
Green-Cloud: Economics-inspired Scheduling,
Energy and Resource Management in Cloud

Infrastructures

Rodrigo Tavares Fernandes
rodrigo.fernandes@tecnico.ulisboa.pt

Instituto Superior Técnico
Avenida Rovisco Pais 1 1049-001 Lisboa

INESC-ID

Abstract. Cloud computing gained tremendous importance in the past decade,
emerging as a new computing paradigm and aiming to provide reliable, scal-
able and customizable dynamic computing environments for end-users. The
cloud relies on efficient algorithms to find resources for jobs by fulfilling the
job’s requirements and at the same time optimize an objective function. Utility
is a measure of the client satisfaction that can be seen as a objective function
maximized by schedulers based on the agreed service level agreement (SLA).
Our EcoScheduler aims at saving energy by using dynamic voltage frequency
scaling (DVFS) and applying reductions of utility, different for classes of users
and across different ranges of resource allocations. Using efficient data struc-
tures and an hierarchical architecture we intend to create a scalable solution
for the fast growing heterogeneous cloud.

Keywords: cloud, utility scheduling, dvfs, energy efficiency, partial utility

1 Introduction

Cloud computing is the paradigm that changed the way we see and use information
technology services. This services aim to provide reliable, scalable and customizable
dynamic computing environments for end-users. With the dynamical provision of
resources, the cloud can give better management to resources by optimizing their
usage and providing a pay-as-you-go pricing model.

The cloud is built over datacenters spread all over the world, that usually contain
large groups of servers connected to the Internet. This infrastructure has to be main-
tained by the providers that take care of all the working structure and have to keep
in mind the environmental footprint it will leave, specially because such structures
have huge footprints of energy waste and CO2 emissions. To achieve better results
the providers rely on efficient scheduling algorithms to manage the datacenters and
take the best out of the resources.

A scheduling algorithm tries to find a resource for a job by fulfilling it’s require-
ments and at the same time optimize an objective function that takes into consider-
ation the user satisfaction and the providers profits. Utility is a measure of a user’s
satisfaction that can be seen as an objective function that a scheduler tries to maxi-
mize based on the SLA.

The performance issues of the scheduling algorithm include not only execution
times but also resource utilization. A better scheduler can use fewer resources and run
jobs faster. Use fewer resources is very important, specially because it helps consume



2 Rodrigo Fernandes

less energy, and energy consumption is one of the major issues for building large-scale
clouds.

In this paper, we propose EcoScheduler, a scheduling algorithm for allocating jobs
in the cloud with resource-awareness, user satisfaction and using different resource
allocation profiles chosen by the clients. We enrich our model with the notions of par-
tial utility and by incorporating DVFS for improved energy efficiency. Our scheduling
algorithm efficiently assigns proper resources to jobs according to their requirements.

The rest of the document is organized as follows: in Section 2 we present what we
pretend to achieve, the study and analysis of the related is work is done in Section 3, in
Section 4 we present our solution to address the shortcomings mentioned before, the
evaluation methodology and metrics are described in Section 5, in Section 6 we present
some concluding remarks. There is also an appendix section. In Appendix A we present
a table recapitulating the algorithms described in Section 3.2.3 and in Appendix B
we present the planning that we are going to follow during the implementation of our
solution.

2 Objectives

The goal in this work is to develop a scheduling algorithm for Cloud scenarios that
takes into account resource-awareness (CPU cores and computing availability, avail-
able memory, and available network bandwidth) and declarative policies that express
resource requirements and perceived satisfaction with different resource allocation
profiles awarded, to users and/or classes of users. The notions of partial utility are to
be enriched by incorporating DVFS (dynamic voltage frequency scaling of CPUs) for
improved energy efficiency, and auctioning (that can be simulated) allowing several
clients and providers to negotiate for VM allocation taking into account performance,
cost and energy profile.

3 Related Work

This section describes the most relevant research work for the definition of EcoSched-
uler, our eco-friendly scheduling algorithm, organized according to a top-down ap-
proach. In Section 3.1 we present a background analysis of cloud computing with an
overview of the concepts behind it, such as virtualization, virtual machines and hy-
pervisors. Next, on Section 3.2 we describe various aspects about scheduling, such as
types of virtual machine scheduling algorithms and how they differentiate from each
other. Finally, in Section 3.3 we describe energy and environmental aware algorithms.
Then we conclude with some analysis and discussion.

3.1 Cloud Computing and Virtualization

Today most IT companies face challenges related to fast changing environments with
very specific requirements. This conditions happen for both modern and legacy appli-
cations which need reliability, security and some times strict assured quality of service
(QoS). To mitigate this problems, some companies started providing on-demand ser-
vices, self managed, offered through well designed web platforms and paid by usage,
this is called the cloud. All this flexibility is achieved using virtualization, which is a
technique that splits physical infrastructures of resources in isolated computing parts.

Figure 1 describes some very important events in the history of virtualization that
lead to its massive usages and the expansion of the cloud.



Green-Cloud 3

Fig. 1. History of Virtualization

3.1.1 Cloud

The cloud is a way of delivering hosted services provided through the internet, sold
on demand, typically measured in time periods, with great elasticity and scalability.
Its recent expansion, since 2007 [34], occurred due to its reliability, scalability and
customization that created a new market where all the big companies fight to provide
the best services. Examples of services can go from a complete virtual machines to
simple email clients or file hosting services.

The cloud computing services stack can be classified and organized into three
major offerings [30]: (a) Infrastructure as a service (IaaS) (also referred as Hardware
as a Service (HaaS)), (b) Platform as a service (PaaS) and (c) Software as a service
(SaaS).

Infrastructure as a Service is the type of service that offers complete virtual
machines in the cloud, meaning that, the client has remote access to the virtual
machine and also some simplified interface with commands such as start and stop
the machine. This service is the closest to having a physical machine but with the
flexibility to change all its characteristics with just a couple of clicks.

Platform as a service is defined for providing execution run times and software
development tools hosted in the provider’s infrastructure and accessible through some
kind of portal. A well known example of PaaS provider is Google with the GoogleApps.

Software as a service is the most common and provides some piece of software
hosted in the provider’s machine that is accessible in a web page, and goes from any
web email client to team management software. This kind of service attracts more
and more clients each day because all is hosted in the provider infrastructure and is
accessible everywhere with minimal setup.



4 Rodrigo Fernandes

Advantages

Cloud computing distinguishes it self from other services for various advantages
[34,14].

• On-demand provisioning and elasticity: Computing clouds provide on-demand
resources and services. The client can create and customization the services for
his needs, by configuring all the parameters from software installation to network
configuration.

• QoS/SLA guarantees: The computing environments provide guaranteed re-
sources, such as hardware performance like CPU speed, I/O bandwidth and mem-
ory size, specified through a SLA defined with the user. The SLA contains the
minimum requirements the service has to fulfill and some penalties in case of any
violation.

• Legacy system support: Virtual machines support any kind of system or soft-
ware allowing the user to run legacy systems side by side with other systems in a
simple and easily manageable environment.

• Administration simplicity: The lack of maintenance in a cloud setup favours
the creation of complex infrastructures with minimal technical support, allowing
the client to focus more on the product instead of maintaining the infrastructure.

• Scalability and flexibility: The scalability and flexibility are the most attract-
ing features of the cloud, specially because they release the client from all the
burdens of maintenance. The provider usually has a geographically distributed
infrastructure with easy auto-scaling services that can adapt to various require-
ments and potential large number of users.

Disadvantages

With flexibility and simplicity come some disadvantages.

• Overhead: Virtualization evolved a lot during the past years, specially in terms
of performance when compared to native physical execution. The developments
in software and hardware assisted virtualization made them very close, although
in critical high performance applications virtualization still has some overhead.

• Resource interference: One of the most common issues with virtualization is
to have many virtual servers within the same physical machine, because it is very
hard to completely separate their influence on each other some of them will suffer
from performance decrease.

Relevant Cloud Computing Services

There are lots of cloud service providers on the market, giving easy solutions for
computing infrastructure management. Some of them are well known and offer very
complete suites of services. Providers such as Amazon, Microsoft and Google offer
mostly hosted solutions while OpenStack offers an installable version targeting on-
premises installation.

Amazon Elastic Compute Cloud (EC2) 1 is a web service that provides
re-sizable compute capacity in the cloud. It is designed to make web-scale cloud com-
puting easier for developers. It provides a very simple web interface that allows the

1 Amazon Elastic Compute Cloud (EC2): https://aws.amazon.com/ec2/

https://aws.amazon.com/ec2/


Green-Cloud 5

user to have complete control of the computing resources running on Amazon’s proven
computing environment. EC2 allows to quickly scale any system within minutes as the
computing requirements change. The service is paid by usage meaning that the client
pays for each resource such as computing time, storage and traffic. Amazon provides
its clients tools to build failure resilient applications and to isolate themselves from
common failure scenarios without minimal maintenance for the client.

Microsoft Azure 2, Microsoft’s cloud platform, is a growing collection of inte-
grated services, such as computation, storage, data, networking and applications. It
offers a service list similar to Amazon EC2 but with a higher focus on big enterprise
clients, offering easier integration with in-premises installations and more technical
support.

Google Cloud Platform Compute 3 is yet another on-line platform for large-
scale workloads on virtual machines and is hosted on Google infrastructure. It is the
response from Google, that already provided SaaS and PaaS, to the other IaaS big
players in the market, that became available in the late 2013 for the general public. It
offers the same kind of infrastructure services and tries to challenge the other solutions
with fine grained prices and better security measures.

OpenStack 4 is an open source alternative software for creating private and public
clouds. The software consists of a set of parts that control pools of processing, storage
and networking resources in a data center, can be managed in a web-based dashboard,
command-line tools or a RESTful API. It works with popular enterprise and open
source technologies making it ideal for heterogeneous infrastructures. Hundreds of
big brands around the world rely on OpenStack to manage their businesses every
day, reducing costs and helping them move faster. One of its strong points is the big
ecosystem which helps it grow and keep running with other big players.

3.1.2 Virtualization

The concept of virtualization had its origins in the late 1960s, when IBM was in-
vestigating a way of developing robust machine-sharing solutions [18] and developed
M44/44X, the first close enough to a virtual machine system proving that virtualiza-
tion is not necessarily less efficient than any other approach.

MULTICS [9] was an important time-sharing solution created at MIT in the late
sixties. It was developed with a goal of security and one of the first to have one stack
per process and hierarchical file system.

TSS/360 [16] released by IBM in 1967, was one of the first operating system
implementations of virtualization. The system could share a common physical memory
space, it would only run a single kernel, one process launched by one processor could
cause an interruption in other, had special instructions to implement locks on critical
sections of the code and had a unique implementation of a table driven scheduler
that would use parameters such as current priority, working set size and time slices
number to decide the priority of a thread.

Virtualization was the solution for organizations or individuals to optimize their
infrastructure resource utilization, and at the same time simplify data center man-
agement.

2 Microsoft Azure: https://azure.microsoft.com/en-us/
3 Google Cloud Platform - Compute Engine: https://cloud.google.com/compute/
4 OpenStack Software: https://www.openstack.org/

https://azure.microsoft.com/en-us/
https://cloud.google.com/compute/
https://www.openstack.org/


6 Rodrigo Fernandes

Today, every cloud company uses virtualization in their data centers to make ab-
straction of the physical hardware, creating large services to provide logical resources
consisting of CPUs, storage or even complete applications, offering those resources to
customers as simple and scalable solutions for their problems.

The years passed but virtualization has the same meaning it had fifty years ago,
allow users to have an environment where they can run multiple independent systems
at the same time sharing the physical hardware.

Virtual Machine Concept

A virtual machine (VM) is a specialized software implementation that, like a physical
computer, can run an operating system or execute programs as if they were running
on their native system [28]. The virtual machine contains all the same files and config-
urations of a physical machine including the virtual devices that map the functionality
of the physical hardware.

There are two major classes of virtual machines: (a) System VMs and (b) Process
VMs (High Level Language VMs).

System virtual machines are a complete copy of a system so they can emulate
an existing architecture, and run a full operating system (OS). This kind of VM is
built with purposes of having multiple OSs running in the same machine to have easier
setup, minimize use of computing resources and offer better confinement between
applications.

Process virtual machines are less complex, and platform-independent environ-
ments, designed to execute normal applications inside a host operating system. This
kind of VMs enable programs in the same language to be executed in the same way on
different systems. Very common examples are Java Virtual Machine or the Common
Language Runtime for .NET.

Challenges in Virtualization

As per Popek and Goldberg, there are three required properties for a virtualizable
architecture [28].

• Efficiency Property: Provide the ability to execute innocuous instructions di-
rectly on hardware bypassing VMM.

• Resource Control Property: The Virtual machine monitors should be able to
completely control the system. When the guest operating systems try to access
resources, the access should be routed through the virtual machine monitor to
secure any inconsistencies.

• Equivalence Property: Any program running on top of the virtual machine
monitor should perform in a way it is indistinguishable from the case when the
virtual machine monitor does not exist.

Hypervisor – core of system VMs

The hypervisor, also called Virtual Machine Monitor (VMM), is the host machine and
the software that creates and controls the virtualization, allowing multiple isolated
guests to run concurrently within the same physical machine. It permits two or more
operating systems to share a common computing system [12] and works as a control



Green-Cloud 7

interface between the host operating system running on the physical machine and the
guest virtual machines.

There are two types of hypervisors: (a) Type 1, native or bare metal hypervisor
which is executed in the physical machine (b) Type 2, hosted hypervisor that is
executed from within the host OS as an application on an unmodified operating
system (OS). Type 1 is the original model developed by IBM in the 60’s and some
implementation examples are Xen, KVM, Oracle VM, Microsoft Hyper-V or VMware
ESX, while for Type 2 we have solutions like VMware Workstation and VirtualBox.
The hypervisor plays a very important role in cloud environments since it is the key
piece to manage the whole service infrastructure.

Optimizations for performance and efficiency

To perform better virtualization several optimizations were developed in the hyper-
visors. For handling sensitive and privileged instructions to virtualize the CPU, there
are currently three alternative techniques [32].

Full virtualization or virtualization using binary translation and direct execu-
tion is the approach used by VMWare. This approach, doesn’t rely on OS modifica-
tions to help execution, instead it translates kernel code replacing the instructions
that cannot be directly translated to sequences of instructions that have the same
intended effect on the virtual hardware. All the instructions are translated on the fly
and the results are cached for future use. The implementation is optimized to execute
user level code directly on the processor.

This combination of binary translation and direct execution provides a complete
abstraction for the guest OS to be completely decoupled from the underlying hard-
ware. In this kind of virtualization the guest OS is not aware that is being virtualized.
Full virtualization offers the best security and isolation for virtual machines, and sim-
plifies migration and portability as the same guest OS instance can run virtualized or
on native hardware.

Paravirtualization or operating system assisted virtualization refers to virtual-
ization that relies on modifications on the OS to improve performance and efficiency.
The Xen open source project is an application example of this technique that is used
by many big companies.

As opposite to full virtualization the non-virtualizable instructions are replaced
with with hypercalls that communicate directly with the virtualization layer hyper-
visor. Other hypercall interfaces are also added for critical kernel operations such as
memory management, interrupt handling and time keeping. Since building sophisti-
cated binary translation support necessary for full virtualization is hard, modifying
the guest OS to enable paravirtualization is the easier solution.

Hardware assisted virtualization was created to solve the problems in pre-
vious solutions, hardware vendors are rapidly embracing virtualization and starting
to develop new features to simplify virtualization techniques. Both Intel and AMD
started working in 2006, on generations of CPUs, VT-x and AMD-V respectively,
with the objective to target privileged instructions with a new CPU execution mode
feature to allow the hypervisor to run in a new root mode below ring 0. This allows
privileged and sensitive calls to trap automatically to the hypervisor, removing the
need for either binary translation or paravirtualization.

Due to high hypervisor to guest transition overhead and a rigid programming
model, VMware’s binary translation approach currently outperforms first generation



8 Rodrigo Fernandes

hardware assist implementations in most circumstances. Still some 64-bits instructions
are used by VMWare solutions.

Memory hashing was a novel technique to share memory pages developed by
VMware for their ESX Server. This technique [33] allowed to get around modifications
to guest operating system internals or to application programming interfaces. The
basic idea is to identify page copies by their contents. Pages with identical contents
can be shared regardless of when, where, or how those contents were generated.

This approach brings two main advantages, (1) no need to modify, hook, or even
understand guest OS code, (2) easy identification of possible pages to share. To avoid
O(n2) search (all pages against all pages), it uses hashing as key to identify pages
with identical contents efficiently. After positive hash match it does a full comparison
of the page contents to confirm that the pages are in fact identical and not just a
hash collision. The page is only used for read and any subsequent attempt to write
to the shared page will generate a fault, transparently creating a private copy of the
page for the writer.

3.2 Virtual Machines Scheduling

Scheduling is a very important part of the cloud environments, it is the process in
which the provider organizes its infrastructure and where he defines all the process
behind the service. This is described in an algorithm called the scheduling algorithm.

3.2.1 Scheduling Algorithms

The scheduling algorithm is a program expressed as set of well defined rules for de-
termining the most adequate choices on where to allocate a new virtual machine. The
scheduling process is very important in the cloud computing environment because it
is the way it efficiently manages the resources. All the inner factors like speed, utiliza-
tion percentage and efficiency of the resources depend primarily on the kind of the
scheduling algorithm being used in the system.

The scheduler can act upon a big variety of factors, such as CPU usage, avail-
able memory, energy consumption, etc. Various issues arise from scheduling multiple
heterogeneous systems, the predictability is usually very low and the algorithm has a
hard job managing allocations.

The scheduling algorithms are characterized for three parts: the input which de-
fines their initial state, the policies they use to achieve their objective and finally their
final choice. The efficiency of job scheduling has a direct impact on the performance of
the entire cloud environment and many heuristic scheduling algorithms were used to
optimize it. Scheduling in cloud computing environment can be performed at various
levels such as workflow, VM level or task level.

Figure 2 describes the intervenients in the scheduling process and the flow of the
requests.

Scheduling Phases

The scheduling process can be divided in three major phases [24], resource discovery,
system selection and allocation.

Resource Discovery is the first phase and consists in searching and locating
resource candidates that are suitable for allocating the VM. The dynamic and het-
erogeneous nature of the VMs makes efficient resource discovery a challenging issue.



Green-Cloud 9

Fig. 2. Virtual machine scheduling overview

The next step is the application requirement definition which consists in using the
user specified requirements and filtering the resources to eliminate the resources that
do not meet the minimal requirements.

System Selection, the second phase, has the objective to select a resource where
to schedule the VM. In this phase some algorithms gather dynamic information which
is important to make the best mapping between allocation and resource, specially
in heterogeneous and rapidly changing environments. The final selection consists in
choosing a resource with the gathered information that best fits the clients needs and
creates more profit.

VM Allocation is the last phase and consists in submitting the VM to allocation.
To assure service quality, some precautions must be taken, such as prepare the resource
to deploy the VM and as soon as it is deployed monitor its activity and keep track
of its state. By monitoring tasks, the scheduler can conclude that a given job is not
working correctly and may need to re-schedule it. The next step is to notify the user
and cleanup any temporary files used during scheduling.

3.2.2 Algorithm Classes

The algorithms can be classified by several major parameters, in Casavant et al.
[8] they suggest several classes that we grouped by purpose in three major groups:
architectural, scope and flexibility.

a) Architecture/Design

i) Local vs Global: The scale of the scheduling algorithm defines the level at
which it is done, either at the hypervisor level or at a higher level such as datacenter
or cloud level. This factor is very important in terms of architecture because it will
decide the scope in which the system will do scheduling. Global scheduling allocates
VMs to multiple physical machines being able to optimize a system-wide performance
goal. Considering what was said before it is obvious to conclude that cloud scheduling
for IaaS is mostly global.



10 Rodrigo Fernandes

ii) Centralized vs Distributed vs Hierarchical: The scheduling can be done
by a single node or multiple nodes in the system, centralized and distributed re-
spectively. On the centralized approaches there is only one scheduler for the system,
making it easier to monitor and make decisions about the current state. Another
advantage of centralized scheduling is the easy implementation of the scheduler. Sim-
ilarly to other types of centralized types solutions we have a single point of failure,
lack of scalability and fault tolerance.

The decentralized solution consists having no central master, by creating a com-
munication network between the lower level schedulers to make decisions. A very
common approach [29] is to use a Peer-to-peer network that communicates using the
famous Chord algorithm.

Hierarchical is very similar to centralized solutions but with several lower levels
of delegation. In the hierarchical approach schedulers are organized in an hierarchical
way, providing a more scalable and fault-tolerant solution, but not as fault-tolerant
as the distributed approach.

iii) Immediate vs Batch: In the immediate approach, VMs are scheduled as
they enter the system using the system’s scheduling algorithm. Batch allocation runs
in scheduled intervals of time and VMs are grouped in batches to be scheduled as a
group. This technique helps to do a better allocation since we have more information
to do the distribution allowing better matching in the long run.

b) Scope

i) Approximate vs Heuristic: An approximate approach is used when we have
a solution evaluation function. This function grades the solutions and by searching
only a subset may be possible to find a good enough candidate. In big solution spaces
this approach may have a good impact since it avoids full searches that could take
much more time. The heuristic tries to solve the same problem as approximate, search
through big solution sets, but in this case it doesn’t have the same guarantee of success.
It is usually used to obtain faster results.

ii) Load Balancing: Load balancing is a technique used to balance the load on
the system, in a way that allows same performance on all nodes. This solution is more
effective in systems where the nodes are homogeneous since it allows to make decisions
with more precision. The information about the load can circulate in the network
periodically or be sent on-demand. With this information the nodes coordinate the
process of removing work from heavily loaded nodes and placing it at lightly loaded
nodes.

c) Flexibility

i) Static vs Dynamic: In this class the distinction is made based on the time
at which the scheduling or assignment decisions are made. In static scheduling, the
information relative to the system configuration is available before allocation, meaning
that the same allocation would be made within a certain period of time. In dynamic
scheduling exists the possibility of resources join and leave the setup and changes of
local resource usage policies.

ii) Adaptive vs Non-Adaptive: Adaptive approaches take into consideration
the history of the systems. Measures such as previous and current behavior of the
system are used to better assign the VM. This kind of scheduler usually has some in-
telligence that makes him take decisions based on the information it is gathering, they



Green-Cloud 11

can for instance change priorities of some parameter values if they are perceived as be-
ing wrongly influencing the system. In contrast to adaptive schedulers, non-adaptive
schedulers don’t modify its behaviour based on the history. The same parameter will
always weight the same regardless of the history.

3.2.3 Classical Algorithms

Over the years lots of algorithms have been developed and described in the literature.
We classified them by their goal in five categories, capacity driven, deadline/goals,
interference free, and economics/utility economics. Next we overview all the categories
giving some descriptions and examples of existing implementations.

Capacity driven:

Capacity driven algorithms are a very common type of algorithms, usually very simple
and straight forward. As a matter of fact, it was the first kind of scheduling policy
used, mainly because of its simple logic and implementations. With the evolution
of the cloud, more complex scheduling policies started to arise. There are several
types of algorithms following this type of approach, such as Greedy, Round-Robin
and Bag-of-Tasks.

Greedy is one of the simplest algorithms, the logic behind this type of algorithm
is to find a match in the resources of the system where the requested VM can fit. The
first node that meets the requirements is identified and the VM is allocated there.

This means that the greedy algorithm exhausts a node before it goes on to the
next node. As an example, if there are 3 nodes, the first node usage is 60% while the
other two are underloaded, if there are two VMs to be allocated, both are allocated
to the first node. This might result in the increase of its usage to high values while
the other two nodes will still be underloaded. One main advantage is the simplicity,
it is both simple to implement and allocate VMs. As opposite one big disadvantage
is the low utilization and distribution of the available resources.

Round Robin is also a very simple scheduling policy, but in contrast with the
Greedy it mainly focuses on distributing the load equally between all the nodes. Using
this algorithm, the scheduler allocates one VM to a node in a cyclic way. The scheduler
loops through the nodes, one after the other assigning VMs. This process is repeated
while all the nodes have not been allocated at least once, after that the scheduler
returns to the initial node and restarts the process.

For example, if there are 3 nodes and 3 VMs to be allocated, each node would
allocate one of the VMs, equally distributing amongst them. One advantage of this
algorithm is that it utilizes the resources in a uniform way helping to balance the
system load. However, the algorithm can waste more power that needed if all the
machines and under low load.

Weighted Round Robin is an optimized version of the previous algorithm which
takes into consideration the weight of the tasks and the load of the machines. Instead
of equally distributing the number tasks among the machines it equally distributes
the weight, contributing for better performance in heterogeneous sets of tasks.

Bag-of-Tasks (BoT) is another type of scheme common in problems such as
image rendering and software testing. In BoT jobs, tasks are usually independent and
thus, they can be executed in parallel since they have no need for intercommunication
or to share data.



12 Rodrigo Fernandes

The main problem in this type of scheduling is the number of hosts to allocated
since you usually don’t know the total number of tasks, creating a lot of difficulties for
optimization of cost or performance. In Silva et al. [26] they use adaptive heuristics
to optimize this process and to predict the amount of tasks. The approach is based
on adapting the parameters at each task completion allowing the system to maximize
execution time and reduce idle time.

Deadlines/SLAs:

Service Level Agreements (SLAs) are a very common way for a user to define the
required Quality of Service (QoS) parameters, for a requested cloud service. QoS are
parameters which represent constrains or bounds that are related to the provided
service. QoS usually appears related to aspects on computer networks such as service
response time, loss, signal-to-noise ratio, cross-talk, echo, etc. In Cloud environments
there are some different QoS aspects to consider such as deadline, execution time and
overhead. This type of algorithm tries to maximize the parameters to meet the QoS
defined previously.

Abrishami et al. [2] proposes an evolution of Partial Critical Paths (PCP) [1]
which aims to minimize the cost of workflow execution while meeting a user defined
deadline in grids. PCP divides the deadline in several tasks and assigns them to nodes
starting by the exit node. The new solution proposes a one-phase algorithm which is
called IaaS Cloud Partial Critical Paths (IC-PCP), and a two-phase algorithm which
is called IaaS Cloud Partial Critical Paths with Deadline Distribution (IC-PCPD2).
Both the solutions try to fit the previous grid algorithm in the cloud paradigm having
in mind several differences such as on-demand resource provisioning, homogeneous
networks, and the pay-as-you-go pricing model.

The IC-PCPD2 algorithm, replaces the previous assigning policies by the new
pricing model and tries to assign the tasks to currently running machines, only
launches another as last resort.

In other hand, IC-PCP tries to find an available or new machine to assign the
entire path at once.

Particle Swarm Optimization(PSO) [23] bases its evaluation in the velocity
of a task, which is represented as a vector (magnitude and direction). This velocity
is determined based on best position in which the particle has been and the best
position in which any of the particles has been. The algorithm will continue to iterate
until the fitness function objective is considered to be good enough.

Interference free:

Resource interference on OSs is one of the hardest problems with virtualization. Ei-
ther because we are underprovisioning the VMs for cost effectiveness, because we
underestimate the VM needs or because the workloads are very incompatible and
clash in terms of memory access requests. While co-locating virtual machines we aim
to improve resource utilization, but this ends up resulting in performance interference
between the VMs. The most common practice to reduce this effect is overprovisioning
resources to help avoid performance interference. This practice is not very interesting
because it goes against the main objective, optimize resource usage, simply because
we will be giving more resources than VMs need and they will be underutilized.

Recent work still relies on static approaches that suffer from a lot of limitations
due to assumptions about the application behaviour that are not certain a priory.



Green-Cloud 13

DeepDive [21], is a three phase approach to the interference problem. It starts by
using the hypervisor to generate warnings about possible interference, then it starts
a deep analysis and finally it reassesses the distribution of the VMs. It transpar-
ently deals with interference using low-level metrics, including hardware performance
counters and readily available hypervisor statistics about each VM.

Stay-Away [22] is a novel approach to this problem that addresses these limita-
tions, by providing a generic and adaptive mechanism to mitigate the performance
interference on responsiveness-sensitive applications. This solution continuously learns
about the states of execution and tries to predict and prevent any transition that may
cause interference by proactively throttling their execution.

Economics Driven/Utility economics:

In modern society, essential services, also called utilities, are commonly provided in
a way that makes them available to everyone. This kind of services such as water,
electricity, gas, and telephony are classified as essential for daily life routines. These
utility services are accessed so frequently that they need to be available whenever the
consumer requires them, at any time.

Utility is a concept, that evaluates the satisfaction of a consumer while using a
service. In a Cloud environment, utility can be combined with QoS constrains in order
to have a quantitative evaluation of a user’s satisfaction and system performance. This
concept allows clients to be able to pay the services based on their usage and quality
of the service provided [6].

To achieve this, cloud providers cannot continue to focus their systems in the tra-
ditional resource management architecture that treats all service requests to be of
equal importance. Most the works in literature treat users just based on SLA param-
eters, and this means that two users with different characteristics but similar SLAs
have equal importance for the service provider. Instead, they need to provide utility
based services, that can achieve equilibrium between demand and supply, providing
incentives for consumers based QoS resource allocation mechanisms that differentiate
service requests based on their utility.

Utility based services provide more flexibility for both client and provider but
usually require the adoption of some kind of economic or cost theoretical model.

Cloudpack [10] tries to disrupt static pricing models for resources. A typical data
center has different cost based the energy cost, the cooling strategies used and the
current demand of the service. This framework tries to disconnect the dynamic cost
incurred by the providers and the fixed price paid by a customer, with the ability to
formally express workload flexibilities using Directed Acyclic Graphs (DAGs).

It is very hard to minimize the probability of failure in tasks without loosing
revenue by overprovisioning the infrastructure. In Macias et al. [17] they maximize
the fulfilment rate of the SLAs by considering risk of failure in the decision process.
Clients choose the SLAs based on several classes of risk, the higher the risk the lower
the price. They are however unable to explicitly select the VM or set of VMs to
degrade.

In Morshedlou et al. [20] two user hidden characteristics are used to create a
proactive resource allocation approach. Willingness to pay for service and willingness
to pay for certainty aim to decrease impact of SLA violations. The method presented
decides which VMs should release their resources, based on each client willingness
to pay. This approach is similar to Partial Utility SLAs [27] but they assume in the
solution that some amount of SLA violations will occur due to the release of all the



14 Rodrigo Fernandes

resources. They also assume VMs of homogeneous types which is very uncommon in
cloud deployments.

3.3 Energy and Environmental Awareness

As cloud computing evolves and establishes its paradigm, concerns about energy waste
and environment awareness arise. Cloud computing and energy are closely related, the
energy efficiency in the clouds became an issue and lots of research has been done in
the last years.

3.3.1 Scheduling Aspects

Hardware keeps evolving [31], and with new technologies, such as low–power CPUs,
solid state drives and other energy efficient components the energy footprint got
smaller. Even though it is not enough, and for that reason there has also been a
high amount of research done trying new software approaches, such as energy effi-
cient scheduling and resource allocation to reduce this problem.

Green Scheduling

Green scheduling is new paradigm for cloud computing infrastructures, that is con-
cerned about energy waste and environment awareness. Energy aware approaches can
be split in two categories [37], characterized by where they want to reduce energy, in
order to achieve lower energy consumption. Power-aware [14,37,4,35] and Thermal-
aware [19], focus on computer and cooling system power reduction respectively.

In Power-aware solutions the target is the physical machine, and the algorithms
usually aim for aspects such as resource usage and try to maximize the performance
without wasting too much power.

Thermal-aware solutions target is to reduce the emissions of heat from the com-
puter components and with it reduce the wasted energy in cooling the machines.
Although thermal-aware scheduling does not seem to be directly related to energy
consumption, the cooling in these computing facilities consumes huge amounts of
energy.

Figure 3 inspired in [37] groups the areas of study for energy aware algorithms
and highlights the topics in which we focus our solution.

Power-Aware Scheduling

Power-aware scheduling is the of focus of our work and also a very broad under
investigation area. From the CPU energy, to the ventilation of the machines there
are lots of ways to approach the study of energy waste in a physical machine. As
explained before some works focus on resource management and try to optimize their
usage, reducing the number of machines on-line being able to cut a big part of the
energy spent.

Very common approaches focus specially on CPU and how it is being used, others
also take into consideration RAM and even the communications between machines.
With techniques such as load balancing providers try to distribute machines in the
datacenters in such a way that not only the workloads complement each other and
don’t keep competing for memory access, but also to reduce communication between
them.



Green-Cloud 15

Fig. 3. GreenCloud: Green items represent areas in range for this paper

Virtual machine consolidation is crucial to power management, but it is always a
hard problem to solve. Gather all VMs to the same physical machine to avoid wasting
energy is not possible because we will overcommit its resources. The best solutions
try to gather all the info available, such as SLAs and also previous usage footprints
to better allocate the jobs. Every resource matters, but we always have to trade
something to better fulfill one objective.

3.3.2 Energy Aspects

The energy used by the machines can be characterized based on its values changing
over time or being of constant amount all the time [14].

Static energy consumption is the part of the energy used as a base for the
machine. This is all the energy used by the components even when they are in idle
mode, not performing any kind of work.

Dynamic energy consumption, as opposite, is calculated in terms of the pro-
portion of resources being utilized by the machine. In this case we are measuring the
energy used by the components while doing some work.

Another important factor about energy is its sources, not only because it can influ-
ence the price but also because the origin can have a bad impact in the environment.

When we are managing a datacenter all this parameters need to be taken in
consideration. Based on the SLAs defined with the client the provider can improve
the energy usage for example by delaying the schedule of a VM for some time, waiting
for a time when the energy being used comes from clean sources.

Other approaches can also use daytime to decide, during night the energy is usually
cheaper because the demand is smaller and that can be a good reason to delay a job
from a client that doesn’t have a deadline.

This kind of approaches are not much common but are definitely a good opportu-
nity to reduce the price for the client and still reduce costs for the provider.

3.3.3 Efficiency Aspects

Multiple approaches have been developed and described in the literature concern-
ing energy waste and environmental footprint. Next we characterize several relevant
solutions with interest for our work.



16 Rodrigo Fernandes

Dynamic Voltage Frequency Scaling

Some of these approaches primary target is dynamic voltage frequency scaling (DVFS)[14,13,19,36].
DVFS, dynamically scales the processor frequency according to the global CPU load
and regardless of the VM local loads, and hence, it helps reducing power consumption.

This kind of approach has several problems, since it targets a very sensitive part
of the machines, the CPU. The classical example is the heterogeneous environment
where two virtual machines have opposite needs, for example, one needs 200MHz and
the other 1000MHz. The common scheduler will probably try to find a middle spot,
600MHz, but that is far from good for the second machine. The first is getting the
triple needed while the second if almost in half of the needed computing power.

To solve this, some solutions try to distribute workloads by need and are able
to have similar VMs in the same physical machine, while others will still reduce the
power but will give more execution time to the VMs being underloaded.

Energy Efficiency Algorithms

Efficiency is a major goal in scheduling, specially when every minimal improvement
can lead to major effects in the whole system. The typical factors that are targeted
in terms of efficiency are resources and energy.

Younge et al. [37] tries to achieve maximum energy efficiency by combining a
greedy algorithm with live migration. It minimizes power consumption within the
data center by allocating in each node as many VMs as possible. It runs through each
VM in the queue waiting to be scheduled and the first node in the priority pool is
selected if it has enough virtual cores and capacity available for the new VM.

Beloglazov et al. (2010) [3] presents a decentralized architecture of a resource
management system for cloud data centers that aims to use continuous optimization
policies of VM placement. They look at factors such as CPU, RAM, network band-
width utilization and physical machines temperature to better reallocate machines
and improve overall efficiency.

In Beloglazov et al. (2012) [4] they detect over and under utilization peaks to
migrate VMs between hosts and minimize the power consumption in the datacenter.

Von et al. [14] uses a batch scheduling approach that is based on DVFS. The VMs
are allocated starting with the ones with more CPU requirements and in each round
it tries to reduce frequencies to reduce power consumption.

EQVMP (Energy-efficient and QoS-aware Virtual Machine Placement) [35] is a
solution with three objectives, inter-machine communication and energy redution with
load balancing. They group the machines in groups to reduce communication and the
allocation is done by finding the machine with the resource availability closer to the
request. By controling the information flow they manage to migrate VMs and keep
improving the disposition of the VMs.

ThaS (Thermal-aware Scheduler) [19] is different from the previous solutions, it
is thermal-aware. It’s scheduling policies take into consideration the temperature of
the machines and together with CPU frequency they apply DVFS and load balancing
techniques. Their main limitation is the model they use for CPU temperature which
only works for single core CPUs.

All this approaches have tried to reduce energy consumption and improve resource
usage, but none that I know, have used the concept of DVFS in conjunction with par-
tial utility. EcoScheduler does transparent DVFS scheduling with resource awareness
(mainly CPU performance) and tries to achieve maximum request satisfaction using
the concept of Partial Utility SLAs [27].



Green-Cloud 17

4 Proposed Solution

A high level description of the proposed solution’s architecture for EcoScheduler is
depicted in Figure 5. In our solution, we organize the system as a structured hier-
archical network headed by the master scheduler (MS) and where the datacenter is
partitioned in sectors that aggregate several physical machines.

At the datacenter level, we have a master node that carries out a first level ar-
bitration among the sectors. In each sector there is a Local Scheduler (LS) that is
responsible for all scheduling operations regarding the contained physical machines.
Each LS will implement our utility-based scheduling algorithm.

In Section 4.1 we describe in detail each of the architecture’s entities and the
interactions between them. In Section 4.2 we describe our energy efficient scheduling
algorithm. In Section 4.3 we present the technologies that will support our work.

4.1 Architecture

In this section we present a simple use case, the network topology and the main
information exchanged between the entities of our system.

Use case:

Fig. 4. Use case scenario

The architecture can be divided in three layers, client layer, hierarchical layer and
physical layer, as depicted by Figure 4. Figure 4 describes all the steps in the high
level process of reservation of the VMs. The client layer, which includes all the clients
willing to reserve VMs in our system, communicates with the hierarchical layer via
the master node. In the second layer the request will be processed and an allocation
will be made having in consideration the established SLAs and also the energy and
resource usage objectives of the system. This is accomplished by passing the request
to the specified LS selected which will then allocate a VM in the infrastructure layer.
After this workflow is completed the LSs will keep monitoring the physical machines
to assure quality of service (QoS).

Distributed Architecture

To accomplish a scalable scheduling system we chose to use a hierarchical architec-
ture, depicted in greater detail Figure 5. The architecture is composed of two main



18 Rodrigo Fernandes

Fig. 5. High level architecture

entities, the global scheduler (GS) and hierarchy the local schedulers (LSs). For small
clusters the architecture can be composed of only two levels of hierarchy. The first
one is composed by the GS followed by the LSs that manage their sectors of physical
machines. If the system needs more partitioning we can achieve it simply by creating
sub-levels of GS that delegate scheduling to the next level.

Each level in the architecture communicates with the upper level by providing
information about their current state. This information can be classified in two cate-
gories: static and dynamic.

Static information does not change over time. There are several examples of static
information such as operating system, processor (range of frequencies and respective
voltages), number of cores, disk space, RAM, etc.

Dynamic information is all the remaining data that changes over time. Some exam-
ples of dynamic information are: current CPU frequency (per core), CPU occupation
(per core), number of allocated VMs, free disk space, free RAM.

The information about the machines, is periodically sent to the LS using JSON
format. LSs send information about their machines state periodically to the RC. The
RC processes all the information and creates a summary that is also periodically sent
to the master node. This summary includes average energy efficiency level, maximum
CPU available and maximum available memory (disk and RAM).

The power consumed by computing node in a datacenter consists of the consump-
tion by CPU, storage and network communication. In comparison to other system



Green-Cloud 19

resources, CPU consumes larger amount of energy [5,15,25], and hence in this work
we focus on managing its power consumption and efficient usage. Recent studies, such
as [13,36,25], show that an idle server consumes approximately 70% of the power con-
sumed by the server when running at full CPU speed, justifying that servers should
be turned off to reduce total power consumption as soon as possible.

4.2 Scheduling Algorithm

As mentioned before, our system has two types of scheduling, global scheduling and
local scheduling. Local scheduling happens in all the nodes that are leafs in the hier-
archy tree, and basically is the algorithm which really allocates the VM. The upper
nodes in the hierarchy are considered global schedulers since they work over sum-
maries of the information.

Data Structures

The scheduling is based on the information collected by the schedulers about the
sectors (in the GSs) or the hosts (in the LSs). In our solution we take into consideration
several characteristics of the hosts, such as CPU usage, number of CPU cores, RAM
and bandwidth available. Our main data structure is a list of the sectors (or hosts)
grouped by the average energy efficiency level, that can be implemented as a tree. Each
level has the sectors sorted by CPU availability. This structure is easy to maintain and
helps finding the most efficient sector with the minimum resources to fulfill the SLAs
very fast. In the second part of the local algorithm we use variation of the previous
data structure that also groups the hosts by class, used to simplify the second part
of the algorithm if increasing DVFS level.

Algorithms

Our scheduling algorithm takes two main properties into consideration, Energy Ef-
ficiency Level (EEL) and the CPU Available (measured in MFLOPS) (CPUA). The
EEL is partitioned in five levels from A..F (identified as 1..6), A is more efficient
and F is the less efficient. This levels are calculated based on the energy (kWh) as
a factor of millions of floating point operations (MFLOPS). Each class of machine
in the datacenter has a well defined mapping between the DVFS level and the EEL.
Algorithm 1 presents the pseudocode for the global scheduling. This scheduling phase
acts upon sectors in the datacenter.

Algorithm 1 does the first level of arbitration between the sectors based on the
sectorsByEEL (list of sectors grouped by EEL and sorted by CPUA). Since the
sectors are already sorted, it picks the first possible sector with available resources
and better efficiency level.

Algorithm 2 is the generic algorithm for the local scheduling phase. In this phase
we are choosing the host where we will allocate the machine. This is very similar to
the global scheduling phase because it just tries to find the best match in the available
hosts. FitsCriteria is the method that implements the comparison of the available
resources with the needed resources. UpdateHostsState is responsible for updating
the lists, to avoid compromising scalability, is very simple and efficient. In the worse
case, it needs to remove one element from a list and insert it ordered in other list
which has O(log(n)) complexity. Allocate is a direct request sent to the hypervisor
to allocate the VM with the defined resources.



20 Rodrigo Fernandes

Algorithm 1 Global scheduling: Best-Fit

Require: sectorsByEEL available sectors . grouped by EEL and sorted by CPUA
Require: vm VM to be allocated
1: function GlobalScheduling(sectorsByEEL, vm)
2: selectedSector ← null
3: eel ← sectorsByEEL
4: sector ← eel.getSectors()
5: do
6: if FitsCriteria(sector, vm) then
7: selectedSector ← sector
8: break
9: end if

10: if ¬sector.hasNext() ∧ eel.hasNext() then
11: eel ← eel.next()
12: sector ← eel.getSectors()
13: else
14: sector ← sector.next()
15: end if
16: while (sector.hasNext() ∧ sector.MaxCPUA > vm.neededCPU)
17: if selectedSector = null then . Fallback to the first sector
18: selectedSector ← sectorsByEEL.next().getSectors
19: end if
20: UpdateSectorsState(selectedSector, vm) . asynchronous call
21: Allocate(selectedSector, vm)
22: end function

Algorithm 2 Local scheduling: Efficiency-Driven Approximate Best-Fit

Require: hostsByEEL available hosts . grouped by EEL and sorted by CPUA
Require: vm VM to be allocated
1: function GenericLocalScheduling(hostsByEEL, vm)
2: selectedHost ← null
3: eel ← hostsByEEL
4: host ← eel.getHosts()
5: do
6: if FitsCriteria(host, vm) then
7: selectedHost ← host
8: break
9: end if

10: if ¬host.hasNext() ∧ eel.hasNext() then
11: eel ← eel.next()
12: host ← eel.getHosts()
13: else
14: host ← host.next()
15: end if
16: while (host.hasNext() ∧ host.CPUA > vm.neededCPU)
17: if selectedHost 6= null then
18: UpdateHostsState(selectedHost, vm) . asynchronous call
19: Allocate(selectedHost, vm)
20: return true
21: end if
22: return false
23: end function



Green-Cloud 21

Algorithm 3 Local scheduling: Efficiency-Driven Increasing Best-Fit

Require: hostsByEEL available hosts . grouped by EEL and class, sorted by CPUA
Require: machineClassesByEEL machine classes . sorted by next EEL
Require: vm VM to be allocated
1: function IncreasingLocalScheduling(hostsByEEL, vm)
2: if GenericLocalScheduling(hostsByEEL, vm) = true then
3: return true
4: end if
5: selectedHost ← null
6: eel ← hostsByEEL
7: class ← machineClassesByEEL.getClasses(eel.id)
8: host ← eel.getHosts(class.id)
9: do

10: if FitsIncrease(host, vm) then
11: IncreaseDVFS(selectedSector, vm)
12: selectedHost ← host
13: break
14: end if
15: if ¬host.hasNext() ∧ class.hasNext() then
16: class ← class.next()
17: host ← eel.getHosts(class.id)
18: else if ¬host.hasNext() ∧ ¬class.hasNext() ∧ eel.hasNext() then
19: eel ← eel.next()
20: class ← machineClassesByEEL.getClasses(eel.id)
21: host ← eel.getHosts()
22: else
23: host ← host.next()
24: end if
25: while (host.hasNext() ∧ host.CPUA > vm.neededCPU)
26: if selectedHost == null then . fallback to energy oblivious partial utility

scheduling
27: selectedHost ← getHostByPartialUtility()
28: end if
29: UpdateSectorsState(selectedSector, vm) . asynchronous call
30: Allocate(selectedSector, vm)
31: return true
32: end function



22 Rodrigo Fernandes

Algorithm 3 is the advanced algorithm used when no host can fulfill the VM
requirements. This algorithm finds the host which will have the better EEL when
increased the DVFS level and that can then allocate the VM. FitsIncrease is very
similar to FitsCriteria, but instead of comparing CPUA it compares future CPUA
if DVFS level is increased. IncreaseDVFS sends a request to the hypervisor for
increasing the DVFS level of a host and updates the lists, having the same impact
as UpdateHostsState. If after all this we still could not fit the VM in any host, we
will apply the Partial Utility SLAs [27]. The method getHostByPartialUtility will
return a host prepared for allocation after applying the partial utility algorithm.

4.3 Software Architecture and Implementation Issues

Our solution will be implemented in two phases. The first phase will be to implement
our solution using a cloud simulator. The simulator will allow us to have an idea of
how the solution will behave in a scenario with a big cluster with different kinds of
resources. The chosen simulator was CloudSim [7] because it is widely used by many
authors, has a lot of needed functions, is easily extensible and made distributed by
Cloud2Sim [11]. Figure 6 inspired by [27] and based on the documentation page 5

depicts the main changes that need to be done in CloudSim to simulate our solution.
In the second phase we will implement our algorithm on a real cloud environment.

We will use OpenStack referenced previously in Section 3.1.1 because it is open-source
and has a very good community supporting it.

Fig. 6. Highlighted extensions to the CloudSim simulation environment

5 CloudSim class tree: http://www.cloudbus.org/cloudsim/doc/api/org/cloudbus/

cloudsim/package-tree.html

http://www.cloudbus.org/cloudsim/doc/api/org/cloudbus/cloudsim/package-tree.html
http://www.cloudbus.org/cloudsim/doc/api/org/cloudbus/cloudsim/package-tree.html


Green-Cloud 23

5 Evaluation Methodology

In this section we present the metrics and the test environment that we will use to
evaluate our solution. We will use the following metrics to evaluate the performance
of our algorithm:

• Makespan (in seconds): or time since last finished job is used to understand if
the scheduler is being performant.

• Energy consumption (in kWh): understand the energy profile of the overall
system and estimate the costs.

• Power consumed over time (in kW): perceive the power supplied to our
system and take into consideration its source.

• Energy per work unit (in kWh/MFLOP): measure the energy efficiency of
the system.

• Total income (in USD): overview of the total incoming money payed by the
clients.

• Cost of used resources (in USD): cost of all the infrastructure hardware and
maintenance, used in conjunction with the income to calculate the revenue.

• Number of direct, delayed and reduced allocations: used to interpret how
the system is allocating the VMs. If it is using Algorithm 2 for direct scheduling,
Algorithm 3 for DVFS scaling or using the partial utility reductions.

• Idle resources: perceive if the system is wasting energy with idle resources.
• Average resource usage (in %): how are the resources in the system being

used, specially to understand if we have the system under low usage.
• Average user satisfaction: understand how we are fulfilling the SLAs

Our tests will be run on CloudSim simulator to evaluate the scalability and be-
havior of the solution for large number of sectors and users. CloudSim will be the tool
to make a comparison between centralized schedulers approach and our hierarchical
solution. We will also implement our solution in a real cloud environment, OpenStack,
to assert how the algorithm behaves in a non-simulation scenario.

6 Conclusions

We started this document by presenting the cloud and the importance of virtualization
in the global view about scheduling. We described and classified some cloud solutions,
the major classes of algorithms and some classic scheduling approaches. The analysis
of all theses topics allowed us to have the necessary knowledge to identify some aspects
that have not been explored. Once identified the shortcomings, we proposed a solution
that considers the datacenter as a structured hierarchical network divided in sectors
with local schedulers that interact with the upper levels by exchanging information
about the state of their machines. Our scheduling solution efficiently assigns proper
resources to jobs according to their requirements and the energy used. Finally, we
presented the metrics that will support the evaluation of our solution.

References

1. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Cost-driven scheduling of grid workflows
using partial critical paths. Parallel and Distributed Systems, IEEE Transactions on
23(8), 1400–1414 (2012)



24 Rodrigo Fernandes

2. Abrishami, S., Naghibzadeh, M., Epema, D.H.: Deadline-constrained workflow schedul-
ing algorithms for infrastructure as a service clouds. Future Generation Computer Sys-
tems 29(1), 158–169 (2013)

3. Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized cloud
data centers. In: Proceedings of the 2010 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing. pp. 826–831. CCGRID ’10, IEEE Computer
Society, Washington, DC, USA (2010), http://dx.doi.org/10.1109/CCGRID.2010.46

4. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuris-
tics for energy and performance efficient dynamic consolidation of virtual machines in
cloud data centers. Concurrency and Computation: Practice and Experience 24(13),
1397–1420 (2012)

5. Buyya, R., Beloglazov, A., Abawajy, J.: Energy-efficient management of data center
resources for cloud computing: a vision, architectural elements, and open challenges.
In: PDPTA 2010: Proceedings of the 2010 International Conference on Parallel and
Distributed Processing Techniques and Applications. pp. 6–17. CSREA Press (2010)

6. Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the 5th
utility. Future Generation computer systems 25(6), 599–616 (2009)

7. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim: a
toolkit for modeling and simulation of cloud computing environments and evaluation of
resource provisioning algorithms. Software: Practice and Experience 41(1), 23–50 (2011)

8. Casavant, T.L., Kuhl, J.G.: A taxonomy of scheduling in general-purpose distributed
computing systems. Software Engineering, IEEE Transactions on 14(2), 141–154 (1988)

9. Daley, R.C., Dennis, J.B.: Virtual memory, processes, and sharing in multics. Commun.
ACM 11(5), 306–312 (May 1968), http://doi.acm.org/10.1145/363095.363139

10. Ishakian, V., Sweha, R., Bestavros, A., Appavoo, J.: Cloudpack. In: Middleware 2012,
pp. 374–393. Springer (2012)

11. Kathiravelu, P., Veiga, L.: An elastic middleware platform for concurrent and distributed
cloud and map-reduce simulation-as-a-service. IEEE Transactions on Cloud Computing
(2014)

12. Katzan, Jr., H.: Operating systems architecture. In: Proceedings of the May 5-7, 1970,
Spring Joint Computer Conference. pp. 109–118. AFIPS ’70 (Spring), ACM, New York,
NY, USA (1970), http://doi.acm.org/10.1145/1476936.1476960

13. Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G.: Power and per-
formance management of virtualized computing environments via lookahead control.
Cluster computing 12(1), 1–15 (2009)

14. von Laszewski, G., Wang, L., Younge, A.J., He, X.: Power-Aware Scheduling of
Virtual Machines in DVFS-enabled Clusters. In: Proceedings of the 2009 IEEE
International Conference on Cluster Computing (Cluster 2009). IEEE, New Or-
leans (31 Aug – Sep 4 2009), http://cyberaide.googlecode.com/svn/trunk/papers/
09-greenit-cluster09/vonLaszewski-cluster09.pdf

15. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud computing
systems. The Journal of Supercomputing 60(2), 268–280 (2012)

16. Lett, A.S., Konigsford, W.L.: Tss/360: A time-shared operating system. In: Proceedings
of the December 9-11, 1968, Fall Joint Computer Conference, Part I. pp. 15–28. AFIPS
’68 (Fall, part I), ACM, New York, NY, USA (1968), http://doi.acm.org/10.1145/
1476589.1476593

17. Macias, M., Guitart, J.: A risk-based model for service level agreement differentiation
in cloud market providers. In: Distributed Applications and Interoperable Systems. pp.
1–15. Springer (2014)

18. Meyer, R., Seawright, L.: A virtual machine time-sharing system. IBM Systems Journal
9(3), 199–218 (1970)

19. Mhedheb, Y., Jrad, F., Tao, J., Zhao, J., Ko lodziej, J., Streit, A.: Load and thermal-
aware vm scheduling on the cloud. In: Algorithms and Architectures for Parallel Pro-
cessing, pp. 101–114. Springer (2013)

http://dx.doi.org/10.1109/CCGRID.2010.46
http://doi.acm.org/10.1145/363095.363139
http://doi.acm.org/10.1145/1476936.1476960
http://cyberaide.googlecode.com/svn/trunk/papers/09-greenit-cluster09/vonLaszewski-cluster09.pdf
http://cyberaide.googlecode.com/svn/trunk/papers/09-greenit-cluster09/vonLaszewski-cluster09.pdf
http://doi.acm.org/10.1145/1476589.1476593
http://doi.acm.org/10.1145/1476589.1476593


Green-Cloud 25

20. Morshedlou, H., Meybodi, M.: Decreasing impact of sla violations: A proactive resource
allocation approach for cloud computing environments. IEEE Transactions on Cloud
Computing p. 1 (2014)

21. Novaković, D., Vasić, N., Novaković, S., Kostić, D., Bianchini, R.: Deepdive: transpar-
ently identifying and managing performance interference in virtualized environments.
In: Proceedings of the 2013 USENIX conference on Annual Technical Conference. pp.
219–230. USENIX Association (2013)

22. Rameshan, N., Navarro, L., Monte, E., Vlassov, V.: Stay-away, protecting sensitive ap-
plications from performance interference. In: Proceedings of the 15th International Mid-
dleware Conference. pp. 301–312. ACM (2014)

23. Rodriguez Sossa, M., Buyya, R.: Deadline based resource provisioning and scheduling
algorithmfor scientific workflows on clouds (2014)

24. Schopf, J.M.: Grid resource management. chap. Ten Actions when Grid Scheduling: The
User As a Grid Scheduler, pp. 15–23. Kluwer Academic Publishers, Norwell, MA, USA
(2004), http://dl.acm.org/citation.cfm?id=976113.976116

25. Sharifi, L., Rameshan, N., Freitag, F., Veiga, L.: Energy efficiency dilemma: P2p-cloud
vs. datacenter. IEEE Transactions on Cloud Computing (2014)

26. Silva, J.N., Veiga, L., Ferreira, P.: A2ha—automatic and adaptive host allocation in
utility computing for bag-of-tasks. Journal of Internet Services and Applications 2(2),
171–185 (2011)

27. Simao, J., Veiga, L.: Partial utility-driven scheduling for flexible sla and pricing arbitra-
tion in clouds. IEEE Transactions on Cloud Computing (2013)

28. Smith, J., Nair, R.: Virtual Machines: Versatile Platforms for Systems and Processes
(The Morgan Kaufmann Series in Computer Architecture and Design). Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (2005)

29. Vasques, J.L.V.: A decentralized utility-based scheduling algorithm for grids
30. Vecchiola, C., Pandey, S., Buyya, R.: High-performance cloud computing: A view of

scientific applications. In: Proceedings of the 2009 10th International Symposium on
Pervasive Systems, Algorithms, and Networks. pp. 4–16. ISPAN ’09, IEEE Computer
Society, Washington, DC, USA (2009), http://dx.doi.org/10.1109/I-SPAN.2009.150

31. Venkatachalam, V., Franz, M.: Power reduction techniques for microprocessor systems.
ACM Computing Surveys (CSUR) 37(3), 195–237 (2005)

32. VMware: Understanding full virtualization, paravirtualization and hardware assist
(2007), http://www.vmware.com/resources/techresources/1008

33. Waldspurger, C.A.: Memory resource management in vmware esx server. ACM SIGOPS
Operating Systems Review 36(SI), 181–194 (2002)

34. Wang, L., Von Laszewski, G., Younge, A., He, X., Kunze, M., Tao, J., Fu, C.: Cloud
computing: a perspective study. New Generation Computing 28(2), 137–146 (2010)

35. Wang, S.H., Huang, P.W., Wen, C.P., Wang, L.C.: Eqvmp: Energy-efficient and qos-
aware virtual machine placement for software defined datacenter networks. In: Informa-
tion Networking (ICOIN), 2014 International Conference on. pp. 220–225. IEEE (Feb
2014)

36. Wu, C.M., Chang, R.S., Chan, H.Y.: A green energy-efficient scheduling algorithm using
the dvfs technique for cloud datacenters. Future Generation Computer Systems 37, 141–
147 (2014)

37. Younge, A.J., Von Laszewski, G., Wang, L., Lopez-Alarcon, S., Carithers, W.: Efficient
resource management for cloud computing environments. In: Green Computing Confer-
ence, 2010 International. pp. 357–364. IEEE (2010)

http://dl.acm.org/citation.cfm?id=976113.976116
http://dx.doi.org/10.1109/I-SPAN.2009.150
http://www.vmware.com/resources/techresources/1008


26 Rodrigo Fernandes

A
A
lg
o
ri
th

m
ch

a
ra

ct
e
ri
st
ic
s

L
o
c
a
l
v
s

G
lo
b
a
l

S
ta

ti
c
v
s

D
y
n
a
m
ic

C
e
n
tr
a
li
z
e
d

v
s

D
is
tr
ib
u
te

d
A
d
a
p
ti
v
e
v
s

N
o
n
-A

d
a
p
ti
v
e

L
o
a
d

B
a
la
n
c
in
g
Im

m
e
d
ia
te

v
s

B
a
tc
h

A
p
p
ro

x
im

a
te

v
s

H
e
u
ri
st
ic

A
2
H
A

G
lo

b
a
l

D
y
n
a
m

ic
C

en
tr

a
li
ze

d
A

d
a
p
ti

v
e

N
o

Im
m

ed
ia

te
H

eu
ri

st
ic

IC
-P

C
P

G
lo

b
a
l

D
y
n
a
m

ic
C

en
tr

a
li
ze

d
N

o
n
-A

d
a
p
ti

v
e

N
o

Im
m

ed
ia

te
-

IC
-P

C
P
D
2

G
lo

b
a
l

D
y
n
a
m

ic
C

en
tr

a
li
ze

d
N

o
n
-A

d
a
p
ti

v
e

N
o

Im
m

ed
ia

te
-

P
S
O

G
lo

b
a
l

D
y
n
a
m

ic
C

en
tr

a
li
ze

d
N

o
n
-A

d
a
p
ti

v
e

N
o

Im
m

ed
ia

te
A

p
p
ro

x
im

a
te

S
ta

y
-A

w
a
y

G
lo

b
a
l

D
y
n
a
m

ic
C

en
tr

a
li
ze

d
A

d
a
p
ti

v
e

N
o

Im
m

ed
ia

te
-

B
e
lo
g
la
z
o
v

2
0
1
0

G
lo

b
a
l

D
y
n
a
m

ic
D

is
tr

ib
u
te

d
N

o
n
-A

d
a
p
ti

v
e

Y
es

Im
m

ed
ia

te
-

B
e
lo
g
la
z
o
v

2
0
1
2

G
lo

b
a
l

D
y
n
a
m

ic
D

is
tr

ib
u
te

d
N

o
n
-A

d
a
p
ti

v
e

Y
es

Im
m

ed
ia

te
-

V
o
n

G
lo

b
a
l

D
y
n
a
m

ic
C

en
tr

a
li
ze

d
N

o
n
-A

d
a
p
ti

v
e

N
o

B
a
tc

h
-

E
Q
V
M

P
G

lo
b
a
l

D
y
n
a
m

ic
C

en
tr

a
li
ze

d
N

o
n
-A

d
a
p
ti

v
e

Y
es

Im
m

ed
ia

te
-

T
h
a
S

G
lo

b
a
l

D
y
n
a
m

ic
C

en
tr

a
li
ze

d
N

o
n
-A

d
a
p
ti

v
e

Y
es

Im
m

ed
ia

te
-

C
lo
u
d
p
a
ck

G
lo

b
a
l

D
y
n
a
m

ic
C

en
tr

a
li
ze

d
N

o
n
-A

d
a
p
ti

v
e

N
o

Im
m

ed
ia

te
-

M
a
c
ia
s

G
lo

b
a
l

D
y
n
a
m

ic
C

en
tr

a
li
ze

d
N

o
n
-A

d
a
p
ti

v
e

N
o

Im
m

ed
ia

te
-

M
o
rs
h
e
d
lo
u

G
lo

b
a
l

D
y
n
a
m

ic
C

en
tr

a
li
ze

d
N

o
n
-A

d
a
p
ti

v
e

N
o

Im
m

ed
ia

te
-

P
a
rt
ia
l
U
ti
li
ty

G
lo

b
a
l

D
y
n
a
m

ic
C

en
tr

a
li
ze

d
N

o
n
-A

d
a
p
ti

v
e

N
o

Im
m

ed
ia

te
-

T
a
b
le

1
.

A
lg

o
ri

th
m

s
ch

a
ra

ct
er

is
ti

cs



Green-Cloud 27

B Planning

Planning

Tasks Details Duration

Introduction to CloudSim
- Code Study
- Tutorials and Examples

January (2 weeks)
January (1 week)

Implementation on CloudSim
- Set up network topology
- Implement algorithm

February (1 week)
February (2 weeks)

Implementation on Cloud environment

- Install OpenStack
- Set up network topology
- OpenStack API’s
- Implement algorithm

March (1 week)
March (1 week)
March (1 week)
March (1 week)
April (4 weeks)

Conclusion of Implementation - Conclude any unimplemented functionality May (4 weeks)

Performance Measurements - Evaluate implemented solution
June (4 weeks)
July (2 weeks)

Thesis final report writing - Write thesis report
July (2 weeks)
August (4 weeks)

Review and Submission - Report review and submission September (2 weeks)

Documentation - Document design choices, code and tests January - September

Bi-weekly meetings - Analyze the progress of the work January - September
Table 2. Planning schedule


	Green-Cloud: Economics-inspired Scheduling, Energy and Resource Management in Cloud Infrastructures

