
RepWeb: Replicated Web with Referential Integrity

Luís Veiga
INESC-ID Lisboa/IST
Rua Alves Redol, 9

Lisboa, Portugal

luis.veiga@inesc-id.pt

Paulo Ferreira
INESC-ID Lisboa/IST
Rua Alves Redol, 9

Lisboa, Portugal

paulo.ferreira@inesc-id.pt

ABSTRACT
Replication of web content, through mirroring of web sites or
browsing off-line content, is one of the most used techniques
to increase content availability, reduce network bandwidth
usage and minimize browsing delays in the world-wide-web.

The world-wide-web does not support referential integrity,
i.e., broken links do exist. This has been considered, for
some years now, one of the most serious problems of the
web. This is true in various fields, e.g.: i) if a user pays for
some service in the form of web pages, he requires such pages
to be reachable all the time, and ii) archived web resources,
either scientific, legal or historic, that are still referenced,
need to be preserved and remain available.

Current approaches to the broken-link problem are not able
to preserve referential integrity on the web and, simultane-
ously, support replication and minimize storage waste due to
memory leaks. Some of them also impose specific authoring
and management systems. Thus, the limitations of current
systems reside in three issues: transparency, completeness
and safety.

We propose a system, RepWeb, comprised of an applica-
tion to access and manage replicated web content and an
implementation of an acyclic distributed garbage collection
algorithm for wide-area replicated memory, that satisfies all
these requirements. It supports replication, enforces refer-
ential integrity on the web and minimizes storage waste.

1. INTRODUCTION
Replication is widely used on the web today. It is a cost-
effective way to allow more simultaneous accesses to the
same web content and preserve content availability in spite
of network and server failures. Furthermore, it gives users
the ability to browse the same content from different lo-
cations (possibly very distant geographically from one an-
other) choosing the nearest or fastest one. This technique
is commonly called mirroring and there are some tools that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC 2003, Melbourne, Florida USA
@ 2003 ACM 1-58113-624-2/03/03 ...$5.00

perform this automatically[17]. In addition, local replication
reduces browsing delays and allows off-line browsing of pre-
viously replicated web content. Thus, replication increases
resource availability, minimizes transferring times and en-
ables off-line browsing.

1.1 Motivation
Broken links, i.e., the lack of referential integrity of the web,
is a classic dangling-reference problem. With regard to the
web this has several implications: annoyance, breach of ser-
vice, loss of reputation, effective loss of knowledge. When
a user is browsing some set of web pages, he requires such
pages to be reachable all the time and will be annoyed every
time he tries to access a resource pointed to from some page
just to find out that it has simply disappeared.

As serious as this last problem, there is another one related
to the effective loss of knowledge. As mentioned in earlier
works, broken links on the web can lead to the loss of scien-
tific knowledge[4]. We dare to say that, in the time to come,
this problem can affect legal and historical knowledge, as
these areas become more represented on the web.

On one hand, most systems currently supporting replica-
tion[13, 15], do not address referential integrity, and consider
broken-links as system or application failures that should be
exposed to users. On the other hand, current solutions to
the problem of referential integrity[1, 6, 7, 11] do not take
replication into account. Thus, only some of the existing
solutions attempt to enforce referential integrity on the web
while being complete, i.e., not only preserving web resources
targeted by links but also reclaiming content which is no
longer referenced from any root-set (these root-sets may in-
clude bookmarks, subscription lists, etc). These solutions[6,
11], however, are not safe in the presence of replication be-
cause they were not designed to preserve referential integrity
with replication in mind.

1.2 Solution
The purpose of this work is to develop a system that: i)
enforces referential integrity on the web; ii) prevents storage
waste; and iii) manages to do so correctly in the presence
of replication. These three properties must be correctly and
efficiently combined. The first property addresses correct-
ness, the second performance requirements, and the third,
both. We propose a solution, based on a distributed acyclic
garbage collection (DGC) algorithm for wide-area replicated
memory[16], that satisfies all these requirements. It sup-

RepWeb server
(web server
with servlets)

RepWeb client
(with a web browser
component inside)

RepWeb server
(web server
with servlets)

RepWeb client
(with a web browser
component inside)

site S1 site S2
standard HTTP protocol

RepWeb protocol

files are accessed with any
tool and made available by
means of a web server

files are accessed with any
tool and made available by
means of a web server

standard HTTP protocol

RepWeb protocol

Figure 1: General architecture of the application.

ports replication, enforces referential integrity on the web
and minimizes storage waste. Furthermore, this algorithm
scales well in a wide area replicated memory system as is
the case of the web. For ease of deployment, this solution
makes use of standard web browsing components for the
client application and standard web servers with extensions
(e.g.: Java). Users are still able to access any non-RepWeb
files available on the web.

Presently, in RepWeb, we are not able to reclaim distributed
cycles of unreachable web content. This is due to the algo-
rithm used. We do not address the issue of fault-tolerance,
i.e. it is out of the scope of the paper how the algorithm
used behaves in the presence of communication failures and
processes crashes. Nevertheless, the algorithm used is safe
w.r.t. message loss and duplication.

Thus, the contribution of this paper is a system that ensures
referential integrity on the web, minimizes storage waste,
achieves this correctly in the presence of replication, and
scales to wide area networks. The remaining of this paper is
organized as follows. In Section 2 we present the proposed
architecture that was developed. The DGC algorithm used
is briefly described in Section 3. In Section 4 we present a
prototypical example of application use. Section 5 highlights
some of the most important implementation aspects. Sec-
tion 6 presents some performance results. The paper ends
with some related work and conclusions in Sections 7 and
8, respectively.

2. ARCHITECTURE
In order not to impose the use of a new, specific, hyper-
media system, the architecture proposed is based on regular
components used in the world wide web or widely accepted
extensions to them. RepWeb is designed using a client-
server architecture, illustrated in Figure 1, with: servers
- web servers with server extensions, namely Java servlets
and; clients - applications using web browsing components,
with replication code that interacts with server extensions.

The entities manipulated by the system are web resources in
general. These come in two flavors: i) HTML content doc-
uments that can hold text and references to other web re-
sources, and ii) all other content types (images, sound, video,
etc.). Resources of both types can be replicated and are pre-
served while they are still reachable. The latter, however,
cannot contain references to other resources and are viewed,
by the system, as leaf-nodes in a web resources graph. Thus,
memory is organized as a distributed, partially replicated
graph of web resources connected by references (in the case
of the web, these are URL links).

We considered, mainly, four kinds of web usage: i) web
browsing without replication, i.e., standard web usage; ii)
web browsing with replication when desired explicitly by
the user, in a page-per-page basis; iii) web browsing of web-
pages replicated on-demand, i.e., in which parts of the web
graph are incrementally and automatically replicated, as
they are rendered, for future off-line browsing or to mini-
mize download delays; and iv) site mirroring, i.e., complete
replication of significant parts, or the whole, of web sites.
These replicas can, after edition (translation, adaptation,
summary, etc.) or any other content authoring activity per-
formed with any tool, be made to diverge from the master
replicas but still be preserved, as well as those referenced
from them. Note that this last scenario can not be per-
formed resorting only to off-the-shelf mirroring tools[17].

With regard to the issue of preserving replica consistency, it
is not necessary for the system to function, and it may even
not be desirable as in the context of some of the authoring
activities mentioned above. However, our replication system
allows refreshing or updating of replica content, either from
or to the master replica.

From the user point of view, the client side of the application
is a normal web browser with an extra menu button called
“make-replica”. This function allows the user to replicate
a file into his machine, i.e., to create a stable local replica
of the file he is looking at. This file being browsed may
be, implicitly, already replicated in the user’s computer in
some browser’s specific directory. However, this copy only
acts as cache and not as stable replica. Nevertheless, the
fact that this file is already available in the system, though
in temporary store, lowers the cost of replicating a page
(simple file move or copy).

With this application, a typical user in site S1 browses the
web (in this case, web servers supporting the server-side
of the application) and makes replicas of some of the pages
from site S2. End-users may replicate web resources (HTML
documents or any other files) for future browsing. How-
ever, if desired, these web resources can then be accessed
and/or edited using any other application, possibly making
the replicas to diverge. Once ready, this replica can also
be made available to the outside world from the user’s local
server.

Upon request from some user at a different site, the web re-
source can be replicated again. It can also be used to update
the content of its master replica. These replicas may hold
references to other (not locally replicated) web resources in
site S2. Thus, it is desirable that such resources in site
S2 remain available as long as there are references pointing
to them. The system ensures that such resources in site
S2 remain there as long as they are referenced from some
other site. In addition, web resources in site S2, which are
no longer referenced from any other site are automatically
deleted by the garbage collector. This means that neither
broken links nor memory leaks (storage waste) can occur.

3. STORAGE INTEGRITY/MANAGEMENT
To enforce referential integrity and reclaim wasted storage
in RepWeb, we made use of a distributed garbage collector
for wide area replicated memory[16] and tailored it to the

A.html
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

A1.html

A2.html

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

A0.jpg

A1.jpg

A12.html

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

A2.jpg

Site S2

A.html
siteS1.com

OutPropList

A0.jpg

A1.html

A2.html

SiteS1.scions

A.html

A0.jpg
A.html

A1.html
A.html

A2.htm
A.html

Site S1

A.html
siteS2.com

InPropList

SiteS2.stubs

make-replica reply

ref to A.html

Figure 2: After first replication

web. The algorithm is an hybrid of tracing and reference
listing. Thus, it cannot collect distributed cycles of garbage
without the use of an auxiliary cyclic distributed collector.
In each site there are two GC components: a local tracing
collector[10], and a distributed collector. Local tracing is
performed independently in each site. The distributed col-
lectors, based on reference-counting[2, 12], work together by
exchanging asynchronous messages.

The root-set of documents for both the local and distributed
garbage collectors in each site is comprised of local roots
and remote roots: i) local roots are web documents, created
in or, replicated to the site and referenced from a special
HTML file (bookmark file) managed by the RepWeb system;
ii) remote roots are all web documents that are remotely
referenced, i.e., protected by scions (see Section 3.1). These
web resources must be preserved even if no longer locally
reachable, i.e., reachable from the local root-set. The root-
set of the whole system corresponds to the union of the
root-sets in all sites.

3.1 GC Structures and Rules
The RepWeb system and RepWeb garbage collector manipu-
late the following structures to store information about repli-
cated resources and references contained in web pages (see
Figure 2):

• An InPropList that describes web resources that have
been replicated to this site from another site.

• An OutPropList that describes web resources that
have been replicated from this site to another site.

• A stub describes an outgoing inter-site reference, from
a document in the site to another resource in a target
site.

• A scion describes an incoming inter-site reference, from
a document in a source site to a local resource in the
site.

It is important to note that stubs and scions do not impose
any indirection on the access to replicated web pages. They

are simply DGC specific auxiliary data structures. The al-
gorithm obeys to the following safety rules:

• Clean Before Send Make-Replica-Reply: Be-
fore replying to a make-replica request for an object
y from a site S1, y must be cleaned (i.e. it must be
scanned in S2 for references) and the corresponding
scions created in S2.

• Clean Before Deliver Make-Replica-Reply: Be-
fore delivering a make-replica reply message from site
S2 for an object y to a site S1, y must be cleaned (i.e.
it must be scanned in S1 for outgoing inter-process ref-
erences) and the corresponding stubs created in S1, if
they do not exist yet.

• Union Rule: A target object z is considered un-
reachable only if the union of all the replicas of the
source objects do not refer to it.

In the prototypical example in Figure 2, the first rule im-
plies the creation of the scions corresponding to files A0.jpg,
A1.html and A2.html in site S2 before the make-replica-
reply message is sent. The second rule implies the cre-
ation of the stubs corresponding to files A0.jpg, A1.html
and A2.html in site S1 before the make-replica-reply mes-
sage is delivered and replication of file A.html is complete.
The last rule is presented only for completeness. Details are
explained in[16].

We decided to make use of this algorithm for three fun-
damental reasons: i) it is orthogonal to any protocol that
maintains, or not, the replicas coherent among the partic-
ipating processes, i.e., the DGC does not require replicas
to be coherent; ii) it does not require causal delivery to be
supported by the underlying communications layer, a fun-
damental aspect to ensure the DGC algorithm scalability,
given that supporting causal delivery in wide area networks
is difficult and inefficient; and iii) it is safe in presence of
replicated objects.

3.2 Integration with the web

The world wide web owes, a significant part of its success
until now, to the fact that it allows clients and servers to be
loosely coupled and different web sites to be administrated
autonomously. Therefore, RepWeb, while providing inter-
esting properties to a set of adhering sites, namely in the
fields mentioned earlier, must not impose total world-wide
acceptance in order to function. Integration with RepWeb
can be seen from two perspectives, client and server. Reg-
ular web clients can freely interact with RepWeb servers to
retrieve web content but cannot replicate web resources or
interfere with the DGC in any way (e.g.: indexing). Regular
web servers can be accessed via RepWeb client application
but it will not be possible to replicate, via RepWeb, con-
tent residing there since regular web servers cannot fulfill
the RepWeb protocol.

We intend to extend our system to collect distributed cy-
cles of unreachable web content. Based on work in[14] we
can estimate the importance of cycles in web content. A
large proportion of objects are involved in cycles but they
amount to a limited, yet not negligible, fraction of storage
occupied(12-14%). Furthermore, individual cycles are small
both in number of objects as in space occupied.

4. PROTOTYPICAL EXAMPLE
In this section we present a prototypical example of RepWeb
usage to explain it in greater detail: initially, there is a web
site, site S2, composed of a web resources graph with HTML
documents and images. In site S1, the user only has a ref-
erence, a URL, to a page A.html in site S2. After browsing
its content the user wishes to replicate this document.

In Figure 2, the HTML document A.html has already been
replicated and the DGC structures are updated, on each site,
to reflect this new situation. More precisely, there are new
entries in the sites’ InPropList and OutPropList reflecting
that a replication has occurred. Furthermore, a set of stubs
is created in site S1. Conversely, a set of scions is created
in site S2. The scions in site S2 protect the files from being
reclaimed by the local collector and the stubs in site S1, rep-
resenting remote references to documents in site S2, protect
the scions from being deleted by the distributed collector.

During the browsing of A.html, the user decides to click on
the link to the document A1.html. As in the previous situ-
ation, after browsing it, the user decides to replicate docu-
ment A1.html from site S2 to site S1 and the DGC structures
are updated. InPropList and OutPropList are appended
with the information about this latter replication and the
set of stubs and scions are appended with the references
contained in A1.html (see Figure 3). As a result A.html
and A1.html are replicated in site S1 and every resource
referenced from them, and yet not replicated, is protected
by stubs and scions. These stubs and scions referring doc-
ument A1.html, however, have become redundant because
there are duplicated references among the stubs/scions and
the In/OutPropList. The system optimizes this information
eliminating redundancies as it can be observed in Figure 3,
deleting the stub-scion pair crossed.

5. IMPLEMENTATION
The system is implemented in Java. This includes the client
code (that uses a regular HTML rendering package) and

file # scan stub hashtable time to
size URLS time time size serialize

43563 326 38 3 19252 67

Table 1: Performance results from cnn.com site.

all the code of the local and distributed collectors. We in-
tend to integrate the client as a component in standard web
browsers. The local collector is implemented as a stand-
alone application. The distributed collector is implemented
by the servlets and by the client. Client-only sites receive
DGC messages piggy-backed in replies from servers. To al-
low incremental replication of web pages, every navigation
operation performed by the user is trapped and the sys-
tem decides whether to feed the rendering component with
a replica created before or to perform an HTTP request to
get file content. By default, this can be replicated and made
available for future use.

The code in the servlets implements the safety rule Clean
Before Send Make-Replica-Reply (applied when make-replica
is requested); the client code implements the safety rule
Clean Before Deliver Make-Replica-Reply (applied when the
reply to a make-replica request is received). The implemen-
tation of these rules consists of scanning the web pages be-
ing replicated and creating the corresponding scions (at the
server) and stubs (at the client). The first time a file is
replicated, at the server site, its content is scanned, the cor-
responding scions created, and the enclosed set of URLs is
kept in an auxiliary file. Later, if this same page is repli-
cated again, at the server site, it only has to be scanned
again if it has been modified after the last scan.

6. PERFORMANCE
In this section we present the most relevant performance
results concerning the implementation. We devised two dif-
ferent types of performance measurements: i) to evaluate
application and algorithm performance with a large set of
files; ii) To evaluate most common usage with two specific
sets of files that bound typical browsing sessions. The crit-
ical performance results are those related to the implemen-
tation of DGC safety rules I and II. Thus, we downloaded a
well-known web site (cnn.com) and ran on each file the code
implementing the safety rules. All results were obtained in a
local 100 Mbits network, with Pentium II PCs with 64 Mb of
memory running Windows NT. We downloaded 155 HTML
files from the cnn.com (recursive download with a maximum
depth of five) web site and obtained for each one the time
it takes to: scan it, create the corresponding stubs, and se-
rialize the hash table containing them. In this section, for
clarity, we simply refer to the time it takes to create stubs
and their size because the same values apply to scions.

In Table 1 we present, for the 155 files set: the mean file
size, the mean number of URLs enclosed in each file, the
mean time to scan a file, the mean time it takes to create
a stub in the corresponding hash table, the mean size of
the hash table containing all the stubs corresponding to all
the URLs enclosed in a file (that depends on the size of the
corresponding URL), and the mean time it takes to serialize
a hash table with all the stubs corresponding to a single file.

However, in a normal browsing session, the user does not

A.html

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

A1.html

A2.html

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

A0.jpg

A1.jpg

A12.html

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

A2.jpg

Site S2

A.html
siteS1.com

OutPropList

A0.jpg

A1.html

A2.html

SiteS1.scions

A.html

A0.jpg
A.html

A1.html
A.html

A2.htm
A.html

Site S1

A.html
siteS2.com

InPropList

SiteS2.stubs

A1.html

A1.jpg
A1.html

A12.html
A1.html

A12.html

A1.jpg

A1.html
siteS2.com

A1.html
siteS1.com

ref to A.html

Figure 3: Optimized structures after second replication

make replicas of all the files. We expect the user to browse
a few top-level pages and then pick one or more branches
of the hierarchy and follow them down. Some of these files
will be replicated into the user’s local computer. So, in or-
der to obtain more realistic numbers, we picked 10 files from
the top of the cnn.com hierarchy. These files are mostly en-
try points to the others with more specific contents. We call
this set of files the top-set. We also picked other 10 files rep-
resenting a branch of the cnn.com hierarchy, world/europe.
We call this set of files the branch-set. In Figures 4 and 5 we
present, for each file of these sets, the times spent in each
of the relevant operations, the space occupied by the files
themselves, the URL references enclosed in them, and the
Java implemented data structures.

These time measurements are fixed initial costs due to repli-
cation, reference scanning and storing, that are dimmed af-
ter just a few visits (hits) to the pages. These performance
results are worst-case because they assume all the URLs en-
closed in a file refer to a file in another site, which is not
the usual case. However, they give us a good notion of the
performance limits of the current implementation. In par-
ticular, the most relevant performance costs are due to the
scanning of a file and the serialization of the hash table. We
believe that these values are acceptable taking into account
the functionality of the system, i.e. it ensures that no broken
links and no memory leaks occur. In addition, when a user
runs the browser and accesses any web page without making
a local replica of any file, there is absolutely no performance
overhead due to DGC.

We can also conclude that the size on disk of the hash table
containing all the stubs for a file is about half the size of
the HTML file. This rather large size is mostly due the
size of the URLs which are responsible for about 90% of
that size. The stubs relative to the top set files account
approximately for 385 Kb and can be compressed to between
92 Kb (max) and 110 Kb (fast), using the Java compression
package (java.util.jar) when reading and writing information
from and to files.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

eu
ro
pe
.h
tm

he
alt
h.
ht
m

law
.h
tm

m
ain

.h
tm

po
liti
cs
.h
tm

sh
ow

biz
.h
tm

sp
ac
e.
ht
m

sp
or
ts.
ht
m

te
ch
.h
tm

wo
rld
.h
tm

ficheiro

si
ze

(b
yt
es

)

File size Space occupied by URLs Hastable size

0
20

40
60

80
100

120

140
160

180
200

tim
e
(m

s
)

eu
ro
pe
.ht
m

he
alt
h.h

tm

law
.ht
m

ma
in.
htm

po
liti
cs
.ht
m

sh
ow

biz
.ht
m

sp
ac
e.h

tm

sp
or
ts.
htm

tec
h.h

tm

wo
rld
.ht
m

scanning time stub creation time serialization time

Figure 4: Results for top group.

7. RELATED WORK
The task of finding broken links can be automated using
several applications[5, 9, 18]. However, these applications
do not enforce referential integrity because, while useful de-
tecting local and remote broken links, they cannot prevent
them from occurring or reclaim wasted storage. Enforcing
referential integrity on the web has been a subject of active
study for several years now[4]. There are a few systems that
try to correct the broken-link problem and, thus, enforce ref-
erential integrity, preserving web content availability. There
are a number of techniques that make use of replication in
order to provide greater availability, increase performance,
minimize connections time, bandwidth and allow geographi-
cally oriented mirroring and off-line browsing. Most of these,
however, do not deal with the issue of referential integrity.

LOCKSS[13, 15] is an open-source system that makes use of
replication, namely spreading, in order to preserve web con-
tent. There are some fundamental differences to our work:

0

20

40

60

80

100

120

140

160

180

tim
e
(m

s
)

ind
ex
.h
tm

de
fa
ult
.h
tm

01
/in
de
x.h

tm

02
/in
de
x.h

tm

03
/in
de
x.h

tm

04
/in
de
x.h

tm

05
/in
de
x.h

tm

06
/in
de
x.h

tm

01
/d
ef
au
lt.h

tm

02
/d
ef
au
lt.h

tm

0

20000

40000

60000

80000

100000

120000

index.htm

default.htm

01/index.htm

02/index.htm

03/index.htm

04/index.htm

05/index.htm

06/index.htm

01/default.htm

02/default.htm

scanning time stub creation time serialization time

File size Space occupied by URLs Hastable size

si
ze

(
by

te
s
)

Figure 5: Results for branch group.

much work has been devoted in LOCKSS to ensure replica
consistency, namely using hashing for each document. Stor-
age reclamation is not addressed in LOCKSS since all docu-
ments in the system are considered important enough to be
preserved forever. In LOCKSS, the system tries to preserve
everything consistent. Our system tries to prevent mem-
ory leaks while preserving referential integrity and allowing
replica discrepancy when needed.

Author-Oriented Link Management[3] is a system that tries
to determine which pages point to a certain one. It de-
scribes an informal algebra for representing changes applied
to pages, like migration, renaming, deletion, etc. It does not
handle replication and it relies on the usage of custom-made,
or customized authoring tools, i.e., referential integrity is
not transparently provided to the user or developer. It does
not try to reclaim storage space occupied by useless, i.e.,
unreachable documents.

Hyper-G[1, 8] is a ”second-generation” hypermedia system
that aims to correct web deficiencies and provide a rich set of
new services and features. W.r.t. referential integrity, it is
enforced using of a propagation algorithm that is described
as scalable. In Hyper-G, there are no replicas of documents,
just temporary cached copies. In our work, there is no need
for the mentioned propagation algorithm since replicas are
allowed to diverge.

The W3Objects[6] approach is also based on the application
of a distributed garbage collector to the world wide web.
The main difference is that it only handles migration and
does not handle replication. Thus, existing solutions to ref-
erential integrity either do not aim at recycling unreachable
documents or are not correct w.r.t. replication, or they are
not integrated with the standard web.

8. CONCLUSIONS AND FUTURE WORK
In this paper we presented a new way of enforcing referential
integrity in the world wide web. It deals correctly with the
replication of web content for better performance and allows
incremental, on-demand, replication of web content. It does

not interfere with any protocol that maintains the replicas
coherent among the participating sites. The system does
not require replicas to be coherent. It limits storage waste,
memory leaks, deleting any resources no longer reachable
and does not require the use of any specific authoring tools.
It integrates well with the web since it does not impose its
model to the whole web. It does not impose causal delivery
to be supported by the underlying communications layer, a
fundamental aspect to ensure the system scalability.

Concerning future research directions, we intend to address
further the fault-tolerance of our system, i.e., which design
decisions must be taken so that it can remain safe, live and
complete in case of process crashes and permanent commu-
nication failures, as well as address the collection of dis-
tributed cycles in replicated memory.

9. REFERENCES
[1] K. Andrews, F. Kappe, and H. Maurer. The Hyper-G

network information systems. J.UCS, 1(4), April 1995.

[2] G. E. Collins. A method for overlapping and erasure of lists.
Communications of the ACM, 3(12):655–657, Dec. 1960.

[3] M. L. Creech. Author-oriented link management. In 5th
Int’l WWW Conference, Paris, France, May 1996.

[4] S. L. et al. Persistence of Web references in scientific
research. IEEE Computer, vol 3(2), pp26-31, Feb. 2001.

[5] HostPulse. Broken-link checker, www.hostpulse.com.

[6] D. Ingham, S. Caughey, and M. Little. Fixing the
“Broken-Link’’ problem: the W3Objects approach.
Computer Networks and ISDN Systems, 28(7–11), 1996.

[7] D. B. Ingham, M. C. Little, S. J. Caughey, and S. K.
Shrivastava. W3Objects: Bringing object-oriented
technology to the Web. World-Wide Web Journal, 1, 1995.

[8] F. Kappe. A Scalable Architecture for Maintaining
Referential Integrity in Distributed Information Systems.
J.UCS, 1(2):84–104, Feb. 1995.

[9] LinkAlarm. Linkalarm, http://www.linkalarm.com/.

[10] J. L. McCarthy. Recursive functions of symbolic
expressions and their computation by machine, part I.
Communications of the ACM, 3(4):184–195, Apr. 1960.

[11] L. Moreau and N. Gray. A community of agents
maintaining link integrity in the world wide Web. In Proc.
of the 3rd Int’l Conference on the Practical Applications of
Agents and Multi-Agent Systems (PAAM-98), 1998.

[12] J. M. Piquer. Indirect reference counting: A distributed
garbage collection algorithm. In Aarts et al., editors,
PARLE’91 Parallel Architectures and Languages Europe,
volume 505 of LNCS. Springer-Verlag, June 1991.

[13] V. Reich and D. Rosenthal. Lockss: A permanent Web
publishing and access system. D-Lib Magazine, 7, 2001.

[14] N. Richer and M. Shapiro. The memory behavior of the
WWW, or the WWW considered as a persistent store. In
POS 2000, pages 161–176, 2000.

[15] D. Rosenthal and V. Reich. Permanent Web publishing. In
Freenix Track, Usenix Annual Technical Conference,
Usenix, Berkeley, California, June 2000.

[16] A. Sanchez, L. Veiga, and P. Ferreira. Distributed garbage
collection for wide area replicated memory. In Proc. of the
6th USENIX Conference on Object-Oriented Technologies
and Systems (COOTS’01), San Antonio (USA), Jan. 2001.

[17] SyberSystems. Cvsviaftp: Automagic Web site mirroring
via ftp. http://www.siber.org/cvs-via-ftp/.

[18] Xenu’s. Linksleuth http://home.snafu.de/tilman/.

