
A Progress and Profile-driven Cloud-VM for
Resource-Efficiency and Fairness in e-Science

Environments

José Simão
Instituto Superior de Engenharia de Lisboa

(ISEL) / INESC-ID Lisboa
jsimao@cc.isel.ipl.pt

Luís Veiga
INESC-ID Lisboa

Instituto Superior Técnico - UTL
luis.veiga@inesc-id.pt

ABSTRACT
Cloud platforms are becoming more prevalent in e-Science
domains, also by encompassing new and existing Grid infras-
tructures into private, hybrid and federated clouds. Clouds
are inherently multi-tenant as they run workloads from mul-
tiple users. Resources can be initially allocated statically, as
for job scheduling in Grids previously, but they can also be
changed elastically at runtime to meet the application effec-
tive needs.

When allocation needs to be changed, and resources are
scarce, determining from which tenants resources must be
taken to impact performance the least is a non-trivial and
often deemed intractable problem, when outside the realm
of batch scheduling and full prior information on resource
requirements for each task, job, or VM instance.

In this paper we present a Java-based platform for cloud
environments that is able to : i) monitor application progress
with different levels-of-detail and allowing full applications
transparency, ii) account and restrict resource consumption,
such as CPU and memory, by applications, and iii) A cluster-
wide and decentralized algorithm that, based on the progress
of different workloads, can redistribute resources among dif-
ferent JVM instances. Evaluation shows it is able to im-
prove resource-efficiency and fairness across e-Science pri-
vate cloud infrastructures, by managing and migrating re-
sources according to the previous criteria, driven by a num-
ber of novel proposed metrics inspired in Economics.

1. INTRODUCTION
Grid Computing flourished to a great extent due to its

widespread adoption in many e-Science domains. Grids ease
resource sharing, pooling and are amenable to both simple
as well as sophisticated scheduling approaches. Currently,
there is an analogous ongoing trend, this time to encom-
pass new and existing Grid infrastructures into private, hy-
brid and federated clouds for e-Science. Clouds inherit the
potential for resource sharing and pooling due to their in-
herent multi-tenancy support. But while in Grids, resource
allocation and scheduling can be performed online, mostly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$15.00.

based on initially predefined and static job requirements, in
Clouds, resource allocation can also be changed elastically
(up or down) at runtime in order to meet the application ef-
fective needs at each time, improving flexibility and resource
usage.

Public cloud infrastructures and supporting middleware
for private/hybrid clouds (e.g., eucalyptus, open-stack) of-
fer APIs to allow explicit allocation and deallocation of in-
stances, predominantly of system VMs that run full-fledged
guest OS instance and applications in each instance. Decid-
ing and dealing with this programming is cumbersome for
e-scientists that are required to invoke cloud API besides
writing their own codes. This can be partially mitigated in
the relevant, yet specific, case of Bag-of-Tasks applications
where multiple tasks can be successively assigned to a given
VM, while the number of active VMs is managed automat-
ically by the middleware [11].

When allocation needs to be changed, and resources are
scarce, determining from which tenants resources must be
taken to impact performance the least is a non-trivial and
often deemed intractable problem, when outside the realm
of batch scheduling and full prior information on resource
requirements for each task, job, or VM instance. Other
systems have addressed resource allocation in a shared or
multi-tenant environment. Nevertheless they lack the no-
tion of resource effectiveness in the sense that when there
are scarce resources, there is no attempt to determine where
to take such resources from applications (i.e. either isolation
domains or the whole VM) where they hurt performance the
least.

In this paper we present the current results on ARA-
JVM , an Adaptive and Resource-Aware Java Virtual Ma-
chine for cloud environments that is able to: i) monitor
application progress with different levels-of-detail and al-
lowing full applications transparency, ii) account and re-
strict resource consumption, such as CPU and memory, by
applications, and iii) a cluster-wide and decentralized al-
gorithm, that based on the progress of different workloads,
redistributes resources among different JVM instances. This
paper extends our previous work presented in [13]. Ongoing
evaluation of ARA-JVM shows improvements on resource-
efficiency and fairness across e-Science private cloud infras-
tructures, by managing and migrating resources following
the previous criteria, ruled by novel metrics inspired in Eco-
nomics.

The rest of the paper is organized as follows. Section 2
frames our work with related work regarding resource allo-

357

cation and progress monitoring. Section 3 presents the eco-
nomic rationale of the resource management strategies used
in ARA-JVM and the enabling architecture to apply them.
Section 4 discusses different metrics to measure progress
with an increasing semantic quality. Section 5 discusses im-
plementation issues regarding the core components of our
system. Section 6 presents preliminary results. Finally, sec-
tion 7 concludes the paper.

2. RELATED WORK
Because measuring application progress is an important

step in any adaptation process there are several contribu-
tions on this topic, ranging from low level system informa-
tion such as performance counters to information about the
progress of specific variables inside applications and different
types of execution environments and deployment scenarios.

Performance counter have been used to analyze object
oriented applications [14, 5]. Nevertheless, these works do
not attempt to adapt the behavior of the application or the
high level VM as they focus only on the study of different
workloads to better understand how major runtime compo-
nents behave. The utilization of performance counters in full
virtualized systems (using system level VMs) have similar
problems because applications running in a guest VM will
see information about the hypervisor instructions as their
own [3].In [6], an application programming interface (API) is
proposed to enable applications reporting progress through
heartbeats. PowerDial [7] monitors the performance of ap-
plications using the Heartbeat framework. The system can
dynamically adapt the application configuration (e.g. pa-
rameters given in the command line) in response to changes
of load or power, threatening the ability to deliver results
in effective time. In these cases, results will eventually be
delivered with less accuracy. In ARA-JVM the progress in-
formation is used to transparently adapt the application exe-
cution runtime, restricting or giving more resources, without
depending on the application parameters.

Task driven workloads, typical in grid infrastructures, must
also be monitored by the execution runtime to adapt the rel-
evant system parameters and achieve the desired goals (e.g.
improve performance, save energy). Cushing et al. [1] pro-
pose a prediction-based framework to automatically scale
the number of tasks running in scientific workflow manage-
ment systems. The prediction of the number of tasks is
based on the size of the input queues of each task and the
data processing rate. Silva et al. [10, 11] focus on choosing
the best number of hosts to run Bag-of-Tasks workloads, in
an attempt to find a trade off between performance and cost
effectiveness (regarding the host renting time). Their heuris-
tics is based on the tasks execution time. These approaches
not only require more expertise to organize programs but
they are also sensible to long running workloads where fin-
ishing time among different tasks (or length of the input
queue and the size of each element) can have large vari-
ations. Unlike Grid infrastructures, Cloud infrastructures
depend on virtual machines to provide the two basic service
models, either IaaS or PaaS. In [9], Mc Evoy et al. discuss
implications of scheduling work in such environments show-
ing the importance of knowing more about the workloads
profile so that the execution environment can be adapted to
provide improved performance.

3. AN ECONOMICS-INSPIRED MODEL

In this section we present the high-level motivation for
our implementation work by referring to some Economics-
inspired notions and variables. Then, we try to map them
to a computational and cloud computing framing. In Eco-
nomics, there are typically two major classes of variables
that drive business performance or its processing : those re-
lated with: i) Value and its equivalent output, revenue, ii)
those related with input and its associated cost. Depending
on the specific kind of economic activity, revenue may be
the value of sales of a shop or factory, or financial gains in
banking, stock market, etc. Costs may be associated with
labour, resources, raw materials, energy, investment, capital
expenditures, etc.

Economists sometimes need to take into account non-
direct monetary aspects such as externality, opportunity
cost, risk, trade-offs in capital investment, etc. This leads
to two inherent notions in Economics (even to those uniniti-
ated) that: i) an activity consumes/costs resources and cre-
ates value, and ii) faced with limited resources, these should
be geared towards the activities that at a given moment
provide more return, and should be taken from activities
where they will harm their return the least, i.e. commit and
transfer resources in order to achieve a global positive (or
maximized) yield from the whole process.

In many shared or multi-tenant infrastructures, such as
private clouds, there may be no money and even when there
is a credit-based system, we are left with more down-to-earth
notions of Progress and Resource Usage. These are more eas-
ily comparable over time, and sometimes across applications
and application classes. Resources usage is easily established
while still open to some debate. Memory, CPU and storage
are mostly obvious and should be accounted for. The notion
of progress, while intuitive, is more elusive and application
semantics dependent (we address this in Section 4). For the
moment, let us consider progress as units of work carried out
by the application. Additionally, we can also measure how
progress and resource usage vary, at what rate, how fast,
and determine the effectiveness by relating both.

Regarding yield we are mostly interested in determining
how to identify two specific situations: i) when an appli-
cation is making reduced progress due to resource shortage
and could use more resources effectively, and ii) when an
application is not taking full advantage of its resources and
could make similar progress with fewer resources. Obviously,
we want to transfer resources from applications in ii) (least
effective first) to applications in i) (more hurt first).

This should be performed incrementally based on deriva-
tive of progress and resource consumption over time. There-
fore, we are immune to different ways of measuring progress,
resources usage and profiles across applications. This trade-
off can be measured by comparing percentage variation of
progress (%dP) against percentage variation of resource us-
age (%dR) and establish a ratio between them (%dP÷%dR),
which represents our yield. This is the variable our algo-
rithms will use to decide resource transfer. As decisions also
affect the system, we restrict resources to take slots of 5%
(of currently allocated), possibly repeated while the appli-
cation yield does not change significantly and is ranked high
by the algorithm.

This simple model allows the scheduling to make deci-
sions, over a given time frame, of where resources should
primarily be diverted to and from. It is very adaptable and

358

RA-JVM

AppC

RA-JVM

APPD

RA-JVM

AppC

RA-JVM

APPD

Operating system/Hypervisor

ApplicationA

ARA-JVM

ApplicationB

Operating system/Hypervisor

ARA-JVM

AppC

ARA-JVM

APPDCluster-Wide
Quality of
Execution
Manager

Deploy interface Administration interface

C1.jar

C2.jar C3.jar

JVM PaaS

Storage Storage

Storage

Resource accounting

Checkpoint
& Migration

Progress Monitoring

JIT Compiler
GC

Progress Indication

New Reservation

Figure 1: Overview of ARA-JVM system architec-
ture

flexible as it is driven by differential, incremental measure-
ments to detect and determine effectiveness of resource us-
age and make quick decisions on resource allocation trans-
fer, restriction (in the extreme of application checkpointing
or migration).

Empirically, applications experience several phases where
they are more or less eager of resources, and others where
they stabilize, or could even drop some with little impact
(e.g. caching data elements no longer accessed). The key
point is to approximately identify when this happens and
transfer resources, when they are scarce, accordingly. The
remaining of the paper deals with the architectural, algorith-
mic and implementation-related issues to bring these princi-
ples into practice, with efficiency and scalability, in a cloud
computing infrastructure.

3.1 An Enabling Architecture
Figure 1 depicts the architecture of our proposal for a

Platform-as-a-Service (PaaS) Java . There are two main
elements in our approach. The first is ARA-JVM , which
acts as the runtime execution environment. The second is
a cluster-wide resource scheduler, which aims to allocate re-
sources based on each application effective use and not on
classic fairness criteria [8].

We believe that transparency of the whole monitoring
and resource adaptation process is an important requisite.
This is so because target developers (i.e. scientists using
Java applications or writing their own using existing Java
frameworks) will most likely be skeptic to the perspective
of learning new programming interfaces to transfer their ap-
plications/frameworks to an environment such as the ARA-
JVM PaaS. In order to comply with this requisite, each in-
stance of ARA-JVM is enhanced with services that allow for:
i) monitor the application progress, ii) account resource con-
sumption, iii) reconfigure internal parameters and/or mech-
anisms, and iv) checkpoint, restore and migrate the whole
application. In [12] we focus on the last point which regards
checkpointing and restore. Our current design and imple-
mentation effort mainly concerns the progress monitoring
module and the resource scheduler.

The monitoring information is periodically collected and
reported to a cluster-wide resource scheduler. There are
different types of progress metrics which we detailed in the
next section.

4. PROGRESS MONITORING
There is a tradeoff between the quality of the monitoring

information and the interference to the application in order

to collect that information. We understand monitoring qual-
ity as a measure of how close the information is regarding
the application effective progress. Generic mechanism (e.g.
the OS API to monitor CPU usage) will be further away
from the application semantics, while information collected
by the runtime execution environment (e.g. number of calls
to progress relevant methods) will be closer to the appli-
cation semantics, and so, to the measurement of effective
progress. While the former provides low quality informa-
tion, the latter provides monitoring information with high
quality. Our system takes the second approach. Neverthe-
less, information from different levels of the system could
eventually be merged for processing which would allow for
operations with different levels of transparency.

Some techniques are fully transparent to the application
but also have low quality, for example, performance coun-
ters. On the other hand, others are more intrusive to the
application development or deploying which makes them
less transparent to the application but have higher quality,
for example, enhancing the application bytecode to track
method invocations. The following is a list of progress mea-
suring techniques. The techniques are presented with an
increasing level of monitoring quality but with a decreasing
level of transparency from the application point of view.

Performance counters. Modern CPUs have built-in
support to report how application progresses using perfor-
mance counters. This information regards the lowest level of
abstraction and also the one with less semantics regarding
the application state or phase.

Operating system memory management. If a pro-
gram can keep its working set in main memory it will progress
faster unlike a program that generates a great amount of
page faults. Allocation stalls, an event that occurs when
a new page is requested and the OS must evict another’s
process page, can also contribute to a diminished progress.

Mutator utilization. Managed runtimes have to track
running mutators to compare their execution time with time
spent in garbage collection activities. This information can
be used, for example, to determine how the heap size will
grow or shrink. Bigger percentages of time spent in mutators
means that the application can be making more progress.

Number of requests processed. This metric is typi-
cally associated with batch application like Bag-of-Tasks, or
request-driven interactive applications, such as Web appli-
cations.

Code: instrumented or annotated. If information
is available about the application high level structure, in-
strumentation can be used to dynamically insert probes at
runtime, so that the system can measure progress using a
metric that is semantically more relevant to the application.

For this work we analyze how annotated managed code
can provide the relevant information to estimate the appli-
cation progress.

5. IMPLEMENTATION
In this section we focus on implementation issues regard-

ing how progress can be measured (Section 5.1), resources
usage can be regulated inside a given runtime (Section 5.2)
and how resources can be reallocated among runtimes (Sec-
tion 5.3).

5.1 Progress monitoring framework
Annotations like the one presented in Figure 2.a are placed

359

@Retention (Retent ionPol i cy .RUNTIME)
@Target ({ElementType .METHOD,

ElementType .FIELD,
ElementType .PARAMETER})

public @inte r f a ce Progress {
double r e l evance () default 1 . 0 ;

}

(a)

public c lass AClass {
@Progress (r e l evance =0.8)
public void m1() { . . . }
public void m2(@Progress (r e l evance =0.2) p) {

for (int i=p ; i<l im i t ; ++i) . . .
}

}

(b)

Figure 2: (a) The progress annotation (b) Usage of the progress annotation

by the programmer into strategic places of the code, where
the application is known to make effective progress. This
includes methods, fields and method parameters. The an-
notation is characterized by the relative contribution of the
method to the overall application progress. Figure 2.b presents
a code snippet with two usage examples. All annotations
are used to insert progress measurement code at load time
which will either count method calls or updates regarding
fields and local variables dependent on parameters.

Regarding method calls, the progress measuring code up-
dates a ARA-JVM structure with information regarding the
overall call rate (OCR) which represents the call frequency
since the application start. Periodically, ARA-JVM also cal-
culates a window call rate (WCR) which is the call frequency
in the last observation window (e.g. number of calls in the
last 5 seconds). This helps to determine approximate deriva-
tives of these values and to detect phase changes in applica-
tion execution.

To process annotations at start time and insert the mea-
suring code, ARA-JVM augmented the load process of a
JVM, using an instrumentation Java agent, to look for an-
notations in the classes metadata as they are loaded into the
VM. The agent transverses each class metadata and inserts
code where necessary.

5.2 Resource Usage Monitoring and Enforce-
ment

The management of a given resource implies the capacity
to monitor its current state, and to be directly or indirectly
in control of its use and usage. The resources that can be
monitored in a virtual machine can be either specific of the
runtime (e.g. number of threads, number of objects), which
we call intrinsic resources, or be strongly dependent on the
underlying operating system (e.g. CPU usage), which we
call extrinsic resources. To unify the management of such
disparate types of resources, we have implemented JSR 284
- The Resource Management API [2, 4] - in the context of
Jikes RVM.

Applications (directly or through a vendor library) can
register for notification and setup new constraints using the
appropriate classes available in our augmented GNU class-
path. Given the specifications of the resource management
framework, applications cannot widen the scope of the pol-
icy. For example, if a VM is configured to prevent the con-
sumption of a certain number of file descriptors, the applica-
tion can only further restrict this number. The VM can be
configured during startup or in operation with a description
of the resource management policy. The policy, composed
by several rules, can be conveniently described using a XML-
based file.

We consider resources to be any measurable computa-
tional asset which applications consume to make progress.

Report-Node-Info(nodeId)

1 for each resource r ∈ R
2 loadr = Get-Resource-Usage(r)
3 add loadr to L[r]
4 if Var(L[r]) > 10%
5 Multicast(nodeId, loadr)
6 for each class c ∈ C
7 for each application a ∈ Apps[c]
8 progressa = Get-Application-Progress(a)
9 resourcesa = Get-Application-Resources(a)

10 Y [c][a] = progressa/resourcesa
11 for each c ∈ C sort Y [c] in decreasing order
12 multicast(Y)

(a)

Determine-Infracting-Applications(P, SLA, δ)

1 infracting = ∅
2 for each class c ∈ C
3 for each application a ∈ Apps[c]
4 if P [a].performance < SLA[a].performance + δ
5 add a to infracting
6 return infracting

(b)

Yield-Based-Resource-Allocation(Infracting, Candidates)

1 sort Candidates in decreasing yield order
2 for each application a ∈ Infracting
3 c = top(Candidates)
4 remove set R of resources from c
5 donate R to a

(c)

Figure 3: (a) Report at each node the load and
greatest yields (b) Determine applications in risk of
violating their SLA (c) Determine cluster-wide re-
source transfer between applications.

Resources can be classified as either explicit or implicit, re-
garding the way they are consumed. Explicit resources are
the ones that applications request during execution, such as,
number of allocated objects, number of network connections,
number of opened files. Implicit resources are consumed as
the result of executing the application, but are not explic-
itly requested through a given library interface. Examples
include, the heap size, the number of cores, network trans-
fer rate. From our work point of view, implicit resources are
the most relevant ones to control given that they have the
ability to throttle the application progress, without leading
to an abrupt stop (e.g. an exception because the number of
files reqeuested are not allowed).

5.3 Cluster-wide resource management
The resource management strategy of ARA-JVM consists

360

of a number of algorithms that concur for efficient resource
management. Two of them, whose performance and respon-
siveness is critical, can be executed in a fully distributed,
decentralized and concurrent manner. They include two
components for: i) dynamic decentralized and scalable load-
balancing for quick response to resource outage, wasting,
and QoS drop, and ii) resource monitoring and accounting.
An extra algorithm, possibly centralized, can perform global
cumulative calculation of overall utility, revenue, and penal-
ties for QoS violations that can be ulteriorly fed to an op-
timization framework, e.g., linear programming or machine
learning.

Globally, the system takes into account, to simulate an or-
ganization’s structure and workload, a lattice C with a set
of classes C = {Guest, Standard, Premium} and a partial
order ≤, that is, C = {Guest ≤ Standard ≤ Premium}.
Classes are assigned to users according to their rank and/or
payment level, and they are used to prioritize enforcing re-
source quotas and performance targets. We present next the
three algorithms employed.

Figure 3.a shows the algorithm carried out by each node
to report about its resource usage (e.g. when their variation
exceeds 10%) and the yields of each application. Yields are
reported in decreasing order, organized by each class in C.

The algorithm in Figure 3.b determines which applications
must receive more resources in order to comply with the
previously established service level agreement (SLA).

The algorithm in Figure 3.c is used to reallocate resources
from candidate applications to application in risk of violat-
ing their SLAs. The list of candidates results from a yield
based sorting, either merged from information received from
each node, or calculated by a central component performing
global sorting and returning updated candidate sets.

6. EVALUATION
In this section we evaluate our progress framework us-

ing both synthetic and real e-Science related workloads. We
used machines in a cluster, with Intel(R) Core(TM) i7 Quad
core processors (with eight cores each) and 16GB of RAM.
Each machine was running Linux Ubuntu 12.04. The evalua-
tion is divided in three parts: First, we evaluate the overhead
of instrumenting classes at load time. Second, we show the
overhead of monitoring progress during the application ex-
ecution. Finally we shows results regarding the reallocation
of resources.

To evaluate the load time overhead we used the SunFlow
render system.1 SunFlow uses ray tracing and projection
techniques which are common in other applications for sci-
entific visualization of data such as biological sequences (e.g.
molecules, genes). For this test case, SunFlow is used with-
out any source code modification. The Java instrumentation
agent adds 105ms to the total time of the application. For
the example file used, the rendering process had to load 137
classes which corresponds to an average overhead of 0.76ms
for each class. This is a very small startup cost, even more
so for such a long running application.

To assess the overhead of measuring progress during the
application runtime we have have setup two experiences.
The first one is a synthetic application in which there is a
method performing 1000 write operations on a field. If only
the method is annotated the total execution time is 1ms

1http://sunflow.sourceforge.net/

which compares with 45ms when the field is annotated, and
so, each write operation is instrumented. In the second ex-
perience we made a single line modification to the SunFlow
render system, adding an annotation to a method called for
each bucket that finish rendering. When running the original
code base, the rendering of a simple scene with a resolution
of 1920x1080 took 213s. When running SunFlow with ARA-
JVM and using the instrumentation described above, it took
214s, which corresponds to an overhead of less than 0.5%.
Because the instrumentation code is always the same regard-
less of the application, the larger the workload the smaller
the percentage overhead added to the rendering process.

To evaluate how the resource allocation scheduling influ-
ences workloads we used three Java open source e-Science
related applications/libraries: SunFlow, Xalan and Lucene.
SunFlow, a photo-realistic rendering system, with a ray trac-
ing core, was already presented. Xalan is an XSLT processor
which transforms XML documents into other formats such
as HTML or XMLs with different schemes. It implements
the XPath W3C standard for addressing parts of an XML
document. Frequently, scientists use well known information
tools, such as ontologies, to model interactions between their
elements of study, which are representable in XML docu-
ments. Transformations and queries on these documents can
be made using Xalan or similar libraries. Lucene library pro-
vides a set of classes for documents indexing (luindex) and
high-speed search (luseach). This is an important feature in
a biologic sequences database. Sequences of genetic mate-
rial are usually represented in a text/readable format (e.g.
FASTA format is a text-based format for encoding DNA or
protein sequences sequences), that often need to be updated
with new samples and searched.

To understand how progress evolves with the allocation of
different resources, SunFlow was used to render a 1920x1080
image, using 2040 buckets. Xalan converted a XML file
using a complex XSL with 53 transformations. Lucene was
used to generate index text files containing the ancestral
sequences the Pongo abelii (an orangutan). Figure 4.a shows
the average call rate (within windows of 5 seconds) of the
three workloads varies using a different number of cores,
while Figure 4.b shows the results for the same metric but
with different heap sizes.

We can conclude that with call rates interpreted as mea-
suring different progress by applications, they are inline with
our predictions. While obviously all applications welcome
having more resources, they not always take effective ad-
vantage from them, more so if we analyze the ratio between
additional progress achieved derived from the additional re-
sources. For instance, Lucene mostly always improves per-
formance with any more resources, while SunFlow is more
affected by CPU. Xalan progress is almost immune to ex-
tra resources, effectively wasting them, and those could be
handed over to other applications.

7. CONCLUSIONS
Allocation of resources in multitenant infrastructures such

as Grids and Clouds is mostly guided by service level agree-
ments. Although physical resources, such as memory and
CPU, are abundant is such environments, they are not il-
limitable. Therefore it is necessary to improve execution
environments with mechanisms to measure the application
progress to continuously exchange (more fine-grained) re-
source slices among virtual machines, awarding resources to

361

0

0.2

0.4

0.6

0.8

1

1 2 4 8

N
or
m
al
iz
ed

 W
in
do

w
 C
al
l R

at
e

Number of cores

Sunflow Xalan Luindex

(a)

0

0.2

0.4

0.6

0.8

1

250 500 750 1000

N
or
m
al
iz
ed

 W
in
do

w
 C
al
l R

at
e

Heap Size (MiBytes)

Sunflow Xalan Luindex

(b)

Figure 4: (a) Average window call rate for periods of 5 seconds and using a different number of cores (b)
Average window call rate for periods of 5 seconds and using a different heap sizes.

those tenants requiring or entitled to more, while being able
to determine where the resource reduction will be more eco-
nomically effective, i.e., will contribute in lesser extent to
performance degradation.

Managed runtimes are being used in large extent to de-
velop new applications and libraries, as they have proven
to be efficient, safe and easy to maintain. In e-Science en-
vironments this trend also applies. So, in this paper, after
discussing some progress metrics and their rationale inspired
in economics, we show how the enabling mechanisms can be
applied to a managed runtime operating in a shared envi-
ronment.

We presented the details of the ongoing work on ARA-
JVM , including the progress monitoring and adaptation
mechanisms in each VM. Furthermore, we experimentally
show that not all applications take effective advantage from
having more resources, and we are able to successfully trans-
fer them to other applications that currently promise to
make better use (progress) of them. In the future, we want
to enrich the model with learning and profiling techniques
as well as develop a library of typical progress monitoring
patterns.

Acknowledgements: This work was supported by na-
tional funds through FCT - Fundação para a Ciência e a
Tecnologia, under projects PTDC/EIA-EIA/108963/2008,
PTDC/EIA-EIA/113613/2009, PEst-OE/EEI/LA0021/2011.

8. REFERENCES
[1] R. Cushing, S. Koulouzis, A. S. Z. Belloum, and M. Bubak.

Prediction-based auto-scaling of scientific workflows. In
Proceedings of the 9th International Workshop on
Middleware for Grids, Clouds and e-Science, MGC ’11,
pages 1:1–1:6, New York, NY, USA, 2011. ACM.

[2] G. Czajkowski and T. von Eicken. Jres: a resource
accounting interface for java. In Proceedings of the 13th
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
OOPSLA ’98, pages 21–35, New York, NY, USA, 1998.
ACM.

[3] J. Du, N. Sehrawat, and W. Zwaenepoel. Performance
Profiling of Virtual Machines. In Proceedings of the 7th
ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, VEE ’11, pages 3–14, 2011.

[4] G. C. et al. Java Specification Request 284 - Resource
Consumption Management API,
http://jcp.org/en/jsr/detail?id=284, 2009.

[5] M. Hauswirth, P. F. Sweeney, and A. Diwan. Temporal
vertical profiling. Software Practice and Experience,

40(8):627–654, July 2010.

[6] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller,
and A. Agarwal. Application heartbeats: a generic interface
for specifying program performance and goals in
autonomous computing environments. In Proceedings of the
7th international conference on Autonomic computing,
ICAC ’10, pages 79–88, 2010.

[7] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard. Dynamic knobs for responsive
power-aware computing. In Proceedings of the sixteenth
international conference on Architectural support for
programming languages and operating systems, ASPLOS
’11, pages 199–212, 2011.

[8] J. Kay and P. Lauder. A fair share scheduler. Commun.
ACM, 31:44–55, January 1988.

[9] G. Mc Evoy and B. Schulze. Understanding scheduling
implications for scientific applications in clouds. In
Proceedings of the 9th International Workshop on
Middleware for Grids, Clouds and e-Science, MGC ’11,
pages 3:1–3:6, New York, NY, USA, 2011. ACM.

[10] J. Silva, L. Veiga, and P. Ferreira. Heuristic for Resources
Allocation on Utility Computing Infrastructures. In
Proceedings of the 6th international workshop on
Middleware for grid computing, MGC ’08, pages 9:1–9:6,
New York, NY, USA, 2008. ACM.

[11] J. N. Silva, L. Veiga, and P. Ferreira. A2ha - automatic and
adaptive host allocation in utility computing for
bag-of-tasks. J. Internet Services and Applications,
2(2):171–185, 2011.

[12] J. Simão, T. Garrochinho, and L. Veiga. A
checkpointing-enabled and resource-aware Java Virtual
Machine for efficient and robust e-Science applications in
grid environments. Concurrency and Computation:
Practice and Experience, 24(13):1421–1442, 2012.

[13] J. Simão, J. Lemos, and L. Veiga. A2-VM a cooperative
Java VM with support for resource-awareness and
cluster-wide thread scheduling. In Proceedings of the
Confederated international conference on On the move to
meaningful internet systems, OTM’11, pages 302–320.
Springer-Verlag, 2011.

[14] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng,
A. Diwan, D. Grove, and M. Hind. Using hardware
performance monitors to understand the behavior of Java
applications. In Proceedings of the 3rd conference on
Virtual Machine Research And Technology Symposium -
Volume 3, pages 5–5, Berkeley, CA, USA, 2004. USENIX
Association.

362

	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Table of Contents

