
BestGC++: Optimizing Garbage Collection Selection Through
Benchmarking
GUILHERME SOARES, Instituto Superior Técnico, Portugal
The rapid adoption of cloud computing has transformed technology infras-
tructure, enabling service models such as Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS), and serverless Function-as-a-Service (FaaS).
Alongside this shift, microservices architecture has become widely adopted,
allowing applications to be built from independent services. Java is a popular
language for developing these microservices, yet their distributed systems
nature presents challenges such as communication complexity and system
failures, requiring optimized runtime environments and efficient Garbage
Collection (GC) strategies.

In order to overcome these challenges, we will explore microservices
architecture and review old and modern GC algorithms like G1, Shenandoah,
and ZGC, suitable for low latency environments, and able to meet Service
Level Agreements (SLAs). We also explore BestGC, a Java profiling tool that
selects the best GC for an application, which serves as a foundation for the
solution developed in this research. Building on this background, the thesis
introduces two profiling tools: BenchmarkGC and BestGC++. BenchmarkGC
facilitates Java workload benchmarking, while BestGC++ refines the original
BestGC into a web service, allowing users to run their application with
the optimal GC with minimal effort. Experiments on GraalVM and HotSpot
runtimes validated their effectiveness in identifying performance bottlenecks
and selecting the best GC based on workload characteristics, making it a
valuable tool for production environments.

Additional KeyWords and Phrases:Microservices, Garbage Collection, Bench-
marks, Java Runtimes

1 Introduction
In this day and age, big corporations are either migrating or have
already migrated from their monolith architecture - where the appli-
cation is developed as a single unit - to a microservices architecture,
where the application is divided into a set of small independent ser-
vices, all communicating through a well-defined API. This method-
ology allows each service to be developed and scaled independently
based on demand. It is worth mentioning that these services can
have a serverless nature leveraging the FaaS model. Netflix is one
of the most well-known examples of a company with this kind of
infrastructure, having started their migration to microservices in
2008.1
One of the languages most widely used for microservices ar-

chitectures is Java due to its stability, ease of development as a
Garbage-collected language, and platform independence originated
from the "write once run anywhere" 2 principle of the Java Virtual
Machine (JVM). There are various JVM implementations used, with
the Hotspot JVM and GraalVM being among the most popular.

1.1 Shortcomings
As mentioned earlier, challenges associated with microservices can
stem from the chosen architecture or the specific software used, the
most common ones being:
1Completing the netflix cloud migration (https://about.netflix.com/en/news/
completing-the-netflix-cloud-migration), accessed: 07/01/2023
2Sun Microsystems slogan for the Java platform

Author’s Contact Information: Guilherme Soares, guilherme.luis.s@tecnico.ulisboa.pt,
Instituto Superior Técnico, Lisbon, Lisbon, Portugal.

Cold Starts: This phenomenon is present in serverless solutions.
It’s the delay that occurs between the initial function trigger and
the infrastructure initialization/set-up to handle the first request
to a function that has been idle or hasn’t been recently executed.
GC delays: This occurswhenmicroservices runtimes use aGarbage
Collected language e.g., Java. Due to Garbage Collection cycles,
applications may experience higher latency when handling multi-
ple requests than usual, and, in extreme cases, may become totally
unresponsive for some time. This is due to the computation re-
sources being allocated to the garbage collection process.
Communication between microservices: As the number of
microservices rises, the network complexity also rises. So it is
possible to have simple requests being bottlenecked by a specific
service within the network.

1.2 Goals
The exploration of microservices and their integration within mod-
ern software ecosystems serves as a foundation for identifying opti-
mizations and innovative solutions. Our goals centre around opti-
mizing these integrations, primarily through the utilization of one
of the most prevalent microservices platforms, the JVM (Java Virtual
Machine). This pursuit aligns with:

• Improving language runtimes with the intention of mitigat-
ing cold starts.

• Optimize the Garbage Collection process by means of im-
proving the Garbage Collector algorithm; manipulating GC
heuristics or even introducing software middleware to de-
crease resource usage and improve system performance.

2 Background
In the upcoming subsections, our aim is to provide a comprehensive
overview of the current research landscape related to Microservices
and Garbage Collectors, providing insights into key developments
and challenges in these fields.

2.1 Microservices
The appearance of the microservice architecture didn’t appear as a
completely new concept, with some authors defending that many
ideas are related to an older concept - Service Oriented Architecture
(SOA) - being characterized as "SOA done right" [1]. One of the
earliest definitions of microservices architecture was made by Lewis
and Fowler 3 in the year 2014 and since then its popularity has been
increasing rapidly. They characterize this architecture as a way to
modularize a single application into multiple services, all of them
easily deployable with lightweight communication mechanisms
between them.
Associated with the popularity increase many companies and

organizations started to migrate their infrastructure giving rise to
3Microservices (https://martinfowler.com/articles/microservices.html), accessed:
07/01/2023.

https://about.netflix.com/en/news/completing-the-netflix-cloud-migration)
https://about.netflix.com/en/news/completing-the-netflix-cloud-migration)
https://martinfowler.com/articles/microservices.html

2 • Guilherme Soares

many articles providing case studies and surveys about microser-
vices migration.

2.2 Garbage Collectors
Before Garbage Collectors emerged, programmers had to manually
manage their memory allocation and deallocation. This process led
to multiple kinds of bugs including dangling pointers, double-free
bugs, memory leaks, etc.
Nowadays, many of the most popular programming languages

make use of some kind of Garbage Collector e.g., Java, C#, Go,
Javascript, OCaml. The use of a language with automatic memory
management removes the burden of handling the application mem-
ory from the programmer to the language runtime, simplifying the
development process and reducing overall memory bugs. However,
this also introduces runtime overhead, which is why languages like
C/C++ still have their use case and continue to have static analysis
tools being developed to remove previously mentioned bugs [2].

Garbage Collector algorithms can be divided into two main cate-
gories [3]:

• Tracing Algorithms
• Reference Counting Algorithms

2.3 BestGC
BestGC [4] is a tool that aims to select the most appropriate garbage
collector for a user-provided Java application. It does so by previ-
ously analyzing and benchmarking multiple applications with the
list of available garbage collectors on Java’s runtime across various
heap sizes. The collected metrics are application throughput and
garbage collector pause time, which are used to score the Garbage
Collectors.

Afterwards, the user-provided application is monitored to collect
metrics that will be used to choose the most suitable GC and finally
run the application.

Best GC Phases In more detail, the Best GC’s phases could be
outlined as follows:
Matrices Generation: This phase is only executed once, before
even running BestGC. Its main purpose is to profile and bench-
mark the available Garbage Collectors with benchmark applica-
tions, in this case, the DaCapo4 and Renaissance suites5 were
chosen. The benchmarks are run varying the heap size and upon
completion, the metrics are compiled into a matrix where each
Garbage Collector gets a score assigned concerning their pause
time and throughput achieved.
Run BestGC: To run BestGC the user provides the compiled
java application, meaning the JAR file, and a weight ∈ [0, 1] to
throughput (or pause time). At least one needs to be provided, and
their relation is described by the equation: 1 = 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑤𝑒𝑖𝑔ℎ𝑡+
𝑝𝑎𝑢𝑠𝑒_𝑡𝑖𝑚𝑒_𝑤𝑒𝑖𝑔ℎ𝑡 .
Monitoring Phase: So that BestGC can select the best Garbage
Collector for the application, it needs to monitor the application
first. This process occurs using the Garbage First GC and has
two main purposes: collect the amount of heap size in use and
CPU usage. The heap in use is calculated using the jstat tool, by

4https://www.dacapobench.org/
5https://renaissance.dev/

providing the process id we can extract the survivor/eden/old and
compressed class space used by the Garbage First GC. The CPU
usage is calculated using proc/stat and top command, and if it
reaches an average above 90% the application is classified as CPU
intensive which can be leveraged so as to better understand the
relation between CPU and Garbage Collector.
Calculation Phase: Based on the recorded maximum heap size,
BestGC increases its value by 20%, i.e.,𝑚𝑎𝑥_ℎ𝑒𝑎𝑝 =𝑚𝑎𝑥_ℎ𝑒𝑎𝑝 ∗
1.2, and then adjusts it upward to the nearest heap size used in
the Matrices Generation Phase. With the max heap calculated
we can already select the corresponding matrix i.e., with a heap
size equal to 4096MB. Furthermore, given the previously provided
throughput (or pause time) weight, we calculate the Best GC by
calculating the following equation for every GC in the matrix:
𝑆𝑐𝑜𝑟𝑒 = 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑤𝑒𝑖𝑔ℎ𝑡∗𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑠𝑐𝑜𝑟𝑒+𝑝𝑎𝑢𝑠𝑒_𝑡𝑖𝑚𝑒𝑤𝑒𝑖𝑔ℎ𝑡∗
𝑝𝑎𝑢𝑠𝑒_𝑡𝑖𝑚𝑒𝑠𝑐𝑜𝑟𝑒 . The lower the Score the better the GC, so the
GC with minimum score is selected.

3 Related Work
In this section, we summarize multiple research contributions and
categorize them into three main subsections: Garbage Collector
Algorithms, GCs - Studies and analysis, and Runtime Optimizations.

3.1 Garbage Collector Algorithms

3.1.1 Garbage First The default Oracle HotSpot Java Virtual Ma-
chine Garbage Collector is G1 [5–7], a GC (Garbage Collector) tar-
geted for multiprocessor systems with high memory scalability. Its
main characteristics are: generational; parallel; mostly concurrent;
Stop-The-World and evacuating. It aims to achieve the best tradeoff
between latency and throughput for applications with large num-
bers of allocations, however tends to achieve worse throughput
compared with throughput-oriented GCs. Below we will explain its
main characteristics.

Generational The G1 algorithm distinguishes the allocated objects
in young and old generations. This is done due to the observation
that recently allocated objects have a higher probability of being
removed from the application, while objects that are kept on the
application for a longer period, have a lower probability of future re-
moval. So it is more efficient to run more frequent garbage collection
cycles on objects with lower lifetime [8].

The young generation is divided into eden and survivor regions.
The eden region contains the newly allocated objects, while the
survivor region contains the young objects that already survived a
collection cycle, and will be promoted to old objects if they survive
another one (Figure 1).

Memory Layout The heap is divided into regions of equal size.
Mutator threads allocate thread-local allocation buffers (TLABS)
directly on each region using a Compare and Swap (CAS) operation,
which prevents memory allocation contention because each thread
is responsible for different memory regions. After a successful CAS
operation, the thread can allocate the objects on its TLAB.
Each region 𝑥 has a remembered set known as a card table (Fig-

ure 2), which tracks all old regions that might contain pointers to

BestGC++: Optimizing Garbage Collection Selection Through Benchmarking • 3

live objects within the 𝑥 region. This allows us to know which re-
gions contain references to the selected collection set at collection
time. The only references that remembered sets keep track of are
old-to-young and old-to-old references because young-to-young
and young-to-old references are not needed (young regions are
always collected).

Marking G1 uses a concurrent marking algorithm called Snapshot-
at-the-Beginning (SATB), meaning that it does a heap snapshot
and marks the objects as garbage concurrently using that snapshot.
We can use a heap snapshot instead of a Stop-The-World method
because of the correct assumption that objects that are garbage
will remain garbage. Due to the nature of the snapshot mechanism,
objects that are created after the heap snapshot will be classified as
live objects, and objects that become garbage after the heap snapshot
will become floating garbage having to wait for another marking
phase to be correctly classified.
During the concurrent marking phase, the G1 algorithm has to

insert an SATB barrier when writing to non-null references, because
a concurrent write could violate the SATB assumption. When writ-
ing to a non-null reference, this barrier will push the reference to a
buffer to be later processed, keeping the heap snapshot consistent.

Garbage Collection Cycle The GC Collection Cycle is divided
into two phases: The Young-Only phase and the Space Reclamation
phase. The Young-Only phase contains:
Normal Young Collections: Are triggered when the ratio of
#𝑒𝑑𝑒𝑛 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 + #𝑠𝑢𝑟𝑣𝑖𝑣𝑜𝑟 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 >= 𝑛𝑒𝑤𝑆𝑖𝑧𝑒𝑅𝑎𝑡𝑖𝑜 [6], then all
objects of the collection set that are still reachable from the root
objects and remembered sets are evacuated.
Concurrent Young Collection: starts when the occupancy of
the old generation reaches the Initiating Heap threshold. It starts
a marking phase to determine all live objects in the old genera-
tion (while this process doesn’t finish Normal Young Collections
can occur). The process ends with two Stop-The-World pauses:
Remark phase that finalizes the marking process and selects
regions with low occupancy to be prepared concurrently before
the Cleanup phase, responsible for sorting the prepared regions
according to efficiency and deciding if the Space-Reclamation
phase will occur.

After the Concurrent Young collection, G1 enters the Space-Reclamation
phase where it does numerous mixed collections (both young and
old generation). This phase ends when the benefit of evacuating
more old-generation objects doesn’t outweigh the overhead.

3.1.2 ZGC The Z Garbage Collector (ZGC) [9] is a Garbage Col-
lector targeted for a large range of heap sizes (up to 16TB), op-
timized for low latency. Its main characteristics are being a non-
generational, region-based, mostly concurrent, parallel, and mark-
evacuate garbage collection algorithm.6. To achieve concurrency,
ZGC introduces two main novelties: colored pointers and load bar-
riers.
6Generational ZGCwas introduced recently for JDK 21 see https://openjdk.org/projects/
jdk/21/ and https://openjdk.org/jeps/439

Fig. 1. G1 Heap Layout

Fig. 2. Card Table Example

Colored Pointers ZGC uses 64-bit pointers (20 bits for metadata +
44 bits for object address), with currently only 4 bits of metadata in
use. These 4 bits of metadata are:

• Finalizable (F): The object is only reachable from a finalizer.
• Remapped (R): Reference is up to date and points to the

correct object location.
• Marked0 (M0) and Marked1 (M1): If the object is marked.

The conjunction of these bits determines the color of the object.
There are 3 possible good colors: only M0 is set; only M1 is set;
and only R is set. The color can be "good" or "bad" depending on
which phase of the Garbage Collection cycle ZGC is currently on
(see Figure 3).

Load Barriers To interpret the color pointers, ZGC uses a load
barrier. The load barrier will be inserted by the Just In Time compiler
(JIT) when an object is loaded from the heap. After that, the load
barrier examines the colored pointer and determines if the color
is "bad" (slow path) or "good" (fast path). If it has a bad color, it
can be self-healed by either updating the pointer or relocating the
object and then updating its pointer. The pointer update is done
using a Compare and Swap (CAS) operation to prevent concurrency
problems.

Memory Layout ZGC divides its heap into memory regions (small,
medium, large) that can be dynamically resized during runtime. Fur-
thermore, it maintains 3 virtual views of the same physical memory,
each view corresponding to one good color. This way, the pointers
with good color can be dereferenced directly without the need for
bit masking operations.

https://openjdk.org/projects/jdk/21/
https://openjdk.org/projects/jdk/21/
https://openjdk.org/jeps/439

4 • Guilherme Soares

Garbage Collection Cycle The ZGC cycle consists of three Stop-
the-World (STW) pauses and four concurrent phases (Figure 3):
STW Pause 1: Threads agree on the current good color; Pages
allocated before the current cycle are selected for collection; Roots
are healed and pushed to the mark stack.
Marking/Remapping: Transverse, mark, and self-heal every
object reached starting from root nodes. Both mutator threads
and GC threads can mark the objects, using a mark barrier and a
load barrier respectively. The GC threads will always hit the slow
path even if the color is good to maximize the number of objects
in the local mark stack.
STW Pause 2: Check if all the marking stacks are empty. This
can impact the throughput if the mutator threads are all paused
so, to avoid entering this phase early, local thread-handshaking
is performed with each mutator thread to check for local mark
objects.7

Reference Processing: Handle references edge cases.
Selection of Evacuation Candidates(EC): Previous ECs are cleared,
and forwarding tables are dropped. Pages with no objects are re-
claimed right away, and the remaining ones are added to the
Evacuation Candidates sorted by size.
STW Pause 3: Relocates all root set objects updating their ref-
erences and good color.
Relocation: Relocates all objects in the EC, updating their ad-
dress and the forwarding table.8 Objects that are not updated
in this phase, will be updated on the next marking phase or by
previous load barriers.

Fig. 3. ZGC Garbage Collection Cycle: The cycle keeps repeating alternat-
ing the first good color between M0 and M1

4 Solution
In this chapter, we will address the implementation architecture and
components developed so as to improve BestGC. As mentioned pre-
viously in subsection 2.3 to run BestGC there is a matrix generation
phase, where a matrix that scores all available garbage collectors
(GCs) in the user’s Java environment is computed. So that a user
can easily reproduce this matrix, a tool called BenchmarkGC 4.1
was developed, which we will describe in more detail. Furthermore,
BestGC was enhanced to support web invocations, which are run
in a nearly fully automated fashion; and provide an overview of
the users’ running applications. Those improvements are explained
more thoroughly later in subsection 4.2.
7JEP 312: Thread-Local Handshakes: Introduce a way to execute a callback on threads
without performing a global VM safepoint. Make it both possible and cheap to stop
individual threads and not just all threads or none.
8Table used to map pre-relocation addresses to post-relocation addresses

4.1 BenchmarkGC
This tool allows a user to run multiple benchmarks so it classifies
Java garbage collectors with respect to application 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 and
garbage collector pause time, or for short 𝑝𝑎𝑢𝑠𝑒_𝑡𝑖𝑚𝑒 .
The default benchmarks supported are DaCapo9 and Renais-

sance10, tools whose main purpose is to profile the Java Virtual
Machine with non-trivial applications and workloads. Due to the
existence of multiple applications in each benchmark suite, the need
for custom options can rise dramatically e.g., multiple benchmarks in
DaCapo don’t support Java with 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 >= 17. To ensure users can
execute the benchmark suites without extraneous problems, a con-
figuration file, benchmarks_config.json, is provided to override
or extend the benchmark settings. Users can specify extra parame-
ters for the JVM by writing a list of string options, and override the
number of iterations or timeout (in seconds) for benchmarks that
may take longer to run in less performant environments.

The first building block of the application is the algorithm respon-
sible for executing individual benchmarks and extracting relevant
metrics. This algorithm, begins by fetching the appropriate com-
mand to run, taking into account the configuration in benchmark_config.json.
For instance, an example of a command might be:
java -XX:+UseZGC -Xms4096m -Xms4096m
-Xlog:gc*,safepoint:file=example.log
-r 10 --no-forced-gc

This command runs a Renaissance benchmark scala-kmeans
using the Z Garbage Collector (see subsection 3.1.2) while logging
the garbage collection operations11. The option Xlog:safepoint in
particular, logs the duration of each garbage collection pause, allow-
ing us to compute the garbage collectors’ average pause time and the
90𝑡ℎ percentile pause time, used in the garbage collection scoring, as
mentioned earlier. During the benchmark execution, system statis-
tics are collected every 0.10 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 using the top12 command. The
specific command used is top -bn 1 -p process_id. Here, the -b
flag enables batch mode, while the -n 1 option ensures the command
runs only one iteration. By providing the 𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑖𝑑 we can retrieve
key performance metrics such as user-space 𝑐𝑝𝑢_𝑡𝑖𝑚𝑒 (𝑢𝑠), repre-
senting the time spent in application code, 𝑖𝑜_𝑡𝑖𝑚𝑒 (𝑤𝑎), indicating
the time spent waiting for I/O operations, and the percentage of
𝑐𝑝𝑢_𝑢𝑠𝑎𝑔𝑒 of the benchmark process since previous top invocation.
During the benchmark execution, if the process crashes or if the
execution time surpasses the user’s timeout value, a benchmark
report is created with the error code and message (if present).

After an algorithm runs the selected benchmarks (or loading pre-
vious reports from the user’s filesystem), as well as compiling every
successful benchmark report into a Garbage Collector report (whose
format is described in Listing 2). After running all user-provided
benchmark_groups, invalid benchmark reports are removed i.e., if
a benchmark is not successful across all garbage collectors. Having
purged all invalid results from benchmark_reports the algorithm
ends by creating an error report, so the user can see what failed in
each benchmark, and the previously mentioned Garbage Collector
9https://www.dacapobench.org/
10https://renaissance.dev/
11https://docs.oracle.com/en/java/javase/11/jrockit-hotspot/logging.html#GUID-
33074D03-B4F3-4D16-B9B6-8B0076661AAF
12https://man7.org/linux/man-pages/man1/top.1.html

BestGC++: Optimizing Garbage Collection Selection Through Benchmarking • 5

report for each GC. The valid benchmark_reports are returned to
compute the scoring matrix.

Finally, we compute the scoring matrix for the garbage collectors
given the benchmark_reports. For each combination of heap size
and GC, the scores are given by the following equation:

throughput𝑠𝑐𝑜𝑟𝑒 =

#benchmarks_success∑︁
𝑖=1

throughput𝑖 (1)

p90_pause_time𝑠𝑐𝑜𝑟𝑒 =

#benchmarks_success∑︁
𝑖=1

pause_time𝑖 (2)

As you can see in the Equation 2, to compute the throughput
and pause_time scores we compute the sum between all successful
benchmarks because we want each successful benchmark to have
an equal contribution to the score. In the end, all scores will be
normalized against the values of G1 garbage collector 3.1.1. The
resulting matrix will follow the format shown in Listing 1.
{
" ma t r i x " : {

" h e ap_ s i z e " : {
" g a r b a g e _ c o l l e c t o r " : {

" th roughput " : <va lue > ,
" pause_ t ime " : <va lue >

}
}

Listing 1. Structure of GC Scoring Matrix

{
" g a r b a g e _ c o l l e c t o r " : <gc_name > ,
" j dk " : < jdk > ,
" s t a t s " : [

{
" h e ap_ s i z e " : < heap_s i z e > ,
" number_of_pauses " : <va lue > ,
" t o t a l _ p a u s e _ t im e " : <va lue > ,
" avg_pause_ t ime " : <va lue > ,
" p90_avg_pause_ t ime " : <va lue > ,
" avg_throughput " : <va lue > ,
" benchmarks " : [" . . . "] / / L i s t o f benchmarks

} ,
/ / . . .

}

Listing 2. Structure of GC Report

4.2 BestGC++
As mentioned before in subsection 2.3, BestGC is a tool that aims
to select, as the name implies, the best Garbage Collector for a
user-given Java application, and it does so by previously profiling
multiple Java applications to score GCs based on metrics. After-
wards, when profiling a given application, it can use the previously
collected data and select the best GC based on some parameters. The
benchmark profiling was already covered in the previous subsection
4.1, so we will now dedicate to explaining what modifications and
improvements were made to create BestGC++.

4.2.1 Metrics and Parameters Rational One of the possibilities
to improve the BestGC Garbage Collector selection is to generate
different matrices based on a value of some metric gathered while
executing the application. Previously, the authors of BestGC tried
to classify applications into CPU and non-CPU intensive, looking at

the CPU usage during benchmark execution. However, this raises
some problems:

• What should be the chosen CPU usage percentage threshold
for classifying an application as CPU-intensive or non-CPU-
intensive?

• Once that value is chosen, we will categorize our available
benchmarks into two groups, which may result in an imbal-
ance of data between them or a lack of data for a specific
matrix category.

• An application with CPU usage close to the selected thresh-
old may experience significantly worse performance if it
"lands" on the incorrect side.

Another approach explored was classifying applications as either
I/O or CPU intensive. To do this, we initially used the top12 tool,
focusing on the "wa: time waiting for I/O completion" metric (in
percentage). To understand how this metric behaves, we created
various test cases with differing levels of file manipulation. After
running these examples, it became clear that to trigger a high rise
in wa%, the application needs to spend significantly more time
waiting for I/O operations than performing CPU work. This could
be indicative of an issue within the application. Moreover, even if
we set a low wa% as a threshold to classify applications as I/O or
CPU intensive, there remains the possibility that an application with
high CPU usage could still be classified as I/O intensive. Switching
to a different classification method, such as monitoring disk reads
using iostat13, would still suffer from the same limitations.
The key takeaway is that, given the complex interplay between

multiple factors like I/O and CPU utilization, a simplistic binary
classification would create a false dichotomy and fail to capture the
full nuance of the data.

After exploring these possibilities, we shifted our focus to alterna-
tive methods for improving GC selection while also enhancing user
experience. Although we ultimately decided against these ideas,
they provided valuable insights into the metrics that can affect ap-
plication performance, and, as a result, we are now tracking them
with the BenchmarkGC profiling application (see 4.1).

As mentioned earlier, running BestGC currently requires users
to manually assign weights based on their desired emphasis on
throughput and latency, the latter defined as GC pause_time. A way
to enhance user experience would be to automatically determine the
optimal weights, allowing users with minimal technical expertise
to run their applications with the utmost performance. To solve
that, we return to the topic of CPU usage, we made the following
observation: if an application shows high CPU utilization during
profiling, it suggests that a GC that competes with the application
for CPU resources would be detrimental, impacting the already
stressed application. This means the GC should prioritize application
throughput and minimize interference. Based on this insight, we
decided to compute the throughput weight using the application’s
average CPU usage, cpu_avg for short. In the piecewise equation 3,
we clamp average CPU values below 30% to 0 and those above 90%
to 1. For average CPU values within this range, we apply a linear
function to ensure a smooth transition.
13https://linux.die.net/man/1/iostat

6 • Guilherme Soares

throughput_weight =

0 cpu_avg ∈ [0, 30]
cpu_avg

60 − 0.5 cpu_avg ∈ [30, 90]
1 cpu_avg ∈ [90, 100]
(3)

Important to remember that given the computed throughput
weight value the pause_time weight will be pause_time𝑤𝑒𝑖𝑔ℎ𝑡 =

1 − throughput𝑤𝑒𝑖𝑔ℎ𝑡 .

4.2.2 Application Architecture and Overview To further en-
hance user experience, we enabled BestGC to function as a web
application. This approach simplifies the process for users, allowing
them to submit their compiled Java application (in Jar format14)
- from now on referred to only as java application - and specify
parameters to achieve optimal performance with minimal effort.

We developed theweb application using Spring15, a widely adopted
open-source framework for building web applications in Java. The
architecture is designed to support flexibility and performance pro-
filing for Java applications, with the following key services:

Core Services:
Matrix Service: This service is responsible for loading the ma-
trix generated by BenchmarkGC (see subsection 4.1). Once the
matrix is loaded, it handles the scoring of all Garbage Collectors
(GCs). If no weights are provided, it will automatically calculate
them using the equation in 3.
Profile Service: As the name suggests, this service profiles the
user’s Java application. During profiling, it captures metrics such
as heap size, CPU usage, I/O wait time, and CPU time percentages
(which correspond to the us and wa values from the top12 tool).
These metrics provide insight into the application’s performance
characteristics.
Run Service: This service manages the execution of the user’s
Java application. It tracks running applications and stores rel-
evant information such as process IDs, application names, and
the commands used to execute them. This service is integral for
managing multiple runs and gathering runtime data.

Main Endpoints for User Functionality
POST /profile_app: This endpoint allows users to submit their
Java application along with any necessary arguments. Optionally,
users can specify throughput and pause_time weights. The appli-
cation is profiled, and then executed with the best-performing GC
based on the profiling results. The final execution can be toggled
on or off by the user.
POST /run_app: Similar to /profile_app, but in this case, the
user manually selects the heap size and GC without a profiling
stage. The application is run directly with the specified parame-
ters.
GET /poll_apps?ids=application_ids: This endpoint accepts
a list of comma-separated application IDs and returns the current
performance metrics for the specified applications. The metrics
are gathered from the Profile Service, giving users a real-time
view of heap usage, CPU consumption, and more.

14https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html
15https://spring.io/

Now that we have covered the architecture, we can focus on the
user workflow. With an emphasis on simplicity and minimizing fric-
tion in the user experience, the workflow for getting an application
up and running follows these steps:

(1) Accessing the Application: The user navigates to the ap-
plication’s root endpoint e.g., http://your-domain.com/.

(2) Input Submission: The user fills in his application argu-
ments (if applicable) and uploads their Java application.

(3) Profiling and Execution: The application is then profiled,
weights are computed, optimal heap size is determined, and
it runs automatically.

(4) User Notification and Dashboard Access: The user re-
ceives a notification indicating that the application is being
profiled and is redirected to a dashboard when done. Here,
they can view all running applications and monitor perfor-
mance metrics.

Expanding on item 3, the BestGC++ application employs a new
approach to profiling. Since we use CPU usage percentage as a
key metric for selecting the most suitable Garbage Collector, it
is crucial to manually specify the heap size during the profiling
process. We begin with a minimum heap size of 256MB and double
it until we reach a size that allows the application to run successfully.
This method ensures that the captured CPU usage metrics closely
resemble those observed during the application’s final execution,
allowing us to accurately determine the appropriate throughput
weight.

An important implementation detail is the inclusion of a dash-
board on the BestGC++ application, which is crucial for its users,
transforming it into a full-fledged service. This dashboard provides
valuable insights into application performance, including metrics
related to I/O, CPU usage, and heap size. These metrics are displayed
only when the user expands the application details, reducing the
number of unnecessary web requests.
Lastly, while BestGC++ can now function as a service, it is im-

portant to note it is still fully capable of being used as a console
application while using the new automatic weight calculation func-
tionality.

4.3 Summary
In this chapter, we presented the solution implemented to enhance
BestGC by introducing two major components: BenchmarkGC and
BestGC++, each designed to optimize the selection of the best-
performing garbage collector (GC) for a given Java application.
The BenchmarkGC tool was developed to automate the gener-

ation of a scoring matrix, which classifies available GCs based on
their throughput and pause_time performance across multiple Java
benchmarks. The tool supports a flexible configuration, allowing
users to run benchmarks with custom JVM options, benchmark
iterations, and timeouts. It also generates detailed reports for each
GC and benchmark, which are then compiled into a scoring matrix.
This matrix provides normalized scores for each GC, making it easy
to compare their performance in a user’s environment.

The second enhancement, BestGC++, improves upon the original
BestGC by introducing new features and improving its user expe-
rience. BestGC++ now functions as a web service, allowing users
to upload their compiled Java applications (in JAR format), profile

BestGC++: Optimizing Garbage Collection Selection Through Benchmarking • 7

them, and automatically select the best GC for optimal performance
using the scoring matrix generated by BenchmarkGC. Furthermore,
BestGC++ introduces automatic weight determination based on
application profiling, especially focusing on CPU usage, allowing it
to dynamically balance throughput and pause_time weights without
requiring manual input from the user. Despite these enhancements,
BestGC++ retains the functionality of its predecessor, allowing it
to operate as a console application while incorporating the new
weight calculation feature.

The chapter concludes with the architecture and workflow of
BestGC++, detailing how it profiles applications, computes GC
scores, and facilitates user interaction through a web-based dash-
board. This comprehensive solution simplifies the process of select-
ing the best GC, reducing the complexity for users while ensuring
their Java applications run with optimal performance. In the next
Chapter 5 we will test these developed tools to assess their improve-
ments and effectiveness.

5 Evaluation

5.1 Overview
This chapter provides a comprehensive evaluation of the two GC
profiling applications developed, as detailed in subsection 4. We be-
gin with an analysis of the results obtained with the BenchmarkGC
application (see subsection 4.1), an application designed to facilitate
the benchmark of various Garbage Collectors (GCs). By utilizing
this application in combination with different Java Development
Kits (JDKs), we can derive meaningful insights into the performance
of these GCs and Java runtimes. To carry out this evaluation, we
selected two widely used Java runtimes, Oracle HotSpot and Ora-
cle GraalVM with Just-in-Time (JIT) compiler. These runtimes are
frequently deployed in real-world applications, making them ideal
for performance comparison. Additionally, we focused on bench-
marking three prominent garbage collectors: G1, Parallel, and ZGC.
However, a key limitationmust be noted. As previously stated in sub-
section 3.1.2, Generational ZGC was introduced in Oracle HotSpot,
version 21, however, this feature is not available for GraalVM (with
native image), which lacks support for ZGC entirely. Furthermore,
Graal JIT only supports non-Generational ZGC16, so as a result,
any comparisons of ZGC between these two runtimes (HotSpot and
GraalVM JIT) will use the default non-Generational version.

The primary metrics we will focus on during our evaluation are
throughput-the time taken to complete each workload (see workload
definition in subsection 5.2)-and the p90 GC pause_time, which
represents the 90𝑡ℎ percentile of garbage collection pause durations.
These metrics will allow us to assess the overall performance and
efficiency of the garbage collectors across different configurations
and runtimes.

To evaluate BestGC, we must select an application that didn’t con-
tribute to the results obtained during the matrix generation phase
(mentioned in subsection 4.1). This ensures an unbiased evaluation
of BestGC’s ability to identify the appropriate Garbage Collector
for a given random application. Only after analyzing the applica-
tion with the BenchmarkGC tool, can we determine if BestGC was
16Generational ZGC already exists in the development branch of GraalVM JDK, being
planned for 24.1 release https://github.com/oracle/graal/issues/8117

capable of selecting the correct GC for the application, based solely
on the previously obtained data.

5.2 Testbed and Hardware Specifications
The evaluation was conducted on a machine running Arch, a Linux-
based Operating System, equipped with an i7 6700k CPU (4 cores,
4.00 GHz) and 16GB of RAM. For runtime performance profiling,
we used Oracle HotSpot and Oracle GraalVM with JIT both with
version 21.0.4. In this evaluation, we define Benchmarks as a group
consisting of multiple Workloads, each of which, is a distinct com-
putational task designed to stress test the Java runtime and Garbage
Collector. The purpose of these benchmarks is to provide a diverse
set of workloads to evaluate how different GCs perform under var-
ious conditions. The DaCapo and Renaissance benchmarks were
selected due to the wide range of real-world workloads they encom-
pass, from small to big applications, that are frequently selected to
profile garbage collectors (GCs) and Java runtimes.

5.2.1 Runtime Analysis Looking at the HotSpot and GraalVM
runtimes results, each evaluated with two benchmarks-DaCapo and
Renaissance-several we can draw the following key conclusions:

Z Garbage Collector is the best choice in terms of p90 pause_time:
Throughout all Benchmarks and Workloads, independent of the
Java runtime used, ZGC achieved significantly smaller pauses
compared with the other garbage collectors. However, this advan-
tage may also present a downside, which we will explain when
discussing throughput.
Parallel GC offers better throughput and p90 pause_time than G1:
As noted earlier, the throughput values were quite close among all
GCs, but Parallel GC consistently achieved lower throughput val-
ues (remember, a smaller throughput value is better). It’s easy to
think, that if we extrapolate this to a long-running application, the
benefits would accumulate. However, regarding p90 pause_time,
this claimmay be somewhat misleading; while Parallel GC has the
best p90 pause_time values compared to G1, the results are fairly
divided. For each heap size and benchmark, Parallel GC main-
tained an advantage in more than half of the analyzed workloads.
Conversely, in cases where Parallel GC shows worse throughput
compared to G1, we found that the average pause_time is the
principal culprit, suggesting that G1 can perform better in terms
of throughput and average pause_time in certain scenarios.
ZGC exhibits the worst throughput (sometimes by a large margin):
As expected, an almost fully concurrent garbage collector lacks
the characteristics to present the best throughput among all avail-
able GCs. Nonetheless, for many workloads, the differences were
not as significant as previously anticipated, indicating that a
latency-oriented collector like ZGC can still achieve acceptable
throughput values. However, we identified a potential pitfall:
when ZGC handles applications with high memory allocation
rates while having low available memory, it can incur alloca-
tion stalls, dramatically increasing workload execution times
and negatively impacting throughput.
HotSpot and GraalVM exhibit similar characteristics: Overall,
the previous statements apply to both runtimes, suggesting that
each garbage collector demonstrates comparable behaviour, re-
gardless of the runtime used.

8 • Guilherme Soares

GraalVM is more performant (in throughput): In 15 out of
18 configurations (combinations of GC and heap size), GraalVM
demonstrates significant improvements in throughput. Of the
remaining 3 configurations, two are draws, showing no noticeable
difference between GraalVM and HotSpot. However, one stands
out as an exception: GraalVM exhibits 32% lower performance
when using G1 with 256MB heap size, suggesting that G1 in
HotSpot may be better optimized for low memory environments.
HotSpot is more performant (in p90 pause time): HotSpot de-
livers superior p90 pause time performance in 10 out of 18 con-
figurations, with the most notable improvement when using G1
with a 256MB heap, where GraalVM has 71% performance reduc-
tion. Nevertheless, GraalVM shows a notable result with ZGC
at a 4096MB heap size, achieving a 29% improvement in pause
time. This is particularly impressive given ZGC’s already low p90
pause_time baseline.

5.3 BestGC++ Evaluation
To evaluate BestGC++, as previously mentioned, we use the Spring
PetClinic application. Given that the DaCapo benchmark suite
already includes a Spring PetClinic workload that as mentioned
in subsection 5.2, wasn’t included in the matrix generation phase,
we opted to use it.

5.3.1 Spring PetClinic - Benchmarks For establishing a baseline
of comparison, PetClinic was executed using the BenchmarkGC
profiling application across both HotSpot and GraalVM runtimes.
Parallel GC exhibits consistent performance across all heap sizes in
both runtimes. Notably, G1 shows better optimization in HotSpot at
the 256MB heap size compared to GraalVM’s G1 at the same heap
size, which is consistent with previous findings. Additionally, G1
in HotSpot achieves its best performance in terms of throughput
and p90 pause_time at 256MB. However, in both runtimes, G1 ex-
periences worse p90 pause_times as heap sizes increase, which is
expected as larger memory allows GC cycles to be delayed, lead-
ing to larger collections and longer pauses. Regarding throughput,
G1 remains consistent across all heap sizes, except for HotSpot at
256MB, where its performance stands out.
ZGC maintains consistent p90 pause_times in both runtimes,

achieving the lowest pause times among all GCs, followed by Par-
allel GC most of the time. Regarding throughput, Z Garbage Col-
lector shows improvement up to the 1024MB heap size (in both
runtimes), after which performance plateaus. Overall, ZGC is the
best-performing GC in terms of p90 pause_time across both run-
times, while Parallel GC delivers the highest throughput in most
heap sizes.

5.3.2 BestGC++ Testing Methodology and Results Evaluating
BestGC++ focuses on testing its ability to select the most performant
Garbage Collector, i.e., its accuracy, using a pre-existing GC scoring
matrix (see subsection 4.1) and optionally user-provided weights
for throughput and p90 pause_time.

Key considerations include:
• The sum of the weights is always equal to 1, e.g., if the

throughput weight is 0.6, the p90 pause_time weight will be
0.4.

• The equation used in the original BestGC implementation
(subsection 2.3) is defined as follows:

𝑆𝑐𝑜𝑟𝑒 = 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑠𝑐𝑜𝑟𝑒 + 𝑝𝑎𝑢𝑠𝑒_𝑡𝑖𝑚𝑒𝑤𝑒𝑖𝑔ℎ𝑡 × 𝑝𝑎𝑢𝑠𝑒_𝑡𝑖𝑚𝑒𝑠𝑐𝑜𝑟𝑒

(4)
• Like its predecessor, BestGC++ calculates the applications’

maximum heap size by increasing the observed maximum
heap size by 20% and rounding it up to the nearest heap size
in the scoring matrix (see subsection 2.3 for more details).

Examining Equation 4 we identify that if the throughput_score and
pause_time_score have different ranges, the equation may become
skewed. For instance, consider the following scenario: a GC has a
pause_time score of 0.5 and a throughput score of 2. Calculating
the score with equal throughput and pause_time weights, each 0.5,
yields:

throughput_score_contribution = throughput_score × 0.5 = 2 × 0.5 = 1
pause_time_score_contribution = pause_time_score × 0.5 = 0.5 × 0.5 = 0.25

Aswe can see, although both scores are proportionally related to 1,
their impact on the overall score differs significantly. To address this
imbalance, wemultiply the terms, ensuring that if any weight is zero,
the corresponding term is effectively ignored, effectively becoming
equivalent to the old Equation 4. This leads to the piecewise Equation
5:

Score =

throughputweight × throughputscore if pause_timeweight = 0
pause_timeweight × pause_timescore if throughputweight = 0
throughputweight × throughputscore × pause_timeweight × pause_timescore otherwise

(5)

To evaluatePetClinic, we profiled the application under BestGC++
in both automatic mode and manual mode with throughput weights
set to 1 and 0 for both GraalVM and HotSpot runtimes. The com-
mand used for the automatic mode is: java -jar bestgc.jar
dacapo-23.11-chopin.jar –args="spring -n 10
–no-pre-iteration-gc" –automatic –monitoringTime=50. For
manual mode, we remove the –automatic flag and specify the
weight using –wt=<value>.

The results compare BestGC++’s accuracy using the original
Equation 4 versus the modified Equation 5. In each case, BestGC++
profiles the Spring PetClinic application, selects the optimal heap
size and determines the best GC according to the selected equation.
The accuracy is thenmeasured by comparing the selected GC against
the most performant GC for the given Spring PetClinic workload,
calculated using the same weights and equation across all GCs for
the selected heap size.

Runtime Throughput Weight Old Equation New Equation Selected GC Correct Option
G1 Parallel Z G1 Parallel Z Old Equation New Equation Old Equation New Equation

GraalVM - Manual Mode 1 1 0.97 1.26 1 0.97 1.26 Parallel Parallel
GraalVM - Manual Mode 0 1 1.19 0.04 1 1.19 0.04 Z Z

GraalVM - Automatic Mode 0.72 1 1.03 0.92 1 0.23 0.01 Z Z Parallel Z
HotSpot - Manual Mode 1 1 1.06 1.27 1 1.06 1.27 G1 Parallel
HotSpot - Manual Mode 0 1 1.18 0.05 1 1.18 0.05 Z Z

HotSpot - Automatic Mode 0.71 1 1.09 0.91 1 0.26 0.01 Z Z Parallel Z

Table 1. Spring PetClinic BestGC++ GC Selection in GraalVM and HotSpot
with a Heap Size of 512MB - Old Equation 4 vs New Equation 5

The results are summarized in Table 1. BestGC++ identified a
heap size of 512MB as the most optimal. In automatic mode, both
runtimes showed similar average CPU usage when executing Spring
PetClinic. This can be derived by remembering that throughput

BestGC++: Optimizing Garbage Collection Selection Through Benchmarking • 9

weight is calculated using CPU average and the Equation 3. The
only significant difference occurred with a throughput_score of 1,
where G1 was selected in HotSpot, while Parallel was selected in
GraalVM, consistent with the previous observations. In other cases,
Z Garbage Collector was chosen in both Old and New equations.

Finally, and most important to test our hypothesis, the computed
Correct Options show that with the new scoring method (Equation
5), BestGC++ made 5 out of 6 correct selections, compared to 3 out
of 6 using the old Equation 4, revealing 33% improvement.

5.4 Summary
In this subsection we evaluated the two GC profiling tools developed,
BenchmarkGC, a tool that allows us to benchmark Java workloads,
collect performance metrics, and ultimately classify Garbage Col-
lectors in a scoring matrix, and BestGC++, a profiling tool meant
to select the best Garbage Collector for a given application, using
the BenchmarkGC’s scoring matrix. They were executed with mul-
tiple Java runtimes and workloads, explaining the methodology
and reasoning behind the testing. The Java runtimes HotSpot and
GraalVM (JIT), were chosen, due to having similar capabilities in
terms of available Garbage Collectors, so a fair comparison could be
made in the future. Workloads were selected by choosing two of the
most popular Java benchmarking suites (DaCapo and Renaissance).
However, special attention was paid so as to not repeat workloads
used in the BenchmarkGC and BestGC++ testing, because the lat-
ter is dependent on the former. Specifically, the Spring PetClinic
workload that was present in DaCapo, so it ended up being removed
so as to be used by BestGC++.

Analyzing BenchmarkGC’s result we made several findings when
it comes to Garbage Collection performance, in different runtimes.
One of which, is the fact that GraalVM is more performant than
HotSpot when it comes to throughput in 15 out of 18 configurations.
However, the opposite also happened for a heap size of 256MB,
where G1 showed a performance reduction of 32% when switching
from HotSpot to GraalVM. The better GCs in terms of performance
related to throughput and p90 pause_time were also identified, with
ZGC being the better GC for pause_time and ParallelGC for through-
put. Although opposite to Z, Parallel had closer GCs to its values
e.g., G1.
Reasons for application performance decay were also identified,

like allocation stalls with low memory heap sizes e.g., ZGC; higher
pause_times due to a heap size increase, which increases the duration
of GC cycles; GC overhead, and other system phenomenons, proving
that the metrics collected by the BenchmarkGC profiling application
are useful when it comes to diagnosing applications.
Furthermore, BestGC++ was tested with Spring PetClinic and

a new scoring method was developed so as to improve on the old
scoring equation. Analyzing the new scoring method, revealed that
it had improved 33%, increasing from 50% to 83%. This indicated
that the BestGC++ tool with the new scoring method as a higher
accuracy, further increasing its usability value.

In this subsection, we evaluated two profiling tools developed for
garbage collection analysis: BenchmarkGC and BestGC++. Bench-
markGC enables benchmarking of Java workloads, collecting per-
formance metrics to classify garbage collectors within a scoring
matrix. BestGC++ is designed to identify the most suitable garbage
collector for a specific application based on the scores derived from

BenchmarkGC. We conducted tests across multiple Java runtimes
and workloads, detailing the methodology and rationale behind our
testing approach.

The Java runtimes selected for this evaluation were HotSpot and
GraalVM (JIT), as they offer similar capabilities regarding available
garbage collectors, facilitating a fair comparison. Workloads were
chosen from two of the most popular Java benchmarking suites,
DaCapo and Renaissance. To ensure the validity of our results, care
was taken to avoid repeating workloads used in BenchmarkGC
and BestGC++ testing, particularly excluding the Spring PetClinic
workload from DaCapo, which was utilized in BestGC++.

Our analysis of BenchmarkGC’s results yielded several insights
into garbage collection performance across different runtimes. No-
tably, GraalVM outperformed HotSpot in terms of throughput in
15 out of 18 configurations. However, a performance reduction of
32% was observed in G1 when switching from HotSpot to GraalVM
at a heap size of 256MB. The best-performing garbage collectors
regarding throughput and p90 pause time were also identified, with
ZGC excelling in pause time and ParallelGC in throughput, despite
ParallelGC having closer values to G1 in comparison.

We also identified key factors contributing to application perfor-
mance degradation, such as allocation stalls at low memory heap
sizes (e.g., with ZGC), lower throughput due to pause time increase,
higher GC cycle durations in larger heap sizes resulting in increased
pause times, and overall GC overhead. These findings showcase the
value of the metrics collected by the BenchmarkGC profiling tool
in diagnosing application performance issues.
Furthermore, we tested BestGC++ using the Spring PetClinic

workload, developing a new scoring method to enhance the existing
scoring equation. The analysis revealed a significant improvement
of 33%, increasing from 50% to 83% in accuracy. This enhancement
indicates that BestGC++ with the new scoring method offers greater
accuracy, further increasing its usability and effectiveness as a pro-
filing tool.

6 Conclusion
This thesis began by examining the current technology landscape,
which is now deeply integrated with cloud computing. We high-
lighted the rise of various cloud servicemodels, such as Infrastructure-
as-a-Service (IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service
(SaaS), and serverless solutions like Function-as-a-Service (FaaS). In
terms of application architecture, large enterprises are increasingly
adopting microservices, where applications are composed of inde-
pendent services. We identified Java as a predominant language in
microservices development, and thus, set our goals toward optimiz-
ing its surrounding environment—including the language runtime,
Garbage Collector (GC), and inter-microservice communication.

We then reviewed the current state of research on microservices
architecture, contrasting it with monolithic and serverless designs.
This analysis showed that while microservices offer advantages,
they also introduce challenges such as increased communication
complexity and distributed system issues like failures and timeouts.
Despite these drawbacks, the widespread adoption of microservices
justified our focus on developing solutions tailored to this architec-
ture. In terms of garbage collection, we identified two main types
of GC algorithms: Tracing Algorithms and Reference Counting Al-
gorithms. We began by exploring Mark-and-Sweep, the first tracing

10 • Guilherme Soares

algorithm, which marks live objects by traversing root objects and
then sweeps unmarked objects. Next, we examined a reference-
counting algorithm, which keeps track of the number of references
to each object. Additionally, we explored a profiling tool called
BestGC, designed to identify the most suitable Java GC by using a
precomputed matrix score. BestGC operates in four phases: matrix
generation, execution, monitoring, and GC scoring, ultimately se-
lecting the best-performing GC. This tool served as the foundation
for our developed solution.
Next, we reviewed several studies, particularly on the perfor-

mance of modern Java GCs such as G1, Shenandoah, and ZGC.
The latter two are noteworthy for being almost fully concurrent
algorithms, with a focus on minimizing pause times—a critical fac-
tor in cloud environments where Service Level Agreements (SLAs)
often prioritize tail latency. We also explored various approaches
to improving GC performance, such as middleware for better GC
thread placement on CPU cores, reducing interference with latency-
sensitive application threads, and optimizations for NUMA architec-
tures. Additionally, we touched on runtime optimizations, such as
GraalVM Native Image, which emphasizes fast startup times, miti-
gating cold starts. Graal’s ahead-of-time (AOT) compilation allows
it to share runtime resources efficiently across multiple processors
(Isolate Proxy), reducing memory footprint in server environments.

After reviewing these studies, we introduced two GC profiling
tools we developed. BenchmarkGC is designed to simplify bench-
marking Java applications, collecting comprehensive metrics on
GC performance and automatically computing a scoring matrix for
easier evaluation of which GC is most suitable for a given heap size.
BestGC++, as the name suggests, builds on the original BestGC tool.
It was refactored to function as a web service, allowing users to
profile their applications and identify the optimal GC with minimal
input required. This improvement makes BestGC++ more accessible
to non-expert users by automating the calculation of weights, that
previously required user input, now calculated based on application
CPU usage. Another enhancement is its ability to monitor appli-
cations already in production to analyze their performance in real
time.

We then tested both profiling tools to validate the improvements.
BenchmarkGC was executed with two Java runtimes, GraalVM and
HotSpot. By comparing GCs and runtimes, we found that the col-
lected metrics enabled the identification of GC-related issues, such
as allocation stalls and high pause times, which increased overall
execution time. Our results showed that ZGC performed best in both
runtimes in terms of p90 pause time, while ParallelGC excelled in
throughput, with G1 performing similarly. GraalVM demonstrated
better performance in most configurations for throughput, while
HotSpot had an edge in p90 pause time. For BestGC++, we evaluated
its accuracy by running the Spring PetClinic application in both
HotSpot and Graal, allowing the tool to determine the optimal GC
based on the weights (calculated from average CPU usage). During
this evaluation, we identified and addressed an issue in the original
BestGC scoring equation, resulting in a new scoring equation for
BestGC++. The new equation showed an accuracy improvement of
33%, raising the accuracy from 50% to 83%. These results confirm
the value of the profiling tools we developed. BenchmarkGC offers

deep insights into application performance, while BestGC++ pro-
vides a practical tool for improving Java application performance
by selecting the best GC accurately.

6.0.1 Future Work Future work could focus on further enhanc-
ing BestGC++’s ability to select the most suitable GC. This was
discussed earlier in Section 4.2.1, where we suggested classifying
applications as I/O or CPU-intensive to refine the scoring process.
However, simply using a binary classification fails to capture the
full complexity of the data, as applications are often exceptions to
such rigid categories, and this approach could reduce the available
workload pool. A promising avenue would be to employ artificial
intelligence (AI), which can handle a wider range of parameters
and capture more intricate, non-linear relationships, as was done
previously but just for one runtime and just one algorithm [10]. A
potential implementation would be a Multilayer Perceptron (MLP),
a type of feed-forward neural network capable of learning complex
patterns through backpropagation. This approach is well-suited to
our problem, given the diverse parameters that influence GC per-
formance. In addition, BenchmarkGC has to be enhanced to collect
more data points, such as disk activity and other JVM events be-
yond GC pauses. With a richer dataset and sufficient workloads, AI
could offer a more accurate and dynamic classification method for
BestGC++.

References
[1] O. Zimmermann, “Microservices tenets,” Computer Science - Research and

Development, vol. 32, no. 3, pp. 301–310, Jul 2017. [Online]. Available:
https://doi.org/10.1007/s00450-016-0337-0

[2] X. Ma, J. Yan, W. Wang, J. Yan, J. Zhang, and Z. Qiu, “Detecting memory-related
bugs by tracking heap memory management of c++ smart pointers,” in 2021
36th IEEE/ACM International Conference on Automated Software Engineering
(ASE), 2021, pp. 880–891.

[3] R. Jones, A. Hosking, and E. Moss, The Garbage Collection Handbook: The Art
of Automatic Memory Management, 1st ed. Chapman & Hall/CRC, 2011.

[4] S. Tavakolisomeh, R. Bruno, and P. Ferreira, “Bestgc: An automatic gc selector,”
IEEE Access, vol. 11, pp. 72 357–72 373, 2023.

[5] D. Detlefs, C. Flood, S. Heller, and T. Printezis, “Garbage-first garbage collection,”
in Proceedings of the 4th International Symposium on Memory Management,
ser. ISMM ’04. New York, NY, USA: Association for Computing Machinery,
2004, p. 37–48. [Online]. Available: https://doi.org/10.1145/1029873.1029879

[6] W. Zhao and S. M. Blackburn, “Deconstructing the garbage-first collector,”
in Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, ser. VEE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 15–29. [Online]. Available:
https://doi.org/10.1145/3381052.3381320

[7] Oracle, Java Platform, Standard Edition HotSpot Virtual Machine Garbage
Collection Tuning Guide, 2023.

[8] D. Ungar, “Generation scavenging: A non-disruptive high performance
storage reclamation algorithm,” in Proceedings of the First ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environments, ser. SDE 1. New York, NY, USA: Associ-
ation for Computing Machinery, 1984, p. 157–167. [Online]. Available:
https://doi.org/10.1145/800020.808261

[9] A. M. Yang and T. Wrigstad, “Deep dive into zgc: A modern garbage collector in
openjdk,” ACM Trans. Program. Lang. Syst., vol. 44, no. 4, sep 2022. [Online].
Available: https://doi.org/10.1145/3538532

[10] J. Simão, S. Esteves, A. Pires, and L. Veiga, “Gc-wise: A self-adaptive approach
for memory-performance efficiency in java vms,” Future Generation Computer
Systems, vol. 100, pp. 674–688, 2019.

https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1145/1029873.1029879
https://doi.org/10.1145/3381052.3381320
https://doi.org/10.1145/800020.808261
https://doi.org/10.1145/3538532

	Abstract
	1 Introduction
	1.1 Shortcomings
	1.2 Goals

	2 Background
	2.1 Microservices
	2.2 Garbage Collectors
	2.3 BestGC

	3 Related Work
	3.1 Garbage Collector Algorithms

	4 Solution
	4.1 BenchmarkGC
	4.2 BestGC++
	4.3 Summary

	5 Evaluation
	5.1 Overview
	5.2 Testbed and Hardware Specifications
	5.3 BestGC++ Evaluation
	5.4 Summary

	6 Conclusion
	References

