
An Adaptive Robotics Middleware for a Cloud-based
bridgeOS

Rafael Afonso Rodrigues

Thesis to obtain the Master of Science Degree in

Information Systems and Computer Engineering

Supervisor: Prof. Luı́s Manuel Antunes Veiga

Examination Committee

Chairman: Prof. José Carlos Martins Delgado
Supervisor: Prof. Luı́s Manuel Antunes Veiga

Members of the Committee: Prof. João Carlos Serrenho Dias Pereira

November 2017

Acknowledgements

First and foremost, I acknowledge and express my gratitude to my thesis supervisor and coor-

dinator, Prof. Luı́s Veiga, from IST and INESC-ID. He oriented me throughout this thesis when-

ever I requested it, and provided valuable feedback, up until the very last moments. I thank the

research lab INESC-ID for providing access to their servers and letting me thoroughly evaluate

the work accomplished.

I would also like to convey my thanks to Tiago Costa, from Bridge Robotics, for granting

me the opportunity of participating in this project and researching innovative technologies.

His added explanations and detailed documentation of bridgeOS were extremely helpful, and

provided additional cloud resources for testing the work accomplished.

Finally, I thank my parents for unconditionally supporting me throughout my entire life

and enable me to attain this achievement.

17th of October, Lisbon

Rafael Afonso Rodrigues

Dedicated to my parents.

Abstract

Robotic applications and their capabilities have grown exponentially in recent years, but hard-

ware limitations and environment restrictions still lead to unfulfilled requirements. As Cloud

Computing matured, however, robotics began taking advantage of its elastic resources by of-

floading computation and data to the cloud, effectively creating what is now called Cloud

Robotics. Although a multitude of frameworks have been proposed over the years, each with

its own unique specifications and goals, none has become dominant nor able to provide a stan-

dard and generic solution linking both robots, users and the cloud.

An innovative platform, bridgeOS, attempts to take on this role by providing a new so-

lution and framework, integrating recent Services paradigms, using a web-oriented approach

and supporting a prominent software for networked robotics, the Robot Operating System

(ROS). To accomplish this, we propose a cloud-based extension for the bridgeOS framework,

capable of dynamic service deployments for the robots, and add support for adaptive decision

making, based on available resources and performance metrics, to optimize in real time, both

how those services are distributed and how well they perform.

Overall, the middleware we developed is robust, resilient, versatile and capable of scaling

to hundreds of components. Our experimental results show that it is a viable solution, with

benefits exceeding the overhead it generates.

Resumo

As aplicações robóticas e as capacidades dos robôs têm crescido exponencialmente nestes

últimos anos. No entanto, limitações de hardware e restrições dos meios ambientes contin-

uam a impedir alguns requisitos de serem satisfeitos. Contudo, à medida que a computação

em nuvem progrediu, a robótica começou a tirar partido dos seus recursos elásticos, descar-

regando computação e dados para a nuvem. Isto deu inı́cio a um novo campo designado,

Cloud Robotics. Múltiplas soluções têm sido propostas, cada uma com as suas particularidades

e objetivos, embora nenhuma tenha sido capaz de fornecer uma solução padrão e genérica que

vincule robôs, utilizadores e computação em nuvem.

Uma plataforma inovadora, a bridgeOS, tenta assumir esse papel, fornecendo uma nova

solução e estrutura, que integra paradigmas de serviços recentes, abordagens orientadas para

a web e um software proeminente para redes robóticas, o Robot Operating System (ROS).

De modo a alcançar este objetivo, propomos uma extensão de bridgeOS, destinada para a

computação em nuvem, capaz de lançamentos dinâmicos de serviços para os robôs e adicione

suporte para tomada de decisões adaptativas, com base em recursos disponı́veis e métricas de

desempenho, para otimizar em tempo real, a forma como estes serviços são distribuı́dos e qual

o desempenho alcançado.

No geral, o middleware desenvolvido é robusto, resistente, versátil e capaz de escalar para

centenas de componentes. Os resultados experimentais mostram que é uma solução viável,

com benefı́cios a excederem a sobrecarga gerada.

Keywords

Robotics Middleware

Cloud Robotics

Adaptive Offloading

Dynamic Decision Making

Real-Time QoS Monitoring

Docker Containers

Robotic Operating System (ROS)

Palavras Chave

Mediador Robótico

Nuvem Robótica

Descarregamento Adaptativo

Formulação Dinâmica de Decisões

Monitorização em Tempo Real da Qualidade de Serviço

Contêineres Docker

Robotic Operating System (ROS)

Index

1 Introduction 1

1.1 Motivation and Research Proposal . 2

1.2 Shortcomings of Current Solutions . 3

1.3 Proposed Solution . 3

1.4 Contributions and Goals . 4

1.5 Document Roadmap . 4

2 Related Work 5

2.1 Architectures for Connecting Robots . 5

2.1.1 Robot Operating System . 5

2.1.2 Cloud Robotics . 6

RoboEarth . 7

DAvinCI . 8

UNR-PF . 9

Rapyuta . 10

SCMR . 11

RAPP . 12

2.1.3 bridgeOS . 12

Comparison. 13

2.2 Componentization of Services . 13

i

2.2.1 Traditional Component Frameworks. 14

Rover Toolkit . 14

OSGi . 16

R-OSGi . 17

DACIA . 18

2.2.2 Container Frameworks . 19

Microservices . 20

Linux Containers . 20

Docker . 21

2.2.3 Container Managers . 22

Docker Swarm . 22

Apache Mesos . 23

Google Kubernetes . 24

Nomad . 25

Comparison . 26

2.3 Operational Decomposition: Local vs Cloud Processing 26

2.3.1 Cloud Offloading Techniques. 26

Offloading Policies. 28

Neural Networks. 29

2.3.2 Resource Monitoring Strategies. 30

2.3.3 Protecting Networks and Circumventing Restrictions. 30

Virtual Private Networks . 31

WebSocket Protocol . 31

ii

3 Architecture 33

3.1 Architecture Overview . 33

3.2 Master Controller . 36

3.2.1 Robot API . 37

3.2.2 Database . 37

3.3 Robot Controller . 38

3.3.1 Robot Resources Allocation . 40

3.3.2 Components Synchronization . 44

3.3.3 Cloud Role Takeover . 45

3.4 bridgeOS Skills . 47

3.4.1 Skill Manager . 49

Generating Dynamic Offloading Decisions 49

Components API . 52

3.4.2 Skill Router . 53

3.5 Private Networks and Communications Protocols 54

4 Implementation 57

4.1 Managing Private Robot Networks . 57

4.2 Performing Dynamic Offloading . 57

4.3 Developing Skills . 59

5 Evaluation 61

5.1 Overview . 61

5.2 Experimental Testbed . 61

5.3 Offloading Performance . 62

5.3.1 Results . 63

iii

5.4 Middleware Benchmarking . 66

5.4.1 Results . 66

Skills Benchmarking . 67

Components Benchmarking . 68

Routing Benchmarking . 69

6 Conclusion 71

6.1 Concluding Remarks . 71

6.2 Future Work . 72

A Comparison Properties 77

iv

List of Figures

2.1 bridgeOS Architecture . 13

3.1 Overview of the extended bridgeOS architecture 33

3.2 Detailed architecture from a Robot point-of-view 35

3.3 Middleware Database Diagram . 38

5.1 Middleware Evaluation Setup . 62

5.2 Middleware Evaluation Skills . 63

5.3 Components location during the performed tests 64

5.4 Use Cases Results - Skills Performance . 64

5.5 Use Cases Results - Skills Resource Usage . 65

5.6 Skills Benchmarking Results - Initialization . 67

5.7 Skills Benchmarking Results - Resource Usage . 67

5.8 Components Benchmarking Results . 68

5.9 Skill Router Benchmarking Results - Initialization 69

5.10 Skill Router Benchmarking Results - Resource Usage 70

v

vi

List of Tables

2.1 Comparison of Cloud Robotics Frameworks . 14

2.2 Comparison of Container Managers. 27

3.1 Master Controller REST API . 55

3.2 Skill Manager REST API . 55

3.3 WebSocket Communications Protocol . 56

4.1 Attributes of a Skill configuration file . 60

5.1 Skills decomposition . 63

5.2 Skill Offloading Comparison . 65

A.1 Properties of container managers . 77

A.2 Properties of Cloud Robotics frameworks . 78

vii

viii

List of Algorithms

1 Resource allocation algorithm for robot component deployment 41

2 Resource Usage Heuristic . 44

3 Migration Cost Heuristic . 45

4 Resource Expenditure Heuristic . 46

5 Temporal Cost Heuristic . 46

6 Weighted Cost Heuristic . 47

7 Cloud monitoring algorithm for role takeover . 48

8 Dynamic offloading algorithm for skills components 51

9 Compute Network Decision algorithm . 52

ix

x

1Introduction
“Today, a group of 20 individuals empowered by the exponential growing tech-

nologies of AI and robotics and computers and networks and eventually nanotech-

nology can do what only nation states could have done before.” – Peter Diamandis

(Author, founder of the X-Prize Foundation and co-founder of the Singularity University)

Cloud Robotics is a fairly recent concept and field in robotics. It was first coined in Novem-

ber 2010 by James Kuffner in Kuffner (2010), who presented through it a novel approach, in-

spired by the DAvinCI framework (Arumugam et al. 2010), portraying the main advantages of

using cloud computing together with robotics. The resulting benefits generally revolve around

two topics: having shared databases with general knowledge, skills or behaviors, and migrat-

ing the heavier computing tasks to the cloud, as supported by Quintas et al. (2011) and Kehoe

et al. (2015). Although, the idea of creating separate databases, often referred to as ”remote

brain”, is not new (Inaba 1994) , and emanated from the Networked Robotics field which ap-

peared in the 90s, derived from advances made in telerobotics and telepresence systems. Back

then, researchers increasingly began interconnecting robots, forming peer-to-peer networks al-

lowing for cooperative behaviors between them, and connecting them, mostly through Inter-

net, to external resources, such as servers harboring databases or remote services, or as a swift

way to enable remote access (Siciliano & Khatib 2016).

Since then, technology has progressed significantly, and is bound to continue at an expo-

nential rate (Kurzweil 2005), turning Cloud Robotics into the logical next step for connected

robots. From one side we have advances in hardware, that increase the computational capac-

ities while reducing costs. On the other hand, they are coupled with new software capable

of handling massively distributed and parallelized system, leading to what is known as cloud

computing. This easy access to elastic and virtually unlimited resources and storage of huge

amounts of information, or related to Big Data, opened up a new range of viable applications

as it matured. The recent revolution in artificial intelligence and machine learning is a notable

2 CHAPTER 1. INTRODUCTION

example of it. Big Data and massive processing power, together with new methods and al-

gorithms to train and optimize models (LeCun et al. 2015), enabled considerable progress in

image processing and classification in general. It is especially visible within the Deep Learning

field, where new types of neural networks were able to break efficiency records, held by other

types of models, in multiple areas including: character recognition, speech recognition, lan-

guage translation, object classification and pattern recognition (Schmidhuber 2015); sometimes

even surpassing human-level performance (He et al. 2015). Meanwhile, new frameworks,

predominantly the Robot Operating System presented in Subsection 2.1.1, appeared with the

intention of standardizing not only how robots could communicate and exchange data, but

also the drivers provided by the manufacturers for their sensors and actuators.

These advances increased the capabilities of robots and their levels of mobility and au-

tonomy. However those new possibilities also require more resources to operate in real-time,

specially when dealing with computer vision and motion planning, which cannot be integrated

in their totality, neither on-board nor in an external infrastructure, due to multiple constraints

involving costs restrictions, computational resources, energy capacity or even bandwidth limi-

tations. Joining robotics with cloud computing then became a clear necessity in order to profit

from its economies of scale, massive infrastructure, adaptive resources and elevated availabil-

ity. Even though many hurdles still have to be overcome, as demonstrated by the lack of a

predominant framework or standards for Cloud Robotics (also discussed in Section 2.1), they

will soon be surpassed due to its expected progress. Stimulated, in particular, by service robots,

which are only this decade starting to grow into a significant market 1.

Nowadays, an extension to Cloud Robotics is already taking shape under the concept of

Robot-as-a-Service, following the trends of ubiquity advocated by the Internet-of-Things, and

rendered possible with the ”Anything-as-a-Service” paradigm present within the cloud com-

puting model, achievable through further integration, where robots, skills and services can be

provided on demand.

1.1 Motivation and Research Proposal

This Master Thesis work emerges from a proposal defined in cooperation with an external

company, Bridge Robotics, who is developing the bridgeOS robotics platform (2.1.3). As ad-

1International Federation of Robotics: http://www.ifr.org/service-robots/statistics.

1.2. SHORTCOMINGS OF CURRENT SOLUTIONS 3

dressed in the introduction, robotics is a Future-oriented field with a colossal potential and an

exponentially growing market, specially its service robotics branch. However, it still lacks a

standardized framework for cloud robotics, which comes in tandem with what this work in-

tended to accomplish. As bridgeOS overcomes current challenges and issues unanswered by

the other solutions, with the overall goal of facilitating the development of service robotics.

Our work complements Bridge Robotics’ offering, by providing a cloud-oriented middleware

with low overhead, resource optimization and abstraction of services, that will be beneficial for

developing the sector.

1.2 Shortcomings of Current Solutions

The shortcomings of current solutions are addressed by many surveys, Mainaly & Ningombam

(2014), Hu et al. (2012) and Chibani et al. (2013). Although not uniformly lacking from each

existing solution, it includes:

a) Non-generic or narrow scope of services;

b) Use of proprietary or non web-oriented communication protocols, and custom data for-

mats or drivers, instead of supporting ROS;

c) Static or limited techniques for offloading computation, and no guarantees of service

quality nor monitoring capabilities;

d) Lack of data resynchronization mechanisms for handling network failures;

e) Lack of security, privacy and anti-tampering mechanisms for network connections.

1.3 Proposed Solution

To address the existing shortcomings and implement the requirements sought by the research

proposal, we propose a reliable middleware, distributed between the cloud and robots, that

operates privately within a Virtual Private Network, protecting communications and isolating

robots. The middleware is divided into a centralized Master Controller, tasked with coordi-

nating the overall system and providing an access point to the current bridgeOS Cloud Plat-

form. And individual Robot Controllers, present in each robot, orchestrating local deployment

of Skills. Skills, are dynamic robot functionalities, that are transparently distributed and can

adapt in real-time based on current events to optimize performance. Any type of containerized

functionality is supported and we provide a backbone for operating ROS networks conjointly.

Furthermore, our proposed solution embraces state of the art technologies and includes

mechanisms to mediate disruptions and failures, setting up procedures to adapt accordingly.

1.4 Contributions and Goals

The main goal of this work was to develop a cloud-based extension to bridgeOS, capable of

dynamic deployment and management of local and remote services with low overhead, all the

while being able to provide adaptive computation offloading based on available resources, gen-

eral or service-dependent performance metrics, and according to the quality of service or opti-

mization required. We were able to develop such middleware, and implement not only fault-

tolerance, connection resiliency and data resynchronization mechanisms, but also, Firewall-

friendly communication protocols to ease its deployment within any network and avoid pos-

sible traffic restrictions.

Overall, we contributed a powerful, versatile and complete middleware for bridgeOS, that

is actually appropriate for robotic applications, as it is scalable enough to accommodate hun-

dreds of concurrent local deployments and support large exchanges throughput.

1.5 Document Roadmap

The remaining of this thesis is organized in a number chapters. The current chapter, introduces

the core topics of interest surrounding this work and details the objectives of the developed

solution. In Chapter 2, we detail the current state of the art and analyze the related work.

Afterwards, in Chapter 3 we present the overall architecture of the solution proposed by this

Thesis. While Chapter 4, covers the main considerations, that have to be addressed when

implementing the solution, and depicts the relevant development choices undertaken.

Afterwards, Chapter 5 starts by presenting the methodology and metrics by which our

solution was assessed, and proceeds to exhibit our evaluation results. To conclude our work,

some final remarks, accompanied by a consolidated overview of this thesis, are then provided

in Chapter 6. At the beginning of each major chapter, we also outline its structure, and after

describing it, summarize the contents and topics presented.

2Related Work

In this chapter, we address the research work and relevant systems related to our work, its

domain and goals. In Section 2.1 we begin by presenting the architectures of the robotics frame-

works that our work will focus on, and an overview of their alternatives. Next, on Section 2.2,

we detail and compare the available solutions for structuring services into small, portable and

independent, blocks of software, and the existing tools for managing them. Finally, Section 2.3

portrays the current methods and strategies dealing with the dynamic relations and adaptive

behaviors, between robots and the cloud, that are sought by this work.

2.1 Architectures for Connecting Robots

There are many frameworks for interconnecting robots, be it for creating small peer-to-peer net-

works or establishing links over distributed infrastructures. Some share similar concepts and

architectures, however, as we present each, a progression detailing an extension of their capa-

bilities and features will be visible. First, we start by covering the renowned architecture for

networking robots, ROS, and proceed to divulge the most significant frameworks. We conclude

by presenting the framework implemented by this work and juxtapose it with the alternatives.

2.1.1 Robot Operating System

ROS is a portable open-source framework that provides a structured communication layer for

creating heterogeneous networks of robots and other systems interacting with them. ROS na-

tively supports a multitude of robots and other hardware, such as sensors. Its digital ecosys-

tem contains a considerable number of tools, libraries and drivers, some official (from ROS or

hardware manufacturers) and others developed by third-parties, that are freely available and

regrouped into packages, the main organizational unit of software in ROS, permitting rapid

creation and deployment of modular applications. The packages themselves are aggregated

into stacks for simplifying code sharing, while providing a collective functionality (e.g. per-

ception, navigation, simulation, etc.) (Koubaa 2016). The popularity and adoption has risen

6 CHAPTER 2. RELATED WORK

rapidly since its disclosure in 2009, aided by the significant growth of public packages.

The ROS network is composed os ROS nodes, interconnected following a peer-to-peer two-

tiered architecture. First a centralized layer which links all nodes to a master node, while the

second layer is simply for direct communications between them. This master node functions as

a naming service and is responsible for managing the Topics system, based on a publisher/sub-

scriber model for exchanging data using topics. Nodes can register themselves to the master, to

subscribe, publish or provide a service. The master will in turn advertise each side, so they can

open channels without intermediaries. The data exchanged is encapsulated into ROS messages

with predefined formats, composed of fields and constants that use a primitive data types, and

transmitted via TCP or UDP sockets. Each format contains a header to differentiate and identify

each message transmitted. ROS has plenty of default messages and allows full customization

whenever necessary. Meanwhile all administrative exchanges are performed using XML-based

remote procedure calls made through HTTP.

The modularity of ROS comes from 2 sides: the nodes, which are solely groups of processes

that can co-exist in the same machine, and the packages. Packages are used to define the nodes,

messages and services to launch or use, and any dependencies they might require to achieve

some functionality.

Services are implemented as a mechanism to reduce the overhead caused by the multi-to-

multi message broadcasting design of the publisher/subscriber relations. Each service defines

a pair of messages and operates in a request/response logic, where a request message is sent

first and answered with the corresponding reply message.

2.1.2 Cloud Robotics

Cloud Robotics extend the use of networked robotics by combining them with cloud comput-

ing, as a way of removing computational limitations and benefit from its elastic resource and

high-availability. Although the term Cloud Robotics was coined in late 2010, some projects had

already been unveiled by then. In 2009, the project RoboEarth (2.1.2) was awarded funding

for its development through the European Union’s Programme for Research and Technological

Development. Soon after, in 2010, another innovative framework combining the use of cloud

computing with robotics, DAvinCi (2.1.2), was disclosed.

Below, we present an evolution of the frameworks that appeared since its conceptualiza-

tion, and that we deemed most relevant. Each offers novel perspectives or features useful for

2.1. ARCHITECTURES FOR CONNECTING ROBOTS 7

our work, and are afterwards compared with bridgeOS in Table 2.1.

RoboEarth

As an open-source project, RoboEarth, has the goal of creating a world-wide web for robots

using a shared database containing a global world model. This cloud repository is composed

by an Engine, that generates action plans, and 4 data containers that deal with positioning,

mapping, recipes and environment-dependent knowledge.

Positioning refers not only to the current positions, but also the characteristics of known

robots and objects. This information is associated with mapping data, which includes local (e.g.

streets and buildings) and world maps, through a positioning fusion component to indirectly

generate a global world model. Instead of creating a new standard for this kind of data, support

for many popular formats is included.

RoboEarth uses recipes to describe and specify actions. A Robot can submit requests asking

how to perform a task, specifying its capabilities and on-board sensors using the Semantic

Robot Description Language. In turn, the RoboEarth Engine dynamically creates a recipe plan

for completing the task, specific to each robot, and using environment-dependent knowledge

such as dependencies between objects and time constraints (Tenorth et al. 2012). Both the

recipes container and knowledge base, have a learning and reasoning component that uses a

rule base and data for interpreting the context and creating plans by aggregating recipes, while

learning from past results using methods based on reinforcement learning. Specifically, recipes

can receive human feedback to avoid unwanted behaviors, resulted from merging recipes. With

negative feedback, bad aggregations are automatically detected and adapted, or removed.

To offer a certain level of compatibility with other systems, the ontology used for sharing

recipes, environmental knowledge and models, is an extension of KnowRob , a knowledge

base that represents information using the Web Ontology Language (OWL) standard (Tenorth

et al. 2012). OWL enables representing complex knowledge, about objects and their inter-

actions, with semantic descriptions that can be understood by programs and shared through

the web.For robots to access its services, an API using this language is exposed in the cloud,

however, additional components are required in each robot. First, a RoboEarth layer used for

uploading and downloading recipes, and synchronizing the local and global world models.

Each robot generates its local model and enhances it with the respective subset of the world

model. Secondly, a Hardware Abstraction layer that converts and interprets both hardware

8 CHAPTER 2. RELATED WORK

and RoboEarth data.

Another novel feature is that humans can teach robots new recipes locally, which are then

uploaded to RoboEarth and become accessible by all other robots. However, no direct user

interface is provided, and so developers have to create their own UI, to use either through a

robot or build a system emulating one to interact with the API. Of course, shared skills can

become an undesirable trait since there is no private or proprietary data without requiring

another framework operating beside RoboEarth.

As expected, RoboEarth’s semantic reasoning and services limit the scope of applications,

excluding any features pertaining to visual perception, motion planning, object position infer-

ence, speech and dynamic human interactions (Riazuelo et al. 2015).

DAvinCI

Distributed Agents with Collective Intelligence proposes an approach for sharing data and offload-

ing expensive tasks to the cloud, targeting large scale networks of heterogeneous robots. How-

ever, it focuses on a limited set of services, exclusively related to navigation, mapping and

planning. Its cloud platform contains a Hadoop cluster and a DAvinCI server, that can be ac-

cessible to robots. A novel feature is the integration of ROS for communications, robots can

subscribe to topics from the cloud back-end and also from other robots.

Hadoop cluster regroups Apache’s Hadoop tools, which are particularly apt for large scale

environments. Specifically, DAvinCI uses its two main components: Hadoop Distributed File

System (HDFS), for internal storage of the information obtained from all robots, and Hadoop

MapReduce framework, for executing the robotic algorithm tasks. The HDFS is a highly scal-

able and redundant distributed file system suited for large amounts of data, which runs on top

of the cluster nodes’ local file systems. While MapReduce is used for processing huge data sets

efficiently by executing tasks in parallel across all nodes, vastly reducing the overall processing

time. Both components are co-deployed into nodes, resulting in lower latency when accessing

or returning data.

The DAvinCI server operates as the ROS Master node, acts as an intermediary for ex-

changes between the cluster and robots, by converting data in and out the ROS format and

subscribing and publishing the necessary topics, triggers MapReduce tasks either periodically

or after some request from a robot, also provides the services to external entities over the Inter-

net by encapsulating ROS messages through HTTP.

2.1. ARCHITECTURES FOR CONNECTING ROBOTS 9

UNR-PF

The Ubiquitous Network Robot Platform appeared in 2011 as the first framework to offer generic

support for any type of robotic applications and tele-operation, although, it focuses on services

for the elderly (Kamei et al. 2012). In 2013, it was accepted by ITU’s Telecommunication Stan-

dardization Sector 1 under the recommendation F.747.3 , as a robotic network incorporated into

the Open USN Service platform , a standard architecture for ubiquitous sensor networks.

It is organized in a 3-layered architecture: Service Applications, regroup users, operators and

applications that exploit robot data. The UNF-PF cloud infrastructure, composed of a Global

platform (GPF), used for service management and multi-area integration, and Local Platforms

(LPFs), for managing robots, with each covering different areas or networks. And thirdly, a

Robot Component layer representing local networks of robots, running ROS or other frame-

works, and devices, containing virtual agents or sensors. All platforms provide a common

interface for communicating with the external layers, however only the GPF is linked with the

Service Applications, providing a centralized access point to users and operators by all LPFs.

Platforms share basic functionalities, mainly for storing spatial data, detailing local areas or

their global relationships, and managing services. Applications can register services, indicating

the necessary conditions, at the GPF, who then disseminates to appropriate LPFs. Platforms

then use a state manager to monitor the available resources and launch services whenever all

conditions are fulfilled. In addition, each LPF runs a resource manager to aggregate local data,

user requests and current operators to optimize and assign robots or resources according to the

requested services.

To further standardize itself, UNR-PF uses multiple language standards for structuring

the data used and exchanged. From the Object Management Group, it uses the Robotic Lo-

calization Service specification for describing locations and poses of robots, and the Robotic

Interaction Service framework for defining and connecting, through its interfaces, service ap-

plications and robotic functional components. From the Open Geospatial Consortium, both

CityGML and IndoorGML geographic markup languages for all spatial information retrieved

from the robots and stored into the registries (Furrer et al. 2012).

1https://www.itu.int/ITU-T/

10 CHAPTER 2. RELATED WORK

Rapyuta

Rapyuta began in 2013, derived from the RoboEarth project and built around its knowledge

base as an extension to provide a generic platform to offload any type of heavy computation

towards the cloud in a secure manner. It creates computational environments, similar to vir-

tual networks, that are secure, dynamically allocated and interconnected through ROS. Con-

nected to these environments, teams of robots can share services and information, and access

a RoboEarth repository. The compatibility with ROS goes one step further, as configurations,

updates and dependencies of the ROS packages are taken care of. Another novel feature, is

the use of Linux Containers (2.2.2), running ROS nodes, that provide isolated processes and

dedicated resources, to offload any computation from the robots. And, can be clustered into

NetworkGroups as a way to enable direct communications and bypass Rapyuta.

To optimize performance, Rapyuta implements diverse communication protocols, leaving

ROS only for containers. With internal processes, it uses UNIX sockets using Twisted frame-

work for event-driven asynchronous exchanges when dealing with configurations, involving

always the Master process, and custom ROS messages whenever exchanging data (Mohanara-

jah et al. 2015) . While with robots, a WebSocket (2.3.3) server is integrated, as to provide

full-duplex communications and exchange data in JSON format.

The Rapyuta platform contains 4 main components: Network, Users, LoadBalancer and

Distributor. The Network, is centralized around a Master node that mainly processes configu-

ration messages, monitors the rest of the network and organizes connections with the robots,

in cohesion with the Distributor, which distributes incoming connections from robots across

the robot endpoints. Those robot endpoints expose ports, accessible by other endpoints, and

interfaces, for robots, and handle all communications between them, converting data between

JSON and ROS formats. Another function includes forwarding configuration messages to the

master. Meanwhile, environment endpoints manage ROS nodes and their communications with

other endpoints. In addition, the LoadBalancer manages the machines composing the dedicated

cloud infrastructure and can efficiently assign containers to them. Decisions are based on repre-

sentations provided by the corresponding NetworkGroup and accomplished using a container

process, capable of launching and stopping computing environments.

Finally, Rapyuta users can register multiple robots and create NetworkGroup, defining

computational environments and interfaces that their robots can utilize. As a security mecha-

nism, personal API key are used for authenticating robots and any configuration submitted.

2.1. ARCHITECTURES FOR CONNECTING ROBOTS 11

SCMR

Survivable Cloud Multi-Robotics appeared during the same period with the idea of incorporat-

ing resiliency and quality guarantees into cloud robotics. Although, the scope and scalability

of SCMR is limited, supporting only 1 small team of robots, it does offer some interesting fea-

tures. It proposes the use of a robot leader that replicates the cloud infrastructure and replaces

it whenever the connection fails. And introduces dynamic offloading decisions, performed

using an Optimal Task Execution Policy, whose only goal is to minimize the energy consump-

tion. All robots are monitored and the metrics obtained are used by this policy to compute an

estimation of the energy saved by offloading a task, based on two models: Robotic Execution

Energy Model, to estimate the energy required to execute that task, based on the CPU workload,

memory, cooling system and any other component it might use; and the Cloud Execution En-

ergy Model, which estimates the energy dispensed by the robot for transmitting the offloaded

data, receiving the response data and remaining idle during the task execution in the cloud.

Anytime the policy’s estimation is positive and the cloud is available, the robot offloads the

computation.

Based on the offloading decisions, the SCMR platform can also invoke services, imple-

mented as ROS nodes, to execute any task. Frequently requested data, from those services or

the cloud database, is stored in a local data buffer, kept synchronized with the robot leader. So

that if the connection is severed, offloaded services can partially continue. In practice, a virtual

cloud is created collectively by all robots, with the leader, operating as a ROS master, using it

to provide critical services: image processing, navigation and path planning.

Exchanges between the cloud and robots are handled by the Twisted framework using the

WebSocket protocol. Twisted itself supports various network protocols and implements an

event-driven paradigm, defining the logical flow through events and enabling callback trig-

gers, particularly apt for the relation between cloud and robots defined in SCMR. However,

when the robots are disconnected from the cloud, the network communications fall back to a

gossip protocol, to permit peer-to-peer communications without predefined routing discovery

mechanisms, and where packets flow through any node that is in range until reaching their

destination (Hu et al. 2012).

12 CHAPTER 2. RELATED WORK

RAPP

RAPP started as a project for delivering robotic applications for the health sector, specifically

targeting the elderly, and was funded in late 2013, also by the European Union’s Programme

for Research and Technological Development. However, the architecture proposed and devel-

oped upon its completion enables a robotic-oriented ecosystem that can encompass any type

of service and usage.

It is the first framework to propose a global repository for robotic services and applications.

Developers can create and submit their own Robotic Applications (RApps), using multiple pro-

gramming languages and even ROS nodes, which can be retrieved, through REST web services,

and executed by registered robots. Static offloading is supported at application-level, parts of

RApps can be deployed automatically to the RAPP Cloud Ecosystem as Docker containers

(2.2.2), ran by Cloud agents.

Its cloud infrastructure also contains a separate platform, that essentially provides a com-

mon knowledge pool, a centralized database and inference methodologies, regrouped into the

RAPP Improvement Centre (RIC). RIC offers basic services, organized around ROS nodes

communicating via WebSockets, for robots (e.g. vision, speech, path planning) or centric to

the elderly (e.g. cognitive exercise, hazard detection) (Kintsakis et al. 2015). But, for security

reasons, they are mapped onto HTTP web services, protected with token-based authentication

and the Transport Layer Security protocol. In addition, while the knowledge pool contains data

about users and robots, their relations are obscured with special aliases kept by the centralized

database, who blocks RApps and external entities from accessing them, to offer privacy.

Finally, from the robots side, each one runs a Core agent, responsible for initiating hardware

interfaces, to control sensors or actuators and perform actions. On top of that, it manages

RApps locally and can execute an instance of one by launching a Dynamic agent, however only

one can operate at a time.

2.1.3 bridgeOS

BridgeOS was unveiled in 2016 by Bridge Robotics, as a platform to run generic applications

for service robots. It provides robots with modular and on-demand functionalities, represented

as Skills. And allows the deployments of applications, subscribing or processing information

related to robots, that expose such data to external, web or mobile based, applications.

The bridgeOS cloud uses a runtime platform, responsible for managing and monitoring

2.2. COMPONENTIZATION OF SERVICES 13

Figure 2.1: bridgeOS Architecture

applications, which in addition, provides an intuitive web user interface. Through this UI, end-

users can visually monitor their robots and applications, configure them as needed and even

upload new ones. Although, bridgeOS supplies basic Skills, users can develop their own or in-

tegrate those from third-parties, as stores for both Skills and applications become available. To

facilitate development or integration with other platforms, its development framework supports

diverse programming languages and offers libraries to ease connectivity. Furthermore, the in-

terconnection with robots is performed through ROS for greater compatibility with existing

solutions.

Comparison.

All presented frameworks are compared in Table 2.1 using an extensive number of properties,

to better reflect their similarities and differences. Those properties are in turn summarized in

Appendix A.2.

2.2 Componentization of Services

In this section we present the current state of the art regarding the decomposition of complex

applications and services into smaller, modular and scalable, components capable of being

deployed transparently. First by showing how to structure and operate those components,

14 CHAPTER 2. RELATED WORK

Table 2.1: Comparison of Cloud Robotics Frameworks

Properties bridgeOS RoboEarth DAvinCI UNR-PF Rapyuta SCMR RAPP
Scope general limited limited general general limited limited
Scalability high medium medium high high low high
Redundancy yes no no yes no yes no
Offloading dynamic static static no static dynamic static
Modular yes no no yes yes yes yes
QoS monitoring yes no no no no yes no
ROS compatible yes no yes yes yes yes yes
Ontology custom KnowRob ROS OMG, OGC KnowRob ROS KnowRob
Shared skills yes yes yes no yes yes yes
On-demand yes no yes no yes yes yes
Skill Templates yes yes no no yes no yes
Dynamic apps yes no no no yes no yes
App store yes no no no no no yes
User apps yes no yes no no no yes
Uploadable apps yes no yes no no no yes
User API yes no yes yes no no yes
Web dashboard yes no yes yes no no no
Private data yes no no yes yes no yes
Built-in security yes no no no yes no yes
(Note: the characteristics presented here for bridgeOS depict its cloud-based functionalities, extended with the middleware developed for this thesis.)

going through the frameworks that appeared as the technology matured. Starting from dis-

tributed application systems (Section 2.2.1) until the more general container-based models

(Section 2.2.2). Then, we present the available solutions for running and managing clusters

of containers (Section 2.2.3), concluding with a comparison in Table 2.2 .

2.2.1 Traditional Component Frameworks.

In the next paragraphs, an evolution of the frameworks developed for building and operating

distributed modular applications based on components, will be portrayed. They tackle some

problems centric to mobile environments and each offers different improvements that can grad-

ually lead to a framework capable of dealing with requirements sought by our middleware.

Rover Toolkit

The Rover Toolkit proposed in 1995, is one of the first frameworks for dynamic distributed ap-

plications dealing with mobile environments . It was developed solely for the C programming

language, presenting a trade-off between performance and code complexity, when compared

to other programming languages commonly used in the robotics frameworks presented earlier.

2.2. COMPONENTIZATION OF SERVICES 15

The novelty of this framework, based on a client/server architecture, surrounds two key ideas,

relocatable dynamic objects (RDOs) and queued remote procedure calls (QRPC), that have a

primordial role in dealing with the many challenges posed by mobile hosts.

RDOs are the central components of the application. They contain the code itself and en-

capsulated data, enabling a quick transfer of the its state, a well-defined interface, allowing re-

mote use by other objects, and can be loaded in either server or client host. The scope of each

object varies greatly, it can be a simple function or an extensive module such as a graphical

user interface (Tauber 1996). QRPC is a communication system used to provide non-blocking,

asynchronous remote procedure calls between RDOs, that are fault tolerant and recoverable,

and even transmit the RDOs themselves. By queuing requests and responses, it ensures no

data is lost whenever hosts are disconnected, and automatically restarts their exchanges upon

reconnection. Furthermore, it implements split-phase communications, supporting multiple

connections and transport protocols between the hosts, with even an optimization perspective

where requests and responses can be transmitted through different manners, at any time it

seems beneficial.

Its global structure presents a three-layered architecture, shared by both server and client,

consisting on an Application Layer, where the executed RDOs reside and invocations originate,

System Support Layer and Transport Layer. The System Support layer regroups the core functions

for linking the distributed applications, each side uses an Access Manager to globally manage

the interactions between local applications and their remote counterparts, and control both

other modules. It implements the failure recovery functionality for retransmitting data and

enables applications to imports or exports objects. An Object Cache that acts as a persistent

storage module for safeguarding local copies of the imported objects. It offers multiple op-

tions for caching objects, depending on the content variability requested by the applications.

And an Operation Log to keep track of the QRPCs and operations executed or requested or

events occurred, in order to gradually flush them depending on the current bandwidth and

connectivity. Lastly, the Transport layer converts messages between formats of the transport

protocols used and those used by the applications. Additionally, this layer contains a Network

Scheduler responsible for actually transmitting data kept by the Operation Log, in whichever

order it deems most suited, based on multiple criteria involving quality of service, session’s

consistency and priority requirements.

Although sensitive to mobile constraints, the Rover Toolkit still has some issues with scala-

16 CHAPTER 2. RELATED WORK

bility since components are essentially replicated into each host and would become intractable

as the objects grow in size and complexity, especially with newer functionalities unknown at

his creation.

OSGi

The Open Services Gateway Initiative is a well-known generic specification for component-

based modular applications using exclusively the Java platform, defined through a set of stan-

dards created by the OSGi Alliance. Although it started in 1999, new versions have been re-

leased throughout the years. Currently, the latest general-purpose specification is the OSGi

Compendium Release 6, published June 2015, while the mobile-centric (Release 4) is from July

2006. With OSGi, all applications and services are created in Java and solely interact through its

ecosystem, operating on top of the JVM (Java Virtual Machine). These specifications provide

a myriad of guidelines, standards and protocols, corresponding to topics including service de-

ployment, security, life-cycle, administration, and much more. However, beyond the common

core set (minimum requirements for interactions), it is up to the developers to decide, in accor-

dance with their goals, which ones they want to follow and implement.

In OSGi, components are represented by bundles, which are essentially JAR (Java ARchive)

files. They are modular units composed of multiple services, provided to one another in pro-

ducer/consumer relations through public interfaces abstracting their inner-workings, and de-

pendencies to packages (sets of classes), that can be imported or exported by them. Meanwhile,

its actual architecture is constituted of 4 hierarchical blocks residing above the JVM: Services,

regrouping all active bundles’ services, Registry, Life Cycle and Class Loading.

The Service Registry is a central process managing all publishers and subscribers of ser-

vices, and enabling their interaction through an event-based system, who operates in the same

vein as a ROS master node. The registry also shares dependencies and notifies service sta-

tus and errors. The Life Cycle module controls bundles, manages them and tracks their de-

pendencies during runtime. Despite dependencies being dealt with mostly at deployment,

built-in features also allow for dynamic dependencies during runtime.This module can install,

remove, resolve, initiate and stop bundles and their services. And, it provides an API with

access to those operations, through which bundles can oversee each other, depending on their

permissions. Finally, Class Loading handles packages distribution. Each package has a specific

version and its role is to carefully transmit one accepted by the importer specifications. Al-

2.2. COMPONENTIZATION OF SERVICES 17

though it tries to minimize the overall number of exports, it also support class spaces, allowing

duplicate packages with different versions to operate simultaneously without conflict.

The framework as a whole is designed to offer dynamic services through reusable and

adaptive bundles, transparently upgradeable and shared during runtime. All the while pro-

viding a versatile execution environment, resilient to failures including disabled or missing

services, handled by special module events supported by bundles and applications. Further-

more, the OSGi model also focuses extensively into the security aspect, setting a structure en-

compassing all levels, ranging from code design, to content exposure or communications, that

uses multiple secure mechanisms including access controls, service permissions and protected

zones.

Of course, all of those features come at a cost and might bring unneeded complexity to

the development of applications. Even more so when, ROS already implements a compara-

ble service discovery and interaction system. In addition, being restricted to Java, can pose

compatibility issues, since it is not natively supported by ROS.

R-OSGi

Remoting-OSGi is a proposal for distributing modular applications that builds on the OSGi

framework. It focuses on creating an adaptive and general environment with seamless embed-

ding of the OSGi applications and service transparency, all achieved through 4 novel features.

First, dynamic service proxies to abstract the actual location of each service from their

clients. Whenever a client subscribes to a new service, a proxy is automatically generated

after analyzing the code of the interface sent by the provider. Each proxy then operates locally,

forwarding exchanges between both sides. This method is quite useful for providers in con-

strained environments because they do not retain additional data on their side, while clients

can interact with services more spontaneously.

Then a distributed service registry for both registration and location, that completes the

centralized system used by the OSGi framework. This new registry is composed of local in-

stances running in individual hosts, which incorporate a service discovery protocol and are

responsible for creating and running the local proxies. With this model, bundles register them-

selves locally, while instances register to the central registry and perform a search whenever

new requests or offers appear, while activating the corresponding proxy if a match is found.

R-OSGi also provides a transparent and reliable distribution in which all new errors, either

18 CHAPTER 2. RELATED WORK

network or remote failures, are mapped to existing events, already supported and handled by

the bundles. Finally, it performs Type Injection to enable self-contained and resolvable service

proxies. This is accomplished through static code analysis of each bundle when it registers a

new service, and all dependencies it might have, to ensure that any non-standard data type,

has its definition class added into the an injection list. This list is then simply included within

the client proxy at creation.

Generally, as per its features and displayed benchmarks, R-OSGi seems more advanta-

geous than existing solutions also attempting to support distribution within the OSGi model.

Additionally, it is lightweight and less intrusive, supporting existing OSGi applications without

modifications. But although R-OSGi can performs than other implementations, it does present

a scalability problem related to the available services, affecting primarily the host’s network

bandwidth and memory, caused by requiring an extra proxy per service in each location.

DACIA

Dynamic Adjustment of Component InterActions is a framework for building adaptive dis-

tributed applications within a dynamic environment that supports heterogeneous and mobile

hosts. Like OSGi, it is implemented using the Java programming language, in part due to its

large adoption and for its high portability and cross-platform capability, inherent to the JVM.

In DACIA, applications are modular and flexible, they can be thought of as graphs com-

posed of individual components, whose structure can change during runtime and where dif-

ferent sets and configurations of components can achieve the same result. In turn, components

are blocks of software with constrained functionalities corresponding to a limited logical sub-

set of an application. Specifically, they are defined as a Processing and ROuting Component

(PROC), which receives input data, from one or more sources, and applies a distinct transfor-

mation to it. The location of each is itself transparent, they can run locally, close to the end-user,

or remotely, and can migrate in real-time depending on the current configuration. Migrations

are possible due to how PROCs are structured: they are relocatable data objects who, through

Java serialization, can be transmitted to a new instance, while maintaining their operating data,

connections state and unprocessed messages. PROCs also implement a simple interface, en-

abling basic connection and communication functionalities, including asynchronous procedure

calls for message transmission.

DACIA also uses two additional modules, indispensable for achieving the adaptive func-

2.2. COMPONENTIZATION OF SERVICES 19

tionality of any application: Engine and Monitor. The Engine has a general administrative role

consisting in managing PROCs and handling all communications. It keeps track of the local

PROCs and can migrate them based on the current configurations. It manages connections to

other Engines and between PROCs, which are connected in pairs and whose connection order

defines the actual data flow of the application. Every host participating in the application runs

its own Engine module, this allows them to act as a communications intermediary between

hosts and use virtual addresses to map their local components and persist connectivity even

during relocations. The second module, the Monitor, supervises the application performance

using an event-based monitoring service and generates reconfiguration decisions, based on the

implemented reconfiguration policies, specific to both the application and host.

Overall, DACIA tries to operate with a low overhead and a small code footprint. It incor-

porates an interesting approach for providing dynamic deployments and decomposing appli-

cations such that it is possible to optimize their operating locations during runtime. However,

the dependence on Java poses the same problems as before.

2.2.2 Container Frameworks

Containers are small blocks of software concatenated to provide a service or application. Op-

erated through a lightweight virtualization technology, they run directly on top of the host

OS and have their own isolated processes and resources. This type of virtualization provides

portability between a vast number of heterogeneous operating systems and machines, and is

language-neutral. Whereas component frameworks are mostly dependent to specific environ-

ments.

It also has multiple advantages in comparison to direct virtualization and virtual machines

(VMs). Since there is no guest operating system on top of the hypervisor, the boot time is much

faster and containers can make direct calls to instructions of the host’s CPU with performances

near those of native applications, much better than VMs, as proven extensively in multiple

performance studies (Kozhirbayev & Sinnott (2016) Seo et al. (2014)). Two frameworks will be

presented, Linux Containers and Docker, the popular and powerful newcomer. However, we

begin by introducing the concept of microservices, to convey the kind of software containers

are inclined to run.

20 CHAPTER 2. RELATED WORK

Microservices

Microservices are small services that can operate autonomously and integrate with others to

fulfill some requirement, and are in fact a specialized approach to the Service-Oriented Archi-

tecture. Whereas with SOA the idea is to functionally decompose complex applications into

smaller building blocks, separating user applications, business processes, services and data

systems, and to promote reusability. Microservices go one step further in the granularity logic,

to attain singular, modular, units which enable meticulous monitoring, allowing to pinpoint

bottlenecks and optimize scalability. Of course, a trade-off between such benefits and the asso-

ciated overhead, be it from memory or bandwidth usage, and increased complexity, of develop-

ment and coupling, has to be analyzed properly, to ensure favorable and efficient distributions

(Namiot & Sneps-Sneppe 2014).

Linux Containers

LXC is a framework specialized in building and operating lightweight linux-based containers

within the same host and using a single Linux kernel. The project started in late 2008, however

the first stable version was only released recently in 2014. Currently, it can be deployed into any

Linux-based host, by patching the kernel and importing the LXC tools. These tools offer all of

the required operations for controlling and managing containers, and can be accessed through

an API, although written in C, several libraries supporting other programming languages are

provided.

In LXC, containers run in virtual environments, each isolated from the system and with

specific resources constraints. They are actually created by aggregating two packages already

available within the Linux kernel, cgroups , for isolating the resource usage of collections of pro-

cesses referred as the control groups, and namespaces, for isolating them using specific names-

paces. Overall, cgroups enables LXC to run multiple applications within the same container

(Kozhirbayev & Sinnott 2016) and includes a set of features that are essential for LXC, such as

resource limitation, monitoring and prioritization, and group management. By giving certain

control groups larger shares of resources, they become prioritized with relation to the other

groups and operate therefore with consistent performance, specially beneficial for crucial con-

tainers. With namespaces, resources can be isolated and virtualized, thus providing secure envi-

ronments. Although, the term resources is used in a broader sense, since it includes processes

and users IDs, filesystems, hostnames, and more. Therefore, and beyond the straightforward

2.2. COMPONENTIZATION OF SERVICES 21

limitations, common to all container frameworks, such as CPU, memory and disk usage (size

and performance), LXC can also put restrictions over the network usage (Kozhirbayev & Sin-

nott 2016).

LXC provides mechanisms for cloning and snapshotting containers, particularly useful

during prototyping, and for rapid and scalable deployments. Finally, persistent storage is

available for each container, located within the host’s filesystem, and to allow customization,

different storage back-ends are supported.

Docker

Docker is a recent container framework 2 , released in 2013. It was initially based on LXC, but

then developed their own implementation, libcontainer, for using cgroups and namespaces di-

rectly. It contains some differences with relation to LXC, one of them being higher portability,

with support for more platforms, including Windows, whereas LXC operates under UNIX sys-

tems. Docker is also restricted in terms of constraints and offers no persistent storage within

containers, although it is possible to link storage containers or include mount points at startup.

The idea is to promote a ”single service/application per container” model, synergistic with the

microservices paradigm. The argument behind this perspective is to further decompose ap-

plications into elementary services, all of which can then communicate or be linked through

configurations and dependencies passed on at launch (Jaramillo et al.). This provides addi-

tional benefits, services can then be updated individually without necessarily disrupting whole

applications and scalability becomes more precise, only increasing the bottlenecked parts.

Here, containers are created from templates known as Docker images and operated by the

Docker Engine. Images are stored locally inside a Docker registry and can be easily shared

using the global public registry, Docker Hub, or even private registries. Due to its popularity,

many software providers have developed their own images for public dissemination, while

other open-source software was included by Docker’s developers directly. Furthermore, many

public cloud platforms already support Docker containers, meaning developers can enjoy the

cloud elastic resources without additional configurations. Docker Engine provides a series of

tools, besides managing containers and images, and includes an API so that remote or local

clients can operate it. Nowadays, it also contains a built-in feature for orchestrating clusters

of containers, called Docker Swarm, previously used separately as a middleware on top of the

2https://docs.docker.com/

22 CHAPTER 2. RELATED WORK

Engine. Docker Swarm is detailed, along with other container managers, in the next Subsection.

2.2.3 Container Managers

Container Managers facilitate the orchestration and scheduling of highly scalable environments

with large clusters of containers, through sets of management and supervision tools. While the

managers are not exclusive for Docker-based containers, they do provide a powerful exten-

sion to it, even if only to display what kind of ecosystem and usages are actually possible by

using Docker and how to attain them, since they are all open-source projects. The managers

presented in this Subsection were chosen for their individual relevance and to portray, from

different perspectives, what it is possible to accomplish besides the basic clustering features.

These choices are supported by studies such as Kratzke (2014), although Nomad (2.2.3), a

newer framework, was included to provide an indication, with relation to the remaining so-

lutions, of the direction the evolution of this technology has taken.However, Docker Swarm,

still serves as the basis since it is the native Docker manager. A comparison overview is then

exhibited at the end, surrounding Table 2.2.

Docker Swarm

Docker Swarm 3 is the official manager and comes included inside the Docker Engine since

version 1.12. Each Swarm consists of a cluster of nodes, running the Engine in swarm mode. Two

node roles are defined, manager and worker, which can coexist within the same node. Managers

administrate the swarm, schedule services among workers, monitor tasks and provide external

access to the swarm API. Usually, a small number of nodes are set as manager to provide the

cluster with built-in fault-tolerance features, additionally one is randomly elected as leader and

focuses solely on orchestrating tasks. Worker nodes only function is to execute containers as

per the requests received.

The work performed by the swarm is classified by services, that define a Docker image and

the set of tasks required. In turn, a task represents a container, running an instance of that im-

age, and a list of commands needed to be executed by said container. Services can be updated

incrementally, with controllable delays between different nodes, while leaving the possibility

of roll-backing to a previous version at any time. Two service models are provided, global

services, in which all workers run a service’s task, and replicated services, where the manager

3https://docs.docker.com/swarm/overview/

2.2. COMPONENTIZATION OF SERVICES 23

redistributes tasks amongst workers depending on the scale desired. Scales can be set dynam-

ically and managers automatically set the appropriate replication by monitoring the current

state of workers and their tasks, readjusting whenever necessary, even when dealing with full

host failures.

Docker also provides mechanisms for load balancing, be it for internal redistribution of

service requests or external access to exposed services. The former is accomplished by using a

DNS component, operated by a DNS server embedded within the swarm, for mapping services

and containers running them, although primarily used for serviced discovery. The latter is

done by automatically assigning a PublishedPort to each exposed service, so that it is accessible

on any node via this port. Finally, all communications performed inside a swarm are secure by

default using the TLS (Transport Layer Security) protocol and mutual authentication between

its nodes.

Apache Mesos

Apache Mesos 4 is an open-source cluster manager that appeared before Docker, in 2010. It is

aimed at resource management and application deployment in data centers, and is capable of

supporting systems regrouping tens of thousands of nodes (Hindman et al. 2011).The Mesos

architecture is composed of a Mesos master, interconnecting frameworks with Mesos agents, its

workers. The master is the central point, it manages agents, handles communications between

all nodes and mediates allocations of resources and tasks. Since it can represent a single point

of failure, to provide fault-tolerance, the master is replicated into other nodes that remain in

stand-by mode as backups in case of failure, operated by a ZooKeeper module. ZooKeeper

(Hunt et al. 2010) is a centralized service, specific for preserving configuration information and

providing distributed synchronization, that handles the election of the active master node.

Frameworks are orchestration applications, consisting of a scheduler and executors mod-

ules, that can be deployed concurrently and share the resources available. The scheduler com-

ponent is used for defining jobs and managing tasks while the executors are responsible for

launching them using specific environments, depending on the supplied configurations. The

built-in executors support binaries, Docker containers and Mesos containers. Although, it is

possible to build custom executors, and more generally frameworks and schedulers, using

multi-language APIs, accessible via HTTP endpoints present within the cluster.

4https://mesos.apache.org/documentation/

24 CHAPTER 2. RELATED WORK

Orchestration of tasks follow a bottom-up approach organized around resource offers.

Newly registered agents publish their resources (CPUs, GPUs, memory, disks or ports) to the

master. In turn, the master broadcasts each resource offer sequentially to all frameworks, along

with additional attributes regarding physical information, indicating where the server is lo-

cated, and system information, such as its operating system and engines version (e.g. JVM,

Docker, etc.). Based on their current needs, frameworks can reject these offers, or accept and

return a list of tasks with the required individual resources. The tasks’ details are then passed

on to the corresponding agent, so that requested resources are allocated to the framework’s

executor, allowing it to launch them in an isolated environment (Hindman et al. 2011).

Mesos also provides a thorough monitoring component, with an extensive set of observ-

ability metrics supervising the overall system, its nodes, resources, tasks, frameworks, com-

munications, and more. As well as broad logging support (of the same aspects), with customiz-

able modules. All of which are accessible through the API or a web-based user interface.

Currently, there are many frameworks available that work on top of Mesos to complement

or augment its functionalities, surrounding areas such as long-running services, batch schedul-

ing, or even Big Data processing and data storage. The most common is Marathon (Estrada &

Ruiz 2016), used for orchestrating long-running services, it offers additional availability guar-

antees and control, through personalized constraints.

Google Kubernetes

Google Kubernetes 5is a container scheduler specific for Docker, that offers its own original

perspective for managing and scaling modular applications. As expected, a master node is

used for overseeing the network. It runs a Scheduler and Controller manager for scheduling

containers and guaranteeing their long term survivability. The master also integrates Etcd,

a distributed key-value database, for replicating configurations and states, enabling cluster

monitoring and service discovery. All interactions with nodes are performed through an API

server it contains, that is also responsible for sharing the Docker images used.

On the other hand, worker nodes run a special process controlled by the master, the

Kubelet, responsible for the local management and monitoring of containers. Additionally,

kubelets can pull specifications and images from the API server and perform garbage collec-

tion throughout containers’ life-cycle to increase efficiency.

5https://kubernetes.io/docs/

2.2. COMPONENTIZATION OF SERVICES 25

A novel feature is the organization of containers. In Kubernetes, containers that share

resources or fulfill a common functionality are bundled together into a pod, isolating them even

further. While they can communicate internally, a shared IP is used externally. Furthermore,

Kubernetes defines services to manage the access of pods and any web services offered through

them. They also perform load-balancing and replication, abstracting the location of the actual

containers being used.

Lastly, the tools provided for monitoring and controlling resources can be applied at differ-

ent levels, from single containers to machines. And namespaces allow different specifications

of restrictions, however, they remain equal within the same pod.

Nomad

Nomad 6 is a highly functional, general-purpose microservices scheduler, oriented for large

scale and geographically distributed infrastructures. Its global infrastructure can regroup mul-

tiple regions, each containing jobs, a cluster of Nomad servers and dedicated datacenters with

worker nodes. Its high scalability promise of supporting thousands of nodes, relies partly on

Consul, built by the same company, HashiCorp, a tool capable of handling service discovery

and configuration for millions of machines.

By being geographically aware, users can submit jobs region-wise through a local CLI or

an API, which also offers monitoring tools. The jobs proposed with Nomad are more com-

plex, they can bind to specific datacenters, follow custom instructions for rolling updates and

execute groups of tasks. Meaning, they can launch whole applications at once, as each task

group defines a set of tasks to launch and replicate as requested. In turn, task definitions can

specify requirements in terms of drivers, images and resources. Nomad is not constrained to

Docker, it can also run VMs, jars and pre-installed applications. In addition, multi-level con-

straints are supported and can regard hardware, software and even business (e.g. compliances)

characteristics.

Nomad servers are used for region management, with similar functions and election sys-

tem as with the previous container managers. However, it uses an optimistically concurrent ap-

proach, where all servers participate in making parallel scheduling decisions, while the leader

supervises them. Furthermore, each region is managed as an independent cluster, but No-

mad servers can communicate with those from different regions to federate and create a single

6https://www.nomadproject.io/docs/

26 CHAPTER 2. RELATED WORK

system.

Another feature of Nomad, is its dynamic scheduling process, triggered by events emanat-

ing from users and nodes. It is composed of an evaluation phase, where the region leader eval-

uates the vacant resources, constraints and availability requirements, and generates a schedule

plan, ending with an allocation phase. The main objective being maximizing resource utiliza-

tion by optimizing tasks allocation within clients.

Comparison

Table 2.2 resumes the properties of each manager, with short descriptions provided in Ap-

pendix A.1. Given the recent nature of container managing systems, there are no performance

benchmarks available. Meaning comparisons are at most qualitative, and since they all share

similar concepts and characteristics, case in point being the master-worker relation and election

system. Therefore, each has its own advantages and the better positioned changes with relation

to the infrastructure and objectives ambitioned, and their evolution, an argument pointed out

and reinforced by Kratzke (2014).

Another consideration to have, refers to the cloud infrastructure used. As it is becoming

commonplace for Cloud Providers (i.e. AWS, Microsoft Azure, Google Cloud Platform, IBM

Bluemix) to offer container services, already with their own container management and orches-

tration solutions, some of which are adapted versions of the manager here compared. Conse-

quently, this choice might be dependent on whether a private ou public cloud infrastructure is

selected.

2.3 Operational Decomposition: Local vs Cloud Process-

ing

This last section will address the current mechanisms for offloading processing and other re-

quests for computational resources over to the cloud, means for monitoring and enabling such

exchanges. And finally, how to ensure that such communication channels can properly operate

in strict networks, while at the same time, reduce deployment barriers.

2.3.1 Cloud Offloading Techniques.

Offloading computation or data to the cloud is used mostly for optimizing resource usage and

the quality of the application or service provided. The decisions and policies used, vary de-

2.3. OPERATIONAL DECOMPOSITION: LOCAL VS CLOUD PROCESSING 27

Table 2.2: Comparison of Container Managers.
Properties Swarm Mesos Kubernetes Nomad

Scalability medium high medium high
Overhead low variable medium medium
Monitoring yes yes yes yes
Redundancy yes yes yes yes
Service Discovery yes yes yes yes
Service Replication yes no yes yes
Image Sharing yes yes yes yes
General Constraints no no no yes
Node constraints no yes no yes
Non-standard restrictions no no custom yes
Multi-level restrictions no no yes yes
Docker only yes no yes no
Load-balancing yes no no yes
Single system no no no yes
Multi-cluster no yes yes yes
Secure communications yes yes yes no

(Note: Mesos characteristics relate solely to a clean distribution.)

pending on the desired requirements, characteristics and security, and are based on a myriad

of metrics such as performance, latency, energy usage, or even cost. However, any resulting

utility depends always on a trade-off between the overheads, caused by the heuristics and al-

gorithms employed, and the optimization gains. The most common criteria used for mobile

environments, including robots, involve: minimizing execution time, which includes the cloud

computation time and time taken to transmit the data, and minimizing energy consumption,

from computing locally and transmitting data (Fernando et al. 2013).

The survey Khan (2015), does a great job in analyzing the current state of the art pertain-

ing to mobile cloud offloading. In it, the techniques are categorized into 2 approaches, static

and dynamic, that can be applied at multiple scopes, be it into components, whole applications,

threads or even single methods, that are computationally expensive. Static offloading utilizes

performance prediction models or offline profiling to estimate the performance of the different

services and tasks. Based on the estimations obtained, complex computations are separated

and migrated unto the servers. While predictive models usually generate and minimize cost

graphs, offline profiling has a more manual directive, that consists in creating an initial pro-

file, testing it and adapting until agreeable. Each profile defines the different properties that

should be respected to meet the quality of service, performance or cost targets. Meanwhile,

with dynamic offloading, a static analysis of the code is first performed, to obtain an initial

configuration, and then online profiling is applied during execution, to continuously optimize

28 CHAPTER 2. RELATED WORK

the profiles and deal with real-time constraints. Many complex and high-performance algo-

rithms, such as fuzzy models, genetic programming and Monte Carlo, have been used for this

task as presented by the survey.

Some interesting implementations, containing features useful for our work, have been de-

veloped so far. This is the case of Park et al. (2014), which proposes a Platform-independent

Mobile Offloading System that uses annotations, easily accessible as web pages, to define the

offloading properties between clients and servers. With those annotations, a local proxy mod-

ule can determine when and how to offload the execution of resource intensive functions of

a particular application, based of the current quality of service and battery usage. Another

example is Zhang et al. (2010), where an Elastic Application Model is presented. Similarly

to paradigms addressed before, it proposes to partition applications into smaller, platform in-

dependent, components called weblets, to be executed transparently location-wise. With the

objective of augmenting the mobile capabilities, through dynamic deployments. Decisions are

determined by a cost model, optimized through naive Bayesian learning, based on common

resource availability metrics and user preferences, such as power consumption, monetary cost,

performance, security and privacy.

Offloading Policies.

When it comes to offloading, different robots and different functionalities can have distinct

requirements and thus, divergent goals. Usually, these goals will be addressed by a set of

guidelines, designed to dictate how to attain them. Those sets are often characterized as poli-

cies. For offloading in mobile environments, policies can target power consumption, network

usage, general resource usage, monetary cost, or more importantly, performance and quality

of service. Policies are versatile and can be employed individually, or in conjunction to reach

higher-level optimizations.

Obviously, these are simply abstractions that require, beforehand, to be formulated by cost

functions mapping metrics into values. Enabling state comparison and optimization based on

monitored data and real-time statistics collected from robots, services or processes. The policies

then signal how the computed values should be used and the direction of the optimization (i.e.

minimization versus maximization). However, higher-level abstractions may need complex

algorithms. In that regard, we can feed those values directly into the learning models, which

also take into account the consequences of committing to certain policies, and by extension

2.3. OPERATIONAL DECOMPOSITION: LOCAL VS CLOUD PROCESSING 29

their potential rewards.

Neural Networks.

Neural Networks are an information processing paradigm, inspired by the biological neural

networks, able to approximate highly complex functions, often unknown, through the hyper-

connection of neurons, each performing a simplistic computation. Although, the first neural

network models have been presented during the 1940s, their application as powerful learn-

ing models, whether they are used for classification or regression, have been vastly proven in

the last decade. Where, thanks to recent advances in the fields of artificial intelligence and

reinforcement learning, they have shattered innumerable efficiency and performance records,

surpassing virtually every other type of model, and sometimes, even humans. Those advances,

championed by the architectural complexity paradigm that is deep learning, were enabled by

modern breakthroughs during the 1980s-1990s period, with backpropagation being the most no-

table, and exponential gains in computational processing capacities.

Neural networks are composed of multiple hierarchical layers of neurons, interlinked

through weighted connections and feeding values along the chain. The first layer, referred

as input layer, serves the sole purpose transmitting the external data it receives. While the last

layer, output layer, combines the internal inputs of the previous layer to compute and emit the

model’s decision or final value, depending on the application sought. Although, depending on

the architecture implemented, this structure can vary. For instance, the recursivity introduced

by more advanced architectures (e.g. Recurrent Neural Networks), can blur the separations be-

tween layers in high-dimensional setups. Also, while neural networks are normally employed

for processing data, sophisticated architectures, such as Long Short-Term Memory, provide

storage capabilities, albeit limited.

The models learn by adjusting the connection weights with a gradient descent algorithm.

For instance, the backpropagation method propagates backwards the errors, computed for each

neuron by a loss function, and in turn, applies a stochastic gradient descent to optimize those

weights. A particularity, is that networks can be optimized at any moment. It is merely a

question of applying the error propagation step after generating an output.

Compared to other learning models, neural networks present some advantages besides

online learning. Since each neuron represents a simple function performing some basic op-

eration, the networks can be massively parallelized and are therefore suitable for large scale

30 CHAPTER 2. RELATED WORK

applications. Another interesting characteristic, is that they can be repurposed and combined

to perform new tasks. For example, a neural network classifying objects can be channeled into

a neural network trained to describe scenes.

The downsides of using neural networks relate to their internal complexity, which reduces

interpretability, and black box aspect, in the sense that their network structures give no insight

on what exactly is being learnt (i.e. the functions approximated) by the model. Another quite

notorious issue, is the need for large quantities of data in order to optimize the networks and

attain sufficiently good approximations to become efficient for a given application.

2.3.2 Resource Monitoring Strategies.

The offloading techniques presented give a vast overview of the metrics that can, and should,

be monitored. Although, they depend largely on the desired effect. However, the strategies for

obtaining and transmitting those metrics are quite simpler, and can essentially be grouped into

two options, with a third, the hybrid version, combining both.

The first approach is based on periodic data transmissions, a rudimentary example being

a connection keep alive packet. The advantage lies in its straightforwardness, though, it can

quickly become inefficient and cause significant waste and overhead. Since, regardless of state

changes, transmissions always happen. A variant includes using dynamic intervals, regulated

by the current activity, as to avoid using crucial resources during peak usage. However, repet-

itive data remains a problem.

The second strategy consists in using an event-driven approach, where events trigger the

transmission of metrics. Therefore, exchanges only occur when something actually happened,

minimizing resource usage and overhead. It presents a significant inconvenient however, fail-

ures and errors can lead to lack of events, resulting in missing information. For this reason, a

mix of both is recommended, to take advantage of the best in each case: event-driven system

with conditional periodic exchanges (Ji et al. 2016).

2.3.3 Protecting Networks and Circumventing Restrictions.

Most distributed environments, interconnected through many networks, can be faced with se-

curity and privacy issues, or network traffic restrictions, due to firewalls or regional blocks.

Since it is critical, for the robots and services they interact with, to communicate freely, mech-

anisms resolving those issues should be implemented. In this sense, we present below two

2.3. OPERATIONAL DECOMPOSITION: LOCAL VS CLOUD PROCESSING 31

separate approaches, that can be combined for better results.

Virtual Private Networks

VPNs are classified as extensions of private networks, that permit spanning across public net-

works, mainly Internet, securely. VPNs use encryption and tunneling to transmit data con-

fidentially through otherwise insecure networks. There are multiple protocols available and

can operate in either network or data-link layers. Regardless, the scheme consists in exchang-

ing packets, while encapsulating the encrypted content from the layers above and include it

along a new packet header, which identifies the recipient. They also use diverse cryptography

systems, for both encrypting data and authenticating peers, primarily secret and public keys

schemes.

Besides confidentiality and privacy, VPNs have another benefit: since they encapsulate

the transport layer, the protocols used are unknown to external entities. So, even protocols

and ports blocked by firewalls can be used, if tunneled through a VPN. This characteristic is

particularly interesting for the interoperability of services required by Cloud Robotics, which

can use services bound to a myriad of ports.

An important open-source software for implementing and managing VPNs is OpenVPN

(Feilner 2006). It is deemed capable enough to operate within firewall-enabled networks and

traverse Network Address Translation mechanisms. It also integrates tools for creating Public

Key Infrastructures, and features newer and robust security protocols, primarily the Transport

Layer Security (TLS).

WebSocket Protocol

WS is a TCP-based protocol, originally directed at browser interactions between client and

server, that offers full-duplex connections, permitting more exchanges than the request/re-

sponse model of HTTP. It shares some similarities to HTTP, including connection establishment

and ports, that enable it to operate within any network that already supports HTTP, and TLS

tunneling, for securing communications. Albeit, the extended bi-directionality renders it more

suited for real-time communications, such as those needed for long-running web services and

robotic environments. A choice cemented by its small overhead and higher performance, as

demonstrated in Pimentel & Nickerson (2012) and Liu & Sun (2012).

An implementation confirming its utility is the Rosbridge package (Lee 2012), which pro-

vides a library for using WS as the transport protocol, tools for creating a WS server and inter-

acting with a ROS network. Additionally, a main objective for the next version of ROS, ROS

2.0, is to add native support of the WS protocol.

Summary

In this Chapter, we presented the relevant related work found in the literature for the themes

addressed in the thesis. We analyzed the current technological state of the art across varied

fields, focusing mainly on cloud robotics, container systems and cloud offloading. Presenting

the core theoretical concepts, alongside possible development perspectives, and completing

those analyzes with comparative tables and short descriptions on the individual advantages

found for each main platform, framework or paradigm.

3Architecture

This chapter explains the design choices undertaken during the development of the pro-

posed middleware. First of all, in Section 3.1, we exhibit a general overview of the architecture

for the entire bridgeOS ecosystem. And, in the following sections of this chapter, continue

with more in-depth regards to reflect the architecture and implemented functionalities of our

middleware in terms of its software modules. Concluding with the exposition of the network

architecture and communications protocols instated into our modules.

3.1 Architecture Overview

Figure 3.1: Overview of the extended bridgeOS architecture

The system-wide architecture for the cloud-based bridgeOS implementation, augmented

by our proposed middleware, is depicted in Figure 3.1. With it, the extensions undertaken

34 CHAPTER 3. ARCHITECTURE

by this work for the bridgeOS platform are apparent. To be noted however, the separation

between the cloud-part of the middleware is merely for illustration purposes, as they are fully

integrated and, from an outside perspective, represent the same cloud infrastructure.

By reason of security considerations nowadays necessary, the whole system is enclosed by

a bridgeOS Virtual Private Network, acting as a general protection mechanism providing se-

curity features sought for all established communication channels and robots using bridgeOS.

While a VPN creates a barrier blocking external parties, our security precautions go one step

further, adding another layer of protection inside the system, to fend off possible vectors of

attack coming from within, due to compromised or rogue internal elements. Each robot has its

own private network, isolating restricted data or skills, regardless of their location, and only

exposing the pertinent parts through the Controllers API to the bridgeOS platform, and thus

other robots and users. Further explanations are provided later in this chapter, in Section 3.5.

That sections also details our development choices regarding communications between

modules and presents our event-based protocol (Table 3.3) for dealing with monitoring and

middleware management, which was specifically developed for communications through

WebSockets. As for other design choices, each middleware module, contains a web interface

implementing said protocol, to permit interactions using WebSockets. All modules, with the

exception of Skill Routers (Section 3.4.2) were developed using Node.JS (Tilkov & Vinoski 2010),

a high-performance and scalable JavaScript environment based on asynchronous events, with

clear advantages over Python with regards to this web-oriented approach (Lei et al. 2014). Since

Skill Routers have to interact with ROS networks, their module was built in Python, taking ad-

vantage of ROS native python library, rospy. Rospy is used in most of ROS core components

due to its ease of integration and performance.

The proposed middleware supports groups of robots. They can access the bridgeOS cloud

infrastructure by means of their local Robot Controller, which establishes the VPN tunnels

and links them with the Master Controller. Figure 3.2 offers a more in-depth look about how

robots interact with and use our middleware, and subsequently, the bridgeOS cloud platform.

Logically, some robots might already possess core functionalities and will turn to bridgeOS

as an option to enhance them. It is then plausible, that some robots will have native ROS

drivers not instantiated by bridgeOS, such as those controlling local actuators or sensors, and

likely a ROS master to manage them. Therefore, we have to anticipate the occurrence of a local

ROS master, while also planning for the opposite possibility. The middleware is permits both

3.1. ARCHITECTURE OVERVIEW 35

scenarios, it can adapt by managing network routes and enable packet forwarding, and if no

ROS master is detected locally, a cloud container will provide a dedicated ROS master instance

to such robot.

Figure 3.2: Detailed architecture from a robot point-of-view. Red arrows represent communi-
cation channels using WebSockets, dedicated to monitoring and management purposes, while
blue arrows represent communication channels for ROS. Not depicted, are all connections in-
volving components, which can be over ROS or use any other type of protocol.

Additionally, as a means to provide a portable middleware, and in substitution for being

executed directly in the host like native applications, both the Master and Robot Controller

modules can also be launched containerized through Docker, similarly to bridgeOS Skills. For

Robot controllers, the benefits of executing them as native applications, are to allow greater

control of the host and its resources, and enabled increased monitoring capabilities. For in-

stance, even with its privileged mode, with Docker we are unable to obtain complete access to

the host file system, a necessity if the user desires specific disk monitoring metrics or selects

cost heuristics and functions that use them. With the Master Controller however, there is no

real interest in a native deployment. Since it is located in a cloud environment, the oversight

and resource management is most likely not handled by the same virtual machine, and rather

performed through an API or some other tool supplied by the Cloud Provider.

On the other hand, using the controller modules as Docker containers helps achieve the

interoperability characteristic desired for the middleware. Considering that, any system sup-

36 CHAPTER 3. ARCHITECTURE

porting Docker will be able to launch them without hassle. Containers also eliminate the dis-

advantage of lengthy pre-configurations, after all, dependencies are reduced solely to Docker,

as any other dependency is dealt with during the Docker Image’s creation; and of platform-

dependent programs. Although, JavaScript and NodeJS are cross-platform, some packages

used are themselves tied to certain operating systems. Lastly, initiating the middleware in a

robot is greatly simplified, only a docker run command is necessary (or an initial docker create

command and henceforth docker start, if we wish persist the containers).

We would also like to mention, that the choices regarding whether or not to containerize

controllers, are user-related considerations to be taken when configuring their implementations

and not an oversight of the solution proposed. Our position was to design the middleware in

a way that sets up a highly customizable environment, malleable to each user’s (i.e. the robots

owners) specific requirements.

3.2 Master Controller

The Master Controller is the principal management component of our middleware, and has

the purpose of serving multiple crucial roles. For starters, it acts as a gateway, providing robots

with an entry point to the bridgeOS platform by exposing a common WebSockets interface for

Robot Controllers. And is responsible for persisting and sharing their startup configuration.

Inversely, it also enables bridgeOS services, users and applications to reach robots, by means

of a HTTP web interface.

Located inside the cloud infrastructure, one of its core functions is to orchestrate cloud

containers, using Docker Swarm, for Skill components, dedicated ROS masters and other con-

tainerized bridgeOS services. It this sense, it can manage and access all isolated subnetworks

composing the robots virtual private networks.

Furthermore, another core function is to create a centralized information hub, logging

data regarding the current states and offloading changes, and monitoring everything related

to robots, skills, components and modules. In practice, the Master Controller is only charged

with monitoring cloud containers and connections with robots, broadcasting any relevant data

back to them. Meanwhile, Robot Controllers deal with the local side of their private network,

forwarding to the Master all metrics and events generated by them, their Skill Managers and

Skill Routers, such as ROS statistics and offloading decisions. This circumstance emerges from

the design choice of implementing fault-tolerance and high-availability mechanisms locally

3.2. MASTER CONTROLLER 37

(i.e. to provide cloud redundancy), essentially, each robot has its own Docker daemon, not

connected to the cloud Docker Swarm. All this data horded by the Master Controller is per-

sisted to a cloud database, described afterwards in 3.2.2. Although created specifically for this

middleware, the database can be accessed by the bridgeOS platform through the API, or obvi-

ously directly within the cloud infrastructure (granted the credentials are known). Its schema

can of course be fused into the existing back-end database of bridgeOS.

3.2.1 Robot API

The Robot API exposed by the Master Controller joins the existing bridgeOS solution with

the thesis’s middleware. It is a HTTP REST web interface, that implements management and

monitoring services of the middleware and robots, porting part of the internal WebSockets

interface to the remainder cloud infrastructure and, indirectly, users. Effectively maintaining

the Master as an intermediary between all parties, for such matters.

This API provides therefore external access and control. And can be used for transmitting

(de)activation commands for robots, skills or components, and letting users, provided they are

properly authenticated, access their current state or even monitor metrics in real-time. The

complete specification of the Robot API is disclosed in Table 3.1.

3.2.2 Database

For monitoring, administrative and modules integration purposes, the middleware uses a cen-

tral database governed by the Master Controller. Figure 3.3 illustrates the database schema

designed for our proposed middleware. Its structure was kept to the essential data needed

by the different modules to operate autonomously, regrouping information about robots, skills

and components, their latest statuses and all monitoring metrics. A separate table for logs was

also included to facilitate reviewal and analysis due to the containerized environment, which

can sometimes be burdensome to access. This structure also mixes relational data with fixed

structure and other flexible and dynamic data, essentially, the JSON configurations of Skills and

of their components. Which, if expressed traditionally as relational data, would consequently,

vastly and unnecessarily, increase data redundancy and the complexity of the database schema.

Since relational data is suitable for SQL frameworks, and data with dynamic properties

is suitable for NoSQL frameworks. To meet our hybrid requirement, we had to look for a

compatible database management system (DBMS), able to offer the best of both environments.

38 CHAPTER 3. ARCHITECTURE

Figure 3.3: Middleware Database Diagram

After pondering all factors and comparing different solutions, in terms of capabilities, perfor-

mance and scalability, we selected PostgreSQL. PostgreSQL is a mature and powerful DBMS,

that offers extensive SQL tools and features, some of which commonly provided by relational

databases, including replication, key relationships and ACID 1 properties, a characteristic of-

ten overlooked by popular NoSQL databases due to their internal architecture. Moreover, it

natively supports JSON, provides advanced functions and operators for handling JSON data,

and is scalable to data-center wide applications.

Obviously, the database schema developed for the proposed solution is not dependent on

PostgreSQL and can be ported to both SQL- or NoSQL- only databases, since the expected

structure of the JSON data used remains known and, inversely, the relational data can be reor-

ganized to suit the NoSQL document-based constraints. And of course, it can and most likely

should be integrated with the existing database schema currently employed by a bridgeOS

platform. To be noted, however, that user and authentication data pertinent to the current

(non-extended) bridgeOS solution is excluded as it goes beyond the scope of this thesis.

3.3 Robot Controller

This module represents the local administrative part of the middleware, and is present within

each robot, with the purpose of attaching them to the bridgeOS cloud. Locally, they take on

a small network-related role, as they are responsible for bounding to the bridgeOS VPN and

configuring its on-board firewall, to secure and conceal exchanges with the cloud. They also

have to setup their local subnetwork, to be used by the robot’s docker containers, and estab-

1Atomicity, Consistency, Isolation, Durability

3.3. ROBOT CONTROLLER 39

lish the needed network routes, to ensure that all containers, modules, ROS nodes and other

processes can communicate with each other, regardless of their location. When launched as a

container, the Robot Controller appears to function as a network bridge, given that all inbound

and outbound traffic is redirected through it, since the VPN tunnel is established inside its

container.

When launched, Robot Controllers authenticate themselves with the Master Controller and

retrieve their bridgeOS startup configuration, containing information regarding their local sub-

networks and Skills. Earlier, during the overview section of this chapter, we acknowledged that

a robot could already have a running ROS master. The Robot Controller is tasked with veri-

fying this scenario and act accordingly when connected to the cloud. Therefore, when a ROS

master is found, its ip address and port is disclosed, otherwise a request for launching a cloud

ROS master is transmitted to the Master.

However, the core role of a Robot Controller is to manage the deployment of skills and

orchestrate components, based on user configurations and requests from Skill Managers, to

meet the desired performance, Quality of Service or any other quantifiable criterion. Although,

for cloud containers, it merely forwards commands to the Master Controller. Additionally,

it has to continuously monitor robot resources, local containers and the cloud availability, and

share those metrics, both with its Skills and the cloud, to provide real-time information about its

robot. The generated information is also exploited locally for allocating the available resources

efficiently, during container deployments.

To permit cooperation with Skills, a Robot Controller operates a WebSocket server, imple-

menting the common API (Table 3.3), that listens for incoming connections from Skill Man-

agers. This enables administrative exchanges and constant feedback, shared up to and from

the Master Controller. This continuous monitoring network, created between all modules, is

then exploited by the Master Controller, for supervising current states, of the network and its

components, and permitting logging any relevant information. And, by Skill Managers, to per-

form real-time performance checks, enabling adaptive offloading decisions. While the Robot

Controller poses as an intermediary, on top of the monitoring information and management

services it offers.

40 CHAPTER 3. ARCHITECTURE

3.3.1 Robot Resources Allocation

A premise and driving factor of this thesis, is that robots have limited on-board resources, thus,

Robot Controllers cannot blindly deploy containers locally simply based on Skill Managers

requests, and have to analyze whether it is beneficial to do so. Consequently, developing an

algorithm for this purpose became a necessity. The outcome of this development process is

disclosed as Algorithm 1.

The Resource Allocation algorithm generates a decision based on current resource avail-

ability and usage, an heuristic function selected by the user, and a cost threshold. The com-

puted decision can take on four different outcomes. The first two, are the expected binary

boolean, True or False, stating clearly whether or not to deploy the requested Skill component.

The third option, is also a positive outcome, albeit with a precondition, it specifies a component

that has first to be migrated to the cloud, in order to free enough resources locally and confirm

the request. The result is somewhat uncertain, because there are no guarantees that the mi-

gration will succeed, in which case the decision is overturned. Lastly, the fourth option is a

negative outcome, but this time with a partial solution, launch the requested component in the

cloud. Obviously, this response is only somewhat helpful when initializing a new Skill, since

for requests emerging from offloading decisions, the desired and quantifiably best location, is

the robot.

For each component we wish to launch locally, the algorithm procedure is as follows: first,

we compute the entire resources it needs, including any links it might have. Linked compo-

nents are essentially dependencies between components from the same Skill, stating they all

must operate within the same location. Having computed the factual requirements, we exam-

ine if the currently available resources are enough to satisfy them. If so, the algorithm stops and

announces its approval. Otherwise, the next step becomes finding a replacement. In this sense,

we retrieve from the components instantiated locally, a list with all those movable, meaning

those that can operate in either location. The goal now, is to find another component using

enough resources to fill the gap between the current availability and the requirements. Of

course, we must also take into account any eventual linked components of the replacement,

since its dependencies remain in effect and are automatically propagated during a migration.

This is the reason why the algorithm only needs to output the id of the base replacement. If no

suitable replacement is found, the algorithm can merely make a final verification based on the

required location, checking whether a cloud deployment could be attempted, before returning

3.3. ROBOT CONTROLLER 41

Algorithm 1 Resource allocation algorithm for robot component deployment

Require: skillId, componentId, heuristicFunction, threshold
Ensure: getRequiredLocation(skillId, componentId) ∈ {local, either}

1: freeResources← getAvailableResources()
2: resources← getRequiredResources(skillId, componentId)
3: linkedComp← linkedComponents(skillId, componentId)
4: for all c ∈ linkedComp do
5: resources← resources+ getRequiredResources(skillId, c)
6: end for
7: if resources ≤ robotResources then
8: return true
9: else

10: totalResources← getTotalResources()
11: movableComponents← ∅
12: replacement← ∅
13: minCost← Infinity
14: for all s ∈ getActiveSkills() do
15: for all c ∈ getComponents(s) do
16: if c /∈ linkedComp and getRequiredLocation(c) = “either” then
17: movableComponents[s]← movableComponents[s] ∪ c
18: end if
19: end for
20: end for
21: for all s ∈ movableComponents do
22: for all c ∈ movableComponents[s] do
23: availableResources← freeableResources+ getResourceUsage(s, c)
24: for all link ∈ linkedComponents(s, c) do
25: availableResources← availableResources+ getResourceUsage(s, link)
26: end for
27: if resources > availableResources then
28: continue
29: end if
30: heuristicCost← heuristicFunction(s, c, requiredResources, availableResources,

totalResources, constants, weights)
31: if heuristicCost < minCost then
32: replacement← c
33: minCost← heuristicCost
34: end if
35: end for
36: end for
37: if replacement 6= ∅ & minCost ≤ threshold then
38: return replacement
39: else if getRequiredLocation(skillId, componentId) = “either” then
40: return “cloud”
41: else
42: return false
43: end if
44: end if

42 CHAPTER 3. ARCHITECTURE

a negative response.

Only a question now remains, when and why should a new component replace another?

This is a valid question, even more so, when the latter is already operating. This issue how-

ever, is resolved with the use of a heuristic function to compute a commensurable deployment

cost, that is leveled off by a threshold, dictating when such scenario is beneficial. Since not all

robots serve the same purpose, a single common heuristic can hardly be an efficient response

for the different necessities. That is why five confluent heuristics have been developed. Each

offering a alternate approach and addressing a different objective. Even though the last three

build on the previous heuristics. These heuristics and enumerate and described here after in

this subsection. Both threshold and heuristic, can be picked by a user through its robot’s config-

uration. A consideration to have relates to the trade-off between the added computational cost

of using particular cost function and its potential efficiency in reaching the objective sought for

the Resource Allocation algorithm. For example, maximize resource usage or minimize overall

downtime.

To be noted, deployments are examined individually due to the asynchronous nature of

the requests sent by the Skills Managers, either for Skill initialization or offloading purposes.

Furthermore, there is few benefit to risk having groups of components not launched, solely

because there are only enough resources, or valid replacement for a subset of them.

• Resource Usage Heuristic (Algorithm 2): The Resource Usage heuristic function aims to

maximize resource allocation on the robot. To this end, it computes a ratio, for each type

of hardware resource the robot has, of the expected waste of resources this replacement

will generate. Afterwards, the ratios are returned, accompanied by their geometric mean,

as a way to provide a single comparable cost.

Clearly, the optimal case is the one where those ratios are all zero, representing a

scenario without resource wastage. Anything less, the replacement does not satisfy the

requirements, and anything more, resource allocation is not maximal. There is however

an assumption that we make, which is, available resources are never null due to the dy-

namic environment of a computer.

• Migration Cost Heuristic (Algorithm 3): The Migration Cost heuristic goes on a different

approach, it takes into account the expected cost of migrating the replacement, in terms

of network bandwidth, both in absolute data (i.e. in bytes) and monetary cost, with the

objective of minimizing the latter. The argument behind the utility of this heuristic func-

3.3. ROBOT CONTROLLER 43

tion is that, with mobile devices such as robots, the second most important resource, after

energy, is arguably network bandwidth. As it can be limited, possibly making large ex-

changes slow or borrowing network share from other processes, and might also have a

monetary cost associated (e.g. mobile carrier rate for exchanging 1 gigabyte of data).

The bandwidth calculated, represents the amount of data needed to synchronize

the replacement and its dependencies with their cloud counterparts. This includes stored

ROS messages (e.g. replicating a map generated locally) and shared Docker volumes,

which enable components to persist data they require or construct during their execu-

tion. Because the requested component is common for all replacements, its eventual cost

is discarded from this measure.

• Resource Expenditure Heuristic (Algorithm 4): This heuristic combines three perspec-

tives in order to produce a single measure of the overall resource expenditure caused by

the substitution. It collects the average waste provided by the Resource Usage heuristic

and the total bandwidth from the Migration Cost heuristic, weighting them together with

a third measure computed locally.

Fundamentally, the Resource Expenditure heuristic retrieves the network share cur-

rently used by the replacement and any linked components, and weighs it based on the

proportion of bandwidth consumed locally. This establishes an assessment of the ex-

pected network usage variation resulting from the migrations of such replacement, since

any local exchange will then have to involve the cloud. Of course, the measure is not

perfect, because some of those exchanges might happen with linked components, which

also migrate. However, given the monitoring capabilities at our disposal, performance

considerations and the black-box approach of Skills, we cannot have access to such de-

tailed metrics.

Each factor is weighted, in function of what the user deems more important, based

on his objectives, leading to an aggregated expenditure measure. Representing a trade-

off between the gains of reduced resource wastage, the migration cost, and possible loss

due to increased network usage.

• Temporal Cost Heuristic (Algorithm 5): The Temporal Cost heuristic function builds on

both previous heuristics and introduces the temporal aspect. Basically, it linearizes over

time the expected bandwidth cost produced by the migration, in function of the currently

available network capacity, discounted by its expected variation. Its interest resides in

44 CHAPTER 3. ARCHITECTURE

Algorithm 2 Resource Usage Heuristic

Require: skill, component, requiredResources, freeResources, totalResources
1: resources← cpu, gpu, ram, bandwidth, IO
2: ratios← Infinity
3: for all res ∈ resources do
4: if totalResources(res) = 0 then
5: ratios[res]← 0
6: else
7: ratio← freeResources[res]−requiredResources[res]

totalResources[res]

8: if ratio < 0 then
9: exit for

10: else
11: ratios[res]← ratio
12: end if
13: end if
14: end for

15: average←
(∏
res∈resources

ratios[res]

) 1
size(resources)

16: return ratios, average

computing the amount of time necessary to complete the substitution, and consequently,

the upper bound duration of the component’s downtime.

• Weighted Cost Heuristic (Algorithm 6): This last heuristic is an accumulation of the

work produced by the other heuristics. It aims to consolidate an overall measure, weight-

ing both cost factors, time and resources. It is both more complete and computationally

expensive, considering it is comparable to executing all other heuristics at once, on top

of its final weighing. However, it gives the opportunity to not discard either cost aspects,

and provides users with the option of determining a general best candidate for replace-

ment.

3.3.2 Components Synchronization

Another important function of the Robot Controller, is to handle state synchronization of com-

ponents during their migrations. Performing this, is not as straightforward as one would think.

Normally, if we were using virtual machines, we could easily capture a snapshot of their cur-

rent state and use it to replicate a given virtual machine somewhere else. However, this is not

achievable with Docker containers, since Docker’s layered storage architecture is much less

transparent and makes it impossible to simply replicate specific layers in another host. There-

fore, we have to rely on other mechanisms such as synchronizing shared Docker volumes,

3.3. ROBOT CONTROLLER 45

Algorithm 3 Migration Cost Heuristic

Require: skill, component, constants
1: bw ← [Infinity]
2: bw[stateTransfer]← getSyncSize(“DockerV olume”, skill, component)
3: bw[rosSynchronization]← getSyncSize(“ROS”, skill, component)
4: for all c ∈ linkedComponents(skill, component) do
5: bw[stateTransfer]← bw[stateTransfer] + getSyncSize(“DockerV olume”, skill, c)
6: bw[rosSynchronization]← bw[rosSynchronization] + getSyncSize(“ROS”, skill, c)
7: end for
8: bw[total]← bw[stateTransfer] + bw[rosSynchronization]

9: bw[cost]← bw[total]
10243

∗ constants[CostPerGB]
10: return bw

which can be specific to each Skill or component, and storing ROS messages, based on user

configurations, to be shared with the help of the Skill Router when a migration happens.

Components synchronization is not constrained solely to migrations. Some of the objec-

tives tackled by this thesis regard questions of redundancy, robustness and fault-tolerance. For

those reasons, we implemented mechanisms to enable the Robot Controller to adapt to unre-

liable circumstances and act accordingly. Hence, the added responsibility for resynchronizing

data whenever confronted with disconnections and other network failures. In such events, it

keeps any local messages, retransmitting them when possible, and informs the local managers,

triggering any eventual data synchronization behavior specific to each Skill.

3.3.3 Cloud Role Takeover

Expanding on the topics addressed in the previous point, the mechanisms discussed expand

beyond components synchronization purposes, to include cloud status monitoring and tem-

porary role appropriation. To increase reliability on the middleware and enable robots to gain

some independence vis-à-vis the cloud during disruptions, the Robot Controller should be ca-

pable of replacing the cloud functions, at least partially, whenever disconnected. This scenario

is referred to as Cloud Role Takeover and its process is defined by the Algorithm 7.

The algorithm outlines which monitoring events to look for and when to trigger or revert

the takeover. It is a continuous task performed throughout a robot’s active state. The first step

of its cycle, is to monitor cloud connections, particularly with the Master Controller. If they

become unavailable after a certain delay, the takeover initiates.

This immediately triggers a Skill recovery mechanism. From one side, Skill Managers are

warned, driving them to halt their dynamic offloading decisions, shift the active locations of

46 CHAPTER 3. ARCHITECTURE

Algorithm 4 Resource Expenditure Heuristic

Require: skill, component, requiredResources, freeResources, totalResources, constants, weights
1: variation← 0
2: expenditure← 0
3: localBandwidth← getLocalBandwidth(skill, component)
4: cloudBandwidth← getCloudBandwidth(skill, component)
5: if localBandwidth 6= 0 & cloudBandwidth 6= 0 then
6: localWeight← localBandwidth

localBandwidth+cloudBandwidth
7: variation← getResourceUsage(skill, component, “bandwidth”) ∗ localWeight
8: end if
9: for all c ∈ getLinks(skill, component) do

10: localBandwidth← getLocalBandwidth(skill, c)
11: cloudBandwidth← getCloudBandwidth(skill, c)
12: localWeight← localBandwidth

localBandwidth+cloudBandwidth
13: variation← variation+ getResourceUsage(skill, c, “bandwidth”) ∗ localWeight
14: end for
15: RUH ← ResourceUsageHeuristic(skill, component, requiredResources, freeResources,

totalResources)
16: MCH ←MigrationCostHeuristic(skill, component, constants)
17: expenditure← RUH[average] ∗ weights[gain] +MCH[total] ∗ weights[cost] + variation ∗

weights[loss]
18: return expenditure, variation

Algorithm 5 Temporal Cost Heuristic

Require: skill, component, requiredResources, freeResources, totalResources, constants, weights
1: MCH ←MigrationCostHeuristic(skill, component, constants)
2: REH ← ResourceExpenditureHeuristic(skill, component, requiredResources, freeResources,

totalResources, constants, weights)

3: return MCH[total]
getAvailableResources(bandwidth)−REH[variation]

components to local whenever possible, and expect error statuses about the disruption. While

at the same time, the Robot Controller analyses active Skills to try and deploy their cloud seg-

ment locally. Unlike with the Resource Allocation algorithm, the goal is not a quantitative one

(i.e. fitting the most components locally), but rather a qualitative one, where we attempt to

restore the proper operation of Skills. For this reason, we take each Skill individually and ex-

amine whether it is possible to deploy all of its cloud components at once in the robot. Skills

that cannot satisfy this requirement, or have components that must exclusively remain in the

cloud, are ignored since their functionality remains hindered.

Upon cloud connectivity reestablishment, the takeover ceases and its stoppage is propa-

gated to the Skill Managers, letting them revert their actions. And, since the migrations that

occurred during the role appropriation are known, the duplicated components are stopped.

3.4. BRIDGEOS SKILLS 47

Algorithm 6 Weighted Cost Heuristic

Require: skill, component, requiredResources, freeResources, totalResources, constants, weights
1: REH ← ResourceExpenditureHeuristic(skill, component, requiredResources, freeResources,

totalResources, constants, weights)
2: TCH ← TemporalCostHeuristic(skill, component, requiredResources, freeResources,

totalResources, constants, weights)
3: return REH[expenditure] ∗ weights[cost] + TCH ∗ weights[time]

An apparent giveaway of this mechanism, is that robots can operate without the cloud.

This is true, but up to a certain degree. For starters, their services remain limited to those pro-

vided by the Skills restored. And another implication is that, any remote control and access,

happening through bridgeOS, is lost. However, an incorrect interpretation would be to assume

robots can be launched and initialize Skills on their own, without an initial cloud connectivity2.

While this might seem like an oversight, this characteristic stems in fact from a security precau-

tion: ensure offline configuration changes are imperatively applied by robots. The argument is

to avoid unforeseen risks arising between environment updates (e.g. robot was moved or its

location might include new elements such as people) and previously used Skills.

3.4 bridgeOS Skills

BridgeOS Skills are assemblies of components, working together to provide particular function-

alities such as navigation, speech, grasping and so on. They already implement an architecture

based-on microservices, where each component executes limited processing tasks or expose

services (e.g. a ROS node), and adopt the containerized approach of Docker.

With our middleware, bridgeOS Skills are embodied slightly differently. Their components

can be launched both locally or in the cloud, thus ceasing to be represented by single containers.

However, only one container of each is kept active, while the other is either stopped or made

incapable of interacting. And, they are bundled together with two dedicated middleware mod-

ules, Skill Manager and Skill Router, operating with the purpose of organizing them. Hence,

each skill instantiation can now become transparently distributed between the robot and the

bridgeOS cloud. Furthermore, to enhance cooperation and data sharing between components,

a common Docker volume, kept synchronized and replicated across locations, is provided and

accessible by all within the same Skill, including the respective middleware modules.

2Robots can, logically, launch the middleware without any network connectivity. However, they will simply not
instantiate Skills before being provided by the Master Controller of their latest configuration.

48 CHAPTER 3. ARCHITECTURE

Algorithm 7 Cloud monitoring algorithm for role takeover

Require: disconnectionDelay
1: takeoverActive← false
2: migrations← ∅
3: repeat
4: status← monitorCloudConnection()
5: if status ∈ [ConnectionClosed, ConnectionLost,NoResponse] then
6: if now()− getLastestP ing() ≥ disconnectionDelay then
7: takeoverActive← true
8: for all skill ∈ getActiveSkills() do
9: sendSkillManager(skill, “ConnectionLost”)

10: components← ∅
11: resources← ∅
12: for all c ∈ getComponents(skill) do
13: if getActiveLocation(skill, c) = “local” then
14: continue
15: else if getRequiredLocation(skill, c) = “cloud” then
16: exit for
17: else
18: components← components ∪ c
19: resources← resources+ getRequiredResources(skill, c)
20: end if
21: end for
22: if components 6= ∅ & resources ≤ getAvailableResources() then
23: for all c ∈ components do
24: launchComponent(skill, c)
25: end for
26: migrations[skill]← components
27: end if
28: end for
29: else
30: continue
31: end if
32: else if takeoverActive then
33: takeoverActive← false
34: for all skill ∈ migrations do
35: sendSkillManager(skill, “ConnectionEstablished”)
36: for all c ∈ migrations[skill] do
37: stopComponent(skill, c)
38: end for
39: end for
40: migrations← ∅
41: end if
42: until robot shutdown

3.4. BRIDGEOS SKILLS 49

The Skill Manager supervises Skill performance and the state of all components, along

some other metrics related to the robot itself, such as network bandwidth or battery available,

to generate offloading decisions in real-time using user policies. While the Skill Router essen-

tially abstracts the location of all components, rerouting communications accordingly, based on

the dynamic offloading decisions received. An intended benefit of this design, is that it allows

specific components to concurrently operate during migrations, switching the active location

only when their counterparts are available, thus reducing any possible downtime and avoid-

ing conflicts. Additionally, for the purpose of increasing middleware resilience and robustness,

they both reside exclusively in the robot, so that, if the Master Controller fails or the cloud

infrastructure becomes unavailable, they can continue operating and decide the appropriate

course of action, as addressed before with the fault-tolerance mechanisms implemented by the

Robot Controller and the interactions depicted between all three modules.

3.4.1 Skill Manager

As stated before, Skill Managers have the critical role of providing the adaptive offloading

capabilities sought by this middleware. Specific to a single Skill, each is a local information

hub that regroups data it deems pertinent from all available sources, constantly sharing it both

upwards, to the Robot Controller and through it the bridgeOS Cloud, and downwards to the

components via its API. However, the responsibilities of a Skill Manager are even broader, since

it has to initialize skills and manage components as well, whereas the Robot Controller simply

orchestrates their deployment.

To better operate, it needs to persist some data across Skill launches, including variable

configuration or metrics, to avoid redundant retrievals when queried by components. Conse-

quently, it uses an embedded and lightweight file-based NoSQL datastore for NodeJS, NeDB,

stored in its common Docker volume. By persisting such data, previous Skill launches can serve

as a backbone for selecting the deployment locations of components during initialization.

Generating Dynamic Offloading Decisions

Using all collected data, it generates offloading decisions in real-time for components, that take

into account the offloading Policies emboldening user preferences and goals. Policies can be

adhered to, combined or discarded, and are intended to be either maximized or minimized. All

of them are implemented from the perspective of the robot, by means of two cost functions, one

50 CHAPTER 3. ARCHITECTURE

per component location. Currently, 4 Policies targeting different perspectives are supported:

• Energy Usage Policy: measures the energy consumption of a component based on the

resources it uses. However, for cloud components, we only consider the usage of the

robot’s network interfaces resulting from their exchanges.

• Network Usage Policy: computes a network cost based on the usage made by a compo-

nent, with regards to the opposite location, meaning exchanges between the cloud and

robots.

• Cost Policy: quantifies a cost derived from the energy consumption, network usage and

other resources utilized by a component. Unlike other policies, with cloud components,

it also provides the possibility of computing a cost based on cloud resources, whenever

appropriate (e.g. Cloud instance renting).

• Performance Policy: measures the performance of a component in terms of some activity

metric and resource availability. Such policy is heavily influenced by the purpose each

component is serving and its type. For instance, with simpler components, measuring

their network latency might suffice, while with ROS nodes, their frame rate or packet

loss rate might be more adequate. Which is why it was implemented with customization

and adaptability in mind, enabling more intricate and specific measures to be integrated.

Further details on this topic are provided in Chapter 4.

Of course, simply computing the policy costs are not enough for deciding whether a com-

ponent should migrate. First, we have to estimate if it would be beneficial to do so, and by

how much. Estimations, by definition, always have some degree of inaccuracy attached to

them, therefore using a model that can learn and be optimized, all of which in real-time to sup-

port dynamic policy updates is a must. Neural networks satisfy those requirements, hence our

choice for selecting them as models for computing efficient decisions. Nevertheless, in order to

become useful, they still have to be trained, at least partially. For this reason, a set of functions

were also developed to manually estimate the expected migration reward, temporarily serving

as a basis for computing offloading decisions while the neural networks are being initialized.

The materialization of these procedures is represented by Algorithm 8, which is imple-

mented by Skill Managers and ran periodically. First, this Dynamic Offloading algorithm uti-

lizes numerous preconditions to filter out components that cannot migrate. Either by default,

3.4. BRIDGEOS SKILLS 51

Algorithm 8 Dynamic offloading algorithm for skills components

Require: componentId, policy, threshold
Ensure: getRequiredLocation(componentId) = “either”

1: network ← getNeuralNetwork(componentId)
2: repeat
3: migrate← false
4: location← getActiveLocation(componentId)
5: resources← resourceUsage(componentId)
6: if location = “local” or resources < getAvailableResources(“robot”) then
7: if hasRecommendation(componentId) then
8: migrate← getRecommendation(componentId)
9: else if offloadingStrategy = “dynamic” then

10: metrics← getStatistics(componentId)
11: costs← computeCosts(policy,metrics)
12: networkDecision← computeNetworkDecision(network, policy, threshold,

metrics, costs)
13: if networkDecision 6= ∅ then
14: migrate← networkDecision
15: else
16: reward← estimateMigrationReward(policy, costs,metrics)
17: if reward ≥ threshold then
18: migrate← true
19: end if
20: trainNetwork(network,migrate, reward)
21: if trainingCount(network) ≥ 1000 then
22: setTrained(network)
23: end if
24: end if
25: end if
26: end if
27: return migrate
28: until skill shutdown

for instance if the component has a fixed location or dynamic offloading is disabled, or due

to expected runtime circumstances, such as lack of free resources. And afterwards, it fetches

the latest statistics of a component to compute the Policy costs, and forwards the results to the

respective neural network so a decision can be generated.

Algorithm 9 formulates with greater detail how neural networks are used and handled,

including the scenarios in which they are unable to return a decision. In such eventualities, it

resorts to manually quantifying the expected migration reward. In either case, the computed

prediction is compared with a user-defined threshold before reaching a decision. Thresholding

is used since it is logical to assume migrations generate some cost, as we inferred when present-

52 CHAPTER 3. ARCHITECTURE

Algorithm 9 Compute Network Decision algorithm

Require: network, policy, threshold,metrics, costs
1: migrate← false
2: if network is not Initialized then
3: network ← initializeNeuralNetwork(network)
4: return ∅
5: end if
6: if network is Trained then
7: prediction← network(costs)
8: if prediction ≥ threshold then
9: migrate← true

10: end if
11: if training interval Reached then
12: reward← estimateMigrationReward(policy, costs,metrics)
13: trainNeuralNetwork(network,migrate, reward)
14: end if
15: else
16: return ∅
17: end if
18: return migrate

ing the Resource Allocation mechanisms and algorithms implemented by the Robot Controller

(Subsection 3.3.1), thus they should only happen when it remains beneficial from an overall

standpoint and not solely component-wise.

It is apparent in both algorithms, how neural networks evolve, from their initialization to

their continued live learning. To train them, we use each prediction and policy costs to deter-

mine in retrospect, if the decision generated was indeed beneficial. Of course, even this conclu-

sion is imperfect since there are external factors in play (e.g. sudden spike in resource usage,

connectivity disruptions, new Skills launched), however our premise is that neural networks

will be able to form an internal representation that accounts for them, as a result of periodic

training.

Components API

Skill Managers provide components with a small REST API, presented in Table 3.2, letting them

access and publish metrics or monitoring events relating to their Skill, themselves or other

components. Another functionality of this API, is to enable components to manually push

offloading recommendations, which are then processed as depicted in Algorithm 8. Besides

custom metrics that can shared by components, Skill Managers also offer by default numerous

3.4. BRIDGEOS SKILLS 53

monitoring metrics, that can be useful, such as resource usage, ROS statistics and other statistics

(i.e. network latency).

3.4.2 Skill Router

The core function of a Skill Router, as its name suggests, is to route messages between compo-

nents and operate as a proxy for those collaborating through each other’s services, essentially

abstracting the location of all components. It communicates with the Skill Manager to remain

up to date regarding the offloading decisions, and keeps track of the components ip addresses.

And given its convenient position within a bridgeOS network, helps complement our moni-

toring capabilities of components, by tracking all forwarded exchanges and collecting statistics

about those communications, including those happening over ROS. The generated data is then

shared with the Skill Manager and offered via ROS under the topic /statistics, which is com-

monly used for the same monitoring purposes.

The allow this transparent distribution to happen, where components can be deployed

independently anytime and in any location, we have to implement a mechanism capable of

satisfying our preconditions: container images cannot be modified to respect the interoperabil-

ity characteristic sought by bridgeOS, components must continue interacting without (or with

minimal) interruptions during offloading, and, we have to ensure idle components do not en-

gage with others. Therefore, options consisting of injecting hosts directly onto containers or

using private DNS servers were not viable.

Our solution consists in having Skill Routers map services we know components offer or

will use from one another. For instance, with components operating within ROS, it can map

topics and services, they published or subscribed, to specific namespaces that are different for

cloud and robot components. Similarly, the Skill Router maps known URIs and HTTP meth-

ods, redirecting afterwards requests and responses to both ends, and achieving the same trans-

parency provided to ROS nodes, for web services components offer or consume. By operating

in such manner, the Skill Router vastly facilitates switching the active location of components,

since applying the correct route can be virtually reduced to a boolean flag. Ensuring, conse-

quently, that idle components stop operating, while remaining able to coexist without disrupt-

ing their counterparts. This was a desired feature for our middleware and a requirement of our

strategy for minimizing downtime, which consists in waiting for a component to be ready in

the new location before committing to its migration.

3.5 Private Networks and Communications Protocols

As addressed during the overview of the middleware architecture, all entities interacting

within a bridgeOS ecosystem are protected by a global VPN securing all communications.

While conjointly, further isolated robots by bounding them to dedicated internal private net-

works. Fundamentally, robots are allocated subnets for local and cloud use, with their access

overseen by the VPN server. To provide such network capabilities, we selected a robust open-

source solution, OpenVPN.

With regards to our middleware needs, communications between the developed modules

occur using the web-oriented WebSocket protocol and exposing web services access points. Of

course, the benefit of this, is to take advantage of its inherent capabilities, namely bidirectional

exchanges, interoperability, performance, Firewall-friendly approach and high-throughput,

well suited for real-time web exchanges. For it, we designed an event-based protocol deal-

ing with management and monitoring exchanges using JSON messages, that defines fault-

tolerance and retransmission mechanisms, and sets up push (e.g to publish a status update)

and request-response (e.g. request the location of a component) exchanges logic. Table 3.3,

provides an overview of the events we deemed essential for our communications protocol.

Finally, we assess a possible risk, robots can sometimes be unable to join the bridgeOS VPN,

either because the server failed (highly unlikely) or their local network restricts VPN traffic

(increasingly possible nowadays). In such scenarios, we must to still be capable of providing

basic security guarantees. Therefore, whenever VPNs are unavailable, our modules will switch

to the secure version of WebSocket, WSS, which is protected by TLS, akin to HTTPS for HTTP.

And all docker subnetworks will be hid, protected by firewall rules, setup in both sites, to

restrict their access. On top of that, if the Robot Controller is containerized, all external traffic

is still redirected through it, easing network monitoring.

Summary

This Chapter described the core aspects of our middleware proposal, addressing its overall ar-

chitecture, network arrangement and software modules. We also described the relevant aspects

that allowed us to implement and achieve some of the objectives defined for the middleware.

This is the main outline of the architecture of the system. Next chapter delves into the technical

intricacies of the middleware and its modules, and how we integrated them with bridgeOS.

3.5. PRIVATE NETWORKS AND COMMUNICATIONS PROTOCOLS 55

Table 3.1: Master Controller REST API
Method URI Description

GET /auth Authenticates a user and opens a new session
GET /auth/renew Extends the validity an open session
GET /robot Retrieves exhaustive information about all con-

nected robots, their skills and components
POST /robot/start Starts all idle Robot controllers
POST /robot/stop Executes a soft stop of all connected robots
POST /robot/shutdown Shuts down all connected robots permanently
GET /robot/*/info Retrieves exhaustive information about the cur-

rent state of a robot, his skills and components
POST /robot/*/start Starts, a previously stopped, Robot controller
POST /robot/*/stop Executes a soft stop of the robot, its Robot Con-

troller will shutdown everything but become
idle, awaiting a start command

POST /robot/*/shutdown Shuts down the middleware at the robot side
POST /robot/*/skill/add Adds a new Skill to the robot
POST /robot/*/skill/remove Removes a particular Skill from the robot’s cur-

rently available Skills
POST /robot/*/skill/*/start Instantiates a Skill
POST /robot/*/skill/*/stop Shuts down an active Skill.
GET /robot/*/skill/*/info Retrieves extensive information regarding the

current state of a Skill
POST /robot/*/skill/*/component/*/start Starts a Skill component at the requested loca-

tion
POST /robot/*/skill/*/component/*/stop Stops a Skill component operating at the speci-

fied location
POST /robot/*/skill/*/component/*/migrate Migrates the active location of a component to

the other side
GET /robot/*/skill/*/component/*/info Retrieves information about a component and

its containers
POST /database/query Queries the database for the latest metrics and

activities about robots.
(Note: The asterisk symbol present in the URIs, stands as a placeholder for the resources, namely Robots, Skills and components IDs.)

Table 3.2: Skill Manager REST API
Method URI Description

GET /components Retrieve information about all components of its Skill.
GET /components/location Retrieve current active locations of all components.
GET /components/{id} Request current status of a component.
GET /components/{id}/location Request current active location of a component.

POST /components/{id}/location Publish a manual offloading decision for a component.
GET /metrics Query the latest values of multiple metrics.

POST /metrics Update the values of multiple metrics.
GET /metrics/{metric} Retrieve the latest value of a single metric.

POST /metrics/{metric} Update the value of a single metric.

56 CHAPTER 3. ARCHITECTURE

Table 3.3: WebSocket Communications Protocol
Event Description

authentication client Client authentication request for accessing the Master Controller
through its WebSocket API.

authentication robot Authentication request for connection robots to the cloud platform.
authentication success Explicit response indicating a successful authentication.
authentication failure Authentication failure response.
connection established Signals that the connection between the cloud platform and a robot

has been (re)established.
connection lost Signals that the connection between the cloud platform and a robot

has been severed.
error message Transmission of errors resulting from processing failures or format

inconsistencies.
shutdown Requests or signals a robot permanent shutdown.
robot start Orders a robot to resume operations.
robot stop Orders a robot to stop operating and remain idle.
robot config Transmission of the robot configuration for initializing the middle-

ware locally.
robot config get Requests the robot configuration from the Master Controller.
robot config update Forwards minor configuration updates during runtime.
offloading Sets or reports the current offloading mode used by a robot.
offloading get Requests the offloading mode currently used by a robot.
skill start Orders the launch of a Skill.
skill stop Orders the shutdown of a Skill.
skill status Forwards status updates of a Skill.
skill status get Requests the current status of a Skill.
skill connnect Connects a Skill Manager with the Robot Controller.
skill config Transmits the local configuration of a Skill.
skill config get Requests the local configuration file of a Skill.
component start Requests the launch of a Skill component.
component stop Requests the shutdown of a Skill component.
component information Forwards the latest information about a Skill component container,

including its ID and IP address.
component status Forwards status updates of a Skill component.
component status get Requests the current status of a Skill component.
component location Reports the current active location of a Skill component.
component migrate Orders the deployment of a skill component to the requested location.
metrics Forwards one or more metrics.
metrics get Requests the latests measures of one or more metrics.

4Implementation

This chapter covers more exhaustively the intricacies and inner-workings resulting from

the implementation of the solution that was proposed in Chapter 3.

4.1 Managing Private Robot Networks

We proclaimed previously that all communications made within the bridgeOS ecosystem are

protected by a common VPN, and went further stating robots are isolated from each other and

have their own private subnetworks. We achieved those claims using OpenVPN coupled with

tailored firewall and routing rules.

Robots are associated with specific certificates, allowing them to connect to our VPN server

and consequently open a secure network tunnel. Using the client management functionalities

of OpenVPN, we define specific configurations for each one, to express their subnetworks and

push network robots enabling them to reach their cloud components. In our cloud back-end

configuration, we dynamically define which subnetworks are available, and through cooper-

ation between Master and Robot Controllers, have them create the local docker networks that

will contain the Skill components.

While the local network routes enable subnetworks to interact, whenever required, firewall

rules protect them from unauthorized access. A question might arise from this architecture,

since robots are isolated, how can they interact and cooperate? With bridgeOS, robot coopera-

tion happens at a higher-level, through the bridgeOS applications. This middleware only plays

an indirect role regarding this topic, connecting robots and Skills with the bridgeOS Cloud

Platform. The interactions that occur afterwards are beyond the scope of this middleware.

4.2 Performing Dynamic O�oading

As covered before, Skill Managers use neural networks to generate offloading decisions based

on the policies used. We created a JavaScript class, ComponentDecisionModule, that encloses

58 CHAPTER 4. IMPLEMENTATION

the decision making processes together with the neural networks. It implements the algorithms

we presented in the previous chapter and provides an interface for handling neural networks,

including their persistence across Skill launches. Each component is attributed a single object

of this class throughout its life-cycle, independently of its location.

The cost functions of policies were however implemented in a separate class, PolicyEstima-

tor. The main motivation behind this choice, was to provide developers with an easy solution,

in case they ever need to extend the policies. To be capable of computing costs, we inject into

it user-defined constants (e.g. costs, weights) and types of resources, specific to each robot and

Skill. Then, provide the latest component metrics, whenever their cost functions are called.

The equations below (4.1 through 4.6) detail the current cost functions we selected for our Pol-

icyEstimator. Regarding the Performance Policy, we decided the use a common cost function,

used for both locations, that computes costs based the component type. For ROS nodes, it out-

puts their message loss rate within the ROS network, while for the remaining it returns their

network latency. This simplicity was intended to encourage customization, since Skills are too

diverse to use the rely on the same function.

Customization is a principle we wanted to encourage. For this reason, we allow users,

through the configuration files of both robots and Skills, to vastly customize the parameters

used by Skill Managers for dynamic offloading, while retaining their black box aspect. This

includes not only the architecture of the neural networks (e.g. number of layers and nodes,

activation functions), but also policy cost functions. Thanks to the characteristics of JavaScript,

we can load strings as functions during runtime. Therefore users can design cost functions

more appropriate to their needs, knowing in advance the variables they have access (constants,

resources and metrics).

EnergyCostlocal =
∑

h∈RHR

Sh ∗ Ech (4.1)

EnergyCostcloud =
∑

i∈RWI

Si ∗ Eci (4.2)

NetworkCostlocal =NetworkIO ∗
BWcloud

BWtotal
(4.3)

NetworkCostcloud =NetworkIO ∗
BWlocal

BWtotal
(4.4)

4.3. DEVELOPING SKILLS 59

MonetaryCostlocal =Etotal ∗ CKW +BWcloud ∗ CGB (4.5)

MonetaryCostcloud =Ewireless ∗ CKW +BWlocal ∗ CGB +
∑

r∈CRR

Sr ∗ Cr (4.6)

Where :

BW = Bandwidth expended, in GigaBytes

C = Monetary cost for a given resource.

E = Energy expended, in kilowatts.

Ec = Hourly energy consumption.

S = Usage share of a resource, in percentage.

CRR = Cloud Hardware Resources

RHR = Robot Hardware Resources

RWI = Robot Wireless Interfaces

4.3 Developing Skills

With bridgeOS, Skills are collections of reusable components, that can be launched together as

a single service. For our middleware, however, components contain two sets of configurations

detailing how their containers should be run in depending on their deployment location. To

develop our augmented bridgeOS Skills, we bundled their components with our Skill modules,

and encapsulate them through a Skill configuration file, whose format is presented in Table 4.1.

Additionally, we provide Skills with access to dedicated Docker volumes, that can be used to

persist and share data over multiple instantiations.

Since the Skill modules remain in the robot, we chose to launch them together as a Docker

service. To that end we define their Docker configuration in a format readable by their official

tool for services deployment, Docker Compose. This allows their containers to communicate

with runtime injections. The configuration files of Skill modules contain basic information re-

garding middleware communications, including which ports to use and connect to. For the

Skill Manager, it also contains the parameters used for decision making, as detailed previously.

While for the Skill Router, it includes the mapping and routing configuration required by its

components. Currently, the routing functionalities available for components include support

for publishing and subscribing to ROS topics, ROS services and HTTP web services. We be-

lieve, those 3 aspects, coupled with the shared docker volumes and the Skill Manager API,

which provides ip addresses of containers, are enough to accommodate the vast majority of

components.

Regarding the routing of ROS related communications, since ROS nodes can use tailored

packages and messages, we to keep scouring components for new formats and giving them

to the Skill Router. Our approach is to maintain a single Docker Image for the Skill Router, to

which new formats are added. The alternative was to maintain one image version per user or

Skill, however this lead to increased complexity, and given the fact the size of formats is quite

small, unnecessary. This question remains nonetheless open, since it will depend on the scale

bridgeOS is employed, and in the long term, a compromised between both approaches seems

like the best choice.

Finally, to integrate, through our middleware, Skills with the bridgeOS platform, during

the deployment of components, the Master and Robot Controllers respectively inject into con-

tainers, hosts and other environment variables mapping the bridgeOS services and providing

access to the their ROS master.

Table 4.1: Attributes of a Skill configuration file
Property Data Type Description

skill String Skill name
skill id String Skill unique identifier
volumes Array List of Docker volumes required by the Skill
compose Object Docker Compose configuration for deploying the Man-

ager and Router components of a Skill
manager Object Skill Manager configuration
router Object Skill Router configuration
components Object List with all configurations of the components compos-

ing this Skill

Summary

We unveiled during this chapter the relevant implementation options followed and depicted

the internal mechanics of our middleware, by subsequently disclosing how the modules devel-

oped interact and fuse with the current bridgeOS framework.

5Evaluation
5.1 Overview

In this Chapter, we introduce the results obtained through two series of experiments designed

to assess and evaluate the validity of the middleware presented in this thesis. First, to primarily

test the potential of our offloading capabilities, we implemented 3 use cases commonly used

by robots. Second, to benchmark the different modules developed and characterize the sound-

ness of such middleware as an extension to bridgeOS and more generally for integrating cloud

computing with robotics.

Testing was performed in a simulated yet representative test environment, enclosed by a

VPN, consisting of a bridgeOS Cloud Infrastructure, divided into a bridgeOS Platform and an

instantiation of the Master Controller, with resources to launch cloud components. And a robot,

hosting our robot-side middleware modules, and an instantiation of the Robot Controller.

5.2 Experimental Testbed

To assess the developed middleware, we had at our disposal 1 laptop with an Intel Core i7-

3610QM CPU at 2.30GHz, 8151MB of available RAM memory, and HDD 7200 RPM SATA

3Gb/s 16 MB Cache, connected by a 220 Mb LAN. Two servers, provided by INESC-ID and IST

in Lisbon, with an Intel Core i7-2600K CPU at 3.40GHz, 11926MB of available RAM memory,

and HDD 7200RPM SATA 6Gb/s 32MB cache, connected by a 1 Gb LAN. And, from Amazon

Web Services, 1 T2.Micro cloud instance, located in Ohio (USA), using 1 Virtual Core of an Intel

Xeon E5-2676 v3 @ 2.40GHz, 990MB of RAM and 16GB SSD limited to 160Mb/s.

For both evaluation suites, we implement the network environment depicted in Figure

5.1. The Laptop acted as the bridgeOS Platform, providing the VPN server and our added

PostgreSQL database, in addition to the regular bridgeOS services. And, one server provided

the cloud part of our middleware. However, for testing the implemented use cases we used

one T2.Micro cloud instance for simulating the robot, while for benchmarking purposes we

62 CHAPTER 5. EVALUATION

employed the second server. We selected this setup as to better capture the different aspects

being tested in each suite.

Figure 5.1: Middleware Evaluation Setup

5.3 O�oading Performance

The goal of this series of tests was to observe the potential of our middleware, in terms of its

offloading capabilities, and measure the overhead it may cause. To that end, we selected 3

existing bridgeOS Skills relevant for robotics, and integrated them with our architecture as to

create 3 standalone use cases that use ROS, presented in Figure 5.2. For both navigation and

mapping Skill, we used an instantiation of a robot called Husky, a 4x4 all-terrain mobile base,

whose simulation is provided by ROS official website.

• People detection: detects humans using pointclouds from RGB and Depth images;

• Autonomous Navigation: navigates robots autonomously using known maps;

• Autonomous Mapping: maps the surroundings of a robot moving using odometry.

For each skill, every feasible and relevant combination of its components, location-wise,

was tested. This allows for a performance comparison of the middleware with relation to

settings ranging from fully-local to pure-cloud (every possible task offloaded into the cloud)

execution. Table 5.1, presents the different components composing the Skills, while Figure

5.3. OFFLOADING PERFORMANCE 63

5.3, provides the order in which each combination was tested. During testing, we monitored

the resource usage of Skills and the middleware from the robot’s point-of-view, and measured

some performance metrics pertinent to each use case, namely, loss rate of ROS messages, time

required to process a single pointcloud, time needed for completing a map tour.
Table 5.1: Skills decomposition

Skill Component Description Location
People Detection Publisher Publishes pointclouds generated

from RGB and Depth image data.
robot

People Detection Sampling Samples points from pointclouds,
reducing its number if necessary.

either

People Detection People Detector Detects and locates people
present within pointclouds.

either

Autonomous Navigation Path Planner Generates paths for robots based
on maps and sensor data.

cloud

Autonomous Navigation Map Server Manages maps and provides path
planners and known data.

either

Autonomous Navigation Robot Mover Issues desired location goals for
robots.

either

Autonomous Mapping Robot Controller Publishes commands to control
robot movements.

either

Autonomous Mapping Mapping Generates maps based on sensor
data.

either

Autonomous Mapping Odometry Processes and publishes odome-
try data received from robots.

either

Figure 5.2: Middleware Evaluation Skills

5.3.1 Results

We present in Figure 5.5, the performance measured for each Skill during the tests performed,

and in Figure 5.4, their resource usage in the robot. To be noted, while navigation and mapping

were simulated in the same environment and have similar durations, their trajectories were

different, since the first used a path planner and the latter a predefined route.

64 CHAPTER 5. EVALUATION

Figure 5.3: Components location during the performed tests

Figure 5.4: Use Cases Results - Skills Performance: each bar represents the combination tested
and is displayed in the order defined by Figure 5.3.

Based on resource usage alone, an overall decreasing tendency is clearly apparent, al-

though with some notable exceptions. Case in point being the spike in CPU usage for navi-

gation Skill during Tests 3 and 4, correlating with a performance loss. Of course, a decrease

is to be expected from the perspective of the robot, since we are offloading components to the

cloud. However, if we examine tests with the most number of cloud components, their re-

sults also prove that the overhead caused by the middleware modules of a Skill, Router and

Manager, can be insignificant.

With regards to performance, Skill initialization remained under 5 seconds during all tests,

and surprisingly, the success rate of ROS messages transmission measured by the Skill Router

was kept stable at 98.42±0.63%. In terms of Skill-wise performance, we note a slight increase

in tour duration for navigation, correlated as stated before with a resource spike, and a stable

outlook with mapping. A stability in the duration is actually a very good result, since the

conditions remain the same (i.e. a robot moving at the same speed over the same path, will

take the same time), demonstrating that our routing mechanism does not hinder certain tasks.

5.3. OFFLOADING PERFORMANCE 65

Figure 5.5: Use Cases Results - Skills Resource Usage: each bar represents the combination
tested and is displayed in the order defined by Figure 5.3.

For people detection Skill the takeaway is different. With a dramatic increase in the mean

processing time of pointclouds, we cannot at first assume the middleware performed well.

However, it is easily explained when we consider how the Skill works and the locations of its

components. The pointclouds generated by the Publisher had sizes of around 30-40 MBytes,

and were forwarded successively to the Sampling and, from it, to the Detector. So, whenever

they were in different locations, and additional round-trip with significant data transfer was

required. And, since the pointclouds were published periodically, the Skill rapidly generated a

network bottleneck. We subsequently observe an improvement in its last test, when both those

components stayed in the same location.
Table 5.2: Skill Offloading Comparison

Skill Best Performance CPU RAM Network IO Power
People Detection Test 4 +64,76% -88,32% -45,85% +137,21% -63,10%
Navigation Test 2 +2,11% -83,99% -5,30% +2,98% -72,33%
Mapping Test 8 -8,18% -92,78% -67,87% -80,85% -87,93%

Lastly, with the results obtained, we were able to determine which, if any, combination of

components performed best with relation to the native execution (i.e. Test 1 of each Skill, the

combination with most robot components.). Based on Table 5.2, for navigation and mapping

Skills, the conclusion is succinct, offloading components to the cloud is very advantageous.

This is a clear task that motivated our work. For people detection Skill, the verdict is more

ambiguous, as we have a trade-off to consider between decreased on-board resource usage

and decreased performance and network availability. With a live robot, it would depend on

the priority given for such functionality and its degree of importance, for example if it was for

live remote viewing or to be used with another local application for people recognition.

66 CHAPTER 5. EVALUATION

5.4 Middleware Benchmarking

The intended objective of this series of experiments was to test the overall resiliency, robust-

ness, reliability and scalability of our middleware, and determine the overhead consumed by

its modules. To achieve such analysis, the middleware modules were stress tested through

a series of tests and benchmarks, where the parameters were amplified until their failure or

impossibility to continue.

Since each module has a different role within our middleware, we defined numerous ex-

periments designed to assess different aspects of their core functions. First, to benchmark our

middleware, we gradually increased and measured the number of both, startup and concur-

rent, Skills the Robot Controller was capable of handling. Startup Skills are also concurrent,

but are launched in parallel at the robot’s startup, using the Robot Controller’s internal pooling

mechanisms, whereas for concurrent Skills, we launched them sequentially. Then, we concen-

trated on the Skill modules, repeating the same concurrency experiment, but this time with

components. The purpose is also to analyze the overhead caused by the neural networks em-

ployed by the Skill Manager. Finally, given the prime importance of ROS for robotics and

bridgeOS, we focused on the Skill Router to test its ROS routing capabilities. Assessing first its

ability of handling topics, in absolute terms, and then of routing messages, by experimenting

with both the number of publishers and subscribers, and their message publishing rate.

During those tests, we monitored the usage made by the modules of robot resources, and

measured temporal statistics about their initializations. To obtain a more accurate and precise

representation of their overhead, we also created a mockup Skill composed of a dummy com-

ponent, which performs a repetitive and meaningless task. Except for concurrent components

benchmarking, Skills were composed of a single dummy component launched in the cloud.

5.4.1 Results

The results for Skills benchmarking are provided in Figures 5.6 and 5.7, while Figure 5.8 por-

trays the results for components. Figures 5.9 and 5.10, concern the experiments made specifi-

cally for the Skill Router. Before analyzing results, we would like to precise that for benchmark-

ing tests, each absolute amount of units plotted in the figures (e.g. Skills, components, topics),

represent individual tests, each starting from 0, and not continued iterations of a unique test.

5.4. MIDDLEWARE BENCHMARKING 67

Skills Benchmarking

Figure 5.6: Skills Benchmarking Results - Initialization

Figure 5.7: Skills Benchmarking Results - Resource Usage

Overall, our middleware was able to surpass the symbolic bar of 100 concurrent Skills.

Specifically, it managed to complete startups of 110 Skills without failures, and even cross

the line of 150 concurrent Skills when launched sequentially. However, shortly above the

100 Skills threshold, we began noticing sporadic Skill failures, leading to their shutdown. In

reality, those failures can be explained by two factors, on-board resources and monitoring. By

aggregating the resource usage made by all Skills and the Robot Controller, we realized the

results were actually limited by the resources of the robot. Further motivating the need to

migrate to the cloud, even if partially. Secondly, in order to closely simulate a live setup, we left

active their monitoring functionalities, which generated periodic increases in resource usage,

explaining why failures began to happen sooner. This factor also accounts for the significant

increase in data exchanged with the cloud, as bandwidth grows proportionally to the number

of containers monitored.

Analyzing the temporal costs obtained during the benchmarking of Skills, we observed

that up to 100 concurrent Skills, their initialization remained stable at 5.26±0.61 seconds each,

afterwards it deteriorates rapidly due to the scarcity of resources. An average similar to the

time registered during use case testing. Meanwhile, parallel launches of Skills can slash such

average to merely 2.19±0.33 seconds.

68 CHAPTER 5. EVALUATION

Components Benchmarking

Figure 5.8: Components Benchmarking Results

Regarding components, our middleware was able to guarantee deployment of skills with

up to 250 robot components. More than that led to failures of our Skill Manager, and unlike

with Skills benchmarking, the cause was not a lack of resources. Instead, upon reaching such

volumes, Skill Managers began experiencing some failures, network-wise and internally. Some

experiments managed to exceed 300 components, though they were unreliable and not always

reproducible. We also want to state that these limits only regard components that can be of-

floaded. Components with fixed locations are expected to be a minority, and would portray

less accurate results since they do not require neural networks.

Nonetheless, the results indicate that even when instantiating skills of 250 components, the

mean duration required for initializing each component remains stable at 0.89±0.16 seconds.

This measure includes both the container launch and the neural network initialization, besides

the cost resulting from network exchanges between modules, and is, in our opinion, quite pos-

itive and significant to the middleware adoption. In terms of resource usage, Skills Managers

follow a linear trend, an expected exception being bandwidth due to component monitoring,

we discovered that they have a memory baseline of 19.97±1.3 MBytes of RAM. Lastly, the

spikes in RAM usage correlate with the processing of monitoring metrics, whose periodicity

can coincide with the initialization and skew results.

5.4. MIDDLEWARE BENCHMARKING 69

Routing Benchmarking

Figure 5.9: Skill Router Benchmarking Results - Initialization

In terms of the mapping capacity of ROS topics by Skill Routers, the results are also quite

good. We were able to map up to 5000 topics with a single Skill Router. An artificial limit, since

we considered the total initialization time required and concluded that there was no interested

in further testing such feature. The main takeaway of Figure 5.9 is that the mapping a ROS

topic lasts in average 443±20 ms, and remains stable under 0.5 seconds even with 5000 topics.

A downside is that Skill Routers required an increasingly more time to initialize, although it

only hinders their capacity to route all components, since they are still able to communicate

with the remaining modules and thus, operate partially. We also discovered that each Skill

Router has a memory baseline of 46.47±1.3 MBytes of RAM, while each Topic Handler only

consumed an additional 10 KBytes of RAM. We pinpointed the cause for this relatively high

RAM baseline to the rospy library, and found that a simple python library import originated

in an excess of 35MBytes of RAM. Although indispensable for now, creating a lighter library is

certainly a question to consider in the future.

Regarding our routing capabilities, a Skill Router was able to easily handle 100 concurrent

pairs of ROS publishers and subscribers, instantiated in the cloud. Once again, this boundary

does not correspond to an actual limitation of our middleware, but rather of the available cloud

resources. Given this upper bound of publishers, we decide to subsequently increase their

message publishing rate, going from their baseline of 1Hz and up to 500Hz, reaching a total

throughput of 50 000 messages each second. Each iteration was sustained for a period of 10

seconds, counting from the moment when all pairs were instantiated. An attempt was made at

1kHz, and although the cloud server crashed midway, the Skill Router was able to keep up.

Those are surprisingly good results, considering ROS nodes with high framerates (i.e. cam-

eras, transformations, statistics) almost never surpass 100Hz. Of course, in those cases the mes-

sage payload is usually much larger. Resource-wise, the Skill Router also performs positively,

as its usage trends remain linear with relation to publishing rates and number of publishers,

although with slightly more pronounced slopes.

Figure 5.10: Skill Router Benchmarking Results - Resource Usage

Summary

In this chapter, we described the assessment of the developed middleware and its different

modules, regarding its properties, performance, and resource overhead. This evaluation was

performed from two different optics, one designed to quantify the potential this middleware

has, an another to evaluate its overall capacity and reliability in guaranteeing such potential.

Globally, the results obtained consolidated our position stating that cloud computing and

dynamic computation offloading can be successfully adapted for robotics, and demonstrated

that the proposed solution can be integrated flawlessly with existing technology while being

able to respond beyond what can be expected from real life applications, especially in terms of

scalability. As, very rarely would we find realistic scenarios where single robots would require

hundreds of Skill or components.

6Conclusion
6.1 Concluding Remarks

To summarize the thesis briefly, Chapter 1 introduced the research proposal and main ideas

behind the work presented, with Chapter 2 delving into the core technologies and concepts

that would help achieve its fruition. Later, Chapters 3 and 4 divulged the architecture of the

proposed solution and thoroughly presented how its main components were designed and

implemented. Then, Chapter 5 provided a comprehensive evaluation of the middleware, dis-

closing its performance results. Finally, this Chapter concludes the thesis with some succinct

points regarding the work accomplished and the goals fulfilled, closing with general recom-

mendations of possible future work.

We began with a portrayal of the current state of cloud robotics, presenting the opportu-

nities and shortcomings it manifested, and how the proposed solution could contribute to it.

Then, we examined the most prominent frameworks available for networked robotics and cur-

rent solutions for integrating robotics with cloud computing, while outlining the benefits of

each approach. We also identified state of the art technologies and paradigms that would assist

us in developing more sophisticated mechanisms for incorporating transparent distribution

and adaptive offloading with robotics.

Then, ensued with a characterization of the extensions we propose for bridgeOS, helping

it fuse with the cloud and complement its offering, in order to take advantage of the opportu-

nities currently available for cloud robotics. And, presented the algorithms and protocols we

designed to implement adaptive offloading and enable robots to optimize on-board resources

and extend their functionalities.

Overall, the middleware, represented by the different modules we conceived, is able to

achieve most requirements we sought for this thesis. It consolidates mechanisms for fault-

tolerance, data retransmission and resynchronization, disruption resiliency and cloud repli-

cation. The assessment provided afterwards, demonstrated its ability to scale and operate in

geographically distributed environments facing real-time constraints, displaying benefits that

72 CHAPTER 6. CONCLUSION

outweigh its overhead.

Given the broad scope and diversity inherent to robots and their requirements, charac-

teristics and capacities, we enforced a principle of customization into our modules, enabling

versatile configurations that adapt to specific needs, without requiring technical modifications

to their code.

To conclude, we believe that our bridgeOS middleware, will be beneficial for cloud robotics

and useful for extending robot functionalities, permitting newer applications and others to

finally become viable.

6.2 Future Work

During the completion of this thesis, we identified some next steps, worthy of study, that could

be undertaken as a continuation of the work we initiated via this middleware.

Due to the architecture of ROS, a loss of connection with the ROS master, will most likely

force improperly designed nodes to shutdown. So even though our takeover mechanism is

able to restore Skills, some local components will still have to be restarted. A solution would

be to replicate the ROS master across both sides and have the Robot Controller further cement

its role as a network bridge between both robots and cloud networks, mirroring topics that are

needed on both sides and effectively acting as a proxy. This brings an additional level of com-

plexity and redundancy, with benefits and disadvantages, that certainly need to be analyzed.

For instance, there would be no disruption of ROS-based functionalities during loss of con-

nectivity, components interacting only within the cloud boundary would avoid going through

the Skill Router first. Thus, increasing the black box aspect and blind integration of existing

functionalities as Skills. On the other hand, it could degrade performance due to redundant

connections and mapping.

Regarding the offloading mechanisms, currently they are are applied on a per component

basis, however a Skill-level decision module could instead be implemented. It would require

much larger quantities of real data, which is the argument behind our current selected. There

are also some challenges in constructing a generic, scalable and sophisticated architecture, that

remains versatile enough. In our opinion, a single decision module per robot would be to broad

and lose the ability to adapt to specific needs of Skills. Therefore, the Robot Controller is better

let off solely with the resource allocation aspect.

Skills with resource-intensive cloud components can also benefit from additional features

6.2. FUTURE WORK 73

such as container replication and load-balancing. They could be achieved by using a new cloud

module, either centralized or per-Skill basis, for proxying requests. Currently, it is already

possible to implement such features in a Skill, albeit in a arduous manner. Since the Skill

developer would need to create a dedicated component for load-balancing and then manually

duplicate the configuration of the cloud component requiring replication. Therefore, providing

them internally would simplify and generalize this process.

A final welcoming idea, is the creation of Developer Tools to help generate bridgeOS Skills

and Docker images for components. Though, components only using a specific technology,

such as elementary ROS nodes, NodeJS or Python applications, and so on, can be fused di-

rectly into the official Docker Images provided for those technologies and programming lan-

guages, without the need for further customization. Back-end Tools for bridgeOS, enabling

automatic generation of Skill configurations based on container analysis and ROS packages

retrieval would also be interesting additions.

Bibliography

Arumugam, R. et al. (2010). Davinci: A cloud computing framework for service

robots. In International Conference on Robotics and Automation, pp. 3084–3089. IEEE.

Chibani, A. et al. (2013). Ubiquitous robotics: Recent challenges and future trends.

Robotics and Autonomous Systems 61(11), 1162–1172.

Estrada, R. & I. Ruiz (2016). The manager: Apache mesos. In Big Data SMACK, pp.

131–164. Springer.

Feilner, M. (2006). OpenVPN: Building and integrating vpns. Packt Publishing Ltd.

Fernando, N., S. W. Loke, & W. Rahayu (2013). Mobile cloud computing: A survey.

Future Generation Computer Systems 29(1), 84–106.

Furrer, J. et al. (2012). Unr-pf: An open-source platform for cloud networked robotic

services. In SICE International Symposium on System Integration, pp. 945–950. IEEE.

He, K. et al. (2015). Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. CoRR abs/1502.01852.

Hindman, B. et al. (2011). Mesos: A platform for fine-grained resource sharing in the

data center. In NSDI, Volume 11, pp. 22–22.

Hu, G., W. P. Tay, & Y. Wen (2012). Cloud robotics: architecture, challenges and

applications. IEEE Network 26(3), 21–28.

Hunt, P. et al. (2010). Zookeeper: Wait-free coordination for internet-scale systems.

In USENIX Annual Technical Conference, Volume 8, pp. 9.

Inaba, M. (1994). Remote-brained robotics: Interfacing ai with real world behaviors.

Volume 6, pp. 335–344. The International Foundation of Robotics Research.

Jaramillo, D., D. V. Nguyen, & R. Smart. Leveraging microservices architecture by

using docker technology. In SoutheastCon 2016, pp. 1–5. IEEE.

74

BIBLIOGRAPHY 75

Ji, X. et al. (2016). Data transmission strategies for resource monitoring in cloud

computing platforms. Optik 127(16), 6726–6734. Elsevier.

Kamei, K., S. Nishio, N. Hagita, & M. Sato (2012). Cloud networked robotics. IEEE

Network 26(3), 28–34.

Kehoe, B. et al. (2015). A survey of research on cloud robotics and automation. IEEE

Transactions on Automation Science and Engineering 12(2), 398–409.

Khan, M. A. (2015). A survey of computation offloading strategies for performance

improvement of applications running on mobile devices. JNCA 56, 28–40. Elsevier.

Kintsakis, A. M. et al. (2015). Robot-assisted cognitive exercise in mild cognitive

impairment patients. In E-Health and Bioengineering Conference (EHB), 2015, pp. 1–4. IEEE.

Koubaa, A. (2016). Robot Operating System (ROS): The Complete Reference. Springer

International Publishing.

Kozhirbayev, Z. & R. O. Sinnott (2016). A performance comparison of container-

based technologies for the cloud. Future Generation Computer Systems 68, 175–182. Elsevier.

Kratzke, N. (2014). A lightweight virtualization cluster reference architecture derived

from open source paas platforms. Open J. Mob. Comput. Cloud Comput.

Kuffner, J. J. (2010). Cloud-enabled humanoid robots. In IEEE-RAS 10th international

conference on humanoid robotics, Nashville, TN.

Kurzweil, R. (2005). The Singularity Is Near: When Humans Transcend Biology. PPG.

LeCun, Y., Y. Bengio, & G. Hinton (2015). Deep learning. Nature 521(7553), 436–444.

Lee, J. (2012). Web applications for robots using rosbridge. Brown University.

Lei, K. et al. (2014). Performance comparison and evaluation of web development

technologies in php, python, and node. js. In 2014 17th CSE, pp. 661–668. IEEE.

Liu, Q. & X. Sun (2012). Research of web real-time communication based on web

socket. International Journal of Communications, Network and System Sciences 5(12). SRP.

Mainaly, B. & D. Ningombam (2014). A survey on cloud robotics. Communication,

Cloud and Big Data: Proceedings of CCB 2014.

76 BIBLIOGRAPHY

Mohanarajah, G. et al. (2015). Rapyuta: A cloud robotics platform. IEEE Transactions

on Automation Science and Engineering 12(2), 481–493.

Namiot, D. & M. Sneps-Sneppe (2014). On micro-services architecture. International

Journal of Open Information Technologies 2(9).

Park, S. et al. (2014). Design and evaluation of mobile offloading system for web-

centric devices. Journal of Network and Computer Applications 40, 105–115.

Pimentel, V. & B. G. Nickerson (2012). Communicating and displaying real-time data

with websocket. IEEE Internet Computing 16(4), 45–53.

Quintas, J., P. Menezes, & J. Dias (2011). Cloud robotics: Towards context aware

robotic networks. In International Conference on Robotics, pp. 420–427.

Riazuelo, L. et al. (2015). Roboearth semantic mapping: A cloud enabled knowledge-

based approach. IEEE Transactions on Automation Science and Engineering 12(2), 432–443.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural

Networks 61, 85–117.

Seo, K.-T. et al. (2014). Performance comparison analysis of linux container and vir-

tual machine for building cloud. Advanced Science and Technology Letters 66, 105–111.

Siciliano, B. & O. Khatib (2016). Springer Handbook of Robotics, Chapter Networked

Robotics, pp. 1109–1134. Springer International Publishing.

Tauber, J. A. (1996). Issues in building mobile-aware applications with the Rover toolkit.

Ph. D. thesis, Citeseer.

Tenorth, M. et al. (2012). The roboearth language: Representing and exchanging

knowledge about actions, objects, and environments. In ICRA 2012, pp. 1284–1289. IEEE.

Tilkov, S. & S. Vinoski (2010). Node. js: Using javascript to build high-performance

network programs. IEEE Internet Computing 14(6), 80.

Zhang, X. et al. (2010). Towards an elastic application model for augmenting com-

puting capabilities of mobile platforms. In MOBILWARE, pp. 161–174. Springer.

AComparison Properties

Table A.1: Properties of container managers
Property Description

Scalability Supported scalability and potential, in relative terms and in
comparison with all other platforms compared.

Overhead Resource overhead for managing containers, in relative terms
and in comparison with all other platforms compared.

Monitoring Monitors state of nodes, containers or tasks, and provides
APIs for accessing that data.

Redundancy Implements fault-tolerance and high-availability mechanisms
for management nodes.

Service Discovery Implements service discovery and mapping mechanisms.
Service Replication Provides service replication mechanisms.
Image Sharing Provides built-in tools for sharing containers images.
General Constraints Enables restricting execution of containers in relation to

higher-level concepts (e.g. datacenter, geographical location,
etc. . .)

Node constraints Supports constraints regarding the worker nodes’ operational
environments.

Non-standard restrictions Supports custom restrictions, unrelated to CPU, RAM, stor-
age and network.

Multi-level restrictions Permits differentiation of restrictions for containers, nodes or
other components.

Docker only Supports Docker containers only.
Load-balancing Internal load-balancing service provided.
Single system If all machines and resources are aggregated as a single virtual

system.
Multi-cluster Supports multiple independent clusters.
Secure communications Protects internal communications.

78 APPENDIX A. COMPARISON PROPERTIES

Table A.2: Properties of Cloud Robotics frameworks
Property Description

Scope Scope of applicability and services targeted.
Scalability Supported scalability and potential, in relative terms and in compari-

son with all other frameworks compared.
Redundancy Implements fault-tolerance and high-availability mechanisms locally

for whenever the cloud becomes unavailable.
Offloading Type of offloading techniques implemented, if any.
Modular Follows a modular approach for developed and operating services and

applications.
QoS monitoring Monitors the Quality of Service of services and applications provided.
ROS compatible Implements or supports ROS nodes and messages.
Ontology Type of ontology integrated.
Shared skills Allows sharing services and related knowledge between robots.
Skill Templates Offers templates for generating Skills based on specific robot types,

hardware characteristics and other capabilities requirements.
On-demand Performs on-demand deployment of cloud services or resources.
Dynamic apps Supports deployment of new functionalities into robots in real-time.
App store Offers a marketplace for retrieving applications or services for robots.
User apps Offers applications intended for end-users.
Uploadable apps Lets users upload private applications through the framework.
User API Provides APIs for user access and control.
Web dashboard Provides web-based user interfaces to enable direct interactions.
Private data Protects proprietary or personal information.
Built-in security Implements security mechanisms for authenticating users or robots

and securing communications.

	1 Introduction
	1.1 Motivation and Research Proposal
	1.2 Shortcomings of Current Solutions
	1.3 Proposed Solution
	1.4 Contributions and Goals
	1.5 Document Roadmap

	2 Related Work
	2.1 Architectures for Connecting Robots
	2.1.1 Robot Operating System
	2.1.2 Cloud Robotics
	RoboEarth
	DAvinCI
	UNR-PF
	Rapyuta
	SCMR
	RAPP

	2.1.3 bridgeOS
	Comparison.

	2.2 Componentization of Services
	2.2.1 Traditional Component Frameworks.
	Rover Toolkit
	OSGi
	R-OSGi
	DACIA

	2.2.2 Container Frameworks
	Microservices
	Linux Containers
	Docker

	2.2.3 Container Managers
	Docker Swarm
	Apache Mesos
	Google Kubernetes
	Nomad
	Comparison

	2.3 Operational Decomposition: Local vs Cloud Processing
	2.3.1 Cloud Offloading Techniques.
	Offloading Policies.
	Neural Networks.

	2.3.2 Resource Monitoring Strategies.
	2.3.3 Protecting Networks and Circumventing Restrictions.
	Virtual Private Networks
	WebSocket Protocol

	3 Architecture
	3.1 Architecture Overview
	3.2 Master Controller
	3.2.1 Robot API
	3.2.2 Database

	3.3 Robot Controller
	3.3.1 Robot Resources Allocation
	3.3.2 Components Synchronization
	3.3.3 Cloud Role Takeover

	3.4 bridgeOS Skills
	3.4.1 Skill Manager
	Generating Dynamic Offloading Decisions
	Components API

	3.4.2 Skill Router

	3.5 Private Networks and Communications Protocols

	4 Implementation
	4.1 Managing Private Robot Networks
	4.2 Performing Dynamic Offloading
	4.3 Developing Skills

	5 Evaluation
	5.1 Overview
	5.2 Experimental Testbed
	5.3 Offloading Performance
	5.3.1 Results

	5.4 Middleware Benchmarking
	5.4.1 Results
	Skills Benchmarking
	Components Benchmarking
	Routing Benchmarking

	6 Conclusion
	6.1 Concluding Remarks
	6.2 Future Work

	A Comparison Properties

