
First-Person Shooter for Tablets - FpsTab

Oleksandr Bodashko
olexandrbodashko@ist.utl.pt

Instituto Superior Técnico, Lisboa, Portugal

October 2013

Abstract

Nowadays, mobile devices play an important role in our daily lives. Their high performance makes
them not only in good working tools but also in gaming consoles. In this context, multiplayer games
on ad-hoc networks (where does not exist any well defined structure or fixed topology) places multiple
challenges. In this paper we address the following objectives: i) minimize the amount of information
exchanged between players for bandwidth saving, ii) increase game scalability and iii) minimize energy
consumption and resource utilization of the device. Obviously, developed solutions should not harm
the gameplay. Thus, we designed and developed a middleware software called FpsTab, that offers a set
of features for the aforementioned games (multiplayer games on ad-hoc networks) for the First-Person
Shooter genre. The FpsTab offers an innovative solution that allows: i) minimizes the resources used
by mobile devices (e.g. data sent/received on the network) thereby contributing to increase of system
scalability, and ii) ensures game’s consistency on each device. FptTab was tested by porting of the
game Quake 3 Arena. Obtained results in the scope of energy consumption and resource utilization of
the device, that saves bandwidth without affecting the gameplay, are promising.
Keywords: Mobile devices, Resource management, Interest management, Consistency, ad-hoc
network, Multiplayer game

1 INTRODUCTION
Nowadays, we can’t imagine our life without the
personal computer. PC has revolutionized our
world and became an indispensable tool for work,
communication, data storage, entertainment, etc.
However, with the advancement of technology, the
computer had a tendency to become smaller and
smaller, until now fits in the palm of the hand. Then
appeared mobile devices such as smartphones and
tablet PCs, that for some tasks, can replace con-
ventional PCs.

The great performance of mobile devices’s GPUs
transform them into video game consoles with 2D
and 3D high quality graphics. Most of them al-
ready supports OpenGL 2.0, Direct3D Mobile and
programmable shaders that allows to play games
with high quality textures and shadows, and enjoy
a more realistic gameplay.

Between different video games genres existed
for mobile devices, the genre FPS - First-Person
Shooter have achieved a top of popularity, especially
multiplayer FPS games.

In order to on-line game provides good perfor-
mance it is necessary to considerate two factors:
consistency and scalability. It’s crucial maintain
the game state consistent in real time, i.e., each
player has a local copy of the global game state,

that contains information about all players. This
maintenance has a cost, when more players persist
on the game more information is exchanged between
them, and more bandwidth is used. There are sev-
eral techniques to minimize the amount of messages
exchanged in the network, such as Interest Manage-
ment [14, 2] and Dead Reckoning [10].

The Interest Management consists on disseminate
the game state updates only for players who are
interested in this information updates. Each player
has an associated area of interest (AoI). Usually this
is the area around him, which is also called aura.
Thus, the player receives updates only from players
and entities that are within this area.

Another important factor that enables to support
multiple players at the same time is scalability. To
make the game scalable is necessary to choose the
architecture that better fits the game. The archi-
tectures used in mobile games are: Client-Server [9]
where a device, called a server, contains the en-
tire game information that is disseminated to the
players (clients); Peer-to-Peer (P2P) [7, 1] where
doesn’t exist definition of the central node, each
node performs functions of server and client; Server
Networks [9] where there are more than one server
to support a higher number of connections.

However, mobile devices have one weak point -

1



energy consumption. When more resources of mo-
bile device are used - more energy is spent. Energy
consumption can be minimized by reducing the us-
age of expensive resources.

The main objective of this project is to minimize
the amount of information exchanged between play-
ers, by using Interest Management techniques. For
this purpose, the FpsTab defines the areas of in-
terest (AoI), such as the field of view and the aura
that significantly reduce the amount of information
required to process the game. The FpsTab system
performs a filtering of propagated information on
the network without harming the game consistency
and the gameplay.

Increase the scalability of the game is another
goal of the project. The scalability depends, not
only of the game server features, but also of band-
width. Thus, bandwidth increasing allows to in-
crease directly a scalability.

Another challenge of this project is to reduce the
energy usage of the mobile device. The reduction of
resource usage such as CPU, RAM and Wi-Fi helps
to preserve battery life.

Find an opensource, and also FPS game, for mo-
bile devices is the main and tricky challenge of the
project. Since doesn’t exists an opensource FPS
games for mobile devices, we decided to port a
game made for other platform. We choose Quake
3 Arena1, because this game has an Android port
client and is supported by majority of mobile de-
vices.

Another key challenge is related to the nature of
FPS games. As they are action games, it is im-
portant that to the player be aware of any events
around him. We can’t consider as important only
those entities that are within the field of view of the
player. Often, the enemy’s positions are revealed by
sound effects that they are producing outside the
player field of view.

This document is organized as follows. Section
2 describes the related work which focuses on ex-
isting solutions to solve the problems of scalability,
consistency and Interest Management; in section 3
we present the FpsTab architecture; details about
system implementation are presented in section 4;
the evaluation and obtained results are described
in section 5; and finally, in section 6 we summarize
this work with some ideas for future work.

2 RELATED WORK
2.1 Mobile games

Mobile games has evolved over the past few years,
thanks to technological advances of the device com-
ponents. Between different video games genres ex-
isted for mobile devices, the genre FPS - First-

1http://quake.wikia.com

Person Shooter have achieved a top of popularity,
especially multiplayer FPS games.

The FPS games are based on battles with
weapons, those may be real or fantastic. The
main characteristic of this genre is that the player
can see the virtual world in the first person view,
i.e., through the eyes of the main character, called
avatar.

Each avatar has its associated state that is char-
acterized by position, score, weapons and ammuni-
tion, etc. This state is changed through interaction
with avatars and other entities or through their own
actions.

For the consistent game it is necessary that the
global game state have to be synchronized between
the players. To solve this problem could be used
replication technique, where each client keeps a
copy of the global game state. The gameplay can
also be affected by network characteristics, namely
bandwidth and latency of communication.

2.2 Communication
On a ad-hoc network doesn’t exists any infrastruc-
ture, such as access point or centralized control.
Each node operates in the peer-to-peer distribution,
acts as independent router and generates indepen-
dent data. The topology of ad-hoc network can
change constantly and unpredictable [5].

Network latency, the time that message takes to
go from one node to another, has high impact on on-
line gaming and can harm the gameplay. The player
whose packets suffer high latency, relative to other
players, has harmed gameplay, because his game
state is out of date and it distorts the perception of
reality in the game. The maximum latency for FPS
games should not exceed 75 ms [4].

Mobile devices have various communication tech-
nologies that support ad-hoc networks. The most
popular are Bluetooth, Wi-Fi and 4G. Each has its
advantages and disadvantages relative to others.

2.3 Architectures
In the Client-Server architecture the information
processing is divided into two distinct modules.
The first module, called server, is responsible for
maintaining the information and the second, called
client, is responsible for obtaining the data. How-
ever, there are two approaches of this architecture
where the game’s logic is centered on the server or
on the client (fat client) [7].

The P2P architecture is an architecture where the
functions are decentralized, i.e., there is no central
server, each node plays the role of client and server
simultaneously [8].

2.4 Consistency
The mechanism called replication [12] is based on
saving a copy of the game state on the player device.

2



The client only accesses to its local replica that
is updated with the meta-information from other
players. The replica content must be the closest to
the overall state of the game, otherwise, the game-
play can be affected. To maintain all replicas in con-
sistent exists replication mechanisms. They decide
how often the replica must be updated, and resolve
conflicts that arise when different clients change the
game state at the same time.

Replicas can be managed through two ap-
proaches: pessimistic replication and optimistic
replication. First approach locks access to the repli-
cas during an update, but keeps all replicas in con-
sistency. An optimistic replication doesn’t lock the
access to the replica, but the information can di-
verge between clients.

2.5 Interest Management
The updates that clients receive are usually generic
and contain a lot of unnecessary information. The
Interest Management (IM) [2] aims to filter the in-
formation, so that clients receive only what is rele-
vant to them. The filtering of information is done
by dividing the virtual world in areas of interest
(AoI). Thus, avatar only receive the information for
complete from his AoI.

Figure 1: Example of aura based IM.

Figure 2: Example of region based IM.

In aura based IM [3] the aura is represented
by circle drawn around the avatar. The area of
the aura usually corresponds to the avatar sensory
limit(Figure 1).

In region based IM [3] the virtual world is split
into a regions. The avatar receives updates only
from the region in which he is interested, generally
from the region where he is located (Figure 2).

Figure 3: Example of field of view based IM, where
θ represents the angle of aperture.

And last, field of view (FOV) based IM [3, 2] can
filter an objects that are outside of the avatar’s FOV
(Figure 3).

2.6 Dead Reckoning

Dead Reckoning technique [10] reduces the amount
of messages which are exchanged in the network.
This approach can compute a new entity position
based on its previous position, velocity, acceleration
and orientation. Dead Reckoning allows to mask
the latency and reduce the number of communica-
tions with the server.

2.7 ANGEL

Based on hybrid P2P architecture, keeps all devices
synchronized to ensure the game consistency [6].
The master node builds a routing tree and choose
the best way to pass the information to terminal
nodes. The biggest disadvantage of this system is
the lack of IM.

2.8 MORAP

MORAP [11] is based on the decentralized P2P ar-
chitecture, where each node dynamically creates a
connection with its neighbor node. This approach
uses region based IM (hexagonal division) and aura
based IM. MORAP is a scalable system, fault tol-
erant, and minimizes the amount of information in
the network due to its architecture.

2.9 Adaptive Client-Server architecture

This approach [7] is based on client-server archi-
tecture. At real-time separates game logic between
the server and client, based on the context and net-
work latency. To minimize net traffic this architec-
ture uses region based IM, aura based IM and Dead
Reckoning.

2.10 Vector-Field Consistency (VFC)

VFC [13] is a mechanism to reduce the amount of
information that is disseminated in the network and
maintain the game state consistent without harm-
ing the gameplay. This approach introduces the
concept of multiple concentric circular zones (auras)
with decreasingly consistency requirements. The
VFC uses an optimistic consistency model that al-
lows replicated objects to diverge in a limited way.

3



The consistency level is composed by three-
dimensional vectors, that defines the limits of di-
vergence between local replicas in time, sequence
and value.

This system provides consistency guarantees in
the low bandwidth networks, and also is flexible and
reduces network utilization.

2.11 Energy consumption

The battery life of the mobile device depends, in
general, on how it’s used.

Due to the large volume of graphic computation
on CPU/GPU and high display quality require-
ment, video games have become one of the most
power-consuming application. During the game
with low user interaction, the total consumption of
the mobile device varies between 1140 mW and 1750
mW. In the games that involves a lot of interaction,
such as frequent touches on the screen and use of
sensors like accelerometer or gyroscope, consump-
tion increases up to 1640 - 2220 mW. To under-
stand the magnitude of these values, web browsing
consumes only 600 - 1500 mW.

During the game the most energy consumption
component is the CPU, but other components, such
as Wi-Fi, Bluetooth and display also affect energy
consumption (Figure 4). By minimizing and op-
timizing their usage it is possible to preserve the
battery life.

Figure 4: Average energy consumption during the
game.

3 ARCHITECTURE
3.1 Overview

The fundamental idea of our system is based on the
using of IM techniques. We define the areas of inter-
est as FOV, covering the area of visual perception
of the player, and aura, which defines the hearing
perception.

However, we adopt the idea of the VFC system,
and define various consistency levels for each AoI.
This allows to reduce consistency gradually, de-
pending on the entity position in relation to the

player. Thus, we get a better trade-off between in-
formation filtering and gameplay.

3.2 Overall system architecture
The overall system architecture, as seen in Figure 5,
is composed by multiple layers.

Figure 5: Overall system architecture.

The Android App layer which is located on the
client and server, aims to run the game Quake 3
Arena on mobile devices with Android operating
system. For that, Android App communicates di-
rectly with Game layer, that contains specific files
of Quake 3 Arena. This layer also allows to switch
between the original game and the game with Fp-
sTab upgrade.

As Quake 3 Arena has the server-centric game
logic, the server is responsible for game process-
ing and managing the global state. The client only
sends the inputs (avatar’s actions) to the server and
renders the game on the device, according to the
data contained in his replica. The replica contains
the avatar state (e.g. position, speed, animation)
and state of other entities (e.g. opponents, items,
objects).

FpsTab layer intercepts Replicas Manager and fil-
ters the information contained in the replica, before
sending to the client. FpsTab uses IM based on the
combinations of aura and FOV with different consis-
tency levels. Parameters, such as angle of aperture
and aura radius, can be configured trough Android
App.

The communication between the server and
clients is done through the Communication mod-
ule located in Game layer. This module encrypts
the data using a shared key, then compresses them
by Huffman encoding and sends over UDP/IP pro-
tocol.

3.3 FpsTab architecture
Interest Manager module is based on IM tech-
niques. We define two AoI associated for each
player: FOV and aura. The FOV (Figure 6), similar
to the human field of view, allows to see the entities
that are within the visual limits of the avatar. The
entities that are outside the FOV, for example in
the back of the avatar, will be ignored, as they are

4



Figure 6: FOV on normal state (a) and with weapon
zoom enabled (b).

Figure 7: Combination of aura and FOV.

Figure 8: The consistency levels.

invisible.

We define two FOV angles: 110◦ for normal state
and 33◦ when weapon zoom is turned on. The an-
gles are slightly larger than predefined by Quake 3
Arena. This increase is made to avoid the problems
of inconsistencies that may arise when the avatar
performs the sudden rotational movement.

However, entities that are outside of the visual
limits of avatar can not always be ignored. For ex-
ample, when an avatar stays on the back of the
other, his actions, such as shooting or take items,
can only be captured through hearing. Moreover,
the hearing perception is related to the nature of
FPS games and plays an important role.

For this purpose has been introduced an aura
around the avatar. As seen in Figure 7, the aura
is represented by a concentric circle centered on the
avatar, and its area corresponds to his hearing limit.

The level of importance of entities depends on
their position and their distance from the avatar.
Thus, there are three levels of consistency: Strong,
Weak and Null (Figure 8). At Strong level, all en-
tities are considered important, as they represent

the highest interest for the player. The weak level
of consistency, which is outside the avatar’s FOV
but within hearing range, considers only the sounds
emitted by other entities. Finally, the Null level
ignores all entities because they do not affect the
player state.

Entities Manager aims to modify the state of
entities that are on the replica. This allows to re-
duce the volume of replica, so the player receives
only an information that he needs. To change enti-
ties state, this module is based on consistency levels
(Strong, Weak and Null) provided by Interest Man-
ager.

When the entity is inside the Strong consis-
tency level, the Entities Manager doesn’t change
her state, contained in the replica. However, the
entity state will be changed if the entity belongs to
the Weak level, in order to, preserve the informa-
tion to reproduce only the sound events. Finally, if
the entity belongs to the Null consistency level, her
state will be removed from the replica.

4 IMPLEMENTATION
4.1 Development Environment

The development of FpsTab middleware and com-
pilation of Quake 3 Arena were made on Linux.

FpsTab was developed in a library form and im-
plemented in C. Quake 3 Arena is also implemented
in C and compiled for ARM architecture through
Android NDK tool. The client, that runs the game
on Android operating system (Android App), was
developed in the ADT (Android Developer Tools)
and implemented in Java. The communication be-
tween the code implemented in C and Java is made
through the JNI (Java Native Interface).

4.2 FpsTab API

FPSTAB Init Initializes FpsTab parameters.

FPSTAB getEntityConsistencyLevel Sets
entity consistency level. Receives avatar po-
sition, player orientation angles (pitch, yaw,
roll), parameter that indicates whether the
avatar has zoom activated, entity position and
entity id.

Returns an integer that defines the level of con-
sistency:

· 2 - Strong consistency level.

· 1 - Weak consistency level.

· 0 - Null consistency level.

FPSTAB ShouldEntityBeRejected Tests
if entity has to be removed from the replica.
If function returns 0, then entity remains in
the replica, if returns 1 - the entity is rejected.

FPSTAB ManageEntityState Modifies, if
necessary, the entity state which is contained

5



in the replica. The function returns modified
or unmodified state.

FPSTAB SetSettings Receives FpsTab con-
figuration parameters, such as FOV angle on
the normal state, FOV angle with zoom and
the aura radius.

4.3 FpsTab Data structures
As FpsTab library is developed in C, the data struc-
ture is separated into modules (files). Each file con-
tains functions and variables required for its oper-
ation. To facilitate integration with the library, all
functions are described in a single header file (fp-
stab.h).

4.3.1 fpstab.c

FPSTAB Init . A function that initializes the
FpsTab. Resets Entities Manager temporary
data.

Log . Allows to debug the code implemented in
C. Sends a text sequence to the Android ADT.

4.3.2 fpstab im.c

This file contains the structure of FpsTab Inter-
est Manager. FPSTAB getEntityConsistencyLevel
is the main function of this module.

For consistency level calculation, the function
checks if entity is inside of some avatar’s AoI. The
procedure is done in the order described by pseudo-
code:

if entity_is_inside_FOV then

return STRONG_LEVEL

if entity_is_inside_aura then

return WEAK_LEVEL

else return NULL_LEVEL

Function EntityInsideFOV defines if entity is
within player’s FOV and EntityInsideAura defines
if entity is within player’s aura.

The consistency level of each entity is sent to the
Entities Manager through the function addEntity-
ToEM. Finally, function FPSTAB SetSettings de-
fines the parameters of FpsTab.

4.3.3 fpstab em.c

This file contains an Entity Manager structure.
The consistency level of the entities is stored in

a array of integers, called entityVec. The vector’s
position matches the entity id and the value corre-
sponds to the level of consistency.

The function FPSTAB ShouldEntityBeRejected
is based on the values of entityVec to determine
if entity should remain in the replica.
FPSTAB ManageEntityState manages the state

of each entity. This function is implemented to ac-
cept the entity state, which is a structure of type

entityState t defined in Quake 3 Arena. When en-
tity state is modified, all unnecessary attributes are
set to 0. Thus, when the server calculates the dif-
ference (delta) between current state and the for-
mer, these attributes will be ignored. Therefore,
it’s possible to minimize the size of the entity state
and consecutively the replica volume.

4.4 Game layer
This layer contains the game Quake 3 Arena. The
game source code was obtained from open-source
project called ioQuake3 2.

Quake 3 Arena is compiled, specifically for pro-
cessors with ARM architecture, into Shared Li-
braries (.so) through the Android NDK tool.

In the original game, the server doesn’t know if
the player has enabled zoom. Therefore, the game
was modified, i.e., the client sends a specific com-
mand to the server whenever enables or disables
zoom. The server contains an array of integers
(clientVec) that stores the state of a zoom for each
player. Thus, vector position corresponds to the
player’s id, and the value corresponds to the zoom
state (0 - disabled, and 1 - enabled).

4.4.1 Original Replicas management

We can divide the logic of the game in the following
steps:

1. The client sends his inputs and internal com-
mands to the game server.

2. The server processes the information and up-
dates the global game state.

3. The server generates a replica from global
state, specifically for each client. The replica
contains the state of the avatar and state of
other entities.

4. The replicas are sent to the clients.

5. The client receives his replica and renders the
game on the device.

According to studies of the Quake 3 Arena repli-
cas, it was concluded that these contain a lot of
unnecessary information. This is caused by poor
Interest Management that divides the virtual world
into regions.

4.4.2 FpsTab Replicas management

Like Quake 3 Arena has server-centric logic, we de-
cided to modify the replica during its development,
instead of changing the contents of the completed
replica. FpsTab decide whether the state of an en-
tity should be added to the client’s replica when
the server fills it. Thus, we can increase the system
performance, because we avoid the additional data
processing.

2www.ioquake3.org

6



Figure 9: Virtual joystick layout.

The replicas are managed in the following order:

1. The server begins to create a replica for a par-
ticular client.

2. FpsTab is initialized (FPSTAB Init).

3. While the server chooses entities to insert in
the replica is called the Interest Manager, by
functionFPSTAB getEntityConsistencyLevel,
which defines the consistency level of each
entity.

4. While the server adds entities to the
replica, is tested whether the en-
tity remains in the replica, by using
FPSTAB ShouldEntityBeRejected function.

5. If necessary, Entity Manager modifies the state
of entities that remain in the replica (function
FPSTAB ManageEntityState).

6. The replica is sent to the client.

4.5 Android App

This layer aims to launch the game on the device
with Android OS, and he is also responsible for in-
teraction between the game and the player.

Android App was developed based on existing
opensource project, called Kwaak33.

The original Kwaak3 executes the game on An-
droid OS with mapping of peripherals, such as
mouse and keyboard, which aren’t good enough to
get the complete interaction with the game on the
mobile device. Therefore, we added a virtual joy-
stick that appears on the device screen (Figure 9).

The joystick was developed in ADT, and has a
graphical interface suitable for the game with the
most important buttons: avatar movement, shoot,
jump, zoom and weapon change. The crosshairs
control is done through touch and movement of the
finger on the screen.

4.6 JNI - Java Native Interface

The interaction between the Android App (imple-
mented in Java) and Game/FpsTab (implemented
in C ) is done through JNI. This communication is
performed at runtime and works by calling remote
functions.

3http://code.google.com/p/kwaak3/

Figure 10: Traffic received by server on different
game maps.

Thus, we can use functions of Game or FpsTab
from the Android App and vice versa. This com-
munication is done through the intermediary library
libkwaakjni.so.

5 EVALUATION
The evaluation consists of comparing the modified
game by FpsTab with the original game. Mainly,
we had analyzed the amount of traffic produced by
both solutions. The idea was to compare the re-
source consumption of mobile devices such as CPU,
RAM and battery. However, we evaluate the qual-
ity of FpsTab to understand if the gameplay wasn’t
affected.

5.1 Maps
To perform the tests, we chose 4 maps with different
sizes and occlusion. The maps are:

• Q3DM2 - small and closed.

• Q3DM11 - large and closed.

• Q3TOURNEY3 - small and opened.

• Q3DM17 - large and opened.

5.2 Evaluation methodology
The tests were made on four mobile devices with
four players at a time. The competition mode was
Deathmatch. Before testing all players had 5 min-
utes training. After training, two games were made
for each map, i.e., one game for each solution (orig-
inal and FpsTab). After each game we had watched
the performance results and after each map, players
has answered a questionnaire.

Performance measures of the devices were ob-
tained by using System Monitor Lite4 application.

5.3 Quantitative evaluation
5.3.1 Traffic analysis

The graph of Figure 10 shows the average amount
of information received by the game server. As we

4http://cgollner.x10.mx

7



Figure 11: Traffic sent by server on different game
maps.

Figure 12: Traffic comparison by map type.

Figure 13: CPU usage by server. Comparison by
map type.

can see, the traffic received by two solutions is prac-
tically the same, because he is produced by clients
and is independent from solution.

However, server sent traffic depends of his man-
agement logic. As we can see in the graph of Fig-
ure 11, the server with FpsTab sends less informa-
tion compared to the original game server.

In 32 games the amount of the sent data corre-
sponds to 118,4 Mb, where 65,8 Mb has been sent
by original game and 52,6 Mb by FpsTab. There-
fore, the solution with FpsTab was able to reduce
sent traffic in 20% compared to the original game.

The largest reduction in traffic (80%) occurs in
opened maps, where the Quake 3 Arena practically
don’t uses its IM based on regions (Figure 12).

Figure 14: CPU usage by clients. Comparison by
map type.

Figure 15: RAM usage by clients. Comparison by
map type.

Figure 16: Ram usage by server. Comparison by
map type.

5.3.2 CPU

In terms of CPU usage, the game with FpsTab has
reduced processor usage by 4,2% on the server (Fig-
ure 13), and by 3% on the client side (Figure 14).
Mainly, the reduction had happened due to de-
creasing of the amount of processed entities. The
greatest CPU reduction was achieved on the opened
maps, such as Q3TOURNEY3 and Q3DM17.

5.3.3 RAM

As shown in the graph of Figure 15, the FpsTab re-
duced RAM consumption on the client by 1,4% over
the original game. The largest reduction occurs in
the server and contained 0,25% (Figure 16).

8



Figure 17: Battery usage by server. Comparison by
map type.

Figure 18: Battery usage by clients. Comparison
by map type.

Again, we obtained better results on large and
opened map Q3DM17 with a lot of objects. The
reducing on this map reaches 5% on the server and
1% on the client, in comparing to the original game.

5.3.4 Battery

The game with FpsTab spends on average less then
18,4% of battery on the server, and less then 13,9%
on the client, in comparing to the original game
(Figures 17 and 18). The greatest battery saving
we obtained at the opened maps, as on the server
and as on the client.

5.4 Qualitative evaluation
In order to evaluate if FpsTab didn’t harm the
gameplay, we had compared the original Quake 3
Arena with Quake 3 Arena improved by FpsTab.
As the gameplay is impossible to evaluate objec-
tively, it’s measured according to the subjective
opinion of the players.

After every two games, i.e., after each map, the
players were interrogated to answer the question-
naire. The main question was if they had noticed
the differences between the two versions, mainly re-
lated to the opponent’s movement and realism of
the game.

Tests were performed by 16 players on total.
Only 2 of them had noticed the differences between

Figure 19: Zoom usage by players. Comparison by
map type.

the two versions. One of the players had noticed,
that sometimes entities appear with a slight delay,
if he quickly switch between the normal mode and
zoom and also at the same time make a sudden
movement. The other player, after disabling zoom
still got his FOV reduced for 1 or 2 seconds.

As the Figure 19 demonstrates, most of play-
ers has used a zoom on the opened maps
(Q3TORNEY3 and Q3DM17 ). This type of maps
requires a better aim, since the entities may move
on a big distances.

6 CONCLUSIONS
In this paper we have talked about the multiplayer
FPS games, and challenges that they provide in
terms of consistency and scalability. We also have
talked about the architecture of multiplayer games,
Interest Management and replication. Overall, we
have mentioned ad-hoc networks, about the chal-
lenges that they pose, and about the main commu-
nication protocols.

We have proposed the FpsTab, which is a library
to improve the Interest Management of FPS games.
Our system uses IM techniques based on FOV and
aura, which represent the sensory limits of avatars.
This allows filtering out the unnecessary informa-
tion for the player.

We prove that the FpsTab is efficient, because
it can reduce the resource usage of mobile device,
such as CPU and RAM. Due to its algorithm, Fp-
sTab can reduce the computational load that bene-
fits the client and the server. The other advantage
is the reduction of the bandwidth. Our solution can
reduce the size of the clients replicas, disseminated
on the network, without affecting the gameplay.

6.1 Future work
Despite the good results, the FpsTab can still be
improved. The main points to be improved are:

• The current system is very focused on Quake 3
Arena functioning. To make the system com-
pletely generic, i.e., to be integrated with any

9



FPS game, the library will still need to be im-
proved.

• The FpsTab was tested in the game with client-
server architecture, and with the logic centered
on the server. Also its could be tested on the
game with the same architecture, but with the
logic centered on the client. Integration with
P2P architecture is also something that could
be explored in the future.

• To increase the performance, further can be
added more IM technics and improve already
existing, for example, reduce the FOV distance
when it’s covered by obstacles.

REFERENCES
[1] O. O. Abiona, A. I. Oluwaranti, T. Anjali,

C. E. Onime, E. O. Popoola, G. A. Ader-
ounmu, A. O. Oluwatope, and L. O. Kehinde.
Architectural model for wireless peer-to-peer
(wp2p) file sharing for ubiquitous mobile de-
vices. In 2009 IEEE International Conference
on Electro/Information Technology, EIT 2009,
Windsor, Ontario, Canada, June 7-9, 2009,
pages 35–39. IEEE, 2009.

[2] J. Boulanger. Interest Management for Mas-
sively Multiplayer Games. Canadian theses.
McGill University (Canada), 2006.

[3] J.-S. Boulanger, J. Kienzle, and C. Verbrugge.
Comparing interest management algorithms
for massively multiplayer games. In Proceed-
ings of 5th ACM SIGCOMM workshop on Net-
work and system support for games, NetGames
’06, New York, NY, USA, 2006. ACM.

[4] D. H. Brandt. Accelerating online gaming:
Defining and defeating lag in online gaming.
In New Technology T-611, Computer Science,
Reykjavk University, 2007.

[5] I. Chlamtac, M. Conti, and J. J.-N. Liu. Mo-
bile ad hoc networking: imperatives and chal-
lenges. In Ad Hoc Networks, number 1, pages
13–64, 2003.

[6] Y. Kaneday, M. Minematsuz, M. Saitoz,
H. Aidaz, and H. Tokuday. Angel: A hier-
archical state synchronization middleware for
mobile ad-hoc group gaming. In Proceedings of
the 1st workshop on Network and system sup-
port for games.

[7] A. M. Khan, I. Arsov, M. Preda, S. Chabri-
don, and A. Beugnard. Adaptable client-server
architecture for mobile multiplayer games. In
Proceedings of the 3rd International ICST
Conference on Simulation Tools and Tech-
niques, SIMUTools ’10, pages 11:1–11:7, ICST,

Brussels, Belgium, Belgium, 2010. ICST (Insti-
tute for Computer Sciences, Social-Informatics
and Telecommunications Engineering).

[8] B. Knutsson, H. Lu, W. Xu, and B. Hopkins.
Peer-to-peer support for massively multiplayer
games. In IEEE INFOCOM, 2004.

[9] S. K. Opoku. A simultaneous-movement mo-
bile multiplayer game design based on adap-
tive background partitioning technique. vol-
ume abs/1209.3052, 2012.

[10] L. Pantel and L. C. Wolf. On the suitability of
dead reckoning schemes for games. In Proceed-
ings of the 1st workshop on Network and sys-
tem support for games, NetGames ’02, pages
79–84, New York, NY, USA, 2002. ACM.

[11] Y. A. (Peiqun) and V. S. T. Mopar: a mo-
bile peer-to-peer overlay architecture for inter-
est management of massively multiplayer on-
line games. In Proceedings of the international
workshop on Network and operating systems
support for digital audio and video, pages 99–
104, New York, NY, USA, 2005. ACM.

[12] Y. Saito and M. Shapiro. Optimistic replica-
tion. volume 37, pages 42–81, New York, NY,
USA, Mar. 2005. ACM.

[13] N. Santos, L. Veiga, and P. Ferreira. Vector-
field consistency for ad-hoc gaming. In ACM/I-
FIP/Usenix International Middleware Confer-
ence (Middleware 2007), Lecture Notes in
Computer Science. Springer, September 2007.

[14] J. Smed, T. Kaukoranta, and H. Hakonen. A
Review on Networking and Multiplayer Com-
puter Games. 2002.

10


