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Abstract—In a pay-on-demand computing system where the user should be in the center of our concerns, the system allocate (and thus

the users pay for) resources that are not always truly needed. Since the users always want to get their money’s worth, they reaquire that

the booked resources are fully utilized and as much as possible. To date, researchers have pursued rule-based mechanisms to attempt to

automate the matching between computing requirements and computing resources. However, most of these ’auto-scaling’ mechanisms

only support simple resource utilization metrics and do not specifically consider both user performance requirements and fairness in

resource usage. In this paper, we present tasks allocation policies inside the RedisDG approach for executing scientific workflows under

requirements on the load and the fairness of the computing nodes. One central concept in the paper is the Publication/subscription

model that is used not only for the modeling of the allocation policies but also to offer a dynamicity intrinsic property for the RedisDG

system. Considering a user that has reserved N computing nodes, the goal is intuitively to ensure that the tasks of the workflow are

executed on the N computing nodes (fairness condition) such that the ’load’ of the computing nodes is as high as possible (load

condition). We accomplish our goal by designing algorithms for the allocation of tasks to nodes that depend on different strategies and

reflecting different points of view for the performance metrics. We evaluate our approach according to the Montage representative

workflow and show the savings in using our approach in the Grid5000 testbed context. This paper covers the full spectrum of the

experimental scientific method from the problem specification, its formal modeling, its analysis, the semi-formal derivation of a solution,

the implementation, the experimental part of the work and the feedback gained from the experiments a large scale.

Index Terms—Scientific workflow, Scheduling, Heuristics design for allocation, Resource management, Publish/subscribe, Experimental

evaluation on large scale systems.
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1 Introduction

1.1 The general problem

Resource utilization in computer systems is usually be-
low 10% [1] due primarily but not only to resource over-
provisioning. Efficient resource sharing in large scale infras-
tructure (clouds, grids. . . ) is, as a consequence, challenging.
Resource under-provisioning will inevitably scale-down per-
formance and resource over-provisioning can result in idle
time, thereby incurring unnecessary costs for the user. Al-
locating resources is thus one of the key issue to address when
we consider extreme large scale systems, we mean the coupling
of different sorts of large scale systems (clouds, grids, clusters)
but also sensor networks and desktop grids aka volonteer
computing where the ’nodes’ are exposed to the Internet.

1.2 Our context is to execute a scientific workflow

In this paper, the problem of finding a ’good’ allocation
and resource utilization is considered as a balance between
multiple objectives. The architectural context is an IaaS (In-
frastructure as a service) that must offer a workflow engine
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as a service. The thesis we adopt in this paper is to consider
that a scientific workflow engine shall be organized along three
major elements:

1) a protocol for the interactions between the compo-
nents of the workflow engine;

2) a execution model for the tasks of the workflow;
3) nodes.

1.3 Our principles for allocating resources

In our case, the specialization of the workflow engine is as
follows:

1) The protocol for interactions is designed according to
the Publication/Subscription model [2];

2) The problem of the choice of an execution model is
reduced to a problem of allocating resources from
a master to a set of workers; For that We devise
heuristics that are based on multiple crieria;

3) nodes may join or leave the workflow system at any
time to modeling a dynamic system; The Publica-
tion/subscription model helps in realizing this vision.

Recall that the Publish-Subscribe paradigm is an asyn-
chronous mode for communicating between entities [2], [3].
Some users, namely the subscribers or clients or consumers,
express and record their interests under the form of subscrip-
tions, and are notified later by another event produced by
other users, namely the producers.
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This communication mode is multipoint, anonymous and
implicit. Thus, it allows spatial decoupling (the interacting
entities do not know each other), and time decoupling (the
interacting entities do not need to participate at the same
time). This total decoupling between the production and the
consumption of services increases the scalability by eliminat-
ing many sorts of explicit dependencies between participating
entities. Eliminating dependencies reduces the coordination
needs and consequently the synchronizations between entities.
These advantages make the communicating infrastructure
well suited to the management of distributed systems and
simplify the development of a middleware for the coordina-
tion of components in our workflow engine context or for
applications running in different domains and communicating
through middleware solutions deployed on clouds.

Time decoupling is a key property that allows to make
the systems more dynamic. We mean that with the Pub/Sub
paradigm, ”actors”may leave or enter into the system without
interacting, therefore without disrupting the others actors. To
enter into a system, one actor subscribes to one channel. To
leave a system, one actor unsubscribes to a channel. In this
way, we can implement, in a very easy way, a solution for
what the cloud community calls elasticity i.e. how a cloud
autonomously adapts its capacity to workload over time. In
our context, there is no elasticity where new compute units are
dynamically added/removed: the number of compute units is
fixed in advance but all our framework is designed to support
elasticity.

1.4 Our objectives

The integration of this workflow engine into a cloud is not in-
troduced in this paper for the sake of completeness. However,
to exemplify our work we can imagine a user, connected to a
cloud and requesting a scientific workflow engine service. He
pays for N computing units according to his budget, down-
loads his workflow description and executable codes, then
he clicks on the ”run” button. The cloud system deploys the
infrastructure, activates the N computing units, executes the
workflow. The cloud user needs to be sure that two objectives
are fulfilled: (1) all the reserved computing units are used and
(2) the processor load is as high as possible.

The maximization of theses two objectives is a hard be-
cause tasks can be allocated in two manners:

• either you distribute the tasks as much as possible on
the different computing units but they are under used;

• or you consolidate tasks on few computing units and
you get a better utilization on few resources but you
potentially allocate and pay for unnecessary resources.

The contributions of the papers are twofold. First we
provide with a series of new scheduling algorithm for a better
usage of computing resources through strong policies for
controlling the fairness and second we provide with extended
experimentations, on the Grid5000 testbed, to analyze and
to validate the proposed algorithms and the impact of the
middleware on performance.

1.5 More information about the concepts used in the paper

Publication/Subscription is central in this paper. This con-
cepts has been used in many contexts but never, to the best of
our knowledge, in the context of designing a workflow engine
or in the context of scheduling tasks.

A more typical example in using Pub/Sub is QoS Monitor-
ing as a Service [4], where an application running on a private
cloud is monitored and key performance indicators (cpu load,
memory usage, disk-io operations. . . ) are generated as pub-
lications. These publications are propagated to a third-party
monitoring service that confront them against ”service level
agreement (SLA) publications” in order to detect violations
of the SLA. Fluentd1 and fluent-plugin-redisstore2 are com-
petitive Open source projects to implement this vision.

Other applications Pub-Sub include e-Health systems [5]
where the authors describe an e-Health application scenario
for monitoring patients with chronic diseases and show how
and encryption schema can be used to provide confidentiality
of the patients’ personal and medical data, or the canonical
example of stock trading [6] where authors evaluate their
system in using a model of stock quotes application and
through simulations.

In this paper we use the traditional form of Pub-Sub
system and not more elaborated forms able to filter pub-
lications in order to limit the traffic [7], [8], [9], [10] or
implementing privacy-preserving encrypted filtering which is
a growing requirement for applications running on multiple
untrusted private clouds providing the pub/sub service. This
technique [5], [11] allows that publishers and subscribers do
not share secret keys, such a requirement being against the
loose-coupling of the model. Second, this technique allows
brokers to route events by matching encrypted events against
encrypted filters.

For the implementation, we use Redis3 a well known open
source project, because of its ability regarding the Pub-Sub
service but also for its ability to store data. In our workflow
management system we also need to record the codes to
execute and and input and output files they handle along
the computation. It is the first time to our knowledge that
Redis is used in the context of a workflow engine. Despite
the fact that only basic Redis functionalities are used, we
will exhibit specific problems related to the fairness for our
protocol. In this paper we do not control the fairness of a
Pub-Sub substratum but the fairness of a protocol based on
Pub-Sub hence no need for a more elaborated framework such
as StreamHub [12] regarding the Pub-Sub paradigm.

Our workflow management system is of Desktop Grid [13]
inspiration. We deal with Desktop Grid systems because they
represent first an alternative to supercomputers and parallel
machines. They offer computing power at low cost. Desktop
grids (DGs) are built out of commodity PCs and use Internet
as the communication layer. DGs also aim at exploiting the
resources of idle machines over Internet.

Second the increasing number of devices and new business
opportunities put a pressure to make existing applications to

1. http://www.fluentd.org
2. https://github.com/pokehanai/fluent-plugin-redis-store
3. http://redis.io
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support these new devices in order to remain competitive.
Web and Cloud technologies now provide feasible means
to put almost any desktop functionality ”on the Internet”.
However, we believe that an effort should be done earlier in
the design stage for the interactions between the components
of the system to be built to get confidence in the Internet-
centric system, especially when Pub-Sub is the privileged
communicating paradigm.

Indeed, DGs have important features that explain the
large number of international projects aiming to better ex-
ploit the computational potential. Many DGs systems [13]
have been developed using a centralized model. The most
popular are BOINC [14], Condor [15], OurGrid [16] and
Xtremweb [17]. In this paper we investigate the RedisDG [18],
[19], [20] desktop grid middleware which is a light desktop grid
middleware that has been formally designed. We also show in
this paper that RedisDG is able to execute workflows, i.e., it
can be considered as a workflow engine.

In the grid computing and workflow engine fields, we are
not accustomed to formally model our systems. We rather fol-
low the traditional approach to design system which involves:
the design according to ad-hoc methods, the realization and
tests following simple scenarios to check if its behavior is satis-
factory and if it is necessary to improve it or even design again.
This is called an intuitive approach. Thus the alternative is
modeling. For a specific scenario, a model can provide an
accurate view of all feasible states that a system may have.
Then, a simulation step is used to test whether the system
behavior is satisfactory and highlights some problems. It does
not completely replace experimentation which is necessary at
the end of a satisfactory simulation but we get a high view of
main system requirement and we can reason about specific or
general properties in an automatic way.

The goal and the difficulties are to define a desktop grid
middleware able (the RedisDG protocol is the core component
of our study) to support workflows that is light enough to
be integrated easily into a cloud and using current Web
technologies (in our case the Publish-Subscribe paradigm and
the Redis framework).

1.6 Organization of the paper

The organization of the paper is as follows. In section BLA
BLA BLA Section 5 is about the related works and section
6 concludes the paper.

2 RedisDG description

2.1 RedisDG modeling

We conducted in [21], [22] a formal modeling, based on
our initial modeling of the publish-subscribe paradigm [23]
as and adapted to Redis interactions. Indeed, Redis, our
implementation language, has special properties regarding a
publish instruction, for instance, faced to no registration. We
invite the reader to review the bibliography for more technical
details that are not the core of this paper.

2.2 RedisDG protocol

In this section, we remind the coordination algorithm of
RedisDG system which is the core of our paper. It correspond
to the highest view possible. Some technical details are given
in the experiments section. The algorithm is entirely based
on the publication-subscription paradigm. To be short, the
middleware offers the same features as the majority of desktop
grid middleware such as Condor and BOINC. It manages
scheduling strategies especially the dependencies between
tasks, the execution of tasks and the verification/certification
of the results; since the results returned by the workers can
be manipulated or altered by malicious workers. The general
objectives for the RedisDG protocol are:

• Using an asynchronous paradigm (publish-subscribe)
that ensures, as much as possible, a complete decou-
pling between the coordination steps (for performance
reasons);

• Ensuring the system resilience by duplicating tasks
and actors. Even if the system is asynchronous and the
tasks are duplicated, we need to ensure the progress
of tasks execution. We also assume that actors are
duplicated for resilience reasons;

In Figure 1, we depicts the steps of an application ex-
ecution. In RedisDG, a task may have five states: Wait-
ingTasks, TasksToDo, TasksInProgress, TasksToCheck and
FinishedTasks. These states are managed by five actors: a
broker, a coordinator, a worker, a monitor and a checker.
Taken separately, the behavior of each component in the
system may appear simple, but we are rather interested in the
coordination of these components, which makes the problem
more difficult to solve.

The key idea is to allow the connection of dedicated com-
ponents (coordinator, checker, . . . ) in a general coordination
mechanism in order to avoid building a monolithic system.
The behavior of our system as shown in Figure 1 is as follows:

1) Tasks batches submission. Each batch is a series-
parallel graph of tasks to execute.

2) The Broker retrieves tasks and publishes them on the
channel called WaitingTasks.

3) The Coordinator is listening on the channel Waiting-
Tasks.

4) The Coordinator begins publishing independent tasks
on the channel TasksToDo.

5) Workers announce their volunteering on the channel
VolunteerWorkers.

6) The coordinator selects Workers according to SLA
criteria.

7) The Workers, listening beforehand on the channel
TasksToDo start executing the published tasks. The
event ’execution in progress’ is published on the chan-
nel TasksInProgress.

8) During the execution, each task is under the supervi-
sion of the Monitor whose role is to ensure the correct
execution by checking if the node is alive. Otherwise
the Monitor publishes again, tasks that do not arrive
at the end of their execution. It publishes, on the
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Fig. 1. Interactions between components of the RedisDG system

channel TasksToDo, in order to make the execution
of the task done by other Workers.

9) Once the execution is completed, the Worker pub-
lishes the task on channel TasksToCheck.

10) The Checker verifies the result returned and publishes
the corresponding task on the channel FinishedTasks.

11) The Coordinator checks dependencies between com-
pleted tasks and those waiting, and restarts the pro-
cess in step (4).

12) Once the application is completed (no more tasks),
the Coordinator publishes a message on the channel
Emergency to notify all the components by the end of
the process.

Summarizing, it is important to understand all the in-
teractions in this protocol because we will explain later on
some pitfalls leading to observational behaviors on real in-
frastructures. These unexpected behaviors, not visible in the
modeling steps, are related to the scheduling policies that we
introduce now.

3 Scheduling mechanisms and performance met-
rics
3.1 Definitions

In this section we introduce the key ideas in order to authorize
some post-mortem analysis of the executions that serve to
estimate the fairness metric of an experiment.

3.1.1 Experiment definition

In order to define the notion of fairness we first need to define
three basic sets attached to an experiment:

• Π being the set of scheduled tasks in the experiment
• W being the set of workers having participated in the

experiment
• T being the set of instants representing the execution

time of the experiment. This set is totally ordered by
the chronological order. Consequently, t < t′, if t is
older than t′. We denote t0 and tend the instants which
correspond respectively to the the beginning and the
end of an experiment.

Then we define two selecting methods over the tasks or
over time.

Tasks set partitioning: In order to select specific tasks
in Π according to a criteria we need to partition the set Π
in disjoint subsets Πi. Then Π = ∪Πi. For example, if the
criteria is the depth of the task in the task precedence graph,
then p ∈ Πi if and only if depth(p) = i.

Time windowing: In order to select specific time window
of an experiment, we define a time window tw ∈ T × T being
the couple of instants (btw, etw), verifying the property btw <
etw and btw being the instant of tw beginning and etw being
the instant of tw ending.

Thanks to this two previous selecting methods, we can
now consider a ’spatial’ view by zooming on specific region
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of the task graph and/or a ’temporal’ view according to the
experiment time by specifying a time window.

3.1.2 Execution definition

We now define the set E being the set of all task executions.
A task execution e ∈ E ⊂ Π ×W × T × T is a quadruplet
(pe, we, be, ee) with pe the task associated to the execution e,
we is the worker executing e, be is the moment when task ee
starts its execution on worker we and ee is the moment when
pe finishes its execution on worker we.

The subset EΠi
⊆ E, defines all execution e ∈ E where

the associate task pe belongs to Πi. Formally,

EΠi = {e | e ∈ E ∧ pe ∈ Πi}

The subset Etw ⊆ E, defines all execution e ∈ E where
the associate task has been executed in the time window tw. A
task execution belongs to a time window, if (1) the beginning
of e ranges between btw and etw, or (2) the end of e ranges
between btw and etw or (3) the beginning and the end of tw
ranges between be and ee. Formally,

Etw = {e | e ∈ E∧
(btw ≤ be < etw ∨ btw ≤ ee < etw ∨ be ≤ btw < ee)}

Finally, we can define the function Texe(e, tw) to compute
the execution time of an execution task e in a given time
window tw:

Texe(e, tw) =

{
e ∈ Etw ⇒ min(ee, etw)−max(be, btw)
e /∈ Etw ⇒ 0

3.1.3 Fairness definition

We define the fairness as the standard deviation of the cumu-
lative computing time for each worker on a given time window
and a given partition of tasks. Formally this metric is defined
by the function

Fairness(tw,Πi) = σ{CT (w, tw,Πi) | w ∈W}

where the function CT is defined as

CT (w, tw,Πi) =
∑

e∈Etw∩EΠi

Texe(e, tw)

Thanks to this general definition, we can define the global
fairness of the experiment being the fairness of the full pe-
riod of time for executing the whole tasks graph denoted
GlobalFairness defined simply as

GlobalFairness() = Fairness((t0, tend),Π)

The general objective for a ’good’ fairness is to keep the
standard deviation σ as low as possible under the require-
ments of the spacial view or the two temporal views.

3.1.4 Workflow execution time definition

TODO

3.2 Scheduling heuristics

In this section we introduce seven heuristics for scheduling
the tasks of a workflow on a set of workers and according
to the RedisDG publish/subscribe framework. We introduce
heuristics to progressively answer to our general open ques-
tion: what is the best compromise between the fairness and
the response time. We also want to observe the impact of basic
scheduling strategies on the overall behavior and properties of
the RedisDG system.

These heuristics are designed to mix a more or less clair-
voyant strategy for the time we spend in waiting information
and a more or less clairvoyant strategy on the loads. When
we do not use any information about the past we manage a
non-clairvoyant strategy, when we use few information about
the past (according to a threshold) we say that we manage a
semi-clairvoyant strategy and when we authorize a long time
windowing to collect information we say that the strategy is
clairvoyant. In short, we manage and mix non-clairvoyant or
semi-clairvoyant or clairvoyant strategies that we named *-
strategy.

For instance, the first heuristic (H1) is both non-claivoyant
for the time and the loads because we decide on the basis
First Come First Serve (FCFS). The idea is to cover a large
number of situations and to determine experimentally the
best heuristic according to the pair of *-strategy for the time
windowing and the loads.

Heuristic H1 (FCFS): in this case the coordinator pub-
lishes the independent tasks to all the workers and all the
workers reply that they want to participate. There is no SLA
and this strategy will generate many messages but the liveness
of the execution is guaranteed.

Heuristic H2: in this case only free workers reply to the
coordinator. This means that w does not serve any request.
When the coordinator receives a reply from a worker w for
task t, it first saves this will for t, but as t may already
be allocated to some worker or even finished, and since we
know that w is a free worker, the coordinator allocates to
w a task that has not yet been executed among those for
which it wished to participate. This strategy correspond to a
semi-clairvoyant strategy for the time windowing and a non-
clairvoyant strategy for the loads.

Heuristic H3: let λmax be the first date for which a free
worker has replied. Note that lambdamax is a theoretical value
that needs to be learned during the workflow execution. The
coordinator waits until λmax and chooses randomly between
the first free workers. The random process should provide a
better spatial distribution among the workers. This heuristic
is clairvoyant for the time windowing and non-clairvoyant for
the loads.

Heuristic H3’: in this case, in supplement to H3, the
worker is selected according to a probability. This probability
is computed as p′ = 1 − p where p is the ratio between the
accumulated execution time spent in the workflow and the ac-
cumulated execution time spent on the worker. The difference
with the previous heuristic is on the random decision process.
Here, we have a semi-clairvoyant strategy for the loads and a
clairvoyant strategy for the time windowing.
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Heuristic H3”: as for H3, the coordinator waits until
λmax and it chooses the worker with the minimal work. Here,
we have a clairvoyant strategy for the loads (because it does
not depends on a probability) and a clairvoyant strategy for
the time windowing.

Heuristic H3”’: as for H3, the coordinator waits until
λmax and it chooses the worker with the minimal work,
while considering the task it will process. In this case we
are guessing that we have an estimate on the execution time
of each task (for the Montage workflow, it may happens).
This heuristic corresponds to the previous one in considering
the estimated time to be zero. Here, we have a clairvoyant
strategy for the loads (because it assume a knowledge on
the execution time) and a clairvoyant strategy for the time
windowing.

Heuristic H6: apprendre λmax par un process de bandit
(la politique e-greedy) et selectionner selon H5.

This heuristic is a combination of two approaches: a
multi-armed bandit approach [] and an assignment problem
approach []. Given n workers w1, w2, · · · , wn the heuristic
maintains a vector c1, c2, · · · , cn of the accumulated execution
time on each worker as an intermediate data structure.

Then we combine two approaches as follows:

1) In the lower model, the baseline scenario is the fol-
lowing: suppose that in the vector of tasks to do,
we have m tasks and in the bunch of subscribers we
have m′ > m subscribers. How to allocate the m
tasks to subscribers in order to respect the fairness?
To effectively deal with this problem, we propose to
add an additional information that is the estimated
time duration of each task. Then we can reduce the
problem to an assignment problem that is resolved
with the method of the Hungarian algorithm [24].

2) The lower model itself fits into an upper model that
addresses the question of what value we need to
choose for m′. Indeed, if we take m′ small, we give
a priority to fast workers to the detriment of the
fairness. If we take m′ large we get a fair solution.
In general, the strategy is to give a discrete finite
range of authorized values m′. So suppose we keep
m′1,m

′
2, · · · ,m′k subscribers. Therefore the decision

at the upper level for the scheduler is to know for
each publish (we mean a collection of m independent
tasks it received) what is the maximum number of
subscribers that it chooses to apply the lower level.
For it, we propose to use the model of the one-armed
bandit.

All these heuristics will serve later on to graphically rep-
resent the overall performance by drawing a 2D plot with the
fairness on the x-scale and the execution time of the workflow
on the y-scale.

4 Experimental Analysis

In the previous experiments, because of the use of the Pub-
Sub mechanism and the Redis implementation, we have ob-
served problems with fairness: the worker with the smallest
latency with the Redis server has more chance to be served.

We have introduced a ’brute force algorithm’ allocating the
requests in a round robin-like manner to improve the situa-
tion.

We are now designing alternate solutions in putting more
intelligence in the control of our RedisDG middleware. Of
course, an alternate solution would be to modify the Re-
dis implementation but we want to be independent of the
publication-subscription system we use. Another issue is to
keep the RedisDG protocol as it is (because it has been
proven): the modifications of the implementation should be
confined to the scheduling module.

4.1 Workflow used in the experiments

Workflow technologies are responsible for the scheduling of
computational tasks on distributed resources, for the manage-
ment of dependencies between taks and also for the staging of
data in and outside the execution sites [25].

The Pegasus [26], [27] project encompassa set of technolo-
gies that contribute to the execution of applications based on
workflows and in very different environment such as clusters
located on a campus, grids and clouds. Pegasus automatically
localize the input data et computing resources that are re-
quired by the application. It permits to scientists to focus on
the building of an abstract view (the workflow) with no need
to pay attention to the execution environment or on some low
level requirements about the middleware (Condor). Pegasus
also offer to the community an efficient coordination of the
multiple distributed computing resources.

The MONTAGE [28] project has been created by
NASA/IPAC Infrared Science Archive as an open-source tool-
box to generate personalized mosiac of the sky from images in
the Flexible Image Transport System (FITS) format. During
the final production of the mosai, the geometry of the output
is computed from the geometry of the input [29], [30]. The
MONTAGE application has been represented as a workflow
that can be executed on the Teragrid [31] infrastructure for
instance.

On Figure 2, we show a MONTAGE workflow that is small
(on ly 20 nodes) that has been generated from the workflow
generator [32]. What is important to notice is the shape of the
workflow and the corresponding independent part that could
be executed in parallel.

In tabular 1, we show an instance of MONTAGE applica-
tion, parametrized by a degree of 2 that we have executed
with RedisDG. This example will be use in an intensive
way in the paper. It exibit a workflow with 1446 tasks and
3722 dependency links between tasks. The execution of this
quite large instance requires 9423 input files (including the
intermediary files) et it generates 2889 files (including the
intermediary files).

Basically, in order to validate our RedisDG workflow en-
gine we have done experiments on the Grid’5000 [33] testbed
in using (typically) from 30 to 200 nodes taken in the cities of
Nancy, Grenoble and Lyon.

4.2 Testing heuristic H1

In this experiment we use heuristic H1 where each worker
replies to a request for participation and the coordinator
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Level Task Description Number of
tasks

1 mProject The outputs of the jobs are the reprojected image and an ’area’ image
that consists of the fraction of the image that belongs in the final
mosaic.

301

2 mDiffFit computes a difference for each pair of overlapping images. 838
3 mConcatFit fits the description of a data aggregation job 1
4 mBgModel apply a correction to each image to obtain a good global fit 1
5 mBackground apply a correction on the backgroung of the images 301
6 mImgtbl aggregates metadata from all the images and creates a table that may

be used by other jobs in the workflow
1

7 mAdd co-adds all the reprojected images to generate the final mosaic in
FITS format as well as an area image that may be used in further
computation

1

8 mShrink reduction in size of the FITS images by averaging blocks of pixels 1
9 mJPEG convert to JPEG format 1

TABLE 1
Characteristics of a MONTAGE workflow with 1446 tasks

Fig. 2. An example of the MONTAGE workflow

selects the winner on the basis of the First Come First Serve
principle.

Figure 3 shows the execution time over 30 workers taken
in Nancy (10), Rennes (10) and Lyon (10) with a Redis
server in Nancy. These plots corresponds to the first level of
the workflow depicted on Figure 2. Obviously, some workers,
in particular graphene-82, respond better than others. This
machine is physically located also on the Nancy site as well as
the Redis server. This explains the observation.

We also conducted yet another experiment with 169 work-
ers (170 minus 1 coordinator) on the same 3 sites and in the
same proportion. We also observed the same phenomenon.

Another technical fact that we may consider in this case is
the performance of the Redis server. In [22] we demonstrated,
experimentally by a series of publish/subscribe calls, simmul-
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Fig. 3. Execution time of tasks 1 to 301

taneous or not, that above 300 simultaneous publications the
Redis server started to be overloaded but without loss of mes-
sages. At the begining of our current experiment, RedisDG
generates 301 ∗ 169 ∗ 2 = 101738 messages, almost simultane-
ously for the publication steps of the 301 independant tasts,
received by 169 workers that all respond to the server, through
yet another publication. This large amount of messages may
also explain some performance degradation.

Following this series of experiments on a real platform,
we conclude that the scheduling of tasks according to the
H1 heuristic is not fair. All machines at the disposal of the
application were not asked to participate in the computation.
And even those involved didn’t have equal loads of work.
Thus, with this scheduling policy, some machines have more
work than others.

Also, in our system, under heuristic H1, a worker re-
sponsible for carrying out a task, can always publish his
volunteering to run other tasks and can be selected several
times by the Coordinator. This is explained by the fact that,
in the implementation, the worker has two threads: a thread
responsible for the execution of a task and the other one
responsible for detecting the publication of new tasks to do
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and also to announce the volunteering for the worker.

4.3 Testing heuristic H2

We have just observed that only 18% of the workers have par-
ticipated into the effective execution of the 1446 tasks of the
MONTAGE worklow over 169 workers. The new mecanism
for selecting workers is as follows and according to heuristic
H2. We wait during a ’time slot’ for the arrival of a message
for participating and we selected a worker that has not yet
participated. When (almost) all the workers have participated
at least one time, we restart a new round.

Then, we have restarted our MONTAGE application (the
same workflow with 1446 tasks) but on 200 nodes of the
GRID’5000 testbed. Figure 4 summarizes the behaviour of the
execution. We observe that the shape is completely different.
This is explained by the degree of paralelism that is now
much more important. According to statistics conducted on
Log files generated by RedisDG, we have founf that all of
the workers, i.e. the 200, participated in the execution of the
application (but not necessarily in an equal way). We also note
that the total execution time has decreased from 16 minutes
to 4 minutes, which is flattering for scheduling policy.

Fig. 4. Execution time of the MONTAGE Workflow (1446 tasks) on 200
workers

We have also restarted the same application on 340 work-
ers. We observe on Figure 5 that the degree of parallelism
is stil more important. . . but the execution time is also more
important than the one with 200 machines. This is due to
the selection of slow nodes for the execution of the last 4
sequential tasks. This problem is localized and we explain
it because our SLA policy has been desactivated for this
experiment.

We also observed loss of messages in response to the
solicitations of the Coordinator. Starvation situations can
happen but it is more an engineering problem (configuration
of the Redis server; number of simultaneous requests that the
coordinator and the Redis server may serve. . . ) rather than a
scientific issue. But it is certain that this will have an impact
ultimately on the implementation of the RedisDG scheduler
for a production environment.

5 Related works

5.1 Introduction

Applications in e-Science are becoming increasingly large-
scale and complex. These applications are often in the form

Fig. 5. Execution time of the MONTAGE workflow (1446 tasks) on 340
workers

of workflows [29] such as Montage [?], Blast [34], CyberShake
[35] with a large number of software components and modules.
Since workflow managers are gaining in complexity and in
importance, designers need a deep understanding of what
is required by a workflow in terms of resources in order to
improve the basic components such as the scheduler, the
mechanism for provisioning with resources and the data man-
ager [36].

Reader can find related works about the specification
of desktop grid middleware and related issues in [13], [20],
related work on the integration of applications in the SlapOS
cloud in [37] for the BOINC use case. This paper aims at
deploying the BOINC infrastructure on the fly, when a user
needs it and without any system administrator intervention.
The whole process is automated and constitutes the key
difficulty. Reader can also find related works on workflow
management systems in the synthesis from Valduriez [38]
or in the work of Carole Goble [39]. These two papers are
more related to cloud computing and data intensive scientific
workflows in putting an emphasis on data management.

In what follows we put an emphasis only on the work-
flow scheduling problems, in general. Most of the works are
about load balancing (some form of fairness), others are not
related to DAG scheduling but informative. To summarize, in
task/graph scheduling, heuristics from the literature are not
adapted to our context because:

• they do not take into account our two objectives;
• they are ’clairvoyant’-like. They take a scheduling deci-

sion on the basis of a fixed number of workers. With the
Pub-Sub paradigm in mind a ’more efficient’ worker
may join the system in the near future.

5.2 Scheduling and workflow management systems

In [40] authors consider the pipelined workflow scheduling
where the execution of a large class of application can
be orchestrated by utilizing task-, data-, pipelined-, and/or
replicated-parallelism. Indeed, they focused on the scheduling
of applications that continuously operate on a stream of data
sets, which are processed by a given workflow, and hence the
term pipelined. These data sets all have the same size (which
is not part of our assumption) and the DAG model is used
to describe the applications. Authors also dealt mainly with
the throughput and latency performance metrics which are
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not under concern in our work. The main contribution of this
survey is in structuring existing works by considering differ-
ent levels of abstraction (workflow models, system models,
performance models).

In [41] authors consider the problem of co-scheduling
which means that we can execute several applications con-
currently. They partition the original application set into a
series of packs, which are executed one by one. The objective
is to determine a partition into packs, and an assignment
of processors to applications, that minimize the sum of the
execution times of the packs. Authors assume that they know
the execution profiles i.e. the execution time of each task on
each processor, which is not part of our assumption.

In [42] authors investigated the problem of scheduling
independent tasks under the paradigm of the master-worker.
They consider heterogeneous situations where resources can
have different speeds of computation and communication. The
most interesting part of the work is to focus on the question
of determining the optimal steady state scheduling strategy
for each processor (the fraction of time spent computing
and the fraction of time spent communicating with each
neighbor). This question is quite different from the question
of minimizing the total execution time, and the authors solve
the problem is polynomial time. The paper demonstrate that
we can observe the behavior of a system from a point of view
that is not always focused on the execution time, as in our
case.

In [43] authors considered the problem of dynamic load-
balancing on hierarchical platforms. They focused more
specifically on the work-stealing paradigm which is an online
scheduling technique. They reviewed some existing variations
and proposed two new algorithms, in particular the HWS
algorithm which was analyzed in the case of fork-join task
graphs. In their framework the authors considered that the
graph is generated online during the execution. This is not
our assumption. In our case we assume that new workers can
potentially join the system in a dynamic way. However the
analysis part in this work is interesting because it exemplifies
the use of graph parameters such as the critical path. The
execution time (mono criteria) is discussed in the paper as
opposed to our work that offers a multi-criteria performance
metric.

Swift [44] is an implicitly parallel programming language
that allows the writing of scripts that manage program execu-
tion across distributed computing resources, including clus-
ters, clouds, grids, and supercomputers. The JETS middle-
ware [45] component is closely related to Swift and it provides
high performance support for many-parallel-task computing
(MPTC). The MTC model [46] consists of many, usually
sequential, individual tasks that are executed on processor
cores, without intertask communication. The tasks commu-
nicate only through the standard filesystem interfaces, and
optimization are possible [47]. We do not assume in our work
the availability of a global file system. Data exchange between
tasks are explicitly specified in the workflow description. With
Redis DG, data exchange are implemented through Redis
servers or by a ’scp-like’ implementation, in a transparent way
from the user point of view.

For the JETS middleware [45], authors notice that ‘the na-
tive schedulers and application-launch mechanisms of today’s
supercomputers do not support a sufficiently fast task schedul-
ing, startup, and shutdown cycle to allow implementations of
the many-task computing model to work efficiently, but the
development of a specialized, single-user scheduler can allow
many task applications to use a high fraction of the system
compute resources’. Thus, the paper is about a coupling
between a ’system scheduler’ and a ’user scheduler’. The key
idea is as follows. First, the Swift script is compiled to the
workflow language Karajan (internal representation), which
contains a complete library of execution and data movement
operations. Tasks resulting from this workflow are scheduled
by well-studied, configurable algorithms and distributed to
underlying service providers (external schedulers) including
local execution, SSH, PBS, Globus, Condor or the Coasters
provider [48]. The CoasterService uses task submission to
deploy one or more allocations of pilot jobs, called Coaster
Workers, in blocks of varying sizes and duration. Then the
CoasterService schedules user tasks inside these blocks of
available computation time and rapidly launches them via
RPC-like communication over a TCP/IP socket. At least, we
noticed that JETS currently operates according to a simple
FIFO queuing approach. Authors plan to explore the addi-
tion of priority-based scheduling and backfill and to measure
scheduler performance on workloads of varying size tasks. Our
work is one step in that direction.

The AWS cloud system [49] and some other cloud man-
agement services such as enStratus [50], RightScale [51], and
Scalr [52] offer schedule-based (or predetermined) and rule-
based (dynamic) auto-scaling mechanisms. Schedule-based
auto-scaling mechanisms allow users to add and remove ca-
pacity at a given time that is fixed in advance. Rule-based
mechanisms allow users to define simple triggers by spec-
ifying instance scaling thresholds and actions, for instance
to add/remove instance when the CPU utilization verifies
a certain property making the framework dynamic. These
mechanisms are simple and convenient when users understand
their application workload and when the relationship between
the scaling indicator and the performance goal is easy to
determine. From a purely cloud point of view it is not realistic
to let the user make actions at this level: more automation
is needed because clouds are for non expert users in order to
serve requests on-demand and in a self-service way.

The paper [53] presents the Maximum Effective Reduction
(MER) algorithm, which optimizes the resource efficiency of
a workflow schedule generated by any particular scheduling
algorithm. MER takes as input a workflow schedule generated
by an existing scheduling algorithm then, with the allowance
of a limited increase in the original makespan, it consolidates
tasks into a fewer number of resources than that used for the
original schedule. To do this, MER essentially optimizes the
trade-off between makespan increase and resource usage re-
duction. The paper introduce three building blocks, firstly the
delay limit identification algorithm for finding the minimum
makespan increase for the maximal resource reduction, second
the task consolidation algorithm and third the resource con-
solidation algorithm. Finally, MER is evaluated in a simulated
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environment with three different scheduling algorithms and
under four different workflow applications.

In [54] authors present an approach whereby the basic
computing elements are virtual machines (VMs) of various
sizes/costs, jobs are specified as workflows, users specify
performance requirements by assigning (soft) deadlines to
jobs. Then, the optimization problem is to ensure all jobs are
finished within their deadlines at minimum financial cost. One
key point is to dynamically allocating/deallocating VMs and
scheduling tasks on the most cost-efficient instances. Another
key point about a user intervention is that authors use dead-
lines that serve as the performance requirements specified
by the users, and deadline misses are not strictly forbidden.
Authors use deadline assignment techniques to calculate an
optimized resource plan for each job and determine the num-
ber of instances using the Load Vector idea (intuitively, the
vector is the number of the machines needed to finish the task
on VMm).

In [55] authors propose a resource-efficient workflow
scheduling algorithm for business processes and Cloud-based
computational resources. Through the integration into the
Vienna Platform for Elastic Processes and an evaluation,
they show the practical applicability and the benefits of the
approach. Authors schedule workflows and not tasks inside
workflows. This paper is related to cloud scheduling strategies
and not, as in our case, to scheduling tasks that have yet
been deployed in a physical environment/infrastructure. The
scheduling algorithm for elastic processes is responsible for
finding a workflow execution plan which makes sure that all
workflows are carried out under the given constraints. These
constraints could be defined in a Service Level Agreement
(SLA). Authors also assume that: a) each Backend VM hosts
exactly one service instance, i.e., it is not possible that dif-
ferent service types are instantiated at the same Backend
VM and, b) all VMs offer the same capabilities in terms of
computational resources and costs. Authors also specify the
Scheduler and Reasoner, which are responsible, respectively
for creating a detailed scheduling plan according to the work-
flow deadlines, and lease or release the required Cloud-based
computational resources. The reasoner made use of the Java
Library Apache Commons Math to solve the OLS (Ordinary
Least Square - Linear Regression) problem.

The paper [56] introduces a new scheduling criterion,
Quality-of-Data (QoD), which describes the requirements
about the data that are worthy of the triggering of tasks
in workflows. Based on the QoD notion, authors propose a
novel service-oriented scheduler planner, for continuous data
processing workflows, that is capable of enforcing QoD con-
straints and guide the scheduling to attain resource efficiency.
QoD describes the minimum impact that new input data
needs to have in order to trigger re-execution of processing
steps in a workflow. This impact is measured in terms of data
size, magnitude of values and update frequency. QoD can
also be seen as a metric of triggering relaxation or optimist
reuse of previous results. The core of the paper is a new
scheduling algorithm for the Cloud that is guided by QoD,
budget, and time constraints. The Markov Decision Process
(MDP) technique is used to transform the problem. Authors

explain that branch scheduling on the MDP representation
is performed by starting from the most ’complex’ branch to
the ’least’ complex one. In fact they exhibit an optimization
problem they solve using a dynamic programming algorithm.

5.3 A focus on workflow scheduling according to a Service
Oriented view

In a series of works [57], [58], [59], [60] Marc Fr̂ıncu and all.
explore the dynamic and unpredictable nature of the grid
systems to offer mechanisms for adaptation at any given mo-
ment. For instance, the author proposed in [57] a scheduling
algorithm which minimizes each task’s estimated execution
time by considering the total waiting time of a task, the
relocation to a faster resource once a threshold has been
reached and the fact that it should not be physically relocated
at each reassignment but only at a precise moment, through
a simple marking, to reduce the network traffic. They key
advantage of the proposed solution is to consider tasks of
multiple workflows when they arrive and not batch after
batch. One drawback is that the algorithm is based on user
estimates for the value of the execution time and author
propose that this information be obtained by using historical
data and applying some learning mechanisms.

In [60] the focus is cloud computing and the authors
noticed that vendors do prefer to use their own scheduling
policies and often choose their negotiation strategies. In the
framework of workflow scheduling, the goal in that paper
is the minimization of the overall user cost. The problem
addressed in the paper is to access services provided by
different cloud vendors, each with their own internal policies.
Two major problems are dealt with: finding cloud resources
and orchestrating services from different cloud vendors. The
key idea in the paper is, once the workflow is submitted, an
agent tries to schedule the tasks on the best available service
through negotiation with other agents. It can be noticed that
no static scheduling decisions are made and that tasks are
scheduled one by one as they become ready for scheduling.

In [61] authors developed the concept of dynamic dataflows
which utilize alternate tasks as additional control over the
dataflow’s cost and QoS. Dataflow systems allow users to
compose applications as task graphs that consume and pro-
cess continuous data, and execute on distributed commodity
clusters and clouds. The key point in the paper is that authors
addressed the problem of scheduling tasks when the input
rates changes. The goal is to build Dataflow systems with a
greater concern for self-manageability. Indeed authors inves-
tigated autonomous runtime adaptions in response to fluctua-
tions in both input data rates and cloud resource performance.
Authors formulated the underlying optimization problem as
a constrained utility maximization problem during the period
for which the Dataflow is executed. Then they first use meta-
heuristics to solve it, for instance a genetic algorithm-based
algorithm. Second they proposed greedy heuristics to find an
approximate solution to the optimization problem. At last,
they evaluated the proposed heuristics through a simulation
study based (partly) on the popular CloudSim [62] simulator.

In [63] the authors addressed the lack of integrated sup-
port for data models, including streaming data, structured



JOURNAL OF LATEX CLASS FILES, VOL. X, NO. Y, SEPTEMBER 2015 11

collections and files, that are limiting the ability of workflow
engines to support emerging applications that are stream
oriented. The key idea of the proposed framework is in its
ability to transition from one data model to another one.
The paper is more about architectural issues than scheduling
issues. However the workflow framework evaluation is done
on a private Eucalyptus cloud which is always challenging
because of the complex nature of real systems.

6 Conclusion

The conclusion goes here.
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