
RATEE - Resource Auction Trading at Edge
Environments

Diogo Paulo Dias
Instituto Superior Técnico, Universidade de Lisboa

Abstract—Right now we use the Cloud for multiple operations,
such as computing and storage. To be able to provide these
services to millions of people with great reliability, large data
centers are needed. But these data centers have its limitations,
such as bandwidth, because the data is all transported to these
data centers, and also latency, due to the distance between those
data centers and personal devices. With that limitations a new
paradigm emerged, Edge Computing. This paradigm involves
performing computations or other types of operations on devices
closer to users’ personal devices. The resources of these devices
are allocated to host applications. These applications can be
allocated in various ways, voluntarily, or by exchange. What
we’re going to focus on is using payments, more specifically,
using auctions to allocate resources to an application. In this
work, we created a prototype called RATEE that aims to allocate
resources (which are used to deploy applications) using auctions
as a mechanism for exchanging resources and paying to obtain
them.

I. INTRODUCTION

Cloud Computing is a mature environment heavily used
because of its properties like global access, pay for what
you use, resource elasticity, and others [1]. To meet these
alluring properties, typically Cloud Computing is executed
with a couple of data centers at the Internet’s backbone. This
causes Cloud Computing to work mostly at a long distance
from the Internet’s edge with Wide Area Network latencies
and expensive bandwidth for data to reach it.

The Internet Of Things paradigm is rising to new levels,
enabling new concepts such as smart cities. A smart city is one
which uses information and communication technologies to
make the city services and monitoring more aware, interactive
and effective [2]. This information feeds the network’s edge
with a lot of data and this data needs to be transfered to the
Cloud data centers in order to be processed. The transfer of
large amounts of data will cause bandwidth saturation and
a big latency. An effective pre-processing mechanism at the
network’s edge would reduce the amount of data to send
(to be processed or stored at Cloud) reducing the bandwidth
consumption and the latency to transport that data. The com-
puting power and storage are also growing at the networks
edge: Raspberry PI [3], [4], laptops, desktops, routers, hubs
and others. Most of the time these resources are actually
underutilized. This inefficiency is opening the doors to new
studies, tools and migrations to the Edge Computing in order
to provide services with low latency and low bandwidth
requirements.

There are still many difficulties in handling edge cloud
resources. A structured view of the existing resources, their

characteristics and the role of all entities involved in the
edge cloud environment is vital. In addition, reconfigurations
often need to be performed in order to modify or allocate
existing virtual resources, depending on the usage or the
service level agreement. Inefficient allocation of resources has
a detrimental impact on performance and costs and also impact
on the usability of the system.

Developing resource management techniques that guarantee
scalability, performance, manageability and adaptability for
the edge cloud environment is crucial to resolve the afore-
mentioned challenges. Traditional approaches, such as system
optimization, focus solely on system performance metrics
rather than economic factors, such as revenue, cost, income,
and profit [5]. Comparing with the system optimization ap-
proach, economic approaches and pricing can provide the
following advantages:

1) The demand for resources depends on the needs of
the users. Also, the resources provided depend on the
capacity and needs of the providers. There may be times
when the demand is higher than the supply or vice-versa,
the supply is higher than demand. Pricing/economic
strategies can be used to solve the problem of scarce
or abundant resources originated from dynamic demand
and supply prices.

2) There are various entities, e.g. stakeholders, end-users,
cloud providers, in edge cloud environment that have
different objectives, e.g. cost, profit, revenue, income,
utility, performance, scalability, as well as different
constraints, e.g., the budget and the technology. There
are times when these objectives often clash with each
other, and this conflict can be efficienlty overcome
with an economic/price model. Using economic/pricing
models for negotiation mechanisms can result in optimal
solutions for entities with different objectivies, achievied
in a mostly decentralized manner.

3) In edge cloud environments, the resource providers’
profit must be maximized while fulfilling the client
requirements. For this reason, price models based on cost
minimization and benefit maximization may be used.

4) One of the most important services in the cloud is Video
on Demand. This is a service which offers video for
people to watch, e.g., Netflix, HBO, Youtube. These
providers offer tons of terabytes of media, overwhelming
the networks’ bandwidth. Price/economic approaches,
e.g. smart data pricing, have been used to regulate user

1



demands and have an efficiently use of bandwidth. For
areas with lower resources capabilities may have greater
prices to reduce the consume.

Therefore, economic and pricing approaches for resource
management have been researched, developed and sucessfully
adopted to manage cloud computing deployments.

II. RELATED WORK

There are already some systems that implement allocation
resources using market algorithms. We will talk a little about
them and their differences.

A. Multi-Round-Sealed Sequential Combinatorial Auction

A multi-round-sealed sequential combinatorial auction
mechanism is proposed by Zhang et al. [6]. This auction is
combinatorial, meaning the good can be a bundle of items,
also it is multi-round. In one-round auctions, all the bidders
submit their bids at the same time, and the auctioneers choose
the winners and match them with the resources. This approach
was not used because the architecture proposed by Zhang
uses multi-service providers, and one-round auctions need one
controller following a centralized architecture.

The auction mechanism is thus divided into three stages:
bid strategy, winner determination, and payment rule. At each
round, the users send their resources requirements and bids
to all auctioneers (service providers) (bid submission). After
that, the service provider chooses the winner based on who
brings the highest utility to the service provider. The utility
is based on the bidding value provided by the bidders. The
bidders who fail to obtain one service provider are moved to
the loser vector. The bidders from the loser vector will bid
again in the next iteration/round receiving a bid improvement.
The iterations finish when the number of max rounds has been
achieved or the difference between the utility of the current
round with the previous round is lesser than a threshold. In
the last stage, payment rule, the bidders who won the auctions
pay the value equal to the second-highest bid, following the
sealed second-price auction (Vickrey Auction) approach.

B. Tycoon

Tycoon [7] is a distributed market-based resource allocation
on an Action Share scheduling algorithm. In their architecture,
the authors separated the mechanism from the strategy. The
strategy interprets users’ and applications’ specifications and
the resources desired. One example of that is: one web server
may have more concern about latency than throughput and
is, therefore, willing to consume lesser resources, but that
resources should be located near the clients. The mechanism
provides incentives for users truthfully value the resources, and
the providers provide good resources. Their Auction Share is
similar to proportional share, but enables them to specify how
they trade-off throughput, latency, and risk.

In proportional share, a group of buyers offers some value
to buy a group of products that are divisible. Then the products
will be divided into the buyers based on their bids. The
percentage of products provided to each buyer is proportional

to the bid value in comparison to other bid’s value. This
mechanism maximizes the allocation of the product to a buyer
because everything will be assigned to one buyer. Proportional
share has various variants, another type of use is, instead of
dividing resources to multiple buyers, the buyers always obtain
the total resources, and what they are buying is the time of
CPU usage, each one obtains the CPU proportionally to the
bidding price.

One of the advantages of Proportional Share is that it offers
a higher time of utilization and lower time of reservation.

Two drawbacks are that the product must be divisible for
a group of bidders to bid, the product will be divided, based
on the bidder’s value, to all the bidders, and the Quality-of-
Service is not secured. The Quality-of-Service is not secured
because one may want to rent all the products or none, but
using the Proportional Share, if another buyer bids too, one
will lose some products to that bidder, ruining one goal of
getting all or none.

For fine-grained resources, it is used as a first-price sealed-
bid auction or the second-price sealed-bid auction. The bidder
with the highest bid wins allocation to a window slice time
processor (each buyer gets their respective time to run their
applications on device’s cpu). Because of being distributed,
the system is fault-tolerant and allocates resources with low
latency.

C. PeerMart

PeerMart [8] is a distributed technology which enables
trading of services using Double Auction algorithms over
a peer to peer network. Their goal was to maximize the
consumers’ utility and find sellers offering a particular service
at a low price, and the providers goal is to offer their
services at the highest price possible and maximize their profit.
The intermediary peers are responsible to match consumers
with the providers respecting the consumers’ and providers’
requirements efficiently.

The authors chose using pricing mechanisms to incentivize
peers to provide services, like file storage. By choosing a peer
to peer architecture, they don’t have a central authority to
maintain the prices bid by the bidders or the sellers. One way
to communicate could be using broadcasts, but this does not
scale and doesn’t guarantee that all peers are reached. They
proposed to maintain routing tables at intermediary peers.
Then peers use these routing tables to find the peer who offered
a given service for a given price. The use of double auctions is
derived from single-sided auctions and it has the disadvantage
of being consumer- or provider-oriented. One of the problems
of implementing a peer to peer infrastructure is that malicious
or faulty users may exist. To solve this problem, PeerMart uses
public cryptographic keys to identify the sender.

The auction algorithm works as follow: A provider (con-
sumer) who wants to provide its service (consume a specific
service), sends an offer (request) to the respective broker,
which is composed of a set of peers. The broker replies with
the highest buy price (lowest sale price) offered by another
peer. After the provider (consumer) receives the information,

2



it sends a bid to the broker applying its own strategy. Then the
broker receives the bid and with that, chooses one of the two
options: After receiving the offered price, there is no match if
the offered price is higher (lower) than the current bid price
(ask price). Therefore, the offered price is either dropped or
stored on the table for future use. If there is a match, the price
is sent to the peer who has the highest bid. The price paid to
the provider by the buyer, is the mean between their offered
prices.

To implement a peer-to-peer network, they choose to use
FreePastry1. It is a tool that is implemented in Java and the
the overlay of the network is based on Pastry.

D. Lin et al.

Lin et al. [9] propose a dynamic auction mechanism to
allocate resources in a edge computing environment. They
made two contributions: i) the introduction of peak/off-peak
concepts into the resource allocation, ii) the system contains
two types of tasks, background, and float. The first contri-
bution enables the cloud provider to increase efficiency and
its revenue in a varying demand environment. The second
contribution enables the devices to distribute the resources to
end-users and have its own background process. The revenue
is obtained from the inputs to the background task and also the
resources shared with the users. They use second-price sealed
bid, each user bids to a cloud service provider. The cloud
service provider collects the bids and orders them. They find
how much capacity they can provide, e.g. k, and from this
capacity, they say the price is the (k + 1) highest bid. The k
highest bidders obtain the resources with the price from the
(k + 1) highest bid. They employ a truth-telling method due
to the price to pay being determined by their own bids.

E. Double Multi-Attribute Auction

Wang et al. [10] proposed a resource allocation model based
on the Double Multi-Attribute Auction (DMAA). Their model
focus on three important steps. Firstly they transform the non-
price attributes in a Quality Index that represents the assesment
to the previous transactions. After that, they use Support Vector
Machines to predict the price. Lastly, they use Mean-Variance
Optimization to obtain an efficient solution to allocate the
resources (choose the winners) to different users.

Their system is divided in three actors: the Cloud Re-
source Provider (CRP), Cloud Resource Consumer (CRC), and
Auction Organizer (AO). The CRP provides the resource in
exchange of a payment. The CRC pays to a CRP to allocate
resources. The AO is the auction organizer responsible to
collect the bids and asks, match the transactions, and select
the winners.

To calculate the price submited by the CRP/CRC a group
of steps are necessary. In CRP, they obtain three non-price
attributes, namely, Quality of Service (QoS), Level of Delivery
(LoD) and Level of Spiteful Quote (LoSQ). The CRC also
follows the same logic but doesn’t have the QoS attribute.

1https://www.freepastry.org/

Then they use these attributes and transform them in a Quality
Index by using a neural networks algorithm. The activation
function used was the Sigmoid function.

After having the quaility index, they use Support Vector
Machines to predic the price. In order to find the estimated
transaction price, they also use quality index and other metrics
(created by themselves) like reserve price of provider, ration
supply demand and expected sale amount of provider. After
that, the CRP/CRC obtains the estimated transaction price. To
train the Support Vector Machine classifier, they use historical
samples from the previous auctions and input information.

Then, the AO makes the match between the CRC and CRP
based on this information, and determines the winner by using
Mean-Variance Optimization. This algorithm enables to find
the most efficient way to distribute the resource to the users.

F. Combinatorial Double Auction Resource Allocation

Samini et al. [11] proposed a Combinatorial Double Auction
Resource Allocation (CDARA). To simulate the prototype of
this auction, it was used CloudSim, which is a Java-based
simulator for simulate cloud environments in order to extract
metrics and evaluate the efficiency of the auction algorithm. In
their environment, there are four entities: the user, the broker,
the cloud provider, and the cloud market place. The cloud
market place is composed of cloud information service (CIS)
and auctioneer. From the article, it stems the cloud market
place as being a centralized entity. CDARA is divided into
seven communication phases.

At first phase, the cloud providers send their resources, and
their respective prices, to the CIS. The users send their tasks
to the broker and, for each task, the broker gets the list of
resources that match the requirements to run that task.

The second phase, the broker generates bundles (a combi-
nation of resources) and the price for each bundle. The cloud
provider does the same action. Both send price (bids) to the
auctioneer.

In the third phase the auctioneer communicates to the broker
and the cloud providers the end of the auction.

In the fourth phase, the winner is determined. In this phase,
the users and cloud providers are ordered depending on what
resources they are bidding/sharing and the respective price.

In the fifth phase (called resource allocation), the auctioneer
checks if the cloud provider has the necessary requirements,
requirements defined by the user, to run the tasks. If the first
cloud provider cannot fulfill the requirements, the auctioneer
passes to the second cloud provider. After the requeriments
of the first user are satisfied, the auctioneer applies the same
procedure for the next user.

In the sixth phase it is selected which pricing model to use
to decide the payable price by a user to a cloud provider for
allocating resources. To use this model, it is used the number
of requested items by the user and the number of offered items
by the cloud provider.

In the last phase, the user sends the task to run in the cloud
provider’s resources. And the user makes the payment to the
cloud provider.

3



III. RATEE

We will present present the architecture of our solution
which will be called RATEE (Resource Auction Trader at Edge
Environment). RATEE is a decentralized trader that matches
users that want to deploy docker containers and users that are
selling its resources to deploy a docker container in trade-
of money. The mechanism used to make this transaction is
based on auctions. The solution target primarily edge cloud
environments/end-users.

A. Requirements

Our target is the edge environment, meaning we want
to support thousands of users. Volunteer Networking and
Computing platforms, like the GUIFI.net2 [12] community
network, is growing constantly. So, our solution must be able
to scale with the demand of the users to deploy containers or
sell resources. This is important because, since it is a solution
that depends on supply and demand trade-offs, the more users
we have using the better is the solution, also, if we are sharing
resources machines to deploy containers, we don’t want our
solution to consume a large part of those resources.

We are enabling the possibility of deploying a container in
a machine, but the buyer has its own requirements to deploy
the application. It must be possible to define how much our
application requires resources to be deployed in order to be
flexible and support variable groups of services. With these
different requests, it is also possible to have different prices,
and depending on the request we can target all groups of users.
So we need to define when we are making a request the amount
of CPUs and RAM that we need. Depending on that, different
prices will appear. An offer is composed by a price and a
resource. A resource is defined by the amount of memory
RAM and CPU.

From the execution platform point of view, and to target
all users, we need to have interoperability and the possibility
to run workloads in all environments, independently of the
operative system, and hardware architecture. This applies also
to the application that has to be deployed to containers in order
to run in all systems.

B. Prerequisites

The user to use our application must fill in predefined
conditions such as:

• If we are sharing our resource to other people deploy
their applications, we must have docker installed locally.
If we are only buying this is not needed.

• Run our application in the background in order to facil-
itate the deployment of other containers and help other
users to make the fastest trades.

• Have internet access or at least have a private connection
between the peers that are going to be part of the network,
, because the system uses peer-to-peer communication
mechanisms.

2guifi.net

Other mechanisms may be needed in case this solution is
deployed live to production, but due to limited time and be
out of scope they weren’t implemented and will be added to
future work):

• Reputation system that gives points to the uses when a
trade happens and both parts do the agreement. And the
users with higher reputation will only trade with other
users with also high reputation. This will mitigate and
remove malicious users.

• A high distributed file system in order to persist the
container’s image and facilitate the download in a de-
centralized way. This case is for edge application and if
we want to support more than one container technology.

• A client to make transactions using virtual currency. This
would decouple the application for a payment provider
and obfuscate the users that are participating in the
transaction, protecting their identities and information.

C. Operations Supported

By using our tool, the users can share their resources, in
trade of money, or buying the resources of other users (that
are sharing). The two main operations supported are:

• Creation of a bid. This is translated by searching in the
network for producers that are selling that resource. After
founding it, the user pays and the application is deployed

• Creation of an ask. This is the reverse process, we sell
our resource for a given price. After finding a buyer, we
deploy its application

We also support other auxiliary operations such as:
• Get all bids/asks created that are in pending state (no

matching offer was found)
• Remove bids/asks
• Configure banking account number information

D. Distributed Architecture

In order to have an application that scales and supports
thousands of users, having a decentralized architecture is better
because we are diving the computation between the parties.
These parties are consumers or providers that will support
with storage of information. If we need more resources, we
just need to add more parties. Our tool work is based in a peer-
to-peer architecture, meaning all nodes have the same code
and responsibility. There are a lot of different approaches to
implementing a peer-to-peer architecture. Each approach has
its own network structure of way of sending messages and
responsibility, instead of a random approach of broadcasting
to all peers. To add a peer-to-peer network structure we will
use a third-party library Libp2p3. This library creates a p2p
network where its structure is based on Kademlia DHT.

1) Kademlia DHT: Kademlia [13] is a peer-to-peer dis-
tributed hash table. Like many other peer-to-peer distributed
hash table implementations, this one also has Keys of 160-bit,
each node that participates on the network is also identified
by an ID of 160-bit and values are stored on nodes with IDs

3https://libp2p.io/

4



close to the key. One of the benefits of Kademlia is the use
of a novel XOR metric for the distance between points in the
keyspace, XOR is symmetric allowing the participants of the
network to receive the same number of queries for lookup.
In contrast with other types of peer-to-peer which have an
asymmetric structure which leads to rigid routing tables.

E. Algorithm

The system uses an auction mechanism with bidders and
askers. Each user can be a bidder and an asker at the same
time, or just be one of the two. Also, our solution is peer-
to-peer so we need to send messages to other peers in
order to trade information. And due to the complexity of the
transaction, a state machine will be useful to help in these
cases.

When we start our application, the first thing RATEE
does is connect to the peer-to-peer network. A connection is
established with the boot peer. This boot peer is an application
that already is running and is the entry point for the nodes to
connect between themselves. Due to being a boot peer, all
other peers know its IP in order to establish the connection.
With a small number of boot peers, this doesn’t scale at
production environment, being easier with a higher number of
that peers. Another solution that could be used is each node has
a discover algorithm to find each other, not being dependent
on an entry point. This scale better but is much more difficult
to implement and maybe with some inefficiencies in small
environments with a low number of users.

Libp2p supports both approaches but the second one has a
lot of problems in public networks due to firewalls and NATs.
Because of that, we used the first approach. Then, in case we
have multiple users using our application, we may use the first
with the second approach in order to have the advantages of
both worlds.

We first start the offer received by the user, in this case, a
bid. A bid is similar to an ask, so the same structure is used.
We just need a boolean to differentiate between themselves,
and a bid also receives as information the docker image
application that will be deployed after the transaction is made.
We can see in Listing 1 the structure of an offer. The bid is
composed by an id which is a Guid and is used to identify
the offer, different offers should have different identifiers.
Then the price represents the amount that we are willing to
pay/sell in our offer. We have a boolean isBid that represents
if that offer is a bid or an ask. The offer contains an object
that saves the resources that we are selling or buying. The
offerResourceHash is the mapping of our resource plus if is a
bid or not. Lastly we have the fields that represent if an offer
is reserved, the last time that was reserved and if it is reserved,
the peer that was made the match. We can observe in Listing
1 the offer’s structure.

After receiving an ask, the system search if there are peers
that are buying that resource. For that we map that resource to
an Identifier, and using the libp2p we search for buyers. Due
to being the first user in the network, no bidders are found, so
we save our ask and notify that we are selling that resource

Listing 1 Offer structure

1 {
2 "id": Guid
3 "price": number
4 "resource": {
5 numbersOfCpu: number
6 memorySpace: number
7 }
8 "isBid": boolean
9 "offerResourceHash": string

10 "isReserved" : boolean
11 "lastReserved" : Date
12 "peerReserved" : {
13 "id" : string
14 }
15 }

Listing 2 Get Price request message

1 {
2 "requestResourceId": string
3 "isBid": boolean
4 }

(using a libp2p method). The way the method provides works
is by getting the key and transforms it to a DHT Id. After that
it finds the nearest neighbors to that id, and they will save
the DHT id and the provider of that key. To find providers the
process is identical, but instead of sending a command to save
the key, we send a command to obtain the providers that have
that key.

Suppose a buyer wants to buy that resource. In case the
user wants to buy another type of resource, the process will
be the same, what happened with the seller will happen with
the buyer, no sellers will be found for that resource, so the
bid will be saved and notified to other peers. In this case, he
wants to buy the same, so the application will receive a request
for that bid, then it will try to find if sellers are selling that
resource. In this case, it receives the IP of the other seller, (if
other sellers were offering the same resource, we would also
receive that information). After getting the address, it sends a
get price request. We can observe in Listing 2 that the message
is composed by a boolean to say if is a bid or not, and then
a Guid that represents that resource that we want to bid.

After sending the message the seller will receive it and
check what message type is. It will deserialize the message
and based on the type redirect to the correct handler. In this
case, the request is to obtain the price, the seller will prepare
the response message with the asks with the resources that
the buyer wants and send it to the buyer. We can observe in
Listing 3 the response message.

The response contains the information about the owner, and

5



Algorithm 1 Handler of a get price request command

0: function GETPRICEHANDLER(resourceId, isBid)
0: allOffers← isBid?askTable : bidTable
0: requiredOffers ← allOffers.filter(a =>

a.resourceId == resourceId)
0: response← createReponseMessage(requiredOffers)
0: return response
0: end function=0

Listing 3 Get Price response message

1 {
2 "offersList": [{
3 "id": string
4 "price": number
5 }]
6 "offersOwner": {
7 "id": string
8 }
9 }

the offers that were associated with that resource id, its price
and id to be identified in future uses. In case there are multiple
sellers for the same resource, the buyer will send Get Price
Request to all of them, and after that aggregate them in an
array and sort them based on price. The resource that are being
sold with the lowest price will have an higher priority to make
a transaction.

After receiving and aggregate all the prices, it will start to
send to the cheapest one a bid request. In Algorithm 1 we can
observe the bid request handler. The format of the bid request,
presented in Listing 4, includes we send our identification, our
bid offer and the ask offer that we are trying to match. Then
the seller will receive this bid request, and check if its offer is
not reserved to any other user. If it isn’t, it sends a response
saying if the bid was accepted or not. If it was accepted, the
seller adds information to the offer that he is selling, the buyer
identification and the time when it received the message.

This timestamp is the amount of time that the ask is reserved

Listing 4 Send bid request message

1 {
2 "owner" : {
3 "id" : string
4 }
5 "bidOffer" : {
6 "id" : string
7 }
8 "askOffer" : string
9 "resourceRequestId" : string

10 }

Algorithm 2 Handler for bid request command

0: function BIDREQUESTHANDLER(bid)
0: ask ← askTable.single(a− > a.id == bid.askId)
0: if ask! = null &

askRequested.lastReserved.getT ime() + 4000 <
Date.now then
ASKTABLE.REMOVE(ask)
ask.lastReserved← Date.now
ask.ownerId← bid.ownerId
response← CreateSuccessResponseMessage(ask)
return response

0: end if
0: return CreateErrorResponseMessage()
0: end function=0

Listing 5 Send bid response message

1 {
2 "bidOffer": {
3 "id" : string
4 }
5 "offerSold": {
6 "id" : string
7 }
8 "bidAccepted": boolean
9 }

for that bid. In case the buyer doesn’t want anymore this offer,
due to a big number of reasons (e.g. he has found another seller
that is selling the same or for a cheaper price), another more
drastic case, he has network problems or is instance/machine
goes down. This way the seller or buyer doesn’t depend on
the other to trade with other people. This way, if the defined
time was exceeded, suppose that the user is not interested,
or another problem has happened. But we don’t have any
kind of obligation with him, because the transaction it didn’t
happened at that point, so we will search for another user that
matches with his offer. The time we specified was 4 seconds.
We think this is enough time to send a response (even with
network problems) in case the other user wants that offer. The
identification, which is saved in peerReserved field in offer
structure, helps to know the buyer, in case this user receive
another bid from another user, this bid is discarded because
had already reserved for another user. And in the future, the
bidder instance will receive the transaction request from that
user and based on the id we accept the transaction.

The buyer receives that the bid is accepted and send a
transaction request. The schema of the request is presented
in Listing 6, where it sends the ask that was reserved and also
the information about the container image, that will be running
in the seller machine. After receiving this message the seller
will check if, the offer is reserved for that buyer, if it is, it
sends a response of success, and deploys the container.

6



Listing 6 Send transaction request message

1 {
2 "owner" : {
3 "id" : string
4 }
5 "askOfferId" : string
6 "dockerImage" : string
7 }

Listing 7 Send transaction response message

1 {
2 "transactionAccepted" : boolean
3 "message" : string
4 "iban" : string
5 }

The response contains the IBAN that will be used to pay to
the seller, and a boolean saying if the transaction was accepted
or not. The message can be seen in Listing 7. In case the buyer
can’t make a transaction with the first seller, it will send the
request to a second one, and so on, iterating the array with
all the prices that was obtained in the get price request, that
was sent to all providers of given resource. If is refused by all
sellers, the behaviour is the same as if no seller was found.

Algorithm 3 Node behavior after a user creates a bid

0: function CREATEBID(bidOffer)
0: bidsTable← bidOffer
0: resourceId← ResourceMapper(bidOffer)
0: providers ← libp2p.getProviders(resourceId)

provider ∈ providers
0: prices← libp2p.getPrices(resourceId)
0: price ∈ prices
0: response← libp2p.sendBid(bidOffer)
0: if response == ACCEPTED then
0: libp2p.StartTransaction(response, bidOffer)
0: end if
0:
0: end function=0

Algorithm 3 summarizes the bid creating process.

F. Implementation

The algorithms presented previously where used to develop
a prototype of the RATEE system. This application was written
in Typescript. There were a lot of programming languages
to choose from, predominantly Java, Go, JavaScript, Python,
etc. One difficulty to use Java was the scarce number of
frameworks to create a peer-to-peer application. The ones
that exist were out-dated in terms of technology and lacked
documentation. The other languages had some frameworks

that were recent, but right now, JavaScript is the most used
and popular language, having many more tools and features
lately. Another advantage, comparing with other program-
ming languages, it can be used to run back-end programs
or servers, using Node.js, or to front-end running code at
browsers like Microsoft Edge and Google Chrome, which
is easier to migrate an application from back-end to front-
end and vice versa. But we didn’t use JavaScript purely,
our main program is written in Typescript, which is another
language that extends JavaScript but adds typification. A
typified programming language brings much more stability to
the code, reducing the number of errors at run-time. It was not
used TypeScript completely because some dependencies were
written in JavaScript.

1) Software Architecture: RATEE has the functionality to
do trades of system-level resources, such as CPU and memory,
based on an auction mechanism. This tool is peer-to-peer, so
each instance will have the same code running (in contrast
with client-server architectures that have different code for
client and server). This code is divided into different modules
(or components), each one with is own responsibility, This
modularity helps to have code more maintainable, modifiable,
and testable. When writing code, SOLID principles [14] were
also taken into account, they also bring positive properties for
the code. So, RATEE is composed of seven modules: Auction
Controller, Resource Mapper, Container Controller, User
Controller, P2P Controller, View Controller, and WebApi
Controller. In Figure 1 change we can observe each module
and interactions between themselves.

Fig. 1: RATEE components and interfaces relationships

IV. RESULTS

A. Evaluation Methodology

We will discusses the methods that will be applied in order
to evaluate our project.

1) Allocation Success Rate: As it was stated before, our
application is peer-to-peer, which brings some difficulties. One
of these is to find auctions that are selling the respective
resource that we want. In contrast, with a centralized approach,
all the information of bids and asks are saved in a server, and

7



the users only need to interact with that server and now for
sure, if the server didn’t return a match, it is because it didn’t
exist. But in a peer-to-peer environment, we don’t have all the
information centralized in an endpoint, each user has partial
information, and to know all the information of the system, we
must get it from all nodes, which is not scalable. We assume a
normal environment with some users already with some bids
and asks, when we had new offers, and we now those offers
have a match in the system. We want to evaluate if these offers
match. This will measure the effectiveness of our system.

2) Overhead Memory Consumption: It is important to know
how much memory an application consumes, mainly if that
application will run in user’s devices which are known for hav-
ing different capabilities. In summary, if the system has hard
memory requirements, which are difficult to comply with, we
will only target a small market’s piece. Another requirement
is due to the nature of our application being peer-to-peer, has
more users we have using our service, more transactions will
happen, even if they only used as mediators. Therefore, we
will calculate how much memory our application consumes
and check as we add more nodes to the peer to peer network,
how the memory of the previous nodes increase.

3) Ideal Price Deviation: We already calculate the match
success using the Allocation Success Rate. But we can be
more precise, and after finding a match check how much more
the buyers had paid to get a resource that was being sold at
a lower price somewhere else in the network. One example
is we have two users, selling the same amount of memory
(1GB) but one for 10e another for 5e. Then a buyer arrives
and offers 10e for 1GB of memory. In an ideal environment,
the transaction should happen with the user that is selling for
5e, but because of the absence of centralized control in a
peer-to-peer architecture, he could buy from the user that is
selling for 10e. This raises a problem where buyers don’t buy
the cheapest resource because of the distributed environment.

4) Scalability: As it was previously said, nodes commu-
nicate between themselves using messages. These messages
grow as the number of offers grows. This could bring a
bottleneck to our application, if for each offer created, the
number of messages sent to other nodes grows exponentially,
we will burden the network, and the application will no scale.
Based on this point, is necessary to know if how much the
number of messages grows, and if it is a limitation when we
have thousand of users, each one creating offers.

B. Experimental Evaluation

To test, it was used computer with 8 GB of memory and a
dual core i7 as processor. Some limitations in the number of
instances created for the results were due to limitations of the
machine used to test.

1) Allocation Success Rate: In order to test the Allocation
Success Rate, dummy users were created which would have
offers that wouldn’t be matched with any other offer. Then,
create an ask, and next a bid that will be matched with the
ask created. This is the worst case because of all the offers
that exist in the system, only one can be matched with ours.

We have done this experiment something progressively doing
it 8 runs of it. At each run, we will only have one match, one
ask will be associated with one bid, and at each run we will
add dummy users with dummy offers. The first run will start
with 10 dummy users, each one will have three asks offers,
and then we will add our ask offer that will be matched, and
add the bid offer. In the second run, we will increment the
dummy users from 10 to 20, until the max of dummy users
that will 80. We will add 10 dummy users each run. In Figure
2, we can observe the results of those runs (we didn’t show
all the results of the eight runs, due to results being equal).

Fig. 2: Results of a bid finding an ask for the same resources

From the results we can observe that even by incrementing
the number of dummy users with dummy offers, the user that
created the bid, always found the respective ask. Resuming,
for the 8 runs, the hit success rate was 100%.

2) Overhead Memory Consumption: To test the memory
consumption, we created a PowerShell script, that will create
instances of our tool. The program started, the process id
will be printed, and at every 100 instances created, using this
process id we will get the memory consumption, also using
PowerShell commands. We will calculate the memory used by
the first instance that was created, which should be the one
that consumes more memory due to the time that was running.

We can observe in Figure 3 as we had more nodes, the
memory used doesn’t grow. In this experiment, we didn’t
create any offer.

In the next one, we created some offers (without being
matched in order to be persisted in memory). We can see the
results in Figure 4.

The memory of the first program also didn’t grow. But we
can see in the graph it seems similar to a sinusoidal function.
First of all, the memory consumption of the first node doesn’t
grow as we had more offers requests because we created those
offers in the other nodes. When we create an offer, that offers
is saved in his own application/device. So, if we create one
thousand offers in a node, the other nodes will not be affected
by those offers.

Having these centralized/non-redundant offers brings an
advantage against the malicious users that want to pollute

8



0 20 40 60 80
40

42

44

46

48

50

Number of instances created

M
em

or
y

co
ns

um
ed

by
th

e
fir

st
in

st
an

ce
(M

B
)

Fig. 3: Memory consumption of the first instance created

0 20 40 60 80
0

20

40

60

Number of instances created

M
em

or
y

co
ns

um
ed

by
th

e
fir

st
in

st
an

ce
(M

B
)

Fig. 4: Memory consumption of the first instance with offers
created

our system. If those offers were saved in other nodes, a user
could create a great number of dummy offers and increase the
consumption of memory without any objective, just to degrade
the system’s performance.

But we can see some increase in memory, this is explained
due to when we create an offer, we check with the others if
there is an offer that could match ours. To do that is necessary
to create a connection and send some messages. But after
finding there isn’t any other node with offers that could match,
those objects are disposed, therefore reducing the memory
used.

3) Ideal Price Deviation: A test similar to the scenario of
Allocation Success Rate it was made calculate the Ideal Price
Deviation. with the one made in Allocation Success Rate. We

also made 8 runs, in the first run we started with 10 dummy
users, whose offers will not be matched. Created two asks for
the same resource where one was cheaper than the other. After
that, we created a bid offer for that resource and observed if
the offer that was associated with that bid is the cheapest one.
At each run we increment the dummy users, adding plus 10,
we also added one more asks, for the same offer, but with
the cheapest price, and added a bid for the same resource.
The offers that were created by the dummy users, will not be
matched.

Fig. 5: Results of a bid finding an ask with the cheapest price

As we can observe in Figure 5, we had a 100% matches
success. Meaning, for a bid searching one given resource, it
found an ask with the cheapest price.

4) Scalability: This test is different from the other because
it doesn’t involve getting results, we know how many messages
we sending for each offer created, by reading the code. The
higher number of messages we sent is when we complete a
transaction. The number of messages is 3: get price request,
send bid, and start transaction, to one node. Supposing that
we have x users that have an offer that matches with ours,
and they will succeed to make the trade with the user with
the cheapest offer, we will send x get prices plus 2 to finish
the transaction. In Figure 6, we can observe the equation that
corresponds to the number of messages sent.

Based on the graph, we could conclude that the number of
messages sent to the user grow linearly with the number of
offer that match with ours. One calculation that wasn’t added
in this function, was the number of messages sent to find all
the offers that match with ours. For that would be necessary
to explore the libp2p code.

C. Discussion

After testing and observing the results, we can extract some
conclusions:

• The amount of memory consumed by our application is
independent of the number of peers that participate in
the network. As it was explained before, the offers are
not shared between users, only connections. And in the
results we could observe that adding more users didn’t

9



0 10 20 30 40 50 60
0

20

40

60

Number of offers that match with ours

N
um

be
r

of
m

es
sa

ge
s

se
nt

Fig. 6: Number of messages sent based on the number of offers
found

result in an memory consumption increase, only some
memory increase and after that, that memory was freed.
That behavior is explained based on the creation and
destruction of objects to make connections.

• Also we had a 100% to correct matches between offers.
Meaning our system, even if it is peer-to-peer, can find
the user that should be used to obtain the offer (if that user
exists). Of course, this statement is for environments with
a low number of users. In an environment with a higher
number of users, it wasn’t possible to test, so we can’t
make that statement.

• The number of messages that RATEE sends, grows
linearly, which is better than exponentially but worse than
logarithmic. Another way can be used to reduce from
linearly but would slowly reduce the time it would take
to make a transaction.

V. CONCLUSION

We started talking about the Cloud Computing that exists
and the features they offer. The advantages and some of
their limitations. Those limitations brought some changes,
like shifting the computation and data storage to the edge
environments, where personal devices could be used to assist
that computation volunteering or by receiving any benefit.

This brought us to our work where we proposed to study
the share of resources, to deploy applications, in an edge
environment by using auction mechanisms. To reach that
object we first have done a study about edge could and
auction mechanisms to allocate resources. Creating a tax-
onomy evaluation for both topics. After that, we created a
prototype, RATEE, which would have the previous features,
an application that its purpose is to deploy applications using
auction as a trade mechanism.

RATEE is a peer-to-peer application using libp2p to imple-
ment all peer-to-peer logic and abstracting us from that com-

plexity. Its P2P overlay network is based on Kademlia DHT
which is also used by BitTorrent. In order to communicate
with other peers, we use a message approach. Using libp2p a
user provide a given resource and other user searches for that
resource, which will get the user address. Using that address
sends a message to communicate with it (getting a price, send
a bid, etc).

Finally, after design and implement RATEE, it was time
to evaluate it. To evaluate we used PowerShell scripts in
order to create an environment that was necessary to make
that test and obtain its results. Based on the results we could
conclude that our application has a high success match rate
(for the environment that was used to test), meaning all buyers
found their respective sellers and vice-versa. Also, the memory
consumption doesn’t grow with the number of nodes that exist
in the overlay.

REFERENCES

[1] Peter Mell, Timothy Grance, “The NIST Definition of Cloud Computing:
Recommendations of the National Institute of Standards and Technol-
ogy,” 2011.

[2] Jiong Jin, Jayavardhana Gubbi, Slaven Marusic, Marimuthu
Palaniswami, “An Information Framework for Creating a Smart
City Through Internet of Things,” 2014.

[3] Claus Pahl, Sven Helmer, Lorenzo Miori, Julian Sanin, Brian Lee, “An
Information Framework for Creating a Smart City Through Internet of
Things,” 2016.

[4] Paolo Bellavista, Alessandro Zanni, “Feasibility of Fog Computing
Deployment based on Docker Containerization over RaspberryPi,” 2016.

[5] Nguyen Cong Luong, Ping Wang, Dusit Niyato, Wen Yonggang, Zhu
Han, “Resource Management in Cloud Networking Using Economic
Analysis and Pricing Models: A Survey,” IEEE Communications Surveys
& Tutorials, Volume: 19, Issue: 2, Secondquarter 2017, 2017.

[6] Heli Zhang, Hossein Badri, Heli Zhang, Fengxian Guo, Hong Ji, Chun-
sheng Zhu, “Combinational Auction-Based Service Provider Selection
in Mobile Edge Computing Networks,” IEEE Access.

[7] Kevin Lai, Bernardo A. Huberman, Leslie Fine, “Tycoon: a Distributed
Market-based Resource Allocation System.”

[8] David Hausheer, Burkhard Stiller, “PeerMart: The Technology for a
Distributed Auction-based Market for Peer-to-Peer Services,” IEEE
International Conference on Communications, 2005.

[9] Wei-Yu Lin, Guan-Yu Lin, Hung-Yu Wei, “Dynamic Auction Mecha-
nism for Cloud Resource Allocation,” Proceeding CCGRID ’10 Proceed-
ings of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing Pages 591-592, 2010.

[10] Xingwei Wang, Xueyi Wang, Cho-li Wang, Keqin Li, Min Huang,
“Resource Allocation in Cloud Environment: A Model Based on Double
Multi-Attribute Auction Mechanism,” IEEE 6th International Confer-
ence on Cloud Computing Technology and Science, 2014.

[11] Parnia Samimi, Youness Teimouri, Muriati Mukhtar, “A combinatorial
double auction resource allocation model in cloud computing,” Informa-
tion Sciences, Volume 357, 20 August 2016, Pages 201-216, 2016.

[12] R. Baig, R. Roca, F. Freitag, and L. Navarro, “guifi.net, a crowdsourced
network infrastructure held in common,” Computer Networks, vol. 90,
pp. 150 – 165, 2015, crowdsourcing. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1389128615002327

[13] P. Maymounkov and D. Eres, “Kademlia: A peer-to-peer information
system based on the xor metric,” vol. 2429, 04 2002.

[14] R. C. Martin, “Design principles and design patterns,” 2000.

10


