
Stream-Economics: Resource Efficiency in Flink Stream
Processing with Accuracy Awareness and Load-Shedding

Extended Abstract

Luís Alves

Instituto Superior Técnico

Lisbon, Portugal

luis.jordao.alves@tecnico.ulisboa.pt

Luís Veiga

INESC-ID, Instituto Superior Técnico

Lisbon, Portugal

luis.veiga@inesc-id.pt

ABSTRACT
In this paper we propose an alternative task scheduling mechanism

for stream processing systems such as Apache Flink, that targets re-

source efficiency in a multi-tenant stream processing environment

with several resource heterogeneous tasks being executed in paral-

lel. The task scheduler we propose doesn’t limit the amount of tasks

that can run on each machine, instead, it adapts tasks’ allocation

based on their runtime metrics. Scheduling tasks to the machines

with more available resources. At the same time, we explore load

shedding in stream processing applications, as a mechanism to

solve the tasks’ resource starvation problem that may appear due to

bad decisions performed by the scheduler, because of its optimistic

approach and due to the dynamic workloads of the applications.

We implemented a proof-of-concept of such system in Apache

Flink and tested it against scenarios that show the different aspects

and advantages of the developed mechanism in action.

KEYWORDS
StreamProcessing, Task Scheduling, Resource Efficiency, Load Shed-

ding, Apache Flink

1 INTRODUCTION
Efficient resource management in environments where several het-

erogeneous applications are executed, has shown to be a challenging

problem. In such environments, it is common to observe situations

of resource underutilization, which happens because resources tend

to be provisioned to the peak workload. While on average workload

these provisioned resources are not fully utilized [2] [9], leading

to unnecessary costs and energy waste. In fact, estimations can be

found, claiming below 60% resource utilization on datacenters [13].

Overallocation of tasks to resources, appears as a clear solution

to handle this problem [7]. Nonetheless, it yields another problem,

since resource under-provisioning situations can occur, having an

impact on the applications’ performance. This causes the need to

monitor the applications’ runtime execution to detect these situ-

ations; and to have a compensation mechanism that guarantees

that the Service Level Agreements (SLAs) keep being fulfilled while

resource wastage is avoided, such as auto-scaling [14]. Addition-

ally, resource estimation models have also been subject of study,

allowing to reduce the need of this compensation mechanism [11].

In this paper, we focus on exploring both these problems applied

to the domain of distributed stream processing systems, such as

Apache Flink [3]. In these systems, the resource reservation-based

model is still commonly used, causing situations of resource over-

allocation by applications, where unused resources can’t be used

since they are reserved by other applications.

Our solution consists in a task scheduling policy that assigns

tasks to the machines with more available resources, in terms of

CPU usage. Avoiding resource overallocation by simply dropping

the concept of resource reservation.

Nonetheless, it may lead to situations of resource starvation.

When such situations are detected, two possible approaches are pro-

posed. The system can either decide to perform Task Re-scheduling
of specific tasks to other machines, causing application downtime;

or to use Load Shedding, allowing applications to keep up with their

incoming workload at the cost of decreasing the accuracy of their

results. This second approach is preferred, only using the first one

as a last resort.

To guide the system decisions, two restrictions can be specified

by the user, for each application’s queries: their priority, which
allows users to define some queries as being more important than

others; and theirminimum acceptable accuracy. This last restriction
is relevant, since below a given accuracy the results provided by a

query stop being useful or even meaningful to the user. Both these

restrictions are crucial for the system to decide when to use Load
Shedding; and when to switch to Task Re-scheduling. As well as on
deciding on which tasks these mechanisms should be triggered,

clearly being the low priority tasks the first ones to be targeted.

As such, the main contribution from this paper consists in a

novel resource management model, for stream processing systems,

that uses both dynamic task scheduling and load shedding. Ob-

tained results show improvements on resource efficiency and on

the applications’ latency and throughput in bottleneck situations.

This paper is organized as follows: Section 2 provides a back-

ground and an overview of the solution’s architecture; Section 3

presents the model that governs the system decisions; Sections

4 and 5 detail the system components and their underlying algo-

rithms; Section 6 highlights implementation-wise details; Section 7

shows the evaluation of the developed proof-of-concept; and Sec-

tion 8 focuses on related work. Finally, Section 9 wraps up some

conclusions as well as future directions.

2 BACKGROUND AND ARCHITECTURE
Although the solution developed in this paper can be generalized

to other distributed stream processing systems, our architecture

specifically targets Apache Flink [8], a modern instance of such

systems that will allow us to prove our proposed solution.

Flink’s architecture is organized in three main components:

the Job Manager (JM), receives requests to deploy applications,

schedules their tasks and monitors their execution; the Task Man-

agers (TMs) that execute the actual tasks on the slots that they

provide to the cluster; and the Client, that compiles the application

dataflow and sends it to the JMs for execution.

A Flink application is modeled as a Direct Acyclic Graph (DAG),

where the nodes represent operators that perform computations

on the tuples they receive; these nodes are linked via streams that

connect the output of one operator with the input of another. Nodes

without upstream nodes are named sources, while nodes without
downstream nodes are named sinks or queries. At runtime an oper-

ator can have several parallel running instances, named sub-tasks.
A chain of sub-tasks can be grouped into a single task, which is

executed by a single thread, where the sub-tasks perform computa-

tions sequentially on the received events. For higher throughput,

Flink allows to pipeline sub-tasks, i.e. split a chain of sub-tasks into

multiple tasks being executed by separated threads in parallel.

Figure 1 presents a bird’s eye view of the previously described

Flink components together with two key components introduced

by our solution: the new Task Scheduler, that schedules tasks over
the available TMs by following the already described policy; and

the Quality-of-Data Controller (QoD Controller) that constantly
monitors tasks in order to decide when Load Shedding or Task
Re-scheduling should be triggered. The QoD Controller is mainly

guided by runtime metrics from the tasks’ execution; and by user

provided restrictions, i.e. the application queries’ priorities andmin-
imum acceptable accuracies. Decisions from these components are

guided by a model that will be detailed in the following sections.

Figure 1: Architecture and components of the proposed sys-
tem in a Flink cluster.

The two components run on the JM (2). The Task Scheduler exe-
cutes for every task scheduling request. While the QoD Controller
is triggered periodically, possibly sending messages to the TMs,

either telling them to fail tasks or tune the tasks’ load shedders.

Note that at a given instant, only one of the JMs is the leader, the

others are in standby in order to provide high availability. Following

that, at a given instant, only the Task Scheduler and QoD Controller
of the leader JM will be executing.

All the TMs periodically send runtime metrics to the leader JM

(3), such as their CPU usage and the input / output rate of each task

instance. These metrics are exposed to the main components, to

help them on guiding their decisions.

The Flink stream processing Domain-Specific Language (DSL) /

ProgrammingModel (1) is also extended. Allowing the user to define

the queries’ restrictions. These restrictions are then propagated to

the JMs, for the QoD Controller to take them into account.

As said previously, a load shedding mechanism will also be in-

troduced at the applications’ runtime level, allowing them to even-

tually drop some of the incoming workload. Load shedding has

been subject of study in several other works, such as [6] and [15].

Both these papers reduce it to the following sub-problems:When
to shed?, Where in the DAG should the events be dropped?, Which
events to shed? and How much to shed?. Possible solutions to these

problems are presented later in this paper, as we describe the load

shedding mechanism that will be used by the system.

3 MODEL
Before going through the specification of how the new compo-

nents perform their decisions, we first formalize the concepts and

nomenclature that will be used.

We use t(i) to refer to the task whose i is instance of; tm(i) as
the TM where the task instance i is executing, and taskManaдers
for all the TMs in the system; queries as the set of all query tasks;

and downstream(t) / upstream(t) for the downstream / upstream

tasks of a task t , that are directly connected to it.

3.1 Restrictions
As said, for each query in an application, users are able to specify

two restrictions that will be taken into consideration by the system.

Priority - p(t)
Each task’s priority is defined as p(t) ∈ Z, computed as described in

Equation 1, where queries(t) corresponds to the set of downstream
queries of a task t . The priority is specified by the user for each

query and then propagated through their upstream.

p(t) = max

t ′∈quer ies(t)
p(t ′) (1)

To refer to the set of all tasks’ priorities in the system, sorted in

descending order, we use priorities . Values in this set can be scoped

to a specific TM using priorities(tm). We use ti(tm,p) as the set of
task instances in a TM tm with priority p; or ti(tm) for all instances
regardless of their priority. Additionally, tm(p) is used to represent

all the TMs that execute task instances with priority p.

Minimum Accuracy - minAc(t)
Each query q is also parameterized by the user with the minimum

accuracy it accepts,minAc(q) ∈ [0%, 100%]. This value corresponds
to the minimum percentage of input tuples of the application that

must be processed to compute the query output. This is the defini-

tion of accuracy that we will follow throughout this paper. Equation

2 shows how this value is propagated throughout the query up-

stream.

minAc(t) = max

q∈quer ies(t)
minAc(q) (2)

3.2 Load Shedding
Load shedding is performed by using random drops, where each

load shedder is parameterized with the probability of keeping an

event, named the non-drop probability d(t , t ′), between a producer

task t and a consumer task t ′. The way these non-drop probabilities
are computed will be defined in Section 5.3.

To avoid wasting network bandwidth, load shedding is per-

formed in the producer task. Source tasks also have load shed-

ders right after their first sub-task, which is the one responsible

for pulling data from the external datasource into the application

dataflow. Allowing workload to be shedded right after fetching it

from the datasource. This load shedder is also parameterized by

d(t , t ′), where t corresponds to the datasource.

The percentage of application input events being processed

by a specific task t is given by ac(t), which corresponds to our

definition of accuracy of the task. To avoid biased results, due

to different non-drop probabilities in task instances of the same

task, decisions are performed at the task level. Therefore: for two

connected instances i1 and i2 of different tasks t1 and t2, respec-
tively, d(i1, i2) = d(t1, t2); and ∀i ∈instances(t)ac(i) = ac(t), where
instances(t) correspond to all instances of a task t .

Additionally, given two tasks t1 and t2, directly connected to a

downstream task t3, thenac(t1) = ac(t2) andac(t3) ≤ ac(t1),ac(t2).
Essentially, this restriction avoids biased results for tasks that con-

sume data from two or more streams.

Current Accuracy - cAc(t)
The current accuracy, cAc(t) ∈ [0%, 100%], is used as a guideline that
provides an approximation to the runtime accuracy of a given task

t , based on the runtime metrics of the application. Thus providing

an hint on how much overloaded a task is. The system will attempt

to maximize cAc(t) at all time.

We define this function as presented in Equation 3 which is

computed using lAc(t), defined in Equation 4, that represents what

we call the local accuracy of a task t .
It’s important to note that, according to our definition, the cur-

rent accuracy of a task is calculated using the minimum current

accuracy of its upstream tasks. Meaning that if a task has two

upstream branches with different current accuracies, its current

accuracy is determined by the minimum, because this is the most

that is currently being guaranteed. Other definitions of the current

accuracy are possible, and eventually the user could even define it

for each application in a different way.

cAc(t) =
{
lAc(t), if upstream(t) = {}

lAc(t) ×mint ′∈upstream(t)cAc(t ′), otherwise
(3)

lAc(t) =
mini ∈instances(t) inRate(i)(∑

t ′∈upstream(t) outRate(t ′, t)
)
/|instances(t)|

(4)

Regarding Equation 4, the inRate(i) represents the input rate

of an instance i of a task t ; while outRate(t ′, t) corresponds to the

output rate of an upstream task t ′ to a task t . Therefore, the local
accuracy of a task matches the minimum local accuracy of its in-

stances, with the assumption that the output rate of its upstream

is fairly distributed over its task instances. Additionally, if the de-

nominator of the Equation 4 equals zero then, lAc(t) = 100%. This

happens because in that case t is consuming all its input, i.e. none.

The objective is therefore to minimize the difference between a

task upstream output rate and its input rate — maximize the overall

application throughput.

Maximum Achievable Accuracy - maxAc(t)
Given the desired accuracy for each downstream query q, repre-
sented as desired(q);maxAc(t) returns the maximum accuracy that

the upstream task t will have, based on the restrictions imposed

by the downstream queries and taking into account that events

will be dropped as soon as possible in the DAG. The way this it is

computed is described in Equation 5.

maxAc(t) = max

q∈quer ies(t)
desired(q) (5)

3.3 CPU Load
The decisions of the QoD Controller are guided by the CPU usage

and accuracy metrics from the applications’ runtime. With the

accuracy already defined in the previous section, it only remains

to define the part of our model that takes into account the CPU

runtime metrics.

The expected CPU load for a task t , cpu(t), is computed as de-

scribed in Equation 6 where cpuMetric(i) ∈ [0%, 100%] corresponds
to the CPU load obtained from the TM metrics, for a task instance

i . If a task is using a full CPU virtual core, then cpu(t) = 100%.

Since the local accuracy, defined in the previous section, is re-

stricted by the minimum local accuracy of the task’s instances,

cpu(t) is also restricted by the CPU load of this same instance. Ad-

ditionally, we assume that all TMs have identical computational

capacity. Thus, in a stable system the CPU load should be similar

for all instances of the same task.

cpu(t) = cpuMetric

(
argmin

i′∈instances(t)
inRate(i ′)

)
(6)

We also define: cpu(tm) as the CPU usage of the TM, including

non-Flink processes; tCpu(tm) = ∑
i ∈t i(tm) cpu(i); and nCores(tm)

as the amount of CPU virtual cores provided by a TM tm.

Minimum Obtained CPU - mObtCpu(i)
The minimum CPU amount a task instance i is guaranteed to get,

mObtCpu(i), based on the current available CPU, aCpu(tm), of the
respective TM, tm. Computed as in Equation 7. The available CPU

time is evenly distributed over all task instances with the same

priority. Note that a task may require less CPU resources than the

ones it can get, in order to achieve the accuracy that it requires.

mObtCpu(i) = aCpu(tm(i))
|ti(tm(i),p(t(i)))| (7)

Required CPU - rCpu(t, ac)
The CPU required by a task t in order to have ac(t) = ac is repre-
sented as rCpu(t ,ac). The function is defined in Equation 8, and

assumes that the CPU load and accuracy are proportional.

rCpu(t ,ac) =

0, if cAc(t) = 0% and ac=0%

100, if cAc(t) = 0% and ac, 0%

min

(
ac×cpu(t)
cAc(t) , 100

)
, otherwise

(8)

In the first condition the required CPU is 0% since no accuracy is

required. In the second one we provide our best bet on the required

CPU, 100% (a full virtual CPU core).

Additionally, we also define the required CPU to achieve the min-

imum,minAc(t), and maximum accuracies,maxAc(t). Computed

as presented in Equations 9 and 10, respectively.

minReqCpu(t) = rCpu(t ,minAc(t)) (9)

maxReqCpu(t) = rCpu(t ,maxAc(t)) (10)

Obtained Accuracy - obtAc(t, cpu)
Given a task t and a provided CPU load, cpu, obtAc(t , cpu) returns
the maximum accuracy the task can provide to its downstream

using that CPU amount, as expressed in Equation 11. Once again,

it assumes the CPU load and the accuracy of the task to be propor-

tional.

obtAc(t , cpu) =

0%, if cAc(t) = 0% and cpu=0

100%, if cAc(t) = 0% and cpu, 0

cAc(t), if cpu(t) = 0 and cpu = 0

100%, if cpu(t) = 0 and cpu, 0

min

(
cAc(t)×cpu

cpu(t) , 100%
)
, otherwise

(11)

The rationale for the conditions is that: the first and second

conditions are aligned with the logic followed in rCpu(t ,ac); the
third, because if the current and provided accuracies are equal,

then the accuracy should remain the same; and the fourth is an

optimistic bet on the obtained accuracy.

Slack - slack(tm, p)
For a given TM, tm, slack(tm,p) represents the sum of the differ-

ences between: the CPU percentage that its tasks with priority p
require, in order to achieve the maximum accuracy they can, based

on current restrictions imposed by other tasks and while assuming

the minimum accuracy is guaranteed; and the available CPU for

the task. The way this is done is presented on Equations 12 and 13.

di f f Req(t) =maxReqCpu(t) −minReqCpu(t) (12)

slack(tm,p) =
∑

i ∈t i(tm,p)
(di f f Req(t(i)) −mObtCpu(t(i))) (13)

4 TASK SCHEDULER
For each task instance to be scheduled, the Task Scheduler allocates
the task to the TM with the lowest CPU usage, taking into account

the CPU usage from Flink and non-Flink related processes running

on the machines. Ties are solved by picking a random TM.

If the task contains any location preferences, it will only consider

them. Unless their available CPU is below the CPU required by the

task, in which case it will disregard the location preference.

When a new task is assigned to a TM but no metrics are yet avail-

able, it will assume that the task will use 100% CPU (a full virtual

core). This is only taken into account when computing the TM’s

CPU usage for future task scheduling and for the task allocation.

Other initial CPU usage estimations are possible. Note that there

is a trade-off between having the application tasks being placed in

the same machine, promoting low latencies, but potentially being

re-scheduled (if the initial estimation is below the real CPU usage);

or having these tasks distributed over the cluster, with low proba-

bility of being re-scheduled and making it potentially network I/O

bounded instead of CPU bounded (otherwise).

5 QOD CONTROLLER
The QoD Controller periodically executes Algorithm 1, which is

defined in several steps. In each iteration, it starts by initializing the

available CPU as the total available CPU for each TM to execute

Flink tasks; and the desired accuracy for each query as 100%, since

it haven’t yet prune it with Load Shedding (lines 1-6).

Algorithm 1 QoD Controller main cycle.

1: for all tm ∈ taskManaдers do
2: aCpu(tm) ← 100 × nCores(tm) − cpu(tm) + tCpu(tm)
3: end for
4: for all q ∈ queries do
5: desired(q) ← 100%

6: end for
7: for all tm ∈ taskManaдers do
8: reqCpu ← ∑

i ∈t i(tm)minReqCpu(t(i))
9: rel ← 0

10: if reqCpu > aCpu(tm) then
11: rel ← killTasks(reqCpu − aCpu(tm), tm)
12: end if
13: aCpu(tm) ← aCpu(tm) − reqCpu + rel
14: end for
15: for all p ∈ priorities do
16: for all tm ∈ tm(p) by slack(tm,p) DESC do
17: distributeEvenly(ti(tm,p),aCpu,desired)
18: end for
19: end for
20: Compute d(t , t ′) based on the queries’ desired accuracy

21: Send new d(t , t ′) to the Task Managers where t is running

The algorithm then proceeds to guarantee that each TM has

the necessary CPU to run all its task instances regardless of their

priorities (lines 7-14). If there’s not enough CPU, it releases the

necessary CPU by re-scheduling some tasks (lines 10-12). Once each

task is guaranteed to have its minimum accuracy, the algorithm

distributes the remaining available CPU over the task instances

(lines 15-19), this time respecting their priorities. It starts by the

TMs with highest slack to avoid having to backtrack already made

decisions. Finally, the non-drop probabilities for all streams are

computed, using the method described in Section 5.3, and sent to

the TMs to adjust the load shedders (lines 20 and 21).

5.1 Task Re-Scheduling
To select which tasks to re-schedule, given a TM and the amount of

CPU to release, we use Algorithm 2. This is done in two steps. The

first one aims at determining the maximum priority of the tasks that

may have to be re-scheduled to release at least the required CPU

load (lines 3-8). Returning a set of candidate tasks to be re-scheduled,

and the released CPU if all those tasks are actually re-scheduled.

The second step (lines 9-16) avoids releasing more CPU than

necessary, by pruning the candidate tasks set. It starts by the tasks

with higher priority and higher required CPU. If by removing the

task from the set, it still allows to release at least the amount of

CPU that must be released, then, we remove it. Otherwise, the

task instance is failed, in order to be re-scheduled to another TM.

At this point, the released CPU by re-scheduling a task instance

corresponds to the one used to achieve its minimum accuracy.

Also notice that the algorithm prefers to re-schedule tasks with

low CPU consumption. The reason we opt for this semantic is

because: 1) it reduces resource fragmentation; 2) smaller tasks are

easier to re-schedule since they require less resources; 3) once re-

scheduled, these tasks should take less time to recover and start

coping again with their incoming workload.

Algorithm 2 Selection of tasks to be re-scheduled.

1: function killTasks(cpu, tm)

2: rel ← 0, I ← {}
3: for all p ∈ priorities(tm) do
4: if cpu − rel > 0 then
5: I ← I ∪ ti(tm,p)
6: rel ← rel +

∑
i ∈t i(tm,p)minReqCpu(t(i))

7: end if
8: end for
9: for all i ∈ I by p(t) DESC,minReqCpu(t(i)) DESC do
10: if rel −minReqCpu(t(i)) ≥ cpu then
11: rel ← rel −minReqCpu(t(i))
12: else
13: f ail(i)
14: cpu ← cpu −minReqCpu(t(i))
15: end if
16: end for
17: return release
18: end function

5.2 Resource Distribution
To distribute the remaining CPU of a TM over the task instances,

Algorithm 3 is used. The algorithm receives as input the available

CPU load to distribute, aCpu; the set of tasks over which it should be
distributed, it ; and the desired accuracies for all tasks in the system,

desired . It starts by distributing the CPU load by the tasks with

lower required CPU to achieve the accuracy they need, avoiding

decision backtracking (line 3) since these tasks may require less

CPU to achieve their maximum accuracy than the CPU they can

get. If such tasks exist, then the remaining CPU from those tasks

is fairly distributed across the remaining task instances. During

the traversal the desired accuracy for the queries and the available

CPU of the TM are updated (line 9).

Algorithm 3 Fair distribution of CPU.

1: function distributeEvenly(it , aCpu, desired)
2: c ← 0

3: T ← it by rCpu(i,maxAc(i)) −minReqCpu(t(i)) INC
4: for all i ∈ T do
5: maxReq ←maxReqCpu(t(i)) −minReqCpu(t(i))
6: cpu ← min

(
maxReq,

aCpu(tm(i))
|it |−c

)
7: ac ← obtAc(i, cpu) +minAc(i)
8: for all q ∈ queries(t(i)) do
9: desired(q) ← min (desired(q),ac)
10: end for
11: aCpu(tm(i)) ← aCpu(tm(i)) − cpu
12: c ← c + 1
13: end for
14: end function

5.3 Computing the drop probabilities
To compute the non-drop probabilities for each stream, based on

the desired accuracy for each query, we use Equations 14 and 15.

The first one propagates the dropping probabilities upstream, al-

lowing to drop events as soon as possible in the DAG, thus avoiding

processing tuples that will be dropped in the downstream of the

applications. After that, the second equation is used to compute

the value of the non-drop probability of each load shedder, d(t , t ′),
given the already provided accuracy and the desired accuracy at the

downstream task t ′, desired(t ′). Note that d(t , t ′) is also defined for
the first load shedder in the source tasks, as the desired accuracy

of its associated source task .

desired(t) = max

t ′∈downstream(t)
desired(t ′) (14)

d(t , t ′) =
{
desired(t ′), if t is an external datasource

desir ed (t ′)
desir ed (t) , otherwise

(15)

6 IMPLEMENTATION DETAILS
Our proof-of-concept was implemented on top of Apache Flink 1.2

release. The following changes were performed:

• Added metrics to compute the CPU usage of the task in-

stances’ main thread, and modified the TMs to periodically

send messages to the leader JM containing the required met-

rics. Other necessary metrics are already provided by Flink,

such as the input / output rates for task instances and their

sub-tasks. Note that the output rate of a task doesn’t take

into account that events can be dropped at the end of the

task.

• Extended the Flink Streaming DSL to allow the user to spec-

ify the priority and accuracy for each application’s query,

as presented in Listing 1. Once the application is deployed,

these restrictions become available to the components that

require them.

• Implemented load shedders that are executed at the required

locations in the applications’ DAG. Whose non-drop proba-

bility can be configured at runtime by the JM, by sending a

message to the TM where the target load shedder is running.

• Task slots stopped being limited. Our implementation doesn’t

fully remove the concept of slots, instead, we simply consider

them to be dynamic.

• The QoD Controller was implemented on the JM, and is exe-

cuted with a configurable frequency.

• Flink’s default task scheduler was replaced with the new

one, that follows the policy described in Section 4.

In this implementation we came across some setbacks that are

alsoworthmentioning, being discussed in the following sub-sections.

Listing 1: Snippet of the word count stream processing ap-
plication with a minimum accuracy (0.7) and priority (5).
1 v a l words = sou r c e . f l a tMap (_ . s p l i t (" \ \ s + "))

2 v a l coun t s = words . map (va l u e => (va lue , 1))

3 . groupBy (0)

4 . sum (1)

5 coun t s . p r i n t ()

6 . withMinimumAccuracy (0 . 7)

7 . w i t h P r i o r i t y (5)

Task Failing Limitations
When a Flink task instance is failed, all the application’s tasks

are re-scheduled, potentially to other TMs. This is not the desired

behavior, we only want to re-schedule a specific task, while the

remaining ones keep executing on the same TMs. To overcome this

issue, if a task is failed on purpose the system will flag it. On the

Task Scheduler if the task is flagged, then it schedules the task to a

different TM from the one it was running previously, otherwise it

schedules the task to the TM it was previously running on.

Tasks’ Warmup Period
When a task instance is re-scheduled, we provide it a warm-up

period for the task to stabilize its CPU usage and to achieve its

minimum acceptable accuracy. A timeout is added to prevent the

task from being forever stuck in this state. Whenever a task in-

stance is in a warm-up state, all the tasks whose instances are being

executed by the same TM will be processing at their minimum

required accuracy. Allowing the task to quickly recover and pre-

venting precipitated decisions, causing other tasks in the same TM

to be unnecessarily re-scheduled.

Accuracy of Source Tasks
To compute the cAc(t) of a source task, one also needs to know the

rate at which events are being produced for the application con-

sumption, even if being stored in another system such as Apache

Kafka [1]. For this reason, our implementation only supports Apache

Kafka as a datasource.

By using the Kafka consumer metrics, we are able to estimate

the input rate of the Kafka topics that they consume from. This

estimation is performed based on: the variation of the records-lag-
max metric, which provides the maximum difference of the input

and output rate of the topic’s partitions; and on the output rate of

the topic to a Kafka consumer, given by the records-consumed-rate
metric. Since the first metric is computed at the topic partition

level, the records-consumed-rate metric needs to be divided by the

amount of partitions the task instance consumes from, given by

the assigned-partitions metric. By using this result and adding it

to the lag variation within the partition, we get an estimation of

the input rate of the most stressed Kafka partition. Assuming that

the workload is well balanced across the topic’s partitions, the

estimation can be extended to all of them.

Regarding the input rate of the source tasks, it needs to take into

account that incoming events may be dropped by the load shedders

placed between the first and second sub-tasks of the source task’s

instances. As such, if the source task has a second operator, we use

its input rate as the input rate of the source task instance. If the

task has a single operator, its output rate after the load shedder can

be used instead. This last situation should be unusual.

7 EVALUATION
To test the solution, two applications where developed, whose DAG

is presented in Figure 2, both consuming data from Kafka:

(1) Taxi Drives (TD): receives two streams of events with in-

formation regarding taxi drives, that are consumed by two

CPU intensive tasks,TDSnk1 andTDSnk2, using a union op-
erator. TDSnk2 is configured with a parallelism of 2, while

the remaining tasks have a parallelism of 1.

(2) K-Nearest Neighbors (KNN): KNN algorithm implemen-

tation with a single task, to test the integration with Apache

Kafka.

Figure 2: Logical DAGs of the Taxi Drives (1) and KNN (2)
applications.

The evaluation consists in two parts. We start by running some

scenarios to check that the solution has the desired features, show-

ing the expected behavior of the system, as well as scenarios where

it can reduce resource wastage and improve tasks’ performance by

detecting resource starvation situations. The second part aims at

evaluating the performance impact in the JMs and in the applica-

tions, using Flink 1.2 release as baseline for comparison.

The evaluation environment consists in four machines: one for

Apache Kafka and the data injector; one JM; and two TMs. Each

machine has a dedicated virtual CPU, in a quad-core Intel Core i7,

and 3Gb memory each. The QoD Scheduler was configured with a 5

second frequency.

7.1 Scenario 1: Tasks With Same Priorities
Our first scenario is an execution of the TD application, with

minAc(TDSnk1) = 40% andminAc(TDSnk2) = 60%, where all tasks

have equal priority. Figure 3 shows the obtained results.

The system starts with a single TM, TM1, thus causing all TD’s

tasks to be scheduled to him. Later (A), the second TM, TM2, is

added to the system, without any tasks being immediately sched-

uled to it. As the workload of the application increases to levels

where the application can’t cope with, the load shedding mecha-

nisms is triggered, causing the application accuracy to decrease (A).

Every time the workload decreases, the accuracy of the application

increases, up to the moment where load shedding is no longer re-

quired (B). In (A), the effect of all sinks having the same priority is

clear, since load shedding is being applied to both sinks, without

any of them reaching their accuracy threshold.

Figure 3: Execution of the TD application where all sinks
have the same priority. First two charts show the CPU load
of each TM and their executing tasks. Third and fourth
charts show the application sinks’ accuracy and the appli-
cation throughput for each input Kafka topic, respectively.

In instants (C) and (D) the QoD Controller decides to re-schedule
some tasks to the later added TM. In (C) the first instance of the

TDSnk1was re-scheduled, while in (D) it was the second instance of
the same task. Yielding an optimal task distribution that maximizes

both the throughput and accuracy of the application, and reduces re-

source wastage. BothTDSnk1 instances where re-scheduled instead
of TDSnk2, which happens because their re-scheduling minimized

the amount of released CPU while still releasing enough for the

remaining tasks in TM1 to keep up with their workload.

The effects of the tasks’ warmup state in the accuracy are visible

every time a task is re-scheduled. All tasks took less than 1 minute

to exit this state.

During the execution, we observed that the difference between

currAc(TDSrc1) and ac(TDSrc1), and between currAc(TDSrc2)
and ac(TDSrc2), was on average 2.4% and 1.8%, respectively.

7.2 Scenario 2: Tasks With Different Priorities
The second scenario shows an execution of both TD and KNN

applications, where their tasks have distinct priorities. Allowing to

observe how priorities are taken into account by the system. The

KNN application was executed with a single instance.

Figure 4: TD and KNN applications execution, having tasks
with different priorities. First two charts show the CPU load
in both TMs. Third chart shows the applications’ through-
put for each input Kafka topic. The accuracy for each sink
task is presented in the remaining charts.

As shown in Figure 4, the scenario starts with both TMs available,

and the TD application’s tasks scheduled among them based on the

scheduling policy. The KNN application is added later (A), being

scheduled to the TM2, the one with more available resources. Once

the KNN application is scheduled, the effect of its warmup state is

visible on the other tasks executing in the same TM.

It is also visible that the TDSnk1 task has a higher priority than

the KNNSrc1 task. When the KNN application workload increases

(B), its accuracy also drops, while the accuracy of the TDSnk1 task
remains unchanged. A similar behaviour appears after instant (C),

the KNN application’s accuracy drops to release resources for the

TDSnk1.
The TDSnk1 task also has a lower priority than the TDSnk2. As

their workload increases, TDSnk1 instances’ accuracy drops before

load shedding triggers on TDSnk2, eventually re-scheduling the

first TDSnk1 task instance (C) in order to allow TDSnk2 to keep up

with its workload.

Once again this scenario shows the ability of our system to adapt

task scheduling based on the runtime requirements of application

tasks, increasing the overall throughput. Flink 1.2 is incapable of

performing this type of adaptation, clearly showing a situation

where our system performs better in terms of resource efficiency.

7.3 Scenario 3: Apache Kafka Integration
The third scenario focuses on evaluating the integration of our

mechanism with the metrics from Kafka, as described in Section 6.

In this scenario, the KNN application is executed with a parallelism

of 2, both instances consuming from different partitions of the input

Kafka topic. Both TMs were used, each executing one of the task

instances. Figure 5 shows the obtained results.

In terms of load shedding, results show that the system is able

to properly tune the application’s accuracy based on the incoming

workload, either when it increases (A) and decreases (B). Compar-

ing the event injection rate of the Kafka topic and the estimated

injection rate (second chart in Figure 5), a small delay can be noticed.

Nonetheless, the system was able to estimate the actual injection

rate with a mean error of 0.4% ± 6.2% and 2.8% error in percentile

90%.

Regarding Kafka topic partitions’ lag, we can observe some

spikes, which appear due to two reasons:

(1) The definition we used for current accuracy, aims at reducing

the difference between the producer and consumer through-

put, not at minimizing the amount of events that are in queue

to be processed by a task. Other definitions for the current
accuracy could be used to address this problem.

(2) A misalignment between the instant when the injection

rate suddenly changes and the instant when the next QoD
Controller cycle is triggered. Causing events to wait in queue

to be processed, since the system can’t react immediately

after the workload change.

Once again, our load shedding mechanism proves its value, as it

prevents the Kafka topic’s lag from increasing as the application

reaches its bottleneck. The same wouldn’t happen in Flink 1.2,

where its back-pressure mechanism wouldn’t be able to keep Kafka

lag near zero, as will be observed in the following benchmarks.

7.4 Performance Assessment
In terms of performance impact of our mechanism, two bench-

marks were done to assess the impact on the JM’ resource usage (1)

and on the application’s performance (2). The same benchmarks

were executed against Flink 1.2 release, which is used as a term of

comparison.

Figure 5: Execution of the KNN application as the event in-
jection rate changes. First chart shows its accuracy; second
chart a comparison between the injection rate and estimated
injection rate to the Kafka topic; and third chart, the Kafka
topic partitions’ lag.

Regarding (1), we focused on understanding if our mechanism

scales with the amount of tasks being executed in the system. The

results presented in both Figures 6 and 7 were used to perform this

assessment. The first figure, shows how the CPU load of the JM

increases as the amount of tasks being executed increases. While

Figure 7 shows how the execution time of the QoD Controller mon-

itoring cycle increases with the amount of executing tasks.

The results show that even with 2000 executing tasks, the JM’s

CPU load is below 15% in the third quartile and that the execution

time of the QoD Controller is below 115 ms in the second quartile.

Figure 6: CPU Load of the JM for different amounts of exe-
cuting tasks, with two TMs, and comparison with Flink 1.2
release.

Figure 7: Execution time of the QoD Controller, given a fixed
amount of executing tasks and using two TMs.

Figure 8: Lag, consuming throughput and latency of the TD
application as the injection rate increases, both when using
Flink 1.2 and in our modified version of the same release.

Therefore, our mechanism can clearly scale to environments

running thousands of tasks in parallel. When compared with Flink

1.2 (first row in Figure 6) our solution is more CPU intensive.

Regarding (2), we used the TD application and monitored its

latency and throughput as its workload continuously increases. A

single TM was used, allowing a fair comparison with Flink 1.2. The

obtained results are presented in Figure 8 showing the Kafka topics’

lag, the application throughput at each input Kafka topic and the

application latencies as the event injection rate increases over time.

The measured latency doesn’t take into account the time each event

spends in queue, waiting to be consumed by the application.

Once the application bottleneck is reached in Flink 1.2 (instants

A and B), the application throughput stops keeping up with the

increasing injection rate, causing the Kafka topics’ lag to continu-

ously increase. The same doesn’t happen with our system, thanks

to the load shedding mechanism. Allowing the application to cope

with the injection rate, thus keeping the Kafka topics’ lag as zero.

Both in Flink 1.2 and in our modified version, the measured

latency increases once the bottleneck is reached (A). In case of our

modified version, we can observe several spikes associated with

changes in the injection rate. Once this rate stabilizes, the latency

tends to decrease to values below the ones observed for Flink 1.2 (C).

The reason this happens is the same pointed in Section 7.3, though

this time the events are queuing up in the application internal

buffers between the producer and consumer tasks.

In case of Flink 1.2, the latency remains high since without load

shedding, the intermediate application buffers will remain full. Once

again, notice that the latency is not even considering the time that

events spent in the Kafka queues, which for our modified version

would be almost none.

This final benchmark shows key aspects where our load shed-

ding mechanism appears as a clear advantage in situations where

accuracy drops are acceptable, and the applications’ throughput

and latency are critical.

8 RELATEDWORK
In Apache Flink, each TM provides a set of slots [8] that can be

used to execute tasks. There is no CPU isolation between slots.

Slots simply limit the amount of tasks that can be executed in the

TM. Flink scheduling strategy assigns tasks to all slots in a TM,

only then moves to the next one. This approach only succeeds if

the characteristics of the tasks that will be deployed to the cluster

are well known. If tasks are expected to consume few resources,

then the TMs should provide a higher amount of slots, avoiding

underutilization of the available resources. If they are expected to

consume lots of resources, then slots should be coarse grained, since

its expected for these tasks to consume all the available resources,

thus avoiding resource starvation.

In Flink, tasks of the same application can share slots — Slot
Sharing [4]. Thus allowing to group fine grained tasks and run them
in a coarse grained slot, reducing the probability of underutilization.

Nonetheless, it is up to the user, that defines the application, to

enable or disable slot sharing.

On the other hand, Apache Storm [5] default scheduling strategy

consists in a naive round robin distribution of tasks on the available

machines. Though this strategy is simple and doesn’t require any

specific input from the user, resource starvation situations can

appear, causing applications performance to degrade and fail to

cope with their workload, due to over-utilization of the resources

in a machine. Our scheduler overcomes this issue by providing a

mechanism that detects and assesses these situations.

Alternatively, Apache Storm also provides a different task sched-

uler, the Resource Aware Scheduler that was proposed in [12]. This

scheduler allows users to specify resource related restrictions, such

as CPU and memory, for each task in the application. Bin packing

tasks to the available machines while taking into consideration their

needs. With this approach tasks are guaranteed to get the resources

they need, but it can suffer from resource underutilization.

Current resource management solutions for distributed stream

processing systems lack the ability to dynamically adapt tasks’

scheduling based on their runtime metrics. Which proved to be a

key factor to improve overall resource efficiency in the cluster.

More similar to the proposed solution, Apache Mesos Dynamic
Oversubscriptionmodel [2], allows the execution of best-effort tasks

in reserved but unused resources. In this model, cluster resources

are monitored to detect oversubscribed resources, and to make sure

that the revocable tasks don’t interfere with the regular tasks. If

they do, these revocable tasks can be killed or throttled in order to

correct the Quality-of-Service (QoS). Similar techniques have been

proposed in other systems such as [10]. Both these solutions can’t

take advantage of load shedding, allowing application to provide

fresh results even in peak load situations, as they are not specific

for stream processing use cases.

9 CONCLUSIONS
Throughout this paper we proposed a novel task scheduling strategy

for stream processing systems such as Apache Flink and Apache

Storm. Our strategy specifically targets the problem of resource

underutilization that current solutions fail to overcome.

Benchmarks of our mechanism show promising results as they

prove that our strategy is able to adapt tasks’ assignments to the

available machines, converging towards a task distribution that not

only reduces resource wastage, but also improves the applications’

throughput in situations of resource starvation.

The developed load shedding mechanism also proved to be valu-

able, as it enable applications to keep up with their incoming work-

load without having to immediately re-schedule them for them to

cope with it. At the same time, the load shedding mechanism is able

to take into account different requirements from each sink in an

application, avoiding processing events that will be dropped later

in the application’s downstream. Thus, being a good additional

contribution from this paper.

Asides from the obtained results, there is still plenty of room for

exploration regarding this subject. We consider that future work

should focus on overcoming identified restrictions, allowing the

solution to become production ready; and on exploring alternative

semantics for the different components of the proposed mechanism,

or even allowing these different semantics to be customizable. For

instance, allowing users to provide their own definition of accuracy

and of current accuracy for each application; or even enable appli-

cations to use different load shedding strategies, e.g. semantic load

shedding.

REFERENCES
[1] Apache Kafka. 2018. Apache Kafka Documentation. https://kafka.apache.org/

documentation/. (2018).

[2] Apache Mesos. 2018. Mesos Oversubscription. http://mesos.apache.org/

documentation/latest/oversubscription/. (2018).

[3] Apache Software Foundation. 2018. Apache Flink. http://flink.apache.org. (2018).

[4] Apache Software Foundation. 2018. Apache Flink 1.2 Documentation: Distributed

Runtime Environment. https://ci.apache.org/projects/flink/flink-docs-release-1.

2/concepts/runtime.html. (2018).

[5] Apache Software Foundation. 2018. Apache Storm. http://storm.apache.org.

(2018).

[6] Brian Babcock, Mayur Datar, and Rajeev Motwani. 2004. Load Shedding for

Aggregation Queries over Data Streams. In Proceedings of the 20th International
Conference on Data Engineering (ICDE ’04). IEEE Computer Society, Washington,

DC, USA, 350–. http://dl.acm.org/citation.cfm?id=977401.978165

[7] Salman Abdul Baset, Long Wang, and Chunqiang Tang. 2012. Towards an Un-

derstanding of Oversubscription in Cloud.. In Hot-ICE.
[8] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a single

engine. Data Engineering 38, 4 (2015).

[9] Son-Hai Ha, Patrick Brown, and Pietro Michiardi. 2017. Resource Management

for Parallel Processing Frameworks with Load Awareness at Worker Side. In Big
Data (BigData Congress), 2017 IEEE International Congress on. IEEE, 161–168.

[10] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and

Christos Kozyrakis. 2015. Heracles: improving resource efficiency at scale. In

ACM SIGARCH Computer Architecture News, Vol. 43. ACM, 450–462.

[11] Ismael Solis Moreno and Jie Xu. 2011. Customer-aware resource overallocation

to improve energy efficiency in realtime cloud computing data centers. In Service-
Oriented Computing and Applications (SOCA), 2011 IEEE International Conference
on. IEEE, 1–8.

[12] Boyang Peng, Mohammad Hosseini, Zhihao Hong, Reza Farivar, and Roy Camp-

bell. 2015. R-Storm: Resource-Aware Scheduling in Storm. In Proceedings of the
16th Annual Middleware Conference (Middleware ’15). ACM, New York, NY, USA,

149–161. https://doi.org/10.1145/2814576.2814808

[13] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A

Kozuch. 2012. Heterogeneity and dynamicity of clouds at scale: Google trace

analysis. In Proceedings of the Third ACM Symposium on Cloud Computing. ACM,

7.

[14] Olubisi Runsewe and Nancy Samaan. 2017. Cloud Resource Scaling for Big Data

Streaming Applications Using A Layered Multi-dimensional Hidden Markov

Model. In Cluster, Cloud and Grid Computing (CCGRID), 2017 17th IEEE/ACM
International Symposium on. IEEE, 848–857.

[15] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael

Stonebraker. 2003. Load shedding in a data stream manager. In Proceedings
of the 29th international conference on Very large data bases-Volume 29. VLDB
Endowment, 309–320.

https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
http://mesos.apache.org/documentation/latest/oversubscription/
http://mesos.apache.org/documentation/latest/oversubscription/
http://flink.apache.org
https://ci.apache.org/projects/flink/flink-docs-release-1.2/concepts/runtime.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/concepts/runtime.html
http://storm.apache.org
http://dl.acm.org/citation.cfm?id=977401.978165
https://doi.org/10.1145/2814576.2814808

	Abstract
	1 Introduction
	2 Background and Architecture
	3 Model
	3.1 Restrictions
	3.2 Load Shedding
	3.3 CPU Load

	4 Task Scheduler
	5 QoD Controller
	5.1 Task Re-Scheduling
	5.2 Resource Distribution
	5.3 Computing the drop probabilities

	6 Implementation Details
	7 Evaluation
	7.1 Scenario 1: Tasks With Same Priorities
	7.2 Scenario 2: Tasks With Different Priorities
	7.3 Scenario 3: Apache Kafka Integration
	7.4 Performance Assessment

	8 Related Work
	9 Conclusions
	References

