (𝑁, 𝐸)
where 𝑁 is the set of nodes connected to the outdoor routers (ORs) present in
the CNs and 𝐸 is the set of wireless links that connects them. Physical links
between nodes are characterized by a given bandwidth (𝐵𝑖). Furthermore,
each link has a bandwidth capacity (𝐵𝑒). Each node in the network has an
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Symbol Description
N set of physical nodes in the network
E set of edges (physical links) in the network
S set of services
D set of service copies
𝑘 max number of service copies

𝐵𝑒 bandwidth capacity of link e
𝛽𝑠1,𝑠2 bandwidth requirement between services s1 and s2

𝑅𝑛 Availability of node n
𝜆 Availability threshold

𝑋𝑠1,𝑠2
use of physical link e by at least one service for the
placement of virtual link between s1 and s2, 1 iff placed

Table 5.1: Input and decision variables

availability score (𝑅𝑛) derived from the real measurements at QMP.

5.2.2 Service Graph

The services aimed in this work are at infrastructure level (IaaS), as cloud
services in current dedicated datacenters. Therefore, the services are deployed
directly over the core resources of the network and accessed by clients. Ser-
vices can be deployed by QMP users or administrators.

The services we consider in this work are distributed services (i.e, independ-
ently deployable services as in Microservices Architecture). The distributed
services can be composite services (non-monolithic) built from simpler parts,
e.g., video streaming (built from the source and peers component), web service
(built from database, memcached and client component) etc. In the real de-
ployment, one service component corresponds to one Docker container. These
parts or components of service would create an overlay and interact with each
other to offer more complex services. Bandwidth requirement between two
services 𝑠1 and 𝑠2 is given by 𝛽𝑠1,𝑠2. At most 𝑘 copies can be placed for each
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service 𝑠.
A service may or may not be tied to a specific node of the network. Each

node can host one or more type of services. In this work we assume an offline
service placement approach where a single or a set of applications are placed
”in one shot” onto the underlying physical network. We might rearrange (mi-
grate) the placement of the same service over the time because of the service
performance fluctuation (e.g. weather conditions, node availability, changes
in use pattern, and etc.). We do not consider real-time service migration.

5.2.3 Service Placement Problem

The concept of service and network graph allows us to formulate the problem
statement more precisely as: ”Given a service and network graph, how to place
a service on a network as to maximize user QoS and QoE, while satisfying a
required level of availability for each node (𝑁) and considering a maximum of
𝑘 service copies ?

Let 𝐵𝑖𝑗 be the bandwidth of the path to go from node 𝑖 to node 𝑗. We want
a partition of 𝑘 clusters (i.e., services) : 𝐶 ← 𝐶1, 𝐶2, 𝐶3, ..., 𝐶𝑘 of the set of
nodes in the mesh network. The cluster head 𝑖 of cluster 𝐶𝑖 is the location
of the node where the service will be deployed. The partition maximizing the
bandwidth from the cluster head to the other nodes in the cluster is given by
the objective function:

arg max𝐶

𝑘
∑
𝑖=1

∑
𝑗∈𝐶𝑖

𝐵𝑖𝑗 (5.1)

with respect to the following constraints:

1. The total bandwidth used per link cannot exceed the total link capacity:

∀𝑒 ∈ 𝔼 ∶ ∑
𝑠1,𝑠2∈𝕊

𝑋𝑠1,𝑠2(𝑒) × 𝛽𝑠1,𝑠2 ≤ 𝐵𝑒 (5.2)
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2. Availability-awareness: the node availability should be higher than the
predefined threshold 𝜆:

∀𝑛 ∈ ℕ ∶ ∑
𝑛∈ℕ

𝑅𝑛 ≥ 𝜆 (5.3)

3. Admission control: At most, 𝑘 copies can be placed for each service:

|𝐷| = 𝑘 (5.4)

5.2.4 Proposed Algorithm: BASP

Solving the problem stated in Equation 5.1 in brute force for any number of
𝑁 and 𝑘 is NP-hard and very costly. The naive brute force method can be
estimated by calculating the Stirling number of the second kind [16r] which
counts the number of ways to partition a set of 𝑛 elements into 𝑘 nonempty
subsets, i.e., 1

𝑘! ∑𝑘
𝑗=0(−1)𝑗−𝑘(𝑛

𝑘)𝑗𝑛 ⇒ 𝒪(𝑛𝑘𝑘𝑛). Thus, due to the obvious
combinatorial explosion, we propose a low-cost and fast heuristic called BASP.
The BASP (Bandwidth and Availability-aware Service Placement) allocates
services taking into account the bandwidth of the network and the device
availability.

Our BASP algorithm (see Algorithm 5.1) runs in three phases:

1. Phase 1: K-Means: Initially, we use the naive K-Means partitioning
algorithm in order to group nodes based on their geo-location. The
idea is to get back clusters of nodes that are close to each other. The
K-Means algorithm forms clusters of nodes based on the Euclidean
distances between them, where the distance metrics in our case are
the geographical coordinates of the nodes. In traditional K-Means al-
gorithm, first, 𝑘 out of 𝑛 nodes are randomly selected as the cluster
heads (centroids). Each of the remaining nodes decides its cluster head
nearest to it according to the Euclidean distance. After each of the
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nodes in the network is assigned to one of 𝑘 clusters, the centroid of
each cluster is re-calculated. Grouping nodes based on geo-location is
in line with how the QMP is organized. The nodes in QMP are organ-
ized into a tree hierarchy of zones [al15]. A zone can represent nodes
from a neighborhood or a city. Each zone can be further divided in
child zones that cover smaller geographical areas where nodes are close
to each other. From the service perspective we consider placements
inside a particular zone. We use K-Means with geo-coordinates as an
initial heuristic for our algorithm. As an alternative, clustering based
on network locality can be used. Several graph community detection
techniques are available for our environment. [LF09].

2. Phase 2: Aggregate Bandwidth Maximization: The second phase
of the algorithm is based on the concept of finding the cluster heads
maximizing the bandwidth between them and their member nodes in
the clusters 𝐶𝑘 formed in the first phase. The bandwidth between two
nodes is estimated as the bandwidth of the link having the minimum
bandwidth in the shortest path. The cluster heads computed are the
candidate nodes for the service placement. This is plotted as Naive
K-Means in the Figure 5.8.

3. Phase 3: Cluster Re-Computation: The third and last phase of the
algorithm includes reassigning the nodes to the selected cluster heads
having the maximum bandwidth, since the geo-location of nodes in the
clusters formed during phase one is not always correlated with their
bandwidth. This way the clusters are formed based on nodes bandwidth.
This is plotted as BASP in the Figure 5.8.

Complexity: The complexity of the BASP is as follows: for BASP, finding
the optimal solution to the k-means (i.e., phase one) clustering problem if 𝑘
and 𝑑 (the dimension) are fixed (e.g., in our case 𝑛 = 71, and 𝑑 = 2), the
problem can be exactly solved in time 𝒪(𝑛𝑑𝑘+1 log 𝑛), where n is the number
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of entities to be clustered. The complexity for computing the cluster heads in
phase two is 𝒪(𝑛2), and 𝒪(𝑛) for the reassigning the clusters in phase three.
Therefore, the overall complexity of BASP is polylogarithmic 𝒪(𝑛2𝑘+1 log 𝑛),
which is significantly smaller than the brute force method and thus practical
for commodity processors.

5.3 Evaluation

5.3.1 Setup

We take a network snapshot (capture) from 71 physical nodes of the QMP
network regarding the bandwidth of the links† and node availability. The node
and bandwidth data obtained has been used to build the topology graph
of the QMP. The QMP topology graph is constructed by considering only
operational nodes, marked in Working status, and having one or more links
pointing to another node. Additionally, we have discarded some disconnected
clusters. The links are bidirectional and unidirectional, thus we we use a
directed graph. The nodes of QMP consists of Intel Atom N2600 CPU, 4GB
of RAM and 120 GB of disk space.

Our experiment is comprised of 5 runs and the presented results are aver-
aged over all the runs. Each run consists of 15 repetitions.

5.3.2 Comparison

To emphasise the importance of the different phases of Algorithm 5.1, we com-
pare in this section the two phases of our heuristic with Random Placement,
i.e., the default placement at QMP.
Random Placement: Currently, the service deployment (much as network
deployment) at QMP is not centrally planned but initiated individually by
the CN members. Public, user and community-oriented services are placed

†http://tomir.ac.upc.edu/qmpsu/index.php?cap=56d07684
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randomly on supernodes and users’ premises, respectively. The only para-
meter taken into account when placing services is that the devices must be
in “production” state. The network is not taken into consideration at all. All
nodes in the production state appear equally to the users.
NaiveKMeans Placement: This corresponds to the second phase of Al-
gorithm 5.1. The service is installed on the node having the maximum band-
width on the initial clusters formed by K-Means. We limit the choice of the
cluster heads to be inside the sets of clusters obtained using K-Means
BASP Placement: It includes the three phases of Algorithm 5.1. The ser-
vice is placed on the node having the maximum bandwidth after the clusters
are re-computed.

5.3.3 Results

Figure 5.8 depicts the average bandwidth to the cluster heads obtained with
the Random, Naive K-Means and the BASP algorithm. This figure reveals
that for any number of services 𝑘, BASP outperforms both Naive K-Means
and Random placement.

For 𝑘 = 2, the average bandwidth to the cluster heads is increased from
18.3 Mbps (Naive K-Means) to 27.7 Mbps (BASP), which represents a 50%
improvement. The biggest increase of 67% is achieved when 𝑘 = 7. On
average, when having up to 7 services in the network, the gain of BASP over
Naive K-Means is of 45%. Based on the observations from Figure 5.8, the
gap between the two algorithms grows as 𝑘 increases. We observe that 𝑘 will
increase as the network grows. And hence, BASP will presumably render
better results for larger networks than the rest of strategies.

Regarding the comparison between BASP and Random placement, we find
that Random placement leads to an inefficient use of network’s resources,
and consequently to suboptimal performance. The gain of BASP over naive
Random placement is of 211%.

Comparison to the optimal solution. Note that our heuristic enables us
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Figure 5.8: Average bandwidth to the cluster heads

to select cluster heads that provide much higher bandwidth than any other ran-
dom or naive approach. But, if we were about to look for the optimum band-
width within the clusters (i.e., optimum average bandwidth for the cluster),
then this problem would be NP-hard. The reason is that finding the optimal
solution entails running our algorithm for all the combinations of size 𝑘 from
a set of size 𝑛. This is a combinatorial problem that becomes intractable even
for small sizes of 𝑘 or 𝑛 (e.g., 𝑘 = 5, 𝑛 = 71). For instance, if we wanted to
find the optimum bandwidth for a cluster of size 𝑘 = 3, then the algorithm
would need to run for every possible (non-repeating) combination of size 3
from a set of 71 elements, i.e., 𝑐ℎ𝑜𝑜𝑠𝑒(71, 3) = 57𝐾 combinations. We man-
aged to do so and found that the optimum average was 62.7 Mbps. For 𝑘 = 2,
the optimum was of 49.1 Mbps. For 𝑘 = 1, it was of 16.9 Mbps.

The downside was that, the computation of the optimal solution took very
long time in a commodity machine. Concretely, it took 5 hours for 𝑘 = 3 and
30 minutes for 𝑘 = 2. Instead, BASP spent only 23 seconds for 𝑘 = 3 and 15
seconds for 𝑘 = 2. Table 5.9 shows the improvement of BASP over Random
and Naive K-Means. To summarize, BASP is able to achieve good bandwidth
performance with very low computation complexity.

Correlation with centrality metrics. Figure 5.9 shows some centrality
measures and some graph properties obtained for each cluster head. Also,
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Figure 5.9: Centrality measures for cluster heads

Figure 5.10 shows the neighborhood connectivity graph of the QMP network.
The neighborhood connectivity of a node 𝑣 is defined as the average con-
nectivity of all neighbors of 𝑣. In the figure, nodes with low neighborhood
connectivity values are depicted with bright colors and high values with dark
colors. It is interesting to note that some the nodes with the highest neigh-
borhood connectivity are those chosen by BASP as cluster heads. The cluster
heads (for 𝑘 = 2 and 𝑘 = 3) are illustrated with a rectangle in the graph.
A deeper investigation into the relationship between service placement and
network topological properties is out of the scope of this work and will be
reserved as our future work.

5.4 Experimental Evaluation

5.4.1 Cloudy: A Service Hub

In order to foster the adoption and transition of the community micro-cloud
environment, we provide a community cloud distribution, codenamed Cloudy.
This distribution contains the platform and application services of the com-
munity cloud system. Cloudy is the core software of our micro-clouds, because
it unifies the different tools and services of the cloud system in a Debian-based
Linux distribution. Cloudy is open-source and can be downloaded from public
repositories‡.

Cloudy’s main components can be considered a layered stack, with services
residing both inside the kernel and at the user level. Figure 5.11 reports some

‡http://repo.clommunity-project.eu/images/
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of the available services running on Docker containers. Cloudy includes a tool
for users to announce and discover services in the micro-clouds based on Serf,
which is a decentralized solution for cluster membership and orchestration.
On the network coordination layer, having sufficient knowledge about the un-
derlying network topology, BASP decides about the placement of the service
which then is announced via Serf (see Figure 5.11). Thus, the service can be
discovered by the other users.

5.4.2 Evaluation in Real Production Community Network

In order to understand the gains of our network-aware service placement al-
gorithm in a real production CN, we deploy our algorithm in real hardware
connected to the nodes of the QMP network, located in the city of Barcelona.
We concentrate on benchmarking two of the most popular network-intensive
applications: Video streaming service, and Web 2.0 Service performed by the
most popular websites.

Live-video streaming service

PeerStreamer, an open source live P2P video streaming service, has been
paradigmatically established as the live streaming service in Cloudy. This
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service is based on chunk diffusion, where peers offer a selection of the chunks
they own to some peers in their neighborhood. A chunk consists of a part of
the video to be streamed (by default, this is one frame of the video). Peer-
Streamer differentiates between a source node and peer node. A source node
is responsible for sending the video chunks to the peers in the network. In
our case, both the source nodes and peers run in Docker containers atop the
QMP nodes.

Setup: We use 20 real nodes connected to the wireless nodes of QMP. These
nodes are co-located in either users homes (as home gateways, set-top-boxes,
etc.) or within other infrastructures distributed around the city of Barcelona.
They run the Cloudy operating system. As the controller node, we lever-
age the experimental infrastructure of Community-Lab. Community-Lab
provides a central coordination entity that has knowledge about the network
topology in real time and allows researchers to deploy experimental services
and perform experiments in a production CN. The nodes of QMP that are
running the live video streaming service are part of Community-Lab.

In our experiments, we connect a live streaming camera (maximum bitrate
of 512 kbps, 30 frame-per-second) to a local PeerStreamer instance that acts
as a source node. The source is running in a Docker container. The source is
also responsible for converting the video stream into chunks that are sent to
the peers. In the default configuration of PeerStreamer, each chunk contains
a single video frame.

The location of the source in such a dynamic network is therefore crucial.
Placing the source in a QMP node with weak connectivity will negatively
impact the QoS and QoE of viewers. In order to determine the accuracy of
BASP upon choosing the appropriate QMP node where to host the source, we
measure the average chunk loss percentage at the peer side, which is defined
as the percentage of chunks that were lost and not arrived in time. This
simple metric will help us understand the role of the network on the reliable
operation of live-video streaming over a CN.
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Figure 5.12: Average video chunk loss in QMP

Our experiment is composed of 20 runs, where each run has 10 repetitions.
Results are averaged over all the successful runs. 90% of them were successful.
In the 10% of failed runs, the source was unable to stream the captured images
from the camera, so peers did not receive the data. This experiment was run
for 2 weeks, with roughly 100 hours of live video data and several MBytes of
logged content. The presented results are from one hour of continuous live
streaming from the PeerStreamer source.
Results: Figure 5.12 shows the average chunk loss for an increasing number
of sources 𝑘. The data reveals that for any number of source nodes 𝑘, BASP
outperforms the currently adopted random placement in QMP network. For
𝑘 = 1, BASP decreases the average chunk loss from 12% to 10%. This case
corresponds to the scenario where there is one single source node streaming to
the 20 peers in the QMP network. Based on the observations from Figure 5.12,
the gap between the two algorithms is growing as 𝑘 increases. For instance,
when 𝑘 = 3, we get a 3% points of improvement w.r.t. chunk loss, and a
significant 37% reduction in the loss packet rate.

Web 2.0 Service

The second type of service that we experiment is the Web 2.0 Service. The
workloads of Web2.0 websites differ from the workloads of older generation
websites. Older generation websites typically served static content, while
Web2.0 websites serve dynamic content. The content is dynamically gener-
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Figure 5.13: UpdateActivity when web server
placed Randomly
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Figure 5.14: UpdateActivity when web server
placed with BASP

ated from the actions of other users and from external sources, such as news
feeds from other websites. Because of this, writes to the backend database (a
NoSQL data store) are frequent, and the data written are consumed by other
users. We are experimenting with a Web 2.0 service, which is an example of a
Microservices architecture, since it is formed by a group of service components
(i.e., web server, database server, memcached server and clients). In this type
of service, independent client requests are accepted by a stateless web server
which serves files and content through the middleware in backend databases
such as cloud NoSQL data stores or traditional relational SQL servers. The
placement of the web server (together with the database server) is of high
importance.
Setup: For the evaluation, we use the dockerized version of the CloudSuite
Web Serving benchmark [PSF16]. Cloudsuite benchmark has four tiers: the
web server, the database server, the memcached server, and the clients. Each
tier has its own Docker image. The web server runs Elgg and it connects to
the memcached server and the database server. The Elgg social networking
engine is a Web2.0 application developed in PHP, similar in functionality to
Facebook. The clients (implemented using the Faban workload generator)
send requests to login to the social network and perform different operations.
We use 10 QMP nodes in total, where 3 of them act as clients. The other 7
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nodes are candidates for deploying the web server. The web server, database
server and memcached server are always collocated in the same host. On the
client side, we measure the response time when performing some operations
such as login, updating the life feed, sending messages, etc. In Cloudsuite, to
each operation is assigned an individual QoS latency limit. If less than 95%
of the operations meet the QoS latency limit, the benchmark is considered to
be failed (marked as F). The location of the web server, database server and
memcache server has a direct impact on the client response time.
Results: Figure 5.13 and Figure 5.14 depict the response time observed
by the 3 clients for the update live feed operation for Random and BASP,
respectively.

Figure 5.13 reveals that, as far as we increase the number of threads (i.e.,
concurrent operations) per client, the response time observed in the 3 clients
increases drastically. For up to 120 operations per client (i.e., 20 threads),
the 3 clients perceive a similar response times (300-350 ms). Response time
increases more than one order of magnitude in Client 2 and Client 3 when
performing 160 operations (i.e. 80 threads), and one order of magnitude in
Client 1, respectively.

Operations Update live feed Do login
Threads 10 20 40 80 10 20 40 80

QMP-Random T F F F T T F F
QMP-BASP T T T F T T T F

Stdev 0.02s 0.03s 0.01 0.01 0.02 0.02 0.01s 0.03s
Improvement 0.1s 0.2s 1.8s 6.7s 0.1s 0.1s 1.2s 4.2s

Table 5.2: Cloudsuite benchmark results

Figure 5.14 depicts that, the client response times for higher workloads, de-
creases an order of magnitude when using our BASP heuristic compared with
the Random approach, as shown in Figure 5.13. For up to 120 operations
per client, the response times that the 3 clients observed is slightly better
(200-280 ms) than the response time when the web server is deployed with
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the Random approach. Furthermore, Table 5.2 demonstrates the successful
and failed tests for the update and login operations in the Cloudsuite bench-
mark. Table reveals, that using the BASP heuristic the number of successful
tests i.e., those that met the QoS latency limit, is higher than than the num-
ber of successful tests with Random approach. Furthermore, it also shows
the standard deviation values and average client response time improvements
when using BASP heuristic over Random approach. We can notice that the
gain brought by the BASP heuristic is higher for more intensive workloads.

5.5 Discussion

We addressed the problem of workload placements in Community Network
Micro-Clouds (i.e. IaaS-like infrastructures where resources are provided by
citizens/ organizations and interconnected through a community network).
The major issue of such a platforms is the uncertainties regarding the re-
sources as we observed in the network measurements (distributed, heterogen-
eous and constantly changing environment) that make the efficient allocation
of workloads challenging. Comparing to other works done in this field, this
work takes into account the network network characteristics i.e., bandwidth,
while most of the service placement approaches generally consider only CPU
and memory requirements. Second, it is applied to wireless networks, with all
their specific challenges, including range and stability, whereas network-aware
service placement are often applied to more traditional wired networks.

Bandwidth is a scarce resource in community networks. Augmenting the
bandwidth metric with the link quality prediction metric i.e., technique that
surpasses link quality tracking by foreseeing which links are more likely to
change its quality, can help more accurately to places services in the network.
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5.6 Summary

In this chapter, we motivated the need for bandwidth and availability-aware
service placement on CN micro-cloud infrastructures. CNs provide a perfect
scenario to deploy and use community services in contributory manner. Pre-
vious work done in CNs has focused on better ways to design the network to
avoid hot spots and bottlenecks, but did not relate to schemes for network-
aware placement of service instances.

However, as services become more network-intensive, they can become
bottle-necked by the network, even in well-provisioned clouds. In the case
of CN micro-clouds, network awareness is even more critical due to the lim-
ited capacity of nodes and links, and an unpredictable network performance.
Without a network-aware system for placing services, locations with poor net-
work paths may be chosen while locations with faster, more reliable paths
remain unused, resulting ultimately in a poor user experience.

We proposed a low-complexity service placement heuristic called BASP to
maximise the bandwidth allocation when deploying a CN micro-clouds. We
presented algorithmic details, analysed its complexity, and carefully evaluated
its performance with realistic settings. Our experimental results show that
BASP consistently outperforms the currently adopted random placement in
Guifi.net by 211%. Moreover, as the number of services increases, the gain
tends to increase accordingly. Furthermore, we deployed our service place-
ment algorithm in a real network segment of QMP network, a production
CN, and quantified the performance and effects of our algorithm. We conduc-
ted our study on the case of a live video streaming service and Web 2.0 Service
integrated through Cloudy distribution. Our real experimental results show
that when using BASP algorithm, the video chunk loss in the peer side is
decreased up to 3% points, i.e., worth a 37% reduction in the loss packet rate.
When using the BASP with the Web 2.0 service, the client response times
decreased up to an order of magnitude, which is a significant improvement.

As a future work, we plan to look into service migration, i.e, the controller
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needs to decide which micro-cloud should perform the computation for a
particular user, with the presence of user mobility and other dynamic changes
in the network. In this problem, the user may switch between micro-clouds
thus another question is whether we should migrate the service from one
micro-cloud to another when the user location or network condition changes.

Notes

The research discussed in this Chapter 5 was included in the following public-
ations:

[Sel+16] Mennan Selimi, Llorenç Cerdà-Alabern, Liang Wang, Arjuna Sathi-
aseelan, Luís Veiga, and Felix Freitag. “Bandwidth-aware Service Place-
ment in Community Network Micro-Clouds”. In: 41st IEEE Conference
on Local Computer Networks (LCN 2016). (CORE Rank A) (Short pa-
per). Dubai, UAE, 2016.
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Algorithm 5.1 B A S P
Input: 𝐺(𝑁, 𝐸) ▷ Network graph

𝐶 ← 𝐶1, 𝐶2, 𝐶3, ..., 𝐶𝑘 ▷ 𝑘 partition of clusters
𝐵𝑖 ▷ bandwidth of node 𝑖
𝑅𝑛, 𝜆 ▷ availability of node 𝑛, 𝜆 availability threshold

1: procedure PerformKmeans(𝐺, 𝑘)
2: if 𝑅𝑛 ≥ 𝜆 then
3: return 𝐶
4: end if
5: end procedure
6: procedure FindClusterHeads(𝐶)
7: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑𝑠 ← 𝑙𝑖𝑠𝑡()
8: for all 𝑘 ∈ 𝐶 do
9: for all 𝑖 ∈ 𝐶𝑘 do

10: 𝐵𝑖 ← 0
11: for all 𝑗 ∈ 𝑠𝑒𝑡𝑑𝑖𝑓𝑓(𝐶, 𝑖) do
12: 𝐵𝑖 ← 𝐵𝑖 + 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒.𝑟𝑜𝑢𝑡𝑒.𝑏𝑎𝑛𝑑𝑤(𝐺, 𝑖, 𝑗)
13: end for
14: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑𝑠 ← max 𝐵𝑖
15: end for
16: end for
17: return 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑𝑠
18: end procedure
19: procedure RecomputeClusters(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑𝑠, 𝐺)
20: 𝐶′ ← 𝑙𝑖𝑠𝑡()
21: for all 𝑖 ∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝐻𝑒𝑎𝑑𝑠 do
22: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 ← 𝑙𝑖𝑠𝑡()
23: for all 𝑗 ∈ 𝑠𝑒𝑡𝑑𝑖𝑓𝑓(𝐺, 𝑖) do
24: 𝐵𝑗 ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒.𝑟𝑜𝑢𝑡𝑒.𝑏𝑎𝑛𝑑𝑤(𝐺, 𝑗, 𝑖)
25: if 𝐵𝑗 is best from other nodes 𝑖 then
26: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖 ← 𝑗
27: end if
28: 𝐶′ ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖
29: end for
30: end for
31: return 𝐶′
32: end procedure
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6
Conclusion

The work on this thesis has focused on the service placement problem in com-
munity network micro-cloud environment, containing low-resource devices.
The hierarchical structure of community network micro-clouds (CNMCs) al-
lows us to exploit and develop new algorithms for service placement problem
which are more efficient than existing in-place approaches. Meanwhile, CN-
MCs bring in much more infrastructure and user dynamics compared to a
traditional cloud environment and therefore we have proposed low-complexity
heuristics in order service placement algorithms to cope with these dynamics.

As our contribution in this field, first we have presented the current state
of service deployment in Guifi.net community network and in-depth per-
formance assessment of three type of services in these environments such as
distributed storage, live video-streaming and service discovery. Based on the
performance and feasibility studies that we have performed on these services,
we proposed service placement algorithms for the community network envir-
onment.

We conducted extensive evaluations, employing simulations and real-world
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experiments and were able to demonstrate that our placement algorithms,
in particular PASP and BASP outperform other approaches in a variety of
scenarios. When compared to the performance of a service implemented in
the form of traditional client/service architecture, i.e., random placement,
without service placement approach, our approach significantly improves the
quality with which the service is provided to clients (i.e., response time) while
at the same time reducing the bandwidth.

6.1 Future Work

The service placement problem presented in this work addresses the major
concerns of placing a service in the wireless community networks. Given that
our algorithm has proven itself in a variety of experiments, it can be expected
to serve as a strong basis to investigate the topics listed in this section.

6.1.1 Composite Service Placement

The main focus of this work was the service placement of the monolithic ser-
vices. Our current work does not cover the placement of composite services.
The placement of composite services is more complex and depends largely
on the interactions and the semantics between the subservices. This requires
more sophisticated placement algorithms which include the flow of inform-
ation between instances of subservices into their model of the network. In
order to achieve this, we think we need to learn how the subservices interact
with each other through observations at run time.

6.1.2 Distributed Decision Making

In our algorithms presented in the thesis, decisions on service placement are
made by a centralized controller (i.e., client node or Community-Lab con-
troller). This is very practical because we can always see the controller as
a service running at one or multiple micro-clouds. However, it is desirable
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to have a distributed control mechanism for the sake of robustness. Issues
regarding distributed service placement can be studied in the future, where
randomization techniques such as in [Nee16] can be used.

6.1.3 Service Migration

As the network topology, network performance or volume of service requests
from different clients change over time, the current service configuration needs
to be adapted to the new situation. This means migrating the services from
one node to another one. However, migrating services or creating new service
instances incurs additional network traffic. For this reason, the exact circum-
stances under which an adaptation actually makes sense are not trivial if the
goal is the overall reduction of network traffic. Issues regarding the service
migration in edge-clouds can be studied as in [Urg+15].

6.1.4 Security

Distributed service provisioning is obviously problematic from a security per-
spective. Instead of only having to trust a single central instance, each client
essentially has to extend its trust to all nodes of the community network
micro-cloud since each node is a potential service hots. We have not ad-
dressed this significant aspect of the service placement problem in our thesis,
and this can be studied in the future.
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