
Ditto – Deterministic Execution Replay for the Java
Virtual Machine on Multi-processors

João Pedro Marques Silva

Dissertation submitted to obtain the Master Degree in

Information Systems and Computer Engineering

Jury

Chairman: Prof. Luı́s Eduardo Teixeira Rodrigues
Supervisor: Prof. Luı́s Manuel Antunes Veiga
Members: Prof. António Paulo Teles de Menezes de Correia Leitão

October 2012

Acknowledgements

This thesis is the result of a year-long journey of many frustrations, successes and discoveries.

I could not have made it on my own to the end of this arduous but fulfilling road.

First and foremost, I would like to thank my advisor Prof. Luı́s Veiga, for offering me

guidance throughout my first endeavour in research. I offer him my sincerest gratitude for

pointing me to the problem addressed in the thesis, for lending me his knowledge, experience

and insight, for nudging me towards ideas I would never have thought of on my own, and for

doing all this while allowing me room to work in my own way.

I owe much to the Jikes RVM community, whose dedicated contributors built the platform

on top of which I developed my work and promptly answered any questions posted to the

researchers mailing list.

I would also like to thank my colleagues at Instituto Superior Técnico, especially Eugénio,

Francisco, Amaral and Ricardo, for being much more than workmates during the past five

years. I have learned much from all of them.

To my family I owe everything. I thank my father Luı́s, the best role model for excellence

and unshakable values one could have, for taking the time to proof read this document. My

mother Eugénia, the embodiment of dedication and unconditional love, for always caring for

me when I was too busy to care for myself. My brother Nuno, for patiently sitting through my

many rants and frustrations. Last but not least, my grandparents Faustino and Conceição, for

being a second set of parents to me and for their dedication to family.

I am grateful to my girlfriend Lisa, for making me forget work when I needed it the most,

while remaining patient and understanding when our time together was sacrificed for the sake

of the thesis. I thank her for being my ambition when I lacked it, for her invaluable advice

throughout the year, for sharing my highs and lows, and for always believing in me.

Lastly, I thank FCT (Fundação para a Ciência e a Tecnologia) for partially supporting

my work, by granting me a scholarship under project PTDC/EIA-EIA/113613/2009, and to

projects PTDC/EIA-EIA/102250/2008 and PEst-OE/EEI/LA0021/2011.

Lisbon, November 24, 2012

João Silva

”THERE IS AS YET INSUFFICIENT DATA
FOR A MEANINGFUL ANSWER.”
–Isaac Asimov, The Last Question

Resumo

Juntamente com a ascensão das máquinas multi-processador durante a última década, os mod-

elos de programação concorrentes tornaram-se próximos de ubı́quos. Programas desenhados

segundo estes modelos são vulneráveis ao aparecimento de falhas com pré-condições raras,

resultantes de interações não antecipadas entre tarefas paralelas. Além disso, as metodolo-

gias convencionais de depuração não se adaptam bem a falhas não determinı́sticas, levando a

esforços de depuração ineficientes em que a maioria dos recursos são gastos em tentativas de

reprodução da falha. A técnica de reprodução determinı́stica ataca este problema através da

gravação de execuções e uso do resultante rastreio para gerar execuções equivalentes. Os re-

produtores conseguem ser eficientes em máquinas uni-processador, mas têm dificuldades com

overhead excessivo em multi-processadores.

Apresentamos o Ditto, um reprodutor determinı́stico para aplicações concorrentes da JVM

executadas em máquinas multi-processador. Integrando técnicas originais e state-of-the-art, o

Ditto consegue ser consistentemente mais eficiente que anteriores reprodutores de programas

Java, em termos de overhead de gravação, overhead de reprodução e tamanho do ficheiro de

rastreio. A principal contribuição do Ditto é um par de algoritmos originais para gravação e

reprodução que (a) gerem as diferenças semânticas entre leituras e escritas da memória, (b) ras-

treiam acessos à memória ao nı́vel dos campos de instâncias individuais, (c) usam redução

transitiva parcial e remoção de restrições baseada na ordem de programa, e (d) tiram partido

de análise estática TLO, análise de escape e optimizações do compilador da JVM para identi-

ficar acessos à memória locais à tarefa.

Abstract

Alongside the rise of multi-processor machines in the last decade, concurrent programming

models have grown to near ubiquity. Programs built using these models are prone to bugs

with rare pre-conditions, arising from unanticipated interactions between parallel tasks. More-

over, conventional debugging methodologies are not well suited to deal with non-deterministic

faults, leading to inefficient debugging efforts in which most resources are consumed in repro-

duction attempts. Deterministic replay tackles this problem by recording faulty executions

and using the traces to generate equivalent ones. Replayers can be efficient on uni-processor

machines, but struggle with unreasonable overhead on multi-processors.

We present Ditto, a deterministic replayer for concurrent JVM applications executed on

multi-processor machines. By integrating state-of-the-art and novel techniques it manages to

consistently out-perform previous deterministic replayers targeted at Java programs, in terms

of recording overhead, replaying overhead and trace file size. The main contribution of Ditto is

a novel pair of recording and replaying algorithms that (a) leverage the semantic differences be-

tween load and store memory accesses, (b) serialize memory accesses at the instance field level,

(c) employ partial transitive reduction and program-order pruning on-the-fly, and (d) take ad-

vantage of TLO static analysis, escape analysis and JVM compiler optimizations to identify

thread-local accesses.

Palavras Chave

Keywords

Palavras Chave

Reprodução Determinı́stica

Concorrência

Depuração

JVM

Keywords

Deterministic Replay

Concurrency

Debugging

JVM

Contents

1 Introduction 1

1.1 Problem Statement . 1

1.1.1 Ubiquitous Concurrency . 1

1.1.2 The Challenge of Concurrent Programs . 1

1.1.3 Deterministic Replay . 2

1.1.4 Deterministic Replay on Multi-processors 3

1.2 Objectives . 4

1.3 Contributions . 4

1.4 Results . 5

1.5 Publications . 5

1.6 Document Roadmap . 5

2 Related Work: Deterministic Replay 7

2.1 Deterministic Replay . 7

2.2 Usage Models . 8

2.3 Abstraction Level . 8

2.4 Types of Non-determinism . 9

2.4.1 Input Non-determinism . 9

2.4.2 Memory Non-determinism . 11

2.5 Replay Start Point . 12

2.6 Replaying Input Non-determinism . 13

2.6.1 User-level Replay . 14

2.6.2 System-level Replay . 16

i

2.6.3 Software vs Hardware Approaches . 18

2.7 Replaying Memory Non-determinism . 18

2.7.1 Target System Model . 18

2.7.1.1 Multi-processor Support . 18

2.7.1.2 Data-race Support . 20

2.7.1.3 Task Creation Model . 20

2.7.2 Recording Mechanism . 21

2.7.2.1 Algorithm type . 21

2.7.2.2 Traced events . 22

2.7.2.3 Sharing Identification . 23

2.7.2.4 Trace Optimization . 23

2.7.3 Replay Mechanism . 24

2.7.3.1 Determinism . 24

2.7.3.2 Probabilistic Replay . 25

2.7.4 Software-only Solutions . 26

2.7.4.1 Synchronization Race Approaches 26

2.7.4.2 Data Race Approaches . 28

2.7.5 Hardware-assisted Solutions . 30

2.7.5.1 Point-to-point Approaches . 30

2.7.5.2 Chunk-based Approaches . 31

2.8 Distributed Replay . 33

2.9 Summary . 33

3 Ditto 35

3.1 Overview . 35

3.2 Events of Interest . 36

3.3 Base Record and Replay Algorithms . 37

3.3.1 Recording . 37

ii

3.3.2 Consistent Thread Identification . 40

3.3.3 Replaying . 40

3.4 Recording Granularity . 42

3.5 Pruning Redundant Order Constraints . 44

3.5.1 Program Order Pruning . 45

3.5.2 Transitive Reduction . 45

3.5.3 Free Runs . 46

3.5.4 Order Constraint Pruning Algorithm . 47

3.6 Thread Local Objects Static Analysis . 48

3.7 Array Escape Analysis . 50

3.8 Trace File . 50

3.8.1 Trace File Format . 51

3.8.2 Logical Clock Value Optimization . 52

3.9 Concluding Remarks . 52

4 Implementation Details 55

4.1 The Jikes Research Virtual Machine . 55

4.1.1 Thread Management . 56

4.1.2 Compilers . 56

4.2 Hooks, Instrumentation & State . 57

4.2.1 Intercepting Events of Interest . 57

4.2.2 Thread, Object and Field State . 58

4.2.3 Handling Deadlocks . 59

4.3 Wait and Notify Mechanism . 59

4.4 Trace File . 60

4.4.1 Metadata . 60

4.4.2 Writer Thread . 61

4.5 Memory Management . 61

iii

4.6 Consistent Thread Identifiers . 62

4.7 Modifying the Original Application . 62

5 Evaluation 65

5.1 Evaluation Methodology . 65

5.2 Replay Correctness . 66

5.2.1 Defining Replay Correctness . 66

5.2.2 Microbenchmark . 66

5.2.3 IBM Concurrency Testing Repository . 67

5.3 Performance Results . 69

5.3.1 Microbenchmark . 70

5.3.1.1 Effect of the Number of Threads 71

5.3.1.2 Effect of the Number of Memory Access Operations 71

5.3.1.3 Effect of the Load:Store Ratio . 72

5.3.1.4 Effect of the Number of Fields of Shared Objects 72

5.3.1.5 Effect of the Number of Shared Objects 73

5.3.1.6 Effect of the Number of Processors 74

5.3.1.7 Trace File Compression . 74

5.3.1.8 Effects of the pruning algorithm 75

5.3.2 Java Grande Benchmark . 76

5.3.3 DaCapo Benchmark . 77

5.3.4 Discussion . 79

6 Conclusions 81

6.1 Future Work . 82

iv

List of Figures

3.1 Example of a incorrectly recorded execution vulnerable to replay-time deadlock. 37

3.2 Example application of the pruning algorithm for redundant order constraints. . 46

3.3 Example of partial pruning of order constraints implied by other constraints. . . 48

3.4 Trace file format. 51

3.5 Recording of a simple execution and resulting trace. 53

5.1 Microbenchmark’s performance results for Ditto and previous replayers as a

function of the number of threads. 69

5.2 Microbenchmark’s performance results for Ditto and previous replayers as a

function of the number of memory access operations performed by each thread. 70

5.3 Microbenchmark’s performance results for Ditto and previous replayers as a

function of the load:store ratio. 71

5.4 Microbenchmark’s performance results for Ditto and previous replayers as a

function of the number of fields of shared objects. 72

5.5 Microbenchmark’s performance results for Ditto and previous replayers as a

function of the number of shared objects. 73

5.6 Microbenchmark’s performance results for Ditto and previous replayers as a

function of the number of processors. 74

5.7 Effects of Ditto’s pruning algorithm on perfomance. 75

v

vi

List of Tables

2.1 Overview of input non-determinism deterministic replay systems. 14

2.2 Overview of memory non-determinism deterministic replay systems. 19

4.1 Distribution of metadata bits per value type. 60

5.1 Summary of evaluated applications from the IBM Concurrency Testing Repository 67

5.2 Trace file compression rates across the microbenchmark experiments. 75

5.3 Record-time performance results for the MolDyn benchmark of the Java Grande

suite. 76

5.4 Record-time performance results for the MonteCarlo benchmark of the Java

Grande suite. 78

5.5 Record-time performance results for the RayTracer benchmark of the Java

Grande suite. 78

5.6 Record-time performance results for the lusearch, xalan and avrora benchmark

applications of the DaCapo suite. 79

vii

viii

List of Algorithms

3.1 Recording load memory access operations . 39

3.2 Recording store memory access operations . 39

3.3 Recording monitor acquisition operations . 40

3.4 Replaying load memory access operations . 41

3.5 Replaying store memory access operations . 42

3.6 Replaying monitor acquisition operations . 43

ix

x

1Introduction
This thesis aims to deliver a partial solution to the problem associated with debugging concur-

rent programs, through the development of a deterministic replay system for the JVM.

1.1 Problem Statement

1.1.1 Ubiquitous Concurrency

For most of computer science’s short history, developers have enjoyed very significant software

performance boosts with each new generation of processors, thanks to faster clocks and better

instruction-level parallelism. During this period, processor improvements translated directly

into shorter software execution times; no effort was needed on the developer’s part. As a road-

block on processor speed was reached in the past decade, CPU manufacturers were forced to

find new ways of improving performance, resulting in a push towards multi-core processors

and multi-processor machines. Nowadays, processor replication is the largest source of new

computing power. Unfortunately, the latter cannot be directly translated into increased soft-

ware efficiency; developers must now identify tasks that can be performed concurrently and

attributed to different processors. Hence, with the advent of the multi-processor machine, new

concurrent programming models have grown to near ubiquity.

1.1.2 The Challenge of Concurrent Programs

The transition from the old sequential paradigm of software development to the new concur-

rent paradigm has not been the easiest, as software developers struggle to grasp all the im-

plications of parallelism. While sequential programs derive state solely from their inputs, the

state of concurrent programs depends on the order in which tasks access shared resources. As

a result, concurrent programs are inherently non-deterministic, with even coarse-grained con-

currency leading to an amount of possible program states too large for us to fully visualize.

Not only are concurrent programs much harder to develop than their sequential counterparts,

they are arguably even more challenging to debug. On the one hand, the difficulty involved

in reasoning about concurrency makes programs built under the new paradigm very prone to

bugs arising from unanticipated interactions between tasks. Furthermore, the pre-conditions of

2 CHAPTER 1. INTRODUCTION

concurrent bugs are often of so rare an occurrence that even extensive program testing efforts

may not reveal them.

On the other hand, though taking on the role of detective to debug complex systems is an

all-too-familiar task for programmers, the methodologies developed in the past to deal with se-

quential programs are not very well suited for non-deterministic concurrent programs. Cyclic

debugging is a widely used methodology in which the programmer (a) postulates a set of pos-

sible causes for the fault, (b) adds statements to the program which enable the observation of

previously hidden program state, (c) uses the ensuing observations to update the set of possi-

ble causes, and (d) reiterates until the fault is located [30]. The effectiveness and efficiency of

this process depends on one assumption: that the program be deterministic in regards to the

fault, i.e., given the same input, different executions of the program should all lead to the fault’s

manifestation. Although the assumption is reasonable for executions of sequential programs,

the same cannot be said for concurrent ones. Indeed, the programmer may need to perform

many executions to complete a single iteration of cyclic debugging, significantly lowering its

efficiency. Moreover, adding trace statements to the program may contribute to the fault’s

evasiveness through a phenomenon called probe effect, which may render cyclic debugging

ineffective in the worst case, and less efficient in the best. In practice, debugging becomes too

time- and resource-consuming, mostly due to the effort associated with bug reproduction. In-

deed, a recent study on real world concurrency bugs has shown that the time to fix a concurrent

bug is mainly taken up by the task of reproducing it [28].

In summary, debugging concurrent programs using methodologies developed for sequen-

tial programs is a far from perfect solution, making debugging efforts on such systems too

time- and resource-consuming. This issue is relevant in face of the ubiquity of concurrent pro-

gramming models resulting from the shift towards multi-processor machines observed in the

past decade.

1.1.3 Deterministic Replay

Most solutions that tackle the problem developed in the previous sections are based upon the

idea of eliminating non-deterministic behavior in order to re-enable conventional debugging

methodologies. Deterministic replay has long been suggested as one such solution, operating

in two phases: a record phase, performed during a faulty execution, in which the outcomes

of non-deterministic events are traced; and a replay phase, in which a replayer forces other

executions of the same program to experience outcomes to non-deterministic events identical

to those previously traced. A fitting metaphor for deterministic replay is that of a time machine,

because it grants a debugger the ability to inspect past states of a particular execution of a non-

deterministic program [23].

1.1. PROBLEM STATEMENT 3

To properly understand deterministic replay we must first distinguish between input and

memory non-determinism. Input non-determinism results from variations in data used by the

program and provided by external sources, present in both concurrent and sequential pro-

grams. This kind of non-determinism is tolerated by cyclic debugging whenever input can be

reproduced without too much effort, which is not always the case. Efficient software solutions

for deterministically replaying input non-determinism have been developed, as evidenced by

Flashback [48], Jockey [43], among others.

Memory non-determinism results from the occurrence of data races in concurrent pro-

grams, i.e., unsynchronized accesses to the same memory location in which at least one is a

write operation. Not all data races lead to faulty states; a subset of them, the synchronization

races, are used to implement synchronization primitives that allow threads to compete for ac-

cess to shared resources. By making some non-trivial assumptions about programs and/or the

machines they execute on, deterministic replayers can maintain replay correctness by tracing

only the outcomes to synchronization races, whose number is orders of magnitude smaller than

that of data races. This technique has been used to develop efficient software deterministic re-

players of memory non-determinism that either assume executions occur on single processor

machines or that executions are data race free. Examples of such systems are Instant Replay

[27], DejaVu [8], RecPlay [41] and JaRec [16].

1.1.4 Deterministic Replay on Multi-processors

The introduction of multi-processor machines makes the problem of deterministic replay much

more challenging. The reason is that while parallelism on uni-processors is an abstraction

provided by the task scheduler, in multi-processors it has a real-world significance. As a result,

replaying scheduling decisions, i.e., outcomes to synchronization races, is no longer sufficient

to guarantee a correct replay. One must now record the outcomes of all data races. Because

the instructions that can potentially result in a data race make up a significant percentage of a

typical program, monitoring them imposes unreasonable overhead. There are currently four

distinct approaches to this still open research problem:

1. Replaying solely synchronization races, guaranteeing a correct replay up until the oc-

currence of a data race [41, 16]. We believe the assumption that programs are perfectly

synchronized severely limits the effectiveness of this solution as a debugging tool;

2. Introducing specialized hardware to passively record accesses to shared memory [51, 31].

While efficient, this technique has the drawback of requiring special hardware;

3. Using probabilistic replay techniques that explore the trade-off between recording over-

head reduction through partial execution tracing and relaxation of replay guarantees

4 CHAPTER 1. INTRODUCTION

[37, 4]. These techniques show a lot of potential as debugging tools, but are unable to

put an upper limit on how long it can take for a successful replay to be performed;

4. Employing static analysis to identify memory accesses that are actually involved in inter-

thread interactions, hence reducing the amount of monitored accesses [20].

Only the first and fourth of these approaches have been employed in the context of Java

programs.

1.2 Objectives

We aim to develop a deterministic replay system for the JVM that uses state-of-the-art and

novel techniques to achieve the following properties.

Low recording overhead Time and space overheads should be an improvement over existing

solutions. The imposed overhead should preferably be low enough for the system to be active

in production runs, without severely crippling performance.

Correct user-level replay The system must record and replay non-deterministic events trig-

gered in application code. The replay must be logically equivalent to the recorded execution.

Multi-processor and data race support The system ought to replay executions of applications

running in multi-processor machines. Moreover, this property should not compromise the

ability to reproduce the outcomes of data races. Indeed, given that data races are at the root of

many concurrency bugs, we feel that limiting the system to perfectly synchronized programs

is unreasonable.

Easy and inexpensive deployment The system should operate on unmodified binaries, pre-

cluding the need to have access to source code, which may be hard to modify or unavailable.

1.3 Contributions

The deterministic replayer developed along this thesis offers the following contributions:

• A novel pair of logical clock-based recording and replaying algorithms that:

– Leverage the semantic differences between load and store memory accesses to re-

duce trace data and increase concurrency during replay;

– Serialize memory accesses at the finest possible granularity, distinguishing between

distinct static, instance and array fields;

1.4. RESULTS 5

– Employ a modified version of transitive reduction to reduce the amount of traced

data on-the-fly;

– Take advantage of thread-local objects static analysis, escape analysis and JVM com-

piler optimizations to reduce the set of monitored memory accesses;

• A trace file format and a set of optimizations that highly reduce the size of logical clock-

based traces.

1.4 Results

In the course of this thesis, we designed a deterministic replayer for the JVM, and implemented

it inside the open-sourced Jikes RVM. We named the replayer Ditto after its responsibility to re-

peat what has happened in the past. Our experimental results show that Ditto consistently out-

performs previous state-of-the-art deterministic replayers targeted at Java programs in terms

of record-time overhead, trace file size and replay-time overhead. It does so across multiple di-

mensions, such as number of threads, number of processors, load to store ratio, among others.

1.5 Publications

The work in this thesis is partially described in the following publications:

1. João M. Silva and Luı́s Veiga, Reprodução Probabilı́stica de Execuções na JVM em Multi-

processadores, INFORUM 2012 - Simpósio de Informática, Sep. 2012 [22] (accepted and

presented at the conference);

2. João M. Silva and Luı́s Veiga, Ditto – Deterministic Execution Replay for the Java Virtual

Machine on Multi-processors, submitted to ACM EuroSys 2013, European Conference on

Computer Systems (under evaluation).

1.6 Document Roadmap

The rest of this document is organized as follows: Chapter 2 surveys and classifies related work

on the topic of deterministic replay; Chapter 3 presents Ditto, its architecture, algorithms and

data structures; Chapter 4 goes into detail about some aspects of Ditto’s implementation in

Jikes RVM; Chapter 5 presents the methodology used to evaluate Ditto and the experimental

results thereof; and Chapter 6 summarizes the document, listing the main ideas and results to

keep in mind, and our thoughts on what future work should focus on.

6 CHAPTER 1. INTRODUCTION

2Related Work:

Deterministic Replay

Our work builds mainly on the knowledge acquired and reported by previous researchers who

delved into the topic of deterministic replay. Research efforts on concurrent debugging, data-

race detection and static analysis of parallelism are also relevant to our purposes, but to a much

smaller degree. Though a reasonable amount of research has focused on deterministic replay

over the past two to three decades, we have found no survey on the topic offering an analysis

that is as up-to-date and in-depth as we believe the field deserves. There is a lot a variety in the

approaches taken to solve this problem, but previous surveys focus on a very closed set of crite-

ria. Most classify systems in terms of algorithm type (data- vs. order-based) or implementation

substrate (software vs. hardware), considering very few additional properties [39, 21, 9, 40, 10].

Thus, one of the contributions of our work is a new taxonomy for deterministic replay systems

which we develop along this chapter. We believe this taxonomy enables a better understanding

of the subject than previous classification efforts do.

2.1 Deterministic Replay

The main purpose of a deterministic replay system is to eliminate the non-determinism asso-

ciated with a particular execution of a target program by reproducing the outcomes of its non-

deterministic events in subsequent executions. It is important to note that non-deterministic

behavior is present in the original execution itself, but not in the latter ones, as there are alter-

native approaches that make every execution deterministic by default, even if concurrency is

present [36]. Replaying a particular execution is usually done in two phases: (i) a record phase,

in which the outcomes of non-deterministic events are traced; and (ii) a replay phase, in which

the replayer forces another execution of the same program to experience equal outcomes to its

own non-deterministic events.

A considerable amount of researchers have worked on deterministic replay systems, but

replaying executions in multi-processor machines remains an open problem. Current solutions

either make functionality-limiting assumptions or introduce specialized hardware. Since every

access to shared memory in multi-processors can be involved in a data-race and lead to non-

deterministic behavior, each has to be monitored, introducing a crippling amount of overhead

in most applications. Even tough this is the problem tackled by Ditto, the survey and taxonomy

8 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

that follow are broader. Indeed, we study many different replay systems, including those that

deal with input non-determinism and uni-processor executions.

2.2 Usage Models

Deterministic replay systems have been developed and deployed to enable a wide range of

applications.

Debugging. The vast majority of deterministic replay systems have been developed with the

purpose of eliminating fault non-determinism that keeps conventional debugging methodolo-

gies, such as cyclic debugging, from being effective when dealing with concurrent programs

[27, 5, 35, 42, 8, 41, 24, 49, 51, 16, 48, 34, 43, 23, 33, 15, 31, 17, 4, 37, 20]. Some attempt to facilitate

debugging by providing mechanisms that offer the illusion of reverse execution [23].

Fault tolerance. Deterministic replay can be used as an efficient means for a fault-tolerant

system to maintain replicas and recover after experiencing a fault [7].

Security. Deterministic replay has been used to find exploits for vulnerabilities, run security

checks [39] and examine the way attacks on systems had been carried out [11] by enabling

system administrators to inspect the state of the system before, after and during an attack.

Trace collection. Trace collection can be made efficient and inexpensive by using determinis-

tic replay technology to compress large execution traces [53].

General replay. Some deterministic replayers have been developed with no particular usage

model in mind [12, 32, 52, 19].

2.3 Abstraction Level

One of the most important design decisions to make when creating a deterministic replay sys-

tem is the level of abstraction at which the execution of the target system will be recorded and

replayed. The choice defines not only the scope and power of the replayer, but also the spe-

cific sources of non-determinism it will have to face, which we discuss in detail in Section 2.4.

Furthermore, the choice will place constraints on the techniques one can use to implement the

replay system.

In practice, the abstraction level appears to be either the user or the system levels of the

software stack. Among the replay systems that operate at user-level, some replay only appli-

cation code [42, 49, 48, 15, 17, 4, 37, 27, 35, 8, 41, 24, 16, 20], while others replay shared library

code as well [34, 43, 32]. System-level replayers enable reproduction of executions of whole

systems, including OS code [5, 51, 33, 52, 12, 31, 19, 7, 11, 23, 53].

2.4. TYPES OF NON-DETERMINISM 9

Deciding between a software-only or hardware-assisted implementation is also highly con-

ditioned by the abstraction level at which executions are to be replayed. Indeed, if one wants

to replay at system-level, the options are either a hardware- or a virtual machine-based re-

player. User-level replayers, on the other hand, can and are mostly implemented completely in

software.

2.4 Types of Non-determinism

To achieve faithful deterministic replay, one has to record every single source of non-

determinism that might cause two executions of the same program to diverge. Sources of non-

determinism can be divided into two sets: (1) input non-determinism, which amounts to any

kind of input that a program receives from external sources; and (2) memory non-determinism,

which arises from the interleaving of parallel tasks and the resulting interleaving of shared

memory accesses. The techniques used in recording and replaying these two different sources

of non-determinism are very distinct. In fact, we found that the type of non-determinism a

system deals with is the most distinguishing criterion when attempting to characterize it. For

instance, most properties of memory non-determinism replay systems are not applicable to

input non-determinism replay systems. Therefore, in our framework of deterministic replay,

systems are first assigned one of two categories: systems that replay input non-determinism

or systems that replay memory non-determinism. Some systems do deal with both sources

of non-determinism, in which case their two facets will be discussed separately. Because the

techniques used to handle the two kinds of non-determinism are quite distinct, they can easily

be discussed independently without hindering their analysis or understanding.

2.4.1 Input Non-determinism

Input non-determinism occurs in both sequential and concurrent executions. It can arise from

any input delivered to a software layer that is not generated by the same layer. Moreover,

input events may be non-deterministic with respect to both their data and timing. For instance,

a system call is only non-deterministic in relation to the data it returns or manipulates, since

its timing can be derived from program order. On the other hand, interrupt and DMA (Direct

Memory Access) operations are additionally non-deterministic with respect to timing, due to

their asynchronous nature.

The actual instances of non-determinism are dependent on the level of abstraction with

which we consider the target system. Most deterministic replay systems record and replay at

either the user [42, 49, 48, 15, 17, 4, 37, 34, 43, 32] or the system level [7, 11, 51, 23, 53, 12, 31],

having to deal with very distinct input.

10 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

User level At user-level, most input is generated by the OS. Deterministic replay systems

must handle the following sources of non-determinism [39]:

• System calls. There are a reasonable amount of system calls that are non-deterministic. A

prominent and easily understandable example is the UNIX system call gettimeofday,

which is dependent on timing-related external conditions. System calls that read from

disk or a network card are also non-deterministic, because the data present in these de-

vices may change between executions. The data read from networks is particularly dif-

ficult to reproduce manually, when compared with data from the disk. Even memory

allocation system calls like UNIX’s malloc are non-deterministic, because their return

value is dependent on the current internal state of the OS.

• API calls. Sometimes, applications do not invoke system calls directly. Instead, they in-

voke an high-level API. Java programs, for example, access the system through the Java

API. Native programs may also access the system through a library, such as libc. Thus,

one may replay the input to the program by recording at the API level instead of the

system call level.

• Signals. The OS delivers asynchronous signals to applications in order to notify them of

a variety of events. The occurrence and timing of such a signal makes the control flow of

an execution non-deterministic.

• Non-deterministic user-level architectural instructions. The Instruction Set Architecture (ISA)

of a processor may contain non-deterministic instructions available in user-mode. The

rdtsc x86 instruction is one example, since it reads the CPU’s timestamp/cycle counter.

• Stack and dynamic library locations. Even though not technically an input to the program,

the memory locations of both the program stack and dynamically loaded libraries may

cause non-determinism.

System level At the system level, input is generated by the hardware itself. The following

sources of non-determinism must be handled [39]:

• I/O. Any information read by the system from an I/O device is potentially non-

deterministic. As examples, the data in a hard drive may be rewritten and the data

provided by a network card is clearly timing dependent. When communication with

these devices is done through memory mapped I/O, any data read from the assigned

addresses must be recorded and reintroduced during replay.

• Interrupts. Hardware interrupts cause the processor to stop whatever it is doing, save

its context and branch to a routine that handles the particular interrupt being raised.

2.4. TYPES OF NON-DETERMINISM 11

Such an operation effectively modifies the control flow of the execution. Furthermore,

interrupts are asynchronous, meaning the point at which the processor stops cannot be

predicted. Thus, both the timing and the contents of each interrupt have to be recorded

and reintroduced at the same point upon replay. Note that, in contrast, traps do not have

to receive this treatment, because they are raised by the processor itself as a result of a

faulty condition when executing an instruction. This means that both the timing and

contents of a trap are dependent solely on the particular instruction and its operands. If

the replay is successful up to the execution of the instruction, the operands should be the

same during replay as during recording and an equal trap will be naturally raised by the

processor.

• Direct Memory Access (DMA). Direct memory accesses allow devices to write directly to

memory, bypassing the processor. Therefore, in the processor’s point of view, they are

asynchronous events. Just like interrupts, both their timing and written values must be

recorded.

• Non-deterministic architectural instructions. The results of executing any non-deterministic

instruction featured in the processor’s ISA also have to be recorded.

2.4.2 Memory Non-determinism

In contrast with input non-determinism, memory non-determinism is unique to concurrent ex-

ecutions. The phenomenon behind this kind of non-determinism is called a data race, which

occurs whenever (a) there are two unsynchronized accesses to the same shared memory loca-

tion and (b) at least one of those accesses is a write operation.

Synchronization races are a subset of data races used to implement synchronization prim-

itives and are, thus, intentional and beneficial. They allow for competition between threads to

access a critical region or lock a mutex, for example. Removing synchronization races would

turn a concurrent execution into a sequential one. Nevertheless, the outcome of these races

must be recorded. In fact, recording and replaying synchronization races is enough to replay

any concurrent program running on a uniprocessor system. This is the case because, in such

systems, the parallelism between threads is just an abstraction, as only one thread may execute

and access memory at a given point in real time. Thus, the outcome of all data races can be

derived solely from the task scheduling decisions.

Data races, on the contrary, are the reason behind many concurrent bugs. They usually

arise from faulty or non-existent synchronization between accesses to shared memory. Data

races make the job of a deterministic replay system a lot harder on multi-processor machines,

because when multiple processors exist, parallelism is no longer a simple matter of abstraction,

12 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

but a real physical phenomenon. Therefore, the outcome of data races stops being solely de-

pendent on scheduling decisions; knowing which tasks are executing on each processor at a

given point in time is not enough to know which one will win a particular data race. We are

now face-to-face with a situation in which any pair of accesses to shared memory is a potential

data race, the outcome of which must be recorded. This is the major problem that deterministic

replay systems face today, since monitoring every memory access incurs crippling time and

space overhead, especially for software-only solutions.

Any replay system capable of reproducing the outcome of data races can also reproduce the

outcome of synchronization races. Nonetheless, the concept of a synchronization race is bene-

ficial for deterministic replayers that make assumptions about the target system. If the latter is

either executing on a uni-processor machine or is free of data races, replaying outcomes to syn-

chronization races is enough for deterministic re-execution. Since synchronization operations

make up a much smaller fraction of total executed instructions than shared memory accesses

do, the distinction enables the creation of efficient software-only replayers for multi-processor

executions.

2.5 Replay Start Point

Before delving into the record and replay techniques that enable deterministic replay of input

and memory non-determinism, let us consider the starting point of a replay. The simplest ap-

proach is to start replaying the execution from the very beginning, which is fine when it is

short-lived or the events of interest occur early on. For long executions, however, this might

become a problem. If a bug only manifests after a program has been running for three days,

a programmer would take at least the same three days to complete an iteration of cyclic de-

bugging. This encouraged replay system designers to develop and/or deploy checkpointing

techniques (e.g., transparently and incrementally [44]) to allow a replay to start at arbitrary

points of an execution. One can think of a checkpoint as a compressed execution trace, allow-

ing the replay system to fast-forward through parts of the execution that are known to contain

no events of interest. Additionally, checkpoints are mandatory if a functional requirement is

to provide the illusion of reverse execution in an efficient way. We now survey the techniques

used in deterministic replay systems to create checkpoints and enable multiple replay starting

points.

Flashback [48] is a user-level replayer that uses shadow processes to create checkpoints and

efficiently roll back the state of a target process. The user (or automated debugger) can request a

checkpoint at any point during the execution. Flashback then creates a snapshot of the process,

stores it as a shadow process structure in the kernel, and immediately suspends it. The user

can then go back in time to the point when the shadow process was created and Flashback is

2.6. REPLAYING INPUT NON-DETERMINISM 13

able to replay from that point forward. The overhead of restoring checkpoints is reduced by

restoring pages using a copy-on-write policy.

liblog [15] is a user-level, library-based replay system with a checkpointing mechanism based

on libckpt [38]. This library writes allocated memory regions in a checkpoint file. A bootstrap

application reads this file and overwrites its own memory with its contents, effectively becom-

ing a copy of the program at the point the checkpoint was created.

Jockey [43] is another user-level, library-based replayer. It creates checkpoints using a tech-

nique based on Flashback and libckpt. The target process is forked and the child creates the

checkpoint file, while the original process continues running.

FDR [51] is a hardware-based replayer that enables whole-system deterministic replay of the

second leading up to a fault. Due to its somewhat unique goal, checkpointing is mandatory and

must be performed often. FDR was tested with the SafeyNet [47] checkpointing mechanism.

The checkpoint itself contains the architectural state of all processors, an image of physical

memory and I/O state. Because the image of physical memory is large, FDR incrementally

creates logical checkpoints by saving the values of memory locations that are overwritten. A

checkpoint can then be recovered from the system’s final state by undoing changes made to

memory. Due to the nature of FDR, checkpoints can be discarded when a new one is created.

Thus, even though multiple checkpoints are created as the system executes, FDR can only start

replaying from the most recent onwards.

BugNet [34] is another hardware-based replayer, but it records at user-level. It uses the notion

of a checkpoint interval to achieve replay of concurrent programs. At the beginning of an

interval, the architectural state (program counter and register values) is saved. From then on it

saves the values of memory locations only when they are accessed for the first time since the

interval began. This amounts to a reduction in both log size and hardware cost over FDR.

TTVM [23] is a virtual machine-based, system-level replayer. Its checkpoints comprise a com-

plete state of the virtual machine: CPU registers, physical memory and virtual disk, among

others. To improve efficiency, a copy-on-write policy is used on both memory and disk. TTVM

is able to undo or redo operations, enabling time-travel between checkpoints.

2.6 Replaying Input Non-determinism

Though sequential programs do not exhibit memory non-determinism, they are still exposed

to input non-determinism. How, then, have programmers gotten away with debugging them

using techniques like cyclic debugging for so long? The reason is that, in many cases, input

can be reproduced with relative ease – files can be restored, network activity can be created

manually and signals or interrupts are rarely a problem. It is only once reproduction of in-

14 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

Table 2.1: Overview of input non-determinism deterministic replay systems.

Br
es

so
ud

&
Sc

hn
ei

de
r

[7
]

jR
ap

tu
re

[4
9]

R
eV

ir
t[

11
]

FD
R

[5
1]

Fl
as

hb
ac

k
[4

8]

Jo
ck

ey
[4

3]

TT
V

M
[2

3]

lib
lo

g
[1

5]

R
eT

ra
ce

[5
3]

SM
P-

R
eV

ir
t[

12
]

D
eL

or
ea

n
[3

1]

R
2

[1
7]

C
ap

o
[3

2]

O
D

R
[4

]

PR
ES

[3
7]

Abstraction Level
System × × × × × × ×
User + Library × ×
User × × × × × ×

Type of Inputs
System Calls × × × × × ×
API Calls × × × ×
Signals × × × × ×
Non-deterministic Instructions × × × × × × ×
I/O × × × × × × ×
Interrupts × × × × × × ×
DMA × × × × × × ×

Start Point
Static × × × × × × ×
Dynamic × × × × × × × ×

Implementation
Hardware × ×
Software

Library-based × × × ×
Binary Instrumentation ×
OS Modifications × × ×
VM Modifications × × × × ×

Usage Model
Debugging × × × × × × × × × ×
Fault-Tolerance ×
Security ×
Trace Collection ×
General Replay × ×

put is impossible or a resource heavy task that deterministic replay of input non-determinism

becomes relevant. To achieve this goal replayers must make sure the program perceives no

difference in its interaction with external resources during re-execution. The solution is to trace

the inputs listed in Section 2.4.1 during the record phase and inject them back upon replay.

The following sections survey real systems that have the goal of replaying input non-

determinism at user-level and system-level. Table 2.1 summarizes the surveyed systems ac-

cording to the criteria used in our taxonomy to classify input non-determinism replayers.

2.6.1 User-level Replay

At this abstraction level, the major sources of non-determinism are system calls and signals. We

focus on techniques that enable their replay. Non-deterministic instructions are a somewhat

2.6. REPLAYING INPUT NON-DETERMINISM 15

lesser problem.

Flashback [48] records system call level input using kernel modifications. More specifically,

system calls are hijacked by replacing the default handler for each one with a wrapper function

that handles the logging and replaying. The results and side-effects of each system call are

logged when recording and injected back in during replay. System calls that affect the applica-

tion’s state only, such as gettimeofday or getpid, are the easiest to replay. They need not

be re-executed by the OS, meaning the call can be bypassed and the program’s state is simply

modified according to the logged results. Other system calls change the state of the OS itself

and need to be re-executed during replay in a way that ensures the same state modifications

for the application that had occurred during the record phase. The syscalls malloc and fork

are examples of this latter case. Creating the wrappers for all system calls is a tedious and far

from general solution, as each recorded routine must be paid special attention.

Flashback does not handle signals. Nevertheless, the authors propose using the approach

described by Slye and Elnozahy [45] to achieve deterministic signal reproduction. In this ap-

proach, a signal is annotated with the increment suffered by an instruction counter, available in

some architectures, since the last asynchronous event occurred. This would uniquely identify

the timing of the signal.

Capo [32] is a hybrid software-hardware system that aims at replaying application and shared

library code. It can reproduce both input and memory non-determinism, with the former be-

ing a responsibility of the software part of the system. CapoOne, its prototype implementa-

tion, takes advantage of small kernel modifications and uses the Linux ptrace process tracing

mechanism to control the target processes. The mechanism for dealing with system calls is

equal to the one used in Flashback. It improves upon Flashback in that it also replays signals,

but the mechanism for capturing their exact timing is not specified the respective publication.

ODR [4] records system calls and non-deterministic instructions by having a signal delivered

to itself (in the context of the process being executed) by a small set of kernel modifications

whenever the target system performs such actions. System calls are replayed by around 200

manually written stubs, but, unlike Flashback, these are executed when handling the signals

delivered by the modified OS, not by substituting the default system call routines.

Jockey [43] differs from Flashback and Capo in that a runtime user-mode library is injected

into the target application to enable deterministic replay. Jockey logs a mix of system calls, libc

calls and non-deterministic instructions by replacing them with calls to stubs that handle the

recording and replaying. The correctness of Jockey can be broken due to the way the timing

of signals is recorded. These are associated with the closest successive stub call, instead of a

point in time. During replay, the delivery of the signal to the application is, thus, delayed until

that next stub call completes. In practice this approach may have a very high probability of

reproducing program state, but it breaks full correctness nonetheless.

16 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

liblog [15] is another library-based replay system. It uses very similar techniques to the ones

employed by Jockey to record system calls, libc calls and signals. It does not seem to record

non-deterministic instructions.

jRapture [49] is a replay tool for Java programs. It operates by recording at the Java API level,

as most interactions between a Java application and the system are done through this interface.

It is implemented as a set of modified versions of the Java API classes. Just like system calls,

methods in these classes can have side-effects that span further than their return value. As a re-

sult, each modified class must be written by hand. jRapture can also replay native methods that

are called through the Java Native Interface (JNI) at the cost of becoming platform dependent.

R2 [17] provides a different approach to library-based replay systems. Jockey, liblog and jRap-

ture all log statically defined interfaces: system calls and libc calls for the two former and the

Java API for the latter. In contrast, R2 enables recording and replaying of a user-defined in-

terface. Anything above the interface is re-executed during replay, while anything below is

bypassed and the results read from a log. Choosing the right interface is a trade-off between

the amount of information that is logged and the detail of the replay. The higher the level is,

the lesser detail the replay has, as big chunks of execution are bypassed. This allows for a curi-

ous phenomenon in which bug symptoms are reproduced, but not the bug’s root cause. Since

the interface is user-defined, the stubs for each chosen function must be created on-the-fly. R2
provides the user with an annotation language through which the side-effects of a function can

be made explicit, enabling the creation of the stubs.

PRES [37] is a very recent system focused on replaying concurrent programs on multi-

processors. It replays system calls and signals, at least. The handling of input non-determinism

is downplayed in its publication and is present for completeness reasons. This is indicative of

the fact that replaying input non-determinism is considered a solved problem.

2.6.2 System-level Replay

Replaying at system-level imposes more constraints on the implementation options of deter-

ministic replay systems. It is not possible to record all system-level events using a software-

based solution that runs in user mode. Thus, it comes as no surprise that systems replaying

at this abstraction level are implemented as either hardware modifications or inside virtual

machines. The input that needs to be recorded includes non-deterministic instructions, I/O,

interrupts and DMA operations.

Bressoud & Schneider [7] pioneered the idea of using virtual machine technology to achieve

deterministic replay of whole systems. They use execution replay to enable a high-availability

primary-backup system in which the primary machine is recorded and the backup systems use

deterministic replay to mimic the primary. With this setup, the backups accompany the state

2.6. REPLAYING INPUT NON-DETERMINISM 17

changes of the primary with absolute faithfulness and are ready to take over in the event of

failure. Space overhead is not a problem, because when all backups have replayed a certain

part of the execution, the corresponding log portion can be discarded.

To record the timing of asynchronous events like interrupts or DMA operations, their sys-

tem uses the recovery register of the HP’s PA-RISC architecture. This register is decremented

whenever an instruction is executed and an interrupt is delivered to the Hypervisor when it

becomes negative. This behavior allows the system to regain control at a very specific point in

the execution and deliver a virtual interrupt to the backup, for example.

ReVirt [11] also takes advantage of a virtual machine, but with the goal of allowing the system

administrator to inspect the execution during an attack to the system. Input from external

devices, non-deterministic system calls to the host OS and non-deterministic instructions are

logged. The point at which a virtual interrupt is delivered to the guest is uniquely identified by

combining the program counter with the hardware retired branches counter. The instruction

counter points to a specific instruction in the system’s code, but not a specific execution of that

instruction, since subsequent branches may lead to it being executed multiple times. However,

in combination with the retired branches counter, which is incremented whenever a branch

instruction executes, it uniquely identifies a specific point in an execution.

TTVM [23] and SMP-ReVirt [12] are two more virtual machine-based replay systems used to

debug operating systems and general replay, respectively. They handle input non-determinism

with the same techniques that ReVirt uses.

ReTrace [53] was developed by VMWare to reduce the overhead of collecting arbitrarily com-

plex traces of production executions using deterministic replay. It records all input to which

a virtual machine is subjected. Asynchronous events are associated with a point in time by

keeping track of the number of instructions executed.

FDR [51] is a hardware-based replayer. It records I/O by storing load values, and interrupts by

using an instruction counter to uniquely identify their timing. As for DMA writes, FDR models

each DMA interface as a pseudo-processor and uses the same algorithm that handles memory

races (discussed in Section 2.7.5). This is possible because DMA operations use the same direc-

tory protocol to maintain cache coherence as processors. The trace is kept in hardware buffers,

as FDR only replays the second previous to a system crash.

DeLorean [31] is another hardware-assisted replayer based around the notion of a chunk, a set

of instructions that execute atomically. It uses a shared DMA log and two per-processor logs

for I/O and interrupts. Like FDR, it models DMA interfaces as pseudo-processors and makes

them go through the same chunk commit protocol that processors use to record memory non-

determinism (details in Section 2.7.5). Interrupt timing is identified by the chunkID of the

chunk that initiates execution of its interrupt handler.

18 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

2.6.3 Software vs Hardware Approaches

Hardware approaches like FDR and DeLorean achieve the lowest performance overhead. For

instance, when recording an execution of the Apache web server, FDR has a performance

overhead below 2%, including memory non-determinism logging. In spite of this superi-

ority, software approaches have been shown to enable deterministic replay of input non-

determinism quite efficiently, achieving performance overheads below 10% during the record

phase [23, 48, 53, 11].

Comparing approaches in regards to space overhead is not straightforward. Replay sys-

tems differ in events logged, compression schemes and use different benchmarks in their eval-

uation. Nonetheless, Flashback claims its log size grows linearly with the number of system

calls the target program issues. We would expect most other systems’ logs to grow in a similar

fashion: linearly with the number of events they log.

The slightly better recording performance does not seem to justify the cost involved in

employing hardware support. This conclusion is supported by the fact that only two of the

surveyed systems that handle input non-determinism are implemented in hardware. Further-

more, both support input replay for completeness purposes, as their reason to be is memory

non-determinism replay.

2.7 Replaying Memory Non-determinism

Recording input only enables deterministic replay of sequential programs or concurrent

programs in which tasks do not interact. When tasks communicate with each other

through whichever means, they become dependent on each other and exhibit memory non-

determinism.

In this section we will first present the criteria we use to classify systems targeted at mem-

ory non-determinism in regards to (1) the model of its target system/program, (2) the recording

mechanism and (3) the replaying mechanism. We then survey real replay systems that handle

memory non-determinism. Table 2.2 summarizes the characteristics of each system by classi-

fying them according to our taxonomy.

2.7.1 Target System Model

2.7.1.1 Multi-processor Support

There is a very significant difference between a concurrent system execution on a uniprocessor

and on a multi-processor. In a single processor machine parallelism is only an abstraction, as

2.7. REPLAYING MEMORY NON-DETERMINISM 19

Table 2.2: Overview of memory non-determinism deterministic replay systems.

In
st

an
tR

ep
la

y
[2

7]

Ba
co

n
&

G
ol

ds
te

in
[5

]

N
et

ze
r’

s
T

R
[3

5]

R
us

si
no

vi
ch

&
C

og
sw

el
l[

42
]

D
ej

aV
u

[8
]

R
ec

Pl
ay

[4
1]

FD
R

[5
1]

Ja
R

ec
[1

6]

Bu
gN

et
[3

4]

St
ra

ta
[3

3]

lib
lo

g
[1

5]

R
TR

[5
2]

SM
P-

R
eV

ir
t[

12
]

D
eL

or
ea

n
[3

1]

R
eR

un
[1

9]

C
ap

o
[3

2]

O
D

R
[4

]

PR
ES

[3
7]

LE
A

P
[2

0]

Target System Model
Multi-processor Support × × × × × × × × × × × × × × × ×
Data Race Support × × × × × × × × × × × × × × × ×
Dynamic Task Creation × × × × × × × × × × × × × × × × × ×

Abstraction Level
System × – × × × × × ×
User + Library – × ×
User × – × × × × × × × ×

Record Mechanism
Traced Events

Shared-memory Accesses × × × × × × × × × × ×
Synchronization Ops. × × × × × × ×
Schedule × ×
Conflict-free Intervals × × ×

Algorithm Type
Data-based ×
Order-based × × × × × × × × × × × × × × × × × ×

Sharing Identification
High-level Constructs × – × – – –
Dynamic × × – – × – × × – × × × × × × ×
Static – – – – ×

Trace Optimization × × × × × × × × × × × × ×

Replay Mechanism
Determinism

Value × × × × × × × × × × × × × × × × ×
Output ×
Conditional ×

Optimistic/Probabilistic × ×
Dynamic Start Point × × × × × ×

Implementation
Hardware × – × × × × × × ×
Software

Library-based × – × ×
Binary Instrumentation – × × × ×
OS Modifications – × ×
VM Modifications – ×

Usage Model
Debugging × × × × × × × × × × × × × × ×
General Replay × × × ×

the one processor cannot execute two instruction streams simultaneously. With more than one

processor, the opposite is true: tasks may execute concurrently in a real, physical sense. Thus,

while in a uniprocessor the interleaving of tasks is only dependent on the points at which

tasks are swapped by others, in a multi-processor tasks can interleave in very complex ways.

Indeed, since the processors offer no guarantees about the time taken to execute a portion of

code, knowing when each task was swapped in is not enough to derive the interleaving.

Due to the increased complexity involved in replaying systems executing on multiple

processors, some replay systems focus only on uniprocessors [42, 8, 15]. Some replayers de-

signed for uniprocessors can actually replay multi-processor executions, e.g. DejaVu [8], but

20 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

they serialize all synchronization and memory operations into a single stream – a global or-

der that effectively simulates an execution in a single processor machine. In our classifica-

tion we do not consider these systems as supporting multi-processor replay. Despite the in-

volved complexity, most surveyed systems support replay on multiple processor machines

[27, 5, 35, 41, 51, 16, 34, 33, 52, 12, 31, 19, 32, 4, 37, 20].

2.7.1.2 Data-race Support

A data race is said to occur whenever two concurrent tasks access the same shared memory

location without synchronizing with one another and at least one of them performs a write

operation. A subset of data races, the synchronization races, are defined as data races that

occur on memory locations used to implement synchronization mechanisms, such as a spin

lock. The set of synchronization races is orders of magnitude smaller than the set of data races

and, as a result, it is much more efficient to trace the former than the latter. Tough the outcomes

of all data races have to be reproduced for a completely faithful deterministic replay, in uni-

processor machines these can be derived from the outcomes of synchronization races. Thus,

any replayer that does not tackle the problem of multi-processors is classified as supporting

data races.

Data races need only be recorded explicitly when the replay system tackles executions

on multi-processors. Our survey shows that most replayers which support multi-processor

executions also provide some form of support for data race replay [5, 35, 51, 34, 33, 52, 12, 31,

19, 32, 4, 37, 20]. Some, on the other hand, choose to avoid the overhead of recording data races

by placing a constraint on the target system: it must be perfectly synchronized [27, 41, 16].

Nonetheless, these replay systems can faithfully replay an execution up to the point at which

the first data race occurs. In addition, they may be coupled with a data-race detector to enable

debugging of imperfectly synchronized programs [41].

2.7.1.3 Task Creation Model

A replay system’s internal mechanisms may place constraints on how tasks are created in the

target system. We consider two models for task creation: (a) a static model in which the number

of tasks is fixed and known a priori, and (b) a dynamic model in which tasks can be created

and destroyed freely throughout the recorded execution.

We found that most replayers do not force the target system to conform to a static model of

task creation, with all user-level replayers supporting dynamic creation of tasks. Since system-

level replayers are based on recording the behavior of processors instead of individual user-

level processes or threads, they inherently allow for dynamic task creation. They mostly do,

however, assume a static number of processors, which is a reasonable limitation. Only Capo

2.7. REPLAYING MEMORY NON-DETERMINISM 21

[32] takes measures to enable a variable amount of processors, but only between the record

phase and the replay phase. From all the surveyed systems, only Netzer’s Transitive Reduc-

tion algorithm [35], which was never implemented by its authors, forces the target system to

conform to the static task creation model. This is due to its use of vector clocks, which contain a

fixed number of positions, one for each task [25, 29]. The algorithm could, however, be subject

to extension by using dynamic vector clocks to handle task creation and termination, at the cost

of larger space and time overheads [26]. An implementation of Netzer’s TR was developed for

the system-level, hardware-based replayer FDR [51], but it was modified to use scalar instead

of vector clocks [25, 29].

2.7.2 Recording Mechanism

2.7.2.1 Algorithm type

The algorithms used to record memory non-determinism can be classified as either content-

based or order-based.

Content-based The most straightforward approach is a pure content-based algorithm: a

recorder simply stores the data read by each instruction in a log file and the same data is then

fed back in during replay. Such an approach may generate logs of unreasonable size, making

it too inefficient for any practical use. Despite this apparent impracticability, some determinis-

tic replay systems have managed to follow a content-based approach and achieve reasonable

efficiency by recording only a subset of the data read by instructions [34].

There is a benefit which is unique to this sort of recording algorithm: one is able to replay

subsets of or even individual tasks. Since all memory input is recorded, the tasks that gener-

ated it do not necessarily have to be running. One may, however, argue that this is actually

a disadvantage for debugging purposes, as replaying tasks in isolation can make it harder to

analyze the complex interactions they may have had with others during the recording phase

[27].

Order-based Instead of tracing the state observed by each instruction, order-based ap-

proaches take advantage of the fact that shared memory already contains most of that state.

We need only make sure that each instruction sees the shared state at the correct moment dur-

ing re-execution. In concurrent programs, tasks influence the shared state by writing to shared

memory, while their own behavior can be conditioned by other tasks when they read from

shared memory. Thus, in an order-based algorithm, the recorder traces the relative order of

critical events, such as shared-memory accesses or synchronization operations. During replay,

the runtime environment is set up in an initial state equivalent to the one of the recorded execu-

tion. Then, the program executes and, whenever a situation arises in which the execution could

22 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

deviate from the original, the log is used to nudge it in the right direction. In other words, the

tasks are forced to access shared memory in the same order as in the original execution, forcing

the data in memory to undergo the same chain of read and write operations, as well as the

corresponding sequence of states.

The main advantage of this approach is that most of the data read by instructions is

reproduced by the program itself and needs not be recorded. This can also be seen as a

shortcoming, since instructions can no longer be executed in isolation. Nonetheless, a total

order between all critical events generally takes up lesser trace bandwidth than recording all

the data read from memory by executed instructions. A reflection of this fact is that all but

one of the surveyed memory non-determinism replay systems use an order-based algorithm

[27, 5, 35, 42, 8, 41, 51, 16, 33, 15, 52, 12, 31, 19, 32, 4, 37, 20].

No matter what approach we use, their purest forms are too inefficient for practical pur-

poses. They record at too low an abstraction level, resulting in a lot of trace data. Only by

raising the level of abstraction and designing techniques to trace subsets of all events can a

deterministic replay system be deployed in production environments.

As a final note, the order-based approach is only available when replaying memory non-

determinism. A replayer for input non-determinism cannot guarantee that external sources

inject the right input into the target system, at the right time. The only solution is, therefore, to

store the contents of those inputs.

2.7.2.2 Traced events

Recording memory non-determinism can be achieved by tracing different kinds of events.

Shared-memory Accesses Unsynchronized shared-memory accesses are behind every in-

stance of memory non-determinism, though only if one of the accesses is a write operation.

Systems that directly trace accesses to shared memory generally support both data races and

multi-processor executions.

Synchronization Operations Another way of recording memory non-determinism is to trace

the order of synchronization operations, such as those that manipulate mutexes or monitors.

This type of recording only provides enough information to reproduce synchronization races.

As a consequence, no system that records solely the order of synchronization operations is able

to simultaneously support multi-processor executions and data races [41, 16].

Task Schedule Reproducing the task schedule of an execution is enough to replay it, given

that it occurs in a uni-processor machine [42, 15]. It is also enough for executions in multi-

processor machines if the program is perfectly synchronized. Therefore, tracing task schedules

is about as powerful a method as tracing synchronization operations.

2.7. REPLAYING MEMORY NON-DETERMINISM 23

Chunk Commits Recent hardware replay systems use a chunk-based approach, in which the

order of chunk commits is traced [31, 32, 19]. A chunk represents a block of instructions that

are executed without conflicting with each other in terms of memory accesses. Thus, the order

of memory accesses is derived implicitly from the order of chunk commits.

2.7.2.3 Sharing Identification

Recorders that trace memory accesses often employ techniques to distinguish between accesses

to shared and to local memory. If this cannot be achieved, every memory access has to be

considered shared by default. There are three ways of detecting shared access events used in

the surveyed systems.

High-level Constructs If all accesses to shared-memory are done through well-defined high-

level constructs at either language or OS level, the work of the recorder is very simplified [27, 8].

This approach makes the replay system dependent on a particular protocol for accessing shared

objects.

Dynamic Most recorders detect accesses to shared-memory dynamically, as the system exe-

cutes. There are a lot of techniques that enable this approach, from using scalar or vector clocks

[41, 16, 8, 35] to spying on cache coherence messages [5, 51, 33, 19] and using hardware page

protections [34], among others.

Static One surveyed system [20] uses static analysis on Java programs prior to their record

execution. The analysis identifies a conservative set of object fields that may be shared by

concurrent threads.

2.7.2.4 Trace Optimization

Many of the recorders we surveyed apply optimization techniques to their trace files in order

to reduce their sizes.

A very common optimization for systems that record shared-memory accesses is transitive

reduction, which identifies redundant constraints on the ordering of accesses and removes

them from the log. Netzer [35] proposed an algorithm to find the optimal set of constraints

that are sufficient for a correct replay. The slightly modified version of this algorithm is used in

FDR [51]. An improvement over this algorithm, called Regulated Transitive Reduction (RTR)

[52], introduces artificial constraints to further reduce the set that needs to be explicitly stored

in the trace file. Systems that use transitive reduction optimization include FDR [51], PRES [37]

and SMP-ReVirt [12].

Another frequent optimization is to record intervals instead of individual events. As an

example, if a recorder logs shared-memory accesses, and multiple successive accesses are done

24 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

by the same task, these may be represented as an interval. DejaVu [8], Bacon & Goldstein [5]

and LEAP [20] employ this kind of trace file compression.

A third optimization is to represent timestamps as increments, instead of as absolute val-

ues. A further improvement is to eliminate increments by taking a certain increment (e.g. +1)

as the default one and tracing only those which are different. RecPlay [41] and JaRec [16] use

this optimization.

Finally, data-based approaches can take advantage of the fact that in the absence of exter-

nal entities, the target system can regenerate the values read by most instructions without the

help of the replay system. BugNet [34] uses checkpoint intervals to identify parts of an execu-

tion that meet this criterion and records only the value read by the first load operation of the

checkpoint interval to each memory location.

2.7.3 Replay Mechanism

2.7.3.1 Determinism

All memory non-determinism has its roots on data races. No matter whether all of them are

recorded or how the recording is accomplished, replayers may provide different levels of replay

fidelity. Even though research on record and replay technology has largely had high fidelity

replay as an objective, some recent solutions attempt to relax this guarantee in order to reduce

recording overhead.

Value Determinism Under value determinism, the replayed execution reads and writes the

same values to and from memory, at the same execution points, as the recorded execution [4].

This kind of determinism has been used from the very first deterministic replay systems all the

way to very recent work [27, 5, 35, 42, 8, 41, 51, 16, 34, 33, 15, 52, 12, 31, 19, 32, 20]. It provides a

high fidelity replay of the original execution. It is not the maximum possible fidelity guarantee

however, as the replayed execution is usually allowed to diverge from the original in terms of

task local state.

Conditional Determinism Value determinism allows replayers to succeed every time, but

may require a lot of trace information to be generated by the recorder, especially for multi-

processor machines. Without deterministic replay, the exact opposite is true: there is virtually

no guarantee that the original execution will be reproduced and the record-time overhead van-

ishes. The authors of PRES [37] decided to explore the space between these two extremes by

relaxing the guarantees of value determinism to reduce recording overhead. The original ex-

ecution is only traced partially, meaning that the replays may not conform with the original

and the fault (PRES is aimed at debugging) may not be reproduced. The solution used is to

perform multiple replay attempts that conform with the partial trace and to use user-provided

2.7. REPLAYING MEMORY NON-DETERMINISM 25

conditions to decide whether each attempt is successful. In short, conditional determinism

guarantees that replayed executions conform with the original in terms of the partial trace and

user-provided conditions.

Output Determinism. The authors of ODR [4] proposed a replay system that provides output

determinism, i.e., the replayed execution’s output is equal to that of the original, with outputs

defined as any value sent to devices. Output determinism offers weaker fidelity guarantees

than value or conditional determinism, since it does not make promises about non-visible pro-

gram state. As a consequence, only output-visible failures such as assertion violations, crashes,

core dumps and corrupted data can be reproduced, while failures that produce no distinctive

output, such as a deadlock, cannot. It is argued that, despite its limitations, output determin-

ism is enough for debugging purposes for two reasons: (i) it can reproduce all output-visible

failures, and (ii) it provides memory-access values that are consistent with the failure, even if

they are distinct from those which originally caused the failure.

2.7.3.2 Probabilistic Replay

Debugging a concurrent program without replay support usually requires executing the sys-

tem many times until the bug is finally reproduced. Most replay systems, on the other hand,

reduce the number of attempts to just one, but at the cost of a possibly high recording overhead.

A very recent idea in deterministic replay is to explore the space between these two extremes

[37, 4]. In other words, the replay system may need a few attempts (e.g. 5-10) to replay the bug,

but provides the benefit of reduced recording overhead by only partially tracing the original

execution. Since the recorder provides only a partial trace of the original execution, there must

be a mechanism that, during the replay phase, is able to somehow reconstruct an equivalent

execution to the original in regards to some fidelity guarantee.

Both PRES [37] and ODR [4] can record partial traces of the original execution at different

levels: from recording only synchronization operations to tracing all shared-memory accesses.

Then, at the beginning of the replay phase, the space of possible executions that fit the partial

trace is intelligently explored until the fault manifests itself. The executions performed during

this process are fully traced, which enables 100% successful replays after the fault is reproduced

for the first time. The partial trace raises a new issue: how do probabilistic replayers know

when they have found the right execution? The answer lies with the relaxed fidelity guarantees

discussed in Section 2.7.3.1. PRES and ODR offer only conditional and output determinism,

respectively. PRES analyzes the state of the replayed execution when visible events occur to

check whether the conditions provided by the user are true, while ODR finds the execution

that produces a certain output by using a formula solver.

26 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

2.7.4 Software-only Solutions

It is no surprise that software-based deterministic replay systems mostly operate at user-level.

The exception to the rule is SMP-ReVirt [12] which is implemented as a virtual machine to

record at system-level. Those that record at user-level are implemented either through user

libraries [27, 41, 15], OS modifications [42] or binary instrumentation, which is performed either

statically [20] or dynamically, using a process-level VM [4, 37] or a high-level language VM

[8, 16]. It is also noteworthy that none of the software-only systems use data-based algorithms.

2.7.4.1 Synchronization Race Approaches

Systems that record scheduling decisions or synchronization operations reproduce only syn-

chronization races. This is usually done to avoid the overhead imposed by recording all data

races, but comes at the cost of the ability to simultaneously replay multi-processor executions

and support imperfectly synchronized programs.

Russinovich & Cogswell proposed a replay system with the purpose of reproducing unipro-

cessor executions of concurrent programs [42]. The target program is instrumented at compile

time to maintain a software instruction counter. A modified Mach OS supplies the replay sys-

tem with the precise points at which context switches occur. They report overheads around

10-15% during the record phase and slightly higher during the replay phase, which are reason-

able for a production run. Being implemented as a set of OS modifications makes the solution

highly dependent on that particular OS.

liblog [15] is a library-based replay system that, besides recording input non-determinism and

enabling replay of distributed applications, records the thread schedule of each process. It faces

the interesting challenge of recording the schedule using only a user-level library. Even though

this is an easy task for OS- or VM-based replayers, a user-level library is not aware of context

switches, making it impossible to monitor or control them. The solution found was to introduce

a user-level cooperative scheduler on top of the OS scheduler. Context switches are performed

at libc API call points, because liblog records the input non-determinism introduced by these

(Section 2.6.1).

Instant Replay [27] assumes that the program manipulates shared objects through coarse-grain

synchronization operations that implement a CREW (Concurrent Read Exclusive Write) proto-

col. Because only these operations are reproduced, Instant Replay does not support data races.

To generate a total order over object accesses, the synchronization operations are instrumented

to increment a version number, associated with each shared object, equivalent to a scalar Lam-

port clock. Instant Replay traces the version number upon every read operation and the num-

ber of read operations between writes. Since no compression method is used to reduce the trace

file, it can become very large. During replay, read operations wait until the version number is

2.7. REPLAYING MEMORY NON-DETERMINISM 27

correct and write operations wait until the correct number of reads has been performed. De-

pending on how coarse-grained the synchronization operations are, the performance overhead

of the system may differ greatly — fine-grained synchronization will incur high overhead.

DejaVu [8] (and Distributed DejaVu [24]) records the logical thread schedule of Java programs,

consisting of the ordering of synchronization operations (monitorenter, monitorexit,

wait, notify, suspend/resume and interrupt) and shared-memory accesses. However,

since shared objects are identified through the use of the Java volatile keyword, they are

always accessed in a safe way and can be modeled as a synchronization operation. The record-

ing mechanism uses scalar Lamport clocks: a global, and a local for each thread. The process

yields a total order, making it impossible to replay multi-processor executions without simu-

lating a uniprocessor. The trace file itself is optimized by recording intervals instead of whole

sets of timestamps. Implementation-wise, the system makes modifications to the JVM’s syn-

chronization routines. The authors succeed in producing small trace files and report recording

overheads below 100%.

RecPlay [41] is another system that traces synchronization operations. However, it uses scalar

Lamport clocks, not to create a total order, but a partial order, enabling parallelism during

replay of multi-processor executions. Their ROLT (reconstruction of Lamport timestamps)

method produces a trace, for each thread, consisting of a sequence of timestamps. The trace

is compressed by storing only non-deterministic clock increments instead of absolute clock

values. Since only synchronization races are recorded, replays are only guaranteed to be cor-

rect up to the first data race. RecPlay attempts to minimize this inconvenience by employing

data race detection during the first replay execution, using a method based on vector clocks.

Performance-wise, the authors report an average of about 20% slowdown during the record

phase, making it quite efficient.

JaRec [16] is Java record/replay system implemented using bytecode instrumentation. Loaded

classes are passed to an instrumentor through the JVMPI (JVM Profiler Interface). No modifi-

cations to the JVM are needed, making the approach completely portable. JaRec traces all syn-

chronization operations available in Java, including synchronized methods and blocks (moni-

tors), wait and notify calls, and the start and join methods of threads. A scalar Lamport

clock is associated with each thread and synchronization object to create a partial order between

synchronization operations. The partial order enables parallelism during replay and, thus, re-

playing of multi-processor executions. Nonetheless, imperfectly synchronized programs are

not supported past the first data race. The generated trace file is similar to that of RecPlay and

is compressed using the same techniques.

28 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

2.7.4.2 Data Race Approaches

Since replaying solely synchronization races prevents the replay system from simultaneously

supporting multi-processor executions and imperfectly synchronized programs, there has been

substantial work done with the goal of reproducing all data races. Doing so is generally a high

overhead process, making it difficult for software-only systems to have sufficiently low over-

head for practical purposes. This fact led to many hardware-assisted solutions which will be

surveyed in Section 2.7.5. For now, we survey only software solutions that tackle the problem.

Netzer introduced an algorithm for tracing the optimal set of ordering constraints necessary

to reproduce an execution, named Transitive Reduction (TR) [35]. The key feature of the

algorithm is that the trace file can be reduced by removing dependencies between shared-

memory accesses that are implied by other dependencies. For example, if T1:1 → T2:4 and

T1:2 → T2:3 are dependencies detected between tasks T1 and T2, then the first dependence

need not be stored. This is due to the fact that T2 waits at instruction 3 for T1 to reach in-

struction 2, which implies that upon reaching instruction 4, T1 will have already executed

instruction 1.

To track dependencies, the algorithm uses vector clocks attached to each task and shared

memory location. Every time a task accesses a shared-memory location, both clocks are com-

pared and updated, which has the potential for introducing a lot of overhead. Another disad-

vantage of the algorithm is that vector clocks must have a slot for each task, forcing the target

system to follow a static task creation model. This shortcoming can be overcome by employ-

ing dynamic vector clocks to handle task creation and termination [26]. The authors did not

implement the algorithm, so no practical results about its performance are presented.

SMP-ReVirt [12] is the only software-based approach that replays at system-level. It is imple-

mented using a virtual machine and employs a unique solution for detecting shared-memory

accesses through the use of hardware page protections. More specifically, processors have dif-

ferent privileges for each memory page and, when a processor attempts to access a page to

which it holds no access privileges, SMP-ReVirt increases them while lowering those of an-

other processor. The log is made up of the points at which privileges change.

This mechanism has one substantial limitation: the granularity of sharing is limited to the

size of a page, leading the system to succumb to false positives when fine-grained sharing is

used and as the number of processors increases. As a consequence, runtime overhead and trace

file sizes scale very poorly. It is reported that the overhead can go up to 10x on machines with

a modest number of processors.

LEAP [20] is a replayer for Java programs that produces a partial order by tracing the threads

that access each shared variable. As a result, it can reproduce multi-processor executions.

Synchronization operations are also traced and the trace file is optimized using intervals to

2.7. REPLAYING MEMORY NON-DETERMINISM 29

represent successive accesses by the same thread. LEAP is the only surveyed system that em-

ploys a static technique to identify shared variables, instead of having them manually identified

through some high-level construct or identifying them dynamically as the program executes.

The technique is inherently conservative, which guarantees reproduction of every data race.

The system is implemented by instrumenting the bytecode of the target program to generate a

record and a replay version. The authors report results showing LEAP is about 10x faster than

global order systems, 5x faster than Instant Replay and about 2x faster than JaRec.

ODR [4] introduced the concept of output determinism, already discussed in Section 2.7.3.1.

The authors argue that, for debugging purposes, the fidelity of value determinism is helpful,

but unnecessary. By lowering its fidelity guarantees, ODR manages to free itself from the bur-

den of recording the outcome of every data race. The trace of an execution consists of three sets:

(1) the input-trace, which is the result of input non-determinism recording; (2) the lock-order,

which is a total ordering of lock operations; and (3) the path-sample, a set of tuples (t, c, l) where

t is a thread, c is an instruction count and l is the program location of the instruction. The detail

of each trace may vary and the missing pieces compose the state of possible re-executions. A

depth-first search algorithm explores this space using a formula solver to find executions that

generate the same output as the original.

The combination of the lower fidelity guarantees and the offline state exploration stage

yields a replayer that supports multi-processor executions and imperfectly synchronized pro-

grams with low recording overhead, in exchange for a potentially costly or unsuccessful replay.

PRES [37] is a probabilistic approach to replaying multi-processor executions using a software-

only recorder. Like ODR, it overcomes the overhead of recording all data races by performing

only a partial trace of the original execution. Thus, in order to reconstruct the partially recorded

execution, an intelligent offline replayer must search the space of possible outcomes to non-

recorded data races. The resulting replay attempts are always consistent with the partial trace

of the original, but the user must provide information that enables detection of a correct replay.

We classify this guarantee as conditional determinism, because the replayed execution may dif-

fer from the original as long as the final state satisfies the user-provided conditions (see Section

2.7.3.1). The space of possible replays can be very large, but a feedback system is proposed that

evaluates each failed attempt and generates additional information to guide the next one. This

mechanism results in many bugs being successfully replayed after a very modest number of

replay attempts.

The authors also explore the space of possible methods for sketching (or partially tracing)

the original execution. Starting from a baseline recorder that traced only input, signals and

thread scheduling, they experiment with different recorders that incrementally store more in-

formation: global order of synchronization operations, system calls, functions, basic blocks and

shared-memory operations. As the amount of traced events increases so does the overhead of

30 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

recording, the speed of replaying and the faithfulness of the replay. It is reported that PRES,

using synchronization or system call global order tracing, significantly lowers the recording

overhead of previous approaches. These results come at little cost, as most bugs were still

reproduced in under 10 replay attempts. Furthermore, PRES scales well as the number of pro-

cessors increases.

2.7.5 Hardware-assisted Solutions

The software-only solutions to memory non-determinism replay struggle a lot with the over-

head involved in recording data races. As a result, some systems sacrifice flexibility by replay-

ing only uniprocessor executions or assuming data race freedom, while others relax fidelity

guarantees and increase replay speed by deriving the outcomes of data races offline. Mainly as

an answer to the limitations of software approaches, many researchers have worked on deter-

ministic replay systems that take advantage of hardware support [5, 51, 34, 33, 52, 31, 19, 32].

Such support has the notable side effect of enabling replay of whole systems, unlike the user

abstraction level of most software solutions. Nonetheless, a few hardware-assisted systems do

record at the level of user libraries.

2.7.5.1 Point-to-point Approaches

Replay systems that track dependencies at the level of individual memory accesses are said to

use a point-to-point approach. A timestamp is associated with each memory block and updated

on every memory access.

Bacon & Goldstein were the first to propose replaying executions by spying on the cache co-

herence protocol of directory-based multi-processors using hardware modifications [5]. They

piggyback a hardware instruction counter on coherence messages to identify sharing. A subset

of the messages is logged to generate a partial order of memory accesses. The replayer has little

time overhead, but can generate substantial logs.

FDR [51] can replay the last moments of the execution of a whole target system running on a

directory-based multi-processor. It augments cache blocks to contain scalar clocks and modifies

the cache coherence protocol to carry and update them. By spying on the protocol’s messages,

FDR is able to derive the dependencies between memory accesses. It improves upon Bacon &

Goldstein’s approach substantially by implementing a modified version of Netzer’s TR algo-

rithm, in hardware, to compress the trace of memory dependencies. Their version uses scalar

clocks instead of vector clocks, which reduces the overhead in exchange for a slightly larger

trace size. The authors report that on a 4-processor server with commercial workloads, and

given less than 7% of physical memory, FDR can record the last second of execution with less

than 2% slowdown.

2.7. REPLAYING MEMORY NON-DETERMINISM 31

RTR [52] is an extension of FDR in which Netzer’s TR algorithm is improved, resulting in the

Regulated Transitive Reduction algorithm. Moreover, FDR’s assumption of Sequential Con-

sistency (SC) is relaxed to Total Order Store (TSO). RTR improves on TR by creating artificial

dependencies that allow for further trace reduction. TSO is supported by having a hardware

component that detects violations of SC and stores the loaded value instead of the usual or-

dering constraint. The overhead imposed during recording is as negligible as FDR’s, but no

evaluation of the benefits of RTR compression over Netzer’s TR was made.

2.7.5.2 Chunk-based Approaches

A chunk represents a block of instructions that are executed without conflicting with each other

in terms of memory accesses. Enforcing the original order of chunk commits is sufficient to

replay an execution. Chunk-based approaches can benefit from transitive reduction techniques

just like point-to-point approaches.

BugNet [34] supports deterministic replay of user code and shared libraries. The operation of

the system revolves around checkpoint intervals, which start with the creation of a new check-

point consisting only of register state. The value returned by memory load operations that first

access a certain memory location in a particular interval is logged, while the values of follow-

ing loads in that interval are derived by the program itself. A dictionary of common values is

used to compress the trace. Given these mechanics, checkpoint intervals represent a set of com-

mitted instructions. Each interval has a maximum size and can be prematurely terminated by

interrupts and context switches. To aid in debugging, BugNet also uses FDR’s point-to-point

approach to record shared memory dependencies, but this trace is unnecessary for replay. Due

to its data-based recording algorithm and checkpointing mechanism, BugNet can replay indi-

vidual tasks and start the replay at the beginning of arbitrary checkpoint intervals.

Strata [33] proposes using a logging primitive called stratum. The system maintains an instruc-

tion counter for each processor in the machine and, whenever a conflicting memory access is to

be performed, a vector with the current counter values for all processors is traced. This is anal-

ogous to committing a chunk that started when the previous stratum was recorded, but chunks

are named strata regions. Stratums are only recorded if the first memory access in the conflict

occurred in the previous strata region. This fact enables a transitive reduction algorithm more

efficient than Netzer’s TR, because a single stratum can capture multiple dependencies. The

trace is reduced even further by not recording WAR (write after read) dependencies, because

an offline analysis stage is able to derive the total order between memory accesses without

them. Another advantage of Strata is that, unlike point-to-point approaches, the replayer is

applicable in both snoop- and directory-based systems.

DeLorean [31] forces processors to execute instructions in chunks, which are invisible to soft-

32 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

ware. When a chunk finishes executing, it asks a central module, the Arbiter, whether it can

commit. Each chunk is associated with a signature based on Bloom Filters that is used by the

Arbiter to immediately make the decision by comparing it with the signatures of already com-

mitted chunks. The system can record in three modes: (1) Order&Size mode, in which both the

size of chunks and their order is non-deterministic; (2) OrderOnly mode, in which chunking

is deterministic; and (3) PicoLog mode, in which everything is deterministic. PicoLog mode re-

quires no recording whatsoever, because the Arbiter forces a predefined chunk schedule (e.g.

processors round-robin) and size during both the original and replay executions. In OrderOnly
mode, DeLorean simply traces the order of chunk commits. Finally, in Order&Size mode, a

log of chunk sizes is also maintained, because chunks can be truncated due to somewhat rare

events. The purpose of these three modes of operation is to explore the trade-off between over-

head and log size — the latter decreases while the former increases as we move from Order&Size
to OrderOnly and then PicoLog.

Capo [32] is a software-hardware hybrid approach that operates at user level (including shared

libraries). The key abstraction of the system is the notion of Replay Sphere that allows for the sep-

aration of duties between software and hardware modules, and enables multiple jobs running

in parallel (recording, replaying and standard execution). Each sphere is a group of threads

that are recorded and replayed as a whole. Threads belonging to the same process must be

part of the same sphere, but the latter may include threads from multiple processes. Tracking

threads instead of processors provides more flexibility.

Memory non-determinism is handled by the hardware components of the system, given

the overhead that it imposes when done in software. Capo places little constraints on the way

the interleaving of memory accesses is recorded, which allows for integration with any of the

hardware replayers discussed here. A prototype of Capo was built which used the DeLorean

replay mechanism. Despite the additional abstractions taking a toll on both trace sizes (15% and

38% for engineering and system application, respectively) and recording overhead (21% and

41%) when compared with the original DeLorean, they are still modest. Concurrently recording

two applications increased the overhead by 6% and 40% for the same classes of applications.

ReRun [19] records how long a thread executes without conflicting with another. The system

passively creates atomic episodes analogous to chunks. Lamport clocks are used to establish

and trace the interleaving of episodes. Their size is also recorded, as an episode must be ter-

minated when it conflicts with another in terms of memory accesses. The detection of conflicts

itself is done by piggybacking on the cache coherence protocol. Enforcing the size and inter-

leaving of episodes is enough to replay the original execution. The main advantage of ReRun

is enabling scalable trace sizes on par with other hardware recorders, while requiring only a

fraction of the hardware state. While FDR requires augmentations to all cache blocks, ReRun

only needs a very small amount of state per processor.

2.8. DISTRIBUTED REPLAY 33

2.8 Distributed Replay

We say a deterministic replay system is distributed if it is capable of cooperating with other in-

stances of itself when replaying distributed programs. There are three major cases to consider:

(1) the closed world case, in which all tasks involved in a distributed system are operating un-

der the replayer’s supervision, (2) the open world case, in which only one task is supervised

by the replayer, and (3) the mixed world case, in which some tasks are supervised and others

are not.

While the open world case can and has to be handled by recording network input to the

tasks, note that such a replayer does not fit our definition, because it does not cooperate with

others. Instead, the tasks are replayed individually by simulating the environment. Nonethe-

less, this mechanism has been the norm for deterministically replaying distributed systems.

In closed world situations, much space overhead can be avoided by having multiple re-

player instances coordinate and regenerate network messages, instead of simulating them. Re-

Virt [11] proposes this optimization, but does not implement it. Distributed DejaVu [24] han-

dles closed world cases by extending DejaVu’s notion of critical event to encompass relevant

network-related Java API calls and their paper is very explicit on how to handle stream-based

communication, datagram-based communication and connections. liblog [15] uses Lamport

clocks to replay communicating peers consistently.

Mixed environments can be handled as closed world cases for cooperating peers and open

world cases for the rest. However, we must either know which peers are cooperative a priori,

or have a discovery protocol in place that can find them without interfering with the commu-

nication protocols used by the distributed system.

2.9 Summary

Support for input or memory non-determinism is the most distinguishing criterion of deter-

ministic replay, because the systems on both sides use very distinct techniques. Input non-

determinism can be replayed efficiently with software-only solutions. On the other hand,

memory non-determinism is only fully handled in an efficient way by hardware-assisted ap-

proaches. Software-based approaches struggle with recording data races and many avoid them

altogether, recording solely synchronization races. Thus, they are unable to simultaneously

support multiprocessor executions and imperfectly synchronized programs. However, recent

probabilistic approaches and supported on static analysis have shown potential for enabling

efficient recording while supporting multiprocessors and imperfectly synchronized programs,

at the cost of higher replay overhead and lower fidelity guarantees.

34 CHAPTER 2. RELATED WORK: DETERMINISTIC REPLAY

3Ditto

In this chapter we describe the algorithms and data structures that make up Ditto from a mostly

design and theoretical point of view, while implementation details are dealt with in Chapter

4. Section 3.1 starts by giving an overview of the different techniques that are used in Ditto.

Then, Section 3.2 lists the events that must be monitored and Section 3.3 explains the base

algorithms used to record and replay executions. Subsequent sections deal with improvements

and optimizations built on top of the base algorithms to enhance Ditto’s performance.

3.1 Overview

Ditto is a deterministic replay system capable of reproducing non-deterministic executions of

programs executed by the Java Virtual Machine, which combines multiple state-of-art and orig-

inal techniques.

1. Ditto takes advantage of the semantic differences between load and store memory oper-

ations in order to reduce the trace file and enable a high degree of concurrency during

the replayed executions. Instant Replay [27] is the only deterministic replayer that uses

a similar approach, though it is not targeted at Java applications. More details on how

Ditto handles each type of event are given in Section 3.3;

2. Ditto serializes memory accesses at the granularity of individual instance fields, the finest

possible granularity, never achieved by previous Java replayers. This means that memory

accesses are only explicitly ordered by the replayer if their target is the same instance,

static or array field. Section 3.4 provides more details;

3. Ditto uses TLO (Thread Local Objects) static analysis to identify class fields that are guar-

anteed to never be simultaneously accessed by more than one thread. The use of this type

of static analysis is a technique pioneered by LEAP [20]. The information about thread

locality allows us to ignore memory accesses to thread local fields, significantly reducing

the cost of recording and replaying. Ditto also employs some simple escape analysis to

identify arrays which are not shared between threads. This array analysis is performed at

compile-time and used because TLO does not provide data on array fields. Details on the

static analysis and array escape analysis are provided in Sections 3.6 and 3.7, respectively;

36 CHAPTER 3. DITTO

4. Ditto reduces its trace file by employing a new transitive reduction algorithm inspired

by Netzer’s TR [35]. It also avoids tracing order constraints which can be derived from

program order. Both techniques are used to prune redundant order constraints from the

trace file and are described in detail in Section 3.5;

5. Ditto operates inside the JVM itself, an approach only previously taken by DejaVu [8],

which allows for fine-level monitoring and controlling of the application. We built Ditto

on top of JikesRVM (Jikes Research Virtual Machine) [1], of which we make a quick

overview in Section 4.1. The hooks used by Ditto to monitor and control an execution

inside JikesRVM are described in section 4.2;

6. Ditto employs a number of trace file optimizations which significantly reduce its size.

These include storing clocks as increments and using metadata to allow for values of

dynamic size, as detailed in Section 3.8.

7. Ditto takes advantage of compiler optimizations to reduce the amount of tracing over-

head. Details are given in Section 4.2.

3.2 Events of Interest

In order to reproduce a non-deterministic execution in a multi-processor, the outcomes of all

data races must be recorded and replayed. Since data races occur between pairs of shared

memory accesses, it follows that a recorder must be able to identify the order in which each

such access is performed in relation to the others, so that the same order may be enforced

during other executions. The JVM’s memory model limits the set of memory access instructions

which can read or manipulate shared memory to three groups:

1. Accesses to static fields through the bytecode instructions getstatic and putstatic;

2. Accesses to object fields through the bytecode instructions getfield and putfield;

3. Accesses to array fields through a certain pair of instructions depending on the type of

the array. For instance, if the array holds references to objects, the application uses the in-

structions aaload and aastore to read and write fields, respectively. Similarly, baload

and bastore are used for boolean and byte arrays, caload and castore for char ar-

ray, daload and dastore for double arrays, faload and fastore for float arrays,

iaload and iastore for integer arrays, laload and lastore for long integer arrays,

and saload and sastore for short integer arrays.

3.3. BASE RECORD AND REPLAY ALGORITHMS 37

TA

TB

S0(y)x x

S1(y)x x

Figure 3.1: Example of a incor-

rectly recorded execution vulnerable

to replay-time deadlock.

In addition to reproducing the order in which

shared memory accesses occur, it is mandatory to re-

produce the order in which synchronization operations

are performed. Though these events have no effect on

shared memory, an incorrect ordering can cause the re-

player to deadlock. Figure 3.1 illustrates a recorded

execution in which not tracing the order of monitor ac-

quisitions can lead to a deadlock during replay. If TB
acquires x’s monitor before TA does, it will proceed to

wait for TA to execute the store operation S0(y). However, TA cannot execute that operation

because it needs to acquire x to do so and x belongs to TB – a deadlock. It is, thus, imperative

that the order between synchronization operations of any kind be traced and reproduced. In

the JVM, synchronization is supported through synchronized methods, synchronized blocks

and synchronization methods such as wait and notify. These are built on top of a single

structure: the monitor. Since Ditto operates inside the JVM, it has privileged access to the mon-

itor mechanism which systems based on offline bytecode instrumentation can not benefit from;

it is able to trace monitor acquisitions that occur in the context of a wait method call, for ex-

ample. As such, Ditto only needs to track the order between monitor acquisitions to guarantee

a correct replay.

Summarizing, Ditto needs to track static field accesses, object field accesses, array field

accesses and monitor acquisitions.

3.3 Base Record and Replay Algorithms

The recording and replaying algorithms of Ditto rely on logical clocks (or Lamport clocks) [25].

A logical clock is a mechanism designed to capture chronological and causal relationships,

usually consisting of a monotonically increasing software counter. Logical clocks are associated

with threads, objects and object fields to identify the order between events of interest. For each

event, an order constraint is generated and inserted in the trace file. The constraint can later be

used by the replayer to order the event after past events on which its outcome depends.

3.3.1 Recording

In the previous section we asserted that there are two groups of events which our recorder must

order, namely the shared memory access operations and the synchronization operations. There

need not be, however, order constraints between events belonging to different groups. Indeed

load and store operations are ordered in relation to one another, but not in relation to monitor

38 CHAPTER 3. DITTO

acquisitions, and vice-versa. In essence, we create two separate streams of order constraints –

one orders memory accesses while the other orders monitor acquisitions.

Recording shared memory accesses Taking advantage of the semantic differences between

load and store memory accesses is the main design driver on which Ditto’s memory access

recording mechanism was built upon.

To record the order in which shared memory accesses are performed, Ditto requires state

to be associated with threads and fields. Threads are augmented with one logical clock, which

we refer to as simply the thread’s clock. Fields are extended with one logical clock, the field’s

store clock, incremented whenever a store operation is performed, and a counter, whose value

is the field’s load count and represents the number of loads performed on the field since the

last store. When a thread performs a monitored shared memory access on a field, the operation

is reflected in the values of the thread’s clock, the field’s load count and possibly in its store

clock. The load or store operation and the manipulation of thread and field state must be done

atomically in order to guarantee the correct order is traced. Ditto does this by acquiring a

monitor associated with the field before the operation and releasing it after the operation has

been completed and recorder state has been modified to reflect it. The monitor cannot be part

of the application’s scope, as its usage would interfere with the application and could lead to

deadlocks. We now provide a more detailed explanation of the algorithms that handle each

load and store memory access intercepted during execution recording.

When a thread Ti performs a load operation on a field f , it starts by acquiring f ’s assigned

monitor. Then, it traces an order constraint consisting of f ’s store clock. Such a constraint

implies that the load is performed after f ’s store clock has taken its current value, i.e., the

current load operation is to be ordered after the store operation that last modified the value of

f . After tracing the constraint, f ’s load count is incremented by one unit and, if Ti’s clock is

lower than f ’s store clock, the former is set to the value of the latter. Following that, the actual

load operation is performed and the monitor associated with f is released. Pseudo-code for

this process is listed in Algorithm 3.1.

When a thread Ti performs a store operation on a field f , it again starts by acquiring the

monitor associated with the field. Then, an order constraint consisting of f ’s store clock and

load count is traced. The constraint implies that the ongoing store operation occurred after f ’s

store clock and load count had been set to their current values, i.e., it is ordered after the previ-

ous store operation of f and all load operations performed on the field since then. Afterwards,

the values of Ti’s clock and f ’s store clock are updated to the current maximum of the two

incremented by one, and the load count of f is reset to zero. Finally, the actual store operation

is performed and f ’s monitor is released. Algorithm 3.2 lists pseudo-code for this process.

Recording synchronization In Section 3.2 we reasoned that reproducing the order in which

synchronization operations are performed is mandatory for achieving a correct replay of arbi-

3.3. BASE RECORD AND REPLAY ALGORITHMS 39

Algorithm 3.1 Recording load memory access operations
Parameters: f is the field whose value is being loaded

method BEFORELOAD(f)
MONITORENTER(f)
t← GETCURRENTTHREAD()
TRACE(f.storeClock)
f.loadCount← f.loadCount+ 1
if f.storeClock > t.clock then

t.clock ← f.storeClock
end if

end method
method AFTERLOAD(f)

MONITOREXIT(f)
end method

Algorithm 3.2 Recording store memory access operations
Parameters: f is the field where the value is being stored

method BEFORESTORE(f)
MONITORENTER(f)
t← GETCURRENTTHREAD()
TRACE(f.storeClock, f.loadCount)
newClock ← MAX(t.clock, f.storeClock) + 1
f.storeClock ← newClock
f.loadCount← 0
t.clock ← newClock

end method
method AFTERSTORE(f)

MONITOREXIT(f)
end method

trary executions. Ditto records this order in a similar way it does the order between memory

accesses. Even so, there are a few important differences. While shared memory accesses are

performed on fields, monitor acquisitions are performed on objects. Furthermore, there is only

one kind of monitor acquisition. Thus, recording synchronization requires no state for fields,

but it does for objects: one logical clock, which we refer to as the object’s synchronization clock,

incremented whenever the object’s monitor is acquired. Because the order of synchronization

is traced independently of the order between shared memory accesses, the thread clock we

used before cannot be used for this new purpose. As such, another logical clock is added to the

state of each thread, to which we refer as the thread’s synchronization clock. A final distinction

is that, since a monitor acquisition already provides us with a critical section, there is no need

to create our own to assure the atomicity of the monitor acquisition and modification of the

thread and object state.

When a thread Ti acquires the monitor of an object o, it starts by tracing an order constraint

40 CHAPTER 3. DITTO

comprising the current value of o’s synchronization clock. The constraint implies that the mon-

itor acquisition occurred after the synchronization clock had reached its current value, i.e., that

it is ordered after the previous acquisition of o’s monitor. Then, before executing the applica-

tion logic protected by the monitor, the synchronization clocks of both o and Ti are updated to

the current maximum of the two incremented by one. This process is listed as pseudo-code in

Algorithm 3.3.

Algorithm 3.3 Recording monitor acquisition operations
Parameters: o is the object whose monitor is being acquired

method AFTERMONITORENTER(o)
t← GETCURRENTTHREAD()
TRACE(o.syncClock)
newClock ← MAX(t.syncClock, o.syncClock) + 1
o.syncClock ← newClock
t.syncClock ← newClock

end method

3.3.2 Consistent Thread Identification

Ditto’s traces are composed of individual data streams for each thread. Thus, it is mandatory

that we map record-time threads to their replay-time counterparts. Neither the JVM nor the

Java API provide us with a thread identification mechanism that remains consistent between

executions. Java thread identifiers are attributed sequentially and can be reused once a thread

dies. Since threads can race to start other child threads, an identifier with these properties does

not meet our requirements.

To achieve the desired effect, we introduce a new identifier, the replay identifier, which

is attributed to each thread by Ditto during the thread’s start-up process. The identifier is

attributed inside a critical section, which is traced by the mechanism that handles Java syn-

chronized blocks. When the replayer reproduces the order of synchronization operations, it

will force the identifiers attributed by Ditto to be assigned to the same threads to which they

had belonged during the recorded execution. The consistent identifiers allow the replayer to

associate trace streams to their respective threads. This is a recursive mechanism, since a trace

stream must be associated with the parent thread so that the replayer is able to correctly or-

der the creation of its child threads. The base case is the main thread of the application that is

always assigned the identifier zero.

3.3.3 Replaying

The replayer uses the order constraints traced by the recorder to reproduce an execution. The

trace is organized as a set of order constraint sequences, each one corresponding to one runtime

3.3. BASE RECORD AND REPLAY ALGORITHMS 41

thread. The replayer uses consistent replay identifiers to locate the correct constraint sequence

for each thread. As a thread runs, it needs to perform events of interest to make progress.

The replayer is responsible for using the constraints to guarantee that each event of interest

is performed after the events on which its outcome depends. The traces of threads are read

sequentially and they contain no metadata that allows the replayer to verify that a certain

constraint corresponds to the event currently being executed. As such, the user must guarantee

that the program executes the same sequence of events of interest as it did during the record

phase. The user is only responsible for providing a non-modified version of the program, as

ordering the events is the replayer’s responsability. In section 4.7 we talk about ways in which

Ditto allows for the target application to be modified to contain debug statements without

modifying the events of interest intercepted during its execution.

Replaying shared memory accesses As hinted above, the replayer delays load operations

until the values they read during recording are available, while store operations are addition-

ally delayed until all load operations that read the current value of the field at record-time are

performed. This is an approach that allows for maximum concurrency during the replay of an

execution, since each memory access waits solely for the events that directly affect its outcome.

When a thread Ti performs a load operation on field f , it starts by reading a load order

constraint in the thread’s trace, from which the target store clock is extracted. Ti then waits

until f ’s store clock matches the target store clock read from the constraint. At this point, the

thread is safe to execute the actual load operation. After doing so, Ti increments f ’s load count

and, if the field’s store clock is higher than the thread’s clock, the latter is updated to its value.

Finally, Ti notifies any threads waiting for the field’s state to change, allowing them to recheck

the conditions required to advance. The pseudo-code for this process is listed in Algorithm 3.4.

Algorithm 3.4 Replaying load memory access operations
Parameters: f is the field whose value is being loaded

method BEFORELOAD(f)
t← GETCURRENTTHREAD()
targetStoreClock ← GETNEXTLOADCONSTRAINT(t)
while f.storeClock < targetStoreClock do

WAIT(f)
end while

end method
method AFTERLOAD(f)

t← GETCURRENTTHREAD()
if f.storeClock > t.clock then

t.clock ← f.storeClock
end if
f.loadCount← f.loadCount+ 1
NOTIFYALL(f)

end method

42 CHAPTER 3. DITTO

When a thread Ti performs a store operation on field f , it reads a store order constraint

from its trace. It then takes a target store clock and a target load count from the constraint.

While f ’s store clock is lower than the target store clock or f ’s load count is lower than the

target load count, Ti waits. After being notified and making sure the conditions required to

proceed are met, Ti performs the store operation. Afterwards, it updates its clock and f ’s store

clock to the current maximum of the two incremented by one and resets f ’s load count to zero.

Lastly, threads waiting on f are notified of the state changes. Algorithm 3.5 lists pseudo-code

for this process.

Algorithm 3.5 Replaying store memory access operations
Parameters: f is the field where the value is being stored

method BEFORESTORE(f)
t← GETCURRENTTHREAD()
targetStoreClock, targetLoadCount← GETNEXTSTORECONSTRAINT(t)
while f.storeClock < targetStoreClock or f.loadCount < targetLoadCount do

WAIT(f)
end while

end method
method AFTERSTORE(f)

t← GETCURRENTTHREAD()
newClock ← MAX(t.clock, f.storeClock) + 1
t.clock ← newClock
f.storeClock ← newClock
f.loadCount← 0
NOTIFYALL(f)

end method

Replaying synchronization Replaying monitor acquisitions is quite similar to replaying

shared memory accesses. When a thread Ti attempts to acquire the monitor of object o, it gets a

synchronization order constraint from its trace. The target synchronization clock is taken from

that constraint. While o’s synchronization clock is lower than the target synchronization clock,

Ti waits. Once notified and validated the conditions for proceeding, Ti acquires o’s monitor.

After that, both Ti’s and o’s synchronization clocks are updated to the maximum of the two

incremented by one and threads waiting on o are notified of the state changes. The process is

presented as pseudo-code in Algorithm 3.6.

3.4 Recording Granularity

As far as we have been able to ascertain, Ditto offers the most fine-grained serialization of

events of any previous software-based deterministic replayer. We shall use the term recording

granularity to refer to the smallest application entity which is considered to be independent of

others of its type by the recorder. A global order-based recorder, for example, groups all pro-

3.4. RECORDING GRANULARITY 43

Algorithm 3.6 Replaying monitor acquisition operations
Parameters: o is the object whose monitor is being acquired

method BEFOREMONITORENTER(o)
t← GETCURRENTTHREAD()
targetSyncClock ← GETNEXTSYNCCONSTRAINT(t)
while o.syncClock < targetSyncClock do

WAIT(o)
end while

end method
method AFTERMONITORENTER(o)

t← GETCURRENTTHREAD()
newClock ← MAX(t.syncClock, o.syncClock) + 1
t.syncClock ← newClock
o.syncClock ← newClock
NOTIFYALL(o)

end method

gram entities together and conservatively considers them to access the same shared resource.

In the JVM’s context, this means the recorder is incapable of distinguishing between different

instances, different fields or even different classes. As a result, all traced events are serialized

with one another, removing all concurrent behavior from the replayed executions and intro-

ducing record-time overhead due to a global bottleneck.

Some recorders generate partial orders of the events they trace. Nonetheless, all previous

systems do so at sub-optimal levels either because of their recording algorithm or due to their

granularity being too coarse. LEAP [20] is an example of this latter case: the recorder can only

distinguish between memory accesses to different fields; it is unable to identify which instance

the field belongs to, treating all fields as if they were static. Thus, all accesses to a field of a class

are serialized, even if they are performed on different instances of that class. JaRec, on the other

hand, traces at the granularity of individual objects, as it is able to distinguish between different

instances of classes, the smallest entity that operations on monitors can manipulate. JaRec’s

problem lies on its recording algorithm, which creates artificial orderings between events that

not only excessively limit concurrency during replay, but can also produce traces that always

result in deadlocks.

As explained in Section 3.2, Ditto traces two types of events: shared memory accesses and

monitor acquisitions. The former are performed at the level of fields of individual instances,

while the latter are performed at instance-level. Ditto’s recording granularity is optimal in

both cases. This yields a benefit in terms of record-time overhead for applications with fine-

grained thread interactions, but it is especially beneficial in terms of trace file size and replay

execution time. The downside is that Ditto requires state to be associated with each instance

field, adding to the application’s memory requirements. To deal with situations in which this

44 CHAPTER 3. DITTO

memory consumption could become a problem, Ditto is capable of operating with a instance-

level recording granularity, thus consuming only one unit of state per object.

Handling arrays An interesting and seldom mentioned issue is the recording of array field

accesses, which is mandatory given that array references can be shared by different threads

just like object references. LEAP treats all array field accesses as a single entity, which means

all such operations are serialized and no concurrency is allowed between them. Ditto, on the

other hand, treats array fields as it does object fields, but with an important twist. Since it is not

uncommon for arrays to have many fields, allocating one unit of state for each could lead to

unreasonable memory consumption. To avoid this situation, we set a maximum for the number

of state units allocated for a single array and map the indexes used in array field accesses to

one of the available states. As an example, if the maximum is set to 10 states and an array has

a length of 80, the fields are grouped in 10 sets of 8 fields and each set is treated by the recorder

as a single entity. This may not be an optimal solution in terms of recording granularity, but it

goes towards a compromise with the memory requirements of Ditto. The maximum number of

field states for arrays is a user-provided argument. We did not evaluate Ditto’s behavior when

this value is modified, though it would be an interesting experiment.

3.5 Pruning Redundant Order Constraints

The base algorithm described in Section 3.3 traces one order constraint per memory access,

comprised of one value for load operations and two values for store operations. Though the

algorithm is correct, the trace file it creates is generally unreasonably large, introducing high

disk bandwidth requirements and overhead. The issue is mostly related to scale: memory ac-

cesses make up a very significant fraction of the instructions executed by a typical application.

Fortunately, many order constraints are redundant, i.e., the order of operations they enforce is

already indirectly enforced by other constraints or program order. Redundant constraints can

be safely pruned from the trace file without compromising correctness.

Ditto prunes constraints implied by program order, or implied by previously traced con-

straints. The latter are removed using a technique based on Netzer’s transitive reduction,

which finds the optimal subset of order constraints that enable correct reproduction of exe-

cutions [35]. RTR (Regulated Transitive Reduction) further extends Netzer’s TR by introducing

artificial constraints which allow for the removal of multiple real constraints [52]. Ditto does

not directly employ either Netzer’s TR or RTR’s algorithm, for reasons related to performance

degradation, and the need for keeping state that limits application flexibility, such as Netzer’s

usage of vector clocks, requiring the number of threads to be known a priori. We do, however,

use these algorithms as inspiration for our own partial transitive reduction algorithm.

The two mechanisms used by Ditto to prune order constraints are elaborated upon in Sec-

3.5. PRUNING REDUNDANT ORDER CONSTRAINTS 45

tions 3.5.1 and 3.5.2. Section 3.5.3 then describes how we represent pruned constraints in the

trace file and how they are handled during recording and replaying. Finally, we provide a

more unified and data structure oriented view of the constraint pruning algorithm of Ditto in

Section 3.5.4. In some instances we may talk about the transitive reduction mechanisms only

as they apply to the tracing of memory access operations, though Ditto applies them in the

synchronization trace as well.

3.5.1 Program Order Pruning

Using program order to prune order constraints proved to be the most effective method of

reducing the size of the trace file and, by association, the recording and replaying overheads.

One can easily visualize its potential benefits by means of the example in Figure 3.2. Two

threads, TA and TB , perform load and store operations on a shared object field, x. Figure 3.2(a)

illustrates the constraints traced by the base recording algorithm: one for each memory access

operation. Notice that many of them order events performed in a sequential manner by the

same thread. Constraint 1, for instance, forces the replayer to order the load operation L0(x)

after the store S0(x), an unnecessary constraint given that the former comes after the latter is

TA’s program order and, as a result, can never be executed before it. Using the same reasoning,

we can further prune constraints 2, 4, 10 and 11.

For constraints that order store operations the rules are slightly different, since they depend

not only on the last store operation, but also on the load operations performed in-between (for

the sake of simplicity the dependency on load operations is not represented in the diagrams

of Figure 3.2). These constraints can only be pruned if the last store operation and all load

operations in-between were performed by the current thread. As such, constraints 3 and 5 can

be safely removed, while constraint 9 cannot, due to the multiple loads performed by TB since

the last store. Figure 3.2(b) illustrates our example trace after pruning program order-implied

constraints. Notice how only inter-thread order constraints remain.

3.5.2 Transitive Reduction

A second pruning mechanism with a high capability to reduce trace file size is transitive reduc-

tion, taking advantage of previously traced constraints and program order. Again, we use the

example in Figure 3.2 to better visualize the issue and the solution. After removing constraints

implied by program order, four constraints still remain, three of which are exactly the same:

three load operations (L3(x), L4(x) and L5(x)) ordered after the same store operation (S2(x)).

Given that the load operations are executed according to program order, notice how forcing

the first load to be performed after S2(x) is enough to guarantee that the two following loads

are also subsequent to S2(x). As such, constraints 7 and 8 are redundant and can be removed,

46 CHAPTER 3. DITTO

TA

TB

S0(x) L0(x) L1(x) S1(x) L2(x) S2(x)

L3(x) L4(x) L5(x)

S3(x) L6(x) L7(x)

1
2
3

4
5

6 7 8
9

11
10

(a) Order constraints traced by base recording algorithm.

TA

TB

S0(x) L0(x) L1(x) S1(x) L2(x) S2(x)

L3(x) L4(x) L5(x)

S3(x) L6(x) L7(x)

1
2
3

4
5

6 7 8
9

11
10

(b) Order constraints traced after pruning those implied by program order.

TA

TB

S0(x) L0(x) L1(x) S1(x) L2(x) S2(x)

L3(x) L4(x) L5(x)

S3(x) L6(x) L7(x)

1
2
3

4
5

6 7 8
9

11
10

(c) Order constraints traced after further pruning those implied by previous
constraints.

Figure 3.2: Example application of the pruning algorithm for redundant order constraints.

resulting in the final trace file of Figure 3.2(c).

3.5.3 Free Runs

Removing the order constraints associated with certain memory access operations leaves gaps

that the base replay algorithm is not equipped to deal with. To handle these gaps, we introduce

the concept of free runs, which represent a sequence of one or more memory operations that

can be performed freely, without having to synchronize with other threads. When performing

a free run of size n, the replayer essentially allows n memory operations to occur without

concerning itself with the progress of other threads. Free runs are included in the trace file

where the order constraints that generated them would be. Going back to our example, the

trace stream of TB in Figure 3.2(c) would be encoded as a load order constraint followed by a

3.5. PRUNING REDUNDANT ORDER CONSTRAINTS 47

free run of size 2.

3.5.4 Order Constraint Pruning Algorithm

Though the word prune seems to suggest that redundant constraints are removed from the

trace post-execution, this is not the case. Redundant constraints are identified at record-time

and are never included in the trace file.

Order constraints implied by program order To enable pruning of program order-implied

constraints, we introduce two new variables to the state associated with each application-level

field: the replay identifier of the last thread to perform a store operation on the field (last thread)

and a flag that is activated whenever a thread which did not perform the last store on the field

loads its value (loaded).

When a thread Ti loads the value of a field f , three different outcomes are possible: (i) if

Ti was the last thread to store a value in f , Ti’s current free run is incremented; (ii) if f has

not yet been initialized, Ti’s current free run is incremented and F ’s loaded flag is set to true;

(iii) otherwise, a new load order constraint is traced and f ’s loaded flag is turned on. Similarly,

if Ti stores a value in a field f , three outcomes are possible: (i) if Ti was the last thread to store

a value in f and that value has never been loaded by other threads (i.e., the loaded flag is off),

Ti’s current free run is incremented; (ii) if f has never been initialized or loaded, Ti’s current

free run is incremented; (iii) otherwise, a new store order constraint is traced and f ’s loaded flag

is turned off.

To perform this optimization on the synchronization trace, we add to each object’s state a

field with the replay identifier of the last thread to enter the object’s monitor. When a thread

Ti acquires the monitor of object o, two outcomes are possible: (i) if Ti was the last thread to

enter o’s monitor or the monitor has never been entered, Ti’s current free run is incremented;

(ii) otherwise, a new synchronization order constraint is traced.

Partial Transitive Reduction Pruning constraints implied by other constraints is a more com-

plex matter. Besides the already introduced last thread variable for each application field, we

add a table to each thread’s state. Ditto uses this table to track the most recent inter-thread

order constraint between the thread and each other thread it has ever interacted with through

shared memory. More specifically, whenever a thread Ti accesses a field f whose last thread
is Tj (with Ti 6= Tj), f ’s store clock is inserted in the interaction table at index Tj . In essence,

this allows Ditto to declare that any order constraint whose source is the thread Tj with a clock

lower than the one in the interaction table is redundant, implied by a previous constraint.

Figure 3.3 illustrates an example execution where constraints are removed using the de-

scribed algorithm. Notice how constraint 3 would have (correctly) ordered S0(z)→ L0(z) and

48 CHAPTER 3. DITTO

TA

S0(x)

TB

TC

S0(y)

L0(y) S1(y)

L2(y) L0(z) L0(x)

1

3
2

L1(x)

54

S0(z)

Figure 3.3: Example of partial pruning of order constraints implied by other constraints.

how constraint 2 enforces the order S1(y)→ L2(y). Program order, on the other hand, enforces

the orders S0(z) → S1(y) and L2(y) → L0(z). As such, following constraint 2 is enough to or-

der L0(z) after S0(z), making constraint 3 redundant. Ditto, upon tracing constraint 2, would

have registered the interaction with TB in TC ’s interaction table, enabling TC to realize that

constraint 3 is redundant when executing L0(z). The same mechanism allows Ditto to avoid

tracing constraint 5 as well.

The reader may have noticed by now that the set of order constraints traced in the example

of Figure 3.3 is not optimal. Indeed, constraint 4 is redundant, as the combination of constraints

1 and 2 would indirectly enforce the order S0(x) → L0(x). For Ditto to be able to achieve this

conclusion, the interaction tables of TB and TC would have to be merged when tracing con-

straint 2. The merge operation proved to be too detrimental to efficiency, as it would have to be

performed each time a constraint is traced. Furthermore, the benefit is limited to a maximum

of one pruned constraint. In our example, we can see that despite tracing the redundant con-

straint 4, the similar constraint 5 is pruned, since TC registered the interaction with TA upon

tracing constraint 4. Given this limited benefit and the high overhead imposed by merging

interaction tables, we decided to perform only partial transitive reduction: Ditto is only aware

of thread interactions that span a maximum of one traced order constraint. A specialized data

structure might be able to enable fast merging of tables and make a full transitive reduction

worthwhile, but we have not created such a structure yet.

3.6 Thread Local Objects Static Analysis

The JVM’s memory model provides some guarantees with regards to the locality of variables,

namely that method-local variables cannot be shared. Accesses to such variables are easily

identifiable, as they are performed by a specific family of bytecodes, allowing Ditto to avoid

tracing them and hence reduce overhead. In spite of this, there remain a lot of accesses to

static and instance fields which are not involved in inter-thread interactions, but about which

there is no locality information. As a result, we are forced to conservatively consider them to

3.6. THREAD LOCAL OBJECTS STATIC ANALYSIS 49

be a potential source of non-determinism and trace their outcome. The authors of LEAP have

recently employed TLO (Thread Local Objects) static analysis to reduce the set of memory

accesses traced during executions of Java programs [20]. We follow suit and use the same kind

of analysis in Ditto. In the following paragraphs we explain how TLO analysis works, what its

outputs are and how Ditto takes advantage of them to improve performance.

Process and Outputs The output of TLO analysis is a classification of each class field as being

either thread-local or thread-shared [18]. Thread-local fields can never be accessed by more

than one thread, while thread-shared fields can. This is generally an undecidable problem,

which is why the analysis identifies a superset of thread-shared fields. All shared fields are

identified as such, but there may be false positives, which will negatively impact performance,

but never compromise the correctness of a replay.

TLO requires a set of thread classes T as input. It goes through each thread t ∈ T indepen-

dently and performs three classification steps. In the first classification step, fields of t accessed

by external methods are classified as thread-shared, while all others are classified as thread-

local. Furthermore, the parameters of the methods of t are also classified as thread-shared if

the method is invoked externally. For the next classification step, TLO relies on another type

of static analysis, IFA (Information Flow Analysis), which approximately computes an answer

to whether the value of a memory location x has been derived from the value in another lo-

cation y. IFA creates an information flow graph and an information flow summary for each

method, specifying which of the values manipulated by the method are publicly visible. For

each method in t, TLO queries IFA’s summary to find where thread-shared values flow into,

propagating the thread-shared classification to the destination. This process repeats until the

classifications converge. The third and final step involves propagating classifications of fields

and parameters of each of t’s methods to other variables through call sites.

At this point, we can query TLO to find out whether a certain variable is thread-local or

thread-shared inside of a method’s context. TLO finds all sources of the value held by the

variable and considers it thread-shared if and only if at least one source is thread-shared.

TLO in Ditto We use TLO analysis as it is implemented in the Soot bytecode optimization

framework 1 [50]. A stand-alone application performs the static analysis and generates a report

file that lists the signatures of all static and instance fields classified as thread-shared. Final and

immutable fields after initialization are not included in the report, even if TLO conservatively

identifies them as shared. The report file is then fed as optional input to Ditto, which uses

the information to avoid intercepting accesses to thread-local fields. Ditto can still function in

absence of this report file for two reasons: there is a possibility that the TLO implementation

may be unsound in some situations; and the extremely high cost of performing the analysis for

even modestly complex applications may make it impossible to generate the report file.
1http://www.sable.mcgill.ca/soot/

http://www.sable.mcgill.ca/soot/

50 CHAPTER 3. DITTO

3.7 Array Escape Analysis

TLO static analysis provides very useful information about the locality of class fields, allowing

us to avoid the unnecessary overhead involved in monitoring accesses to thread local fields.

Unfortunately, TLO does not offer information on array fields, which are harder to track stat-

ically. Without taking further measures, we would be required to conservatively monitor all

array field accesses. This is a worst-case scenario and there is a lot of potential for improvement.

Ditto uses some very simple compile-time escape analysis on array references to avoid

monitoring accesses to fields of arrays declared in a method whose reference never escapes that

same method. Aliases for an array used within the method are backtracked to their source. If

this source is not a new array instruction, the array is conservatively considered to be thread

escaped. This analysis is very simplistic, but it can still avoid some useless overhead. Nonethe-

less, there is a lot of unexplored potential for this kind of analysis on array references to reduce

the overhead associated with tracing array field accesses.

3.8 Trace File

Until now we have merely scratched the surface of the issue which is trace file structure, having

asserted that Ditto’s trace file is composed of a stream of order constraints per thread. We wish

to further discuss this topic, as it affects the performance of Ditto in many ways, from the size

of the trace to the way memory and buffers are managed.

Organized by thread Having the trace organized by thread is advantageous for various rea-

sons. The first, and most significant, is that it is easy to intercept the creation and termination of

threads. Intercepting these events is crucial for the management of trace buffers, as they must

be created when a thread starts and dumped to disk once it terminates. Intercepting the life-

time of other program entities is not as easy. Let us consider the example of LEAP [20], which

creates traces organized by field. The lifetime of a field coincides with that of the execution

itself, as a field can be accessed at any time. As such, a trace buffer for each field has to be kept

across the whole execution, introducing a constant and potentially high memory requirement.

In contrast, thread trace buffers are only kept while the thread is alive. An even more compli-

cated situation would be to extend LEAP’s approach and organize the trace by instance. In this

situation, the lifetime of the buffer is that of the instance, which is, for most of them, signifi-

cantly shorter than the lifetime of the execution. Intercepting the creation and collection of the

instances is, however, a much more complex endeavor than doing the same for threads. The

JVM can provide optional support for the finalize method of java.lang.Object which

would be an easy way to intercept object collection, but some kinds of garbage collectors are

not necessarily aware of the objects that are no longer alive.

3.8. TRACE FILE 51

Trace File Header

... ...

Table Chunk #1

Replay Id First data chunk

Next table chunk

Table Chunk #2

Replay Id First data chunk

a

b

...

c

d

...

Data Chunk #1 of Ta

...

Next data chunk

Data Chunk #2 of Ta

Data Chunk #1 of Tb

First table chunk

... ...

... ...

Data Chunk #1 of Td

Next data chunk

Data Chunk #2 of Td

... ...

Figure 3.4: Trace file format.

Having a buffer per instance would also be problematic due to memory requirements –

either the buffers are small and have to be written to disk very regularly, or we risk introducing

huge memory overhead. This brings us to the second advantage of traces organized by thread:

the number of simultaneously executing threads is not only much lower, in general, than the

number of fields or instances in the execution, but also limited, allowing us to place an upper

limit on the amount of memory that can be spent with trace buffers.

3.8.1 Trace File Format

It is common knowledge that sequential I/O is more efficient than random access I/O. It would,

thus, be preferable to have the stream for each thread be in its own continuous region in the

trace file. Since we use buffers to temporarily hold trace data in memory and dump them

once they fill up or the corresponding thread terminates, this optimal scenario is impossible to

achieve if we use a single trace file. Hence, we explored the option of using a different file for

the stream of each thread, in hopes that such an approach would allow Ditto to take advantage

of sequential I/O and improve its performance. The ensuing experimental results proved us

wrong, however, as even though each thread was performing sequential I/O, Ditto as a whole

was still behaving randomly, with the additional disadvantage of having to constantly switch

between the various files.

The best format we developed is illustrated in Figure 3.4 and uses the trace file as a table,

indexed by the thread replay identifiers. Indexing the table retrieves the order constraint stream

52 CHAPTER 3. DITTO

corresponding to the thread whose identifier was used as a key. The stream itself is stored as

a linked list of data chunks which contain the actual trace data. In addition to these chunks,

there are also table chunks that map replay thread identifiers to the first data chunk of the

corresponding thread. Furthermore, there is another pointer in the file’s header that identifies

the location of the first table chunk. Table chunks have a limited size and can contain a pointer

to other table chunks. Following the table chunk chain we can locate all thread streams. The

data chunks that comprise those streams are connected, again, by pointers.

The largest issue with this trace file format is that whenever a memory buffer becomes full

and is dumped to disk, a random seek must be performed so that a pointer to its location can

be placed in the previous chunk of its stream. Nonetheless, the overhead involved in doing this

is significantly lower than the one introduced by the usage of multiple trace files. Sequential

I/O could still be performed during replay by rewriting the trace file post-recording. Since we

did not experiment with this option, the benefits involved cannot be quantified.

3.8.2 Logical Clock Value Optimization

One disadvantage of using a logical clock-based algorithm is that the clocks increase with every

monitored operation (or store operation in Ditto’s case) during the execution. As a result, clocks

may grow to very high values in long-running applications. In regards to the trace file, this

translates into a necessity to use upwards of 8 bytes to store each clock value in order to enable

the recording of long executions.

A simple but effective optimization is to store each clock value as an increment in relation

to the one that precedes it in the stream, instead of as an absolute value. For the most part,

threads will make slow but regular progress, moving its clock forward in small increments.

This property combined with the proposed optimization reduces the space used to store the

great majority of clock values to 1 or 2 bytes. We delve further into the implementation details

of the trace file in Section 4.4.

3.9 Concluding Remarks

Along this chapter we developed the design for Ditto, a deterministic replayer targeted at con-

current programs executing on the JVM and capable of handling the non-determinism of multi-

processor executions. Ditto achieves these goals by using a novel pair of base recording and

replaying algorithms, enhanced by multiple optimizations. The recording and replaying algo-

rithms take advantage of the semantic differences between load and store memory accesses,

while additionally serializing them at the finest possible granularity to maximize replay-time

concurrency and reduce trace data. Even so, they still generate an unreasonable amount of

3.9. CONCLUDING REMARKS 53

T0

α

T1

start

α

x

L(x.f)

L(x.f) L(x.f)

S(x.f) x x

x

traceFR(2)
traceL(1)

T0:
α:

0,1,1
1,T0

T1:
x:

0,1,1
1,T1

T1:
x.f:

0,1,2
0,2,-,true

T1:
x.f:

1,1,0
1,1,T0,true

T0:
x.f:

0,1,2
0,1,-,true

T0:
x.f:

1,1,0
1,0,T0,false T0:

x:
1,2,0
2,T0traceFR(2)

traceS(0,2)
traceSy(1)

Trace

T0 FR:< 2 >,
S:< 0, 2 >,
Sy:< 1 >

T1 FR:< 2 >,
L:< 1 >

Legend

Ti : a, b, c Thread Ti with (store clock, sync clock, current free run) = (a, b, c)
x : a, b Object x with (sync clock, last thread) = (a, b)
f : a, b, c, d Field f with

(store clock, load count, last thread, loaded by others) = (a, b, c, d)

traceFR(a) Trace free run of length a
traceS(a, b) Trace store constraint with (target store clock, target load count) = (a, b)
traceL(a) Trace load constraint with (target store clock) = (a)
traceSy(a) Trace synchronization constraint with (target sync clock) = (a)

Figure 3.5: Recording of a simple execution and resulting trace.

order constraints – one per event. To reduce their number, Ditto uses two techniques: (i) a

combination of thread local objects (TLO) static analysis, array escape analysis and compiler

optimizations to identify and avoid the tracing of thread-local memory locations; and (ii) a

novel take on transitive reduction, performed on-the-fly, which aims at a compromise between

the limitations and performance degradation imposed by full transitive reduction and the ad-

vantages thereof. We further presented a trace file format designed with I/O delay and mem-

ory management in mind. Moreover, a trace file optimization was introduced which reduces

the size of logical clock-based traces.

Figure 3.5 illustrates the recording of a short execution by using the fully optimized record-

ing algorithm. Notice (a) the synchronization around thread creation, protected by an object α;

(b) the creation of free runs when no inter-thread interactions occur; (c) the distinct semantics

of monitoring loads and stores; (d) the separate order for memory accesses and synchroniza-

tion; (e) the different states corresponding to threads, objects and fields; and (f) the four distinct

order constraint types in the trace.

54 CHAPTER 3. DITTO

4Implementation Details

In this chapter we attempt to give the reader an idea about the more interesting and important

aspects of Ditto’s implementation on top of the Jikes RVM. Section 4.1 gives a brief overview of

the RVM’s history, thread management and compiler subsystems. Section 4.2 describes a set of

modifications to the RVM that support Ditto, focusing on interception of events of interest and

state management. Sections 4.3, 4.4 and 4.5 outline aspects relating to the wait/notify mecha-

nism used to control thread progress, the trace file, and memory management, respectively. Fi-

nally, Section 4.7 explains how Ditto supports modifications to the application post-recording,

while maintaining replay capability.

4.1 The Jikes Research Virtual Machine

The Jikes RVM (Research Virtual Machine) is a high performance implementation of the JVM

born under the name Jalapeño at the IBM T.J. Watson Laboratories in 1997 [3], and later re-

named and donated to the open-source community1 in 2001 [2]. Jikes RVM is written almost

entirely in a slightly enhanced Java, which provides ”magic” methods that the compiler re-

places with code implementing low-level semantics, such as pointer arithmetic operations. A

novel technique is used to close the Java-in-Java meta-circularity of Jikes RVM. A second JVM

is used to bootstrap Jikes, which then compiles itself and writes a boot image to disk. A small C

loader application can later be used to load the boot image into memory, after which point Jikes

RVM can run on its own. Writing the RVM in Java was partially intended as a way to provide

ease of development for researchers, as a main design goal was to create a research platform

where novel VM ideas could be explored, tested and evaluated [1]. The project has certainly

succeeded in this regard, as evidenced by the more than 200 papers and 40 dissertations that

are based on the RVM as of 2012.

Given the properties of Jikes RVM and its success as a research platform, it presented itself

to us as the best JVM on which to implement Ditto. In Sections 4.1.1 and 4.1.2 we describe the

two subsystems of Jikes most relevant to our purposes – thread management and the compilers.

1http://jikesrvm.org/

http://jikesrvm.org/

56 CHAPTER 4. IMPLEMENTATION DETAILS

4.1.1 Thread Management

For most of Jikes RVM’s life, Java threads were multiplexed on virtual processors implemented

as operating system threads. Thread switching was done by preempting threads at specified

yield points. The RVM has, however, been recently modified to map each Java thread to a

native thread, in an effort to improve compatibility with JNI code, improve performance and

simplify the scheduling infrastructure. This change is very relevant to our implementation,

since it implies that all scheduling decisions are offloaded to the OS and cannot be traced or

controlled from inside the RVM. Java monitors are implemented with recourse to OS locking

primitives, as a consequence of using native threads.

4.1.2 Compilers

Jikes RVM does not interpret bytecode; all methods are compiled to machine code on-demand.

The VM has two different compilers and, when using an adaptive configuration (enabled by

default), manages both to find a good balance between compilation time and execution time

reduction. Methods are first compiled by the baseline compiler, which is fast, but produces

slow machine code that mimics the stack machine behavior of the JVM very closely. As the

application is run, a sampling mechanism identifies frequently executed methods. These are

recompiled by the optimizing compiler, which is much slower and complex, but generates

machine code of much higher quality and efficiency.

Both compilers generate maps that the garbage collector (GC) uses to identify object refer-

ence locations. This was not a problem for the optimizing compiler, as it is built to be easily

extensible, but we were unable to insert the somewhat complex instrumentation needed by

Ditto in the baseline compiler due to GC map related issues. This is unfortunate, as Jikes RVM

is able to replay compilation choices of the adaptive system, hence eliminating the only other

problem for a deterministic replayer – a non-deterministic compiler. Given our inability to tame

the baseline compiler, Ditto does not use the adaptive system of Jikes RVM and all experiments

were performed using solely the optimizing compiler.

The optimizing compiler The goal of the optimizing compiler is to generate the best possible

machine code for a certain budget. It must offer significant performance improvements, while

preserving correct execution semantics.

Bytecode is not directly translated to machine code. Instead, three intermediate represen-

tations (IR) are used to perform different optimizations. Bytecode is first converted to the High

Level IR (HIR), which is architecture independent. HIR resembles the bytecode instruction set,

but uses a register transfer language instead of the bytecode stack. The resulting code is then

passed through a set of optimizations. We consider this point in the compilation process to be

4.2. HOOKS, INSTRUMENTATION & STATE 57

optimal to instrument shared memory accesses, as accesses to instance, static and array fields

are still easily identifiable using instruction opcodes, but we already benefit from a large set of

optimizations which can reduce the amount of such accesses. Expansion of runtime support

like monitor acquisition calls is also performed at this moment. Afterwards, HIR is converted

to Low Level IR (LIR), another architecture independent IR resembling the instruction set of a

RISC machine. A number of optimizations are applied and the code is then converted to Ma-

chine Level IR (MIR), which is architecture specific, with a one-to-one mapping to the target

ISA (Instruction Set Architecture). In a final phase, MIR is converted to executable code. The

whole compilation process is driven by an optimization plan which can be easily extended by

adding new compilation phases. We use this mechanism by inserting an instrumentation phase

after the HIR optimizations.

4.2 Hooks, Instrumentation & State

This section explains which hooks and instrumentation are placed by Ditto in Jikes RVM to

intercept relevant events. Additionally, it describes where field and thread state is kept and

how it is maintained.

4.2.1 Intercepting Events of Interest

VM vs. Application Code A drawback of having a JVM implemented in Java when inter-

cepting events is that the VM uses the same mechanisms to execute as the application. Hence,

when intercepting events, such as a thread start-up or a monitor acquisition, we must ascertain

whether the event originated in VM or application code. The Jikes RVM does not distinguish

between system and user code, though there have been discussions in the community to in-

troduce such a mechanism. Thus, Ditto uses compile-time and runtime tests to decide when

an event should be traced. Ditto traces all events that are not generated in ignored packages,

i.e., packages explicitly identified as not belonging to the application. These always include the

VM’s own packages and those of the Java API, but the user is free to specify other packages to

be ignored. If TLO static analysis is used (Section 3.6), Ditto further ignores accesses to fields

identified as thread-local. Though not implemented, it would be trivial to include the option

of overriding the default ignored packages. This could be beneficial to locate bugs thought to

be triggered inside the Java API classes, for example.

Thread lifetime Ditto must intercept the creation and termination of threads. Three hooks are

introduced in the start method of the RVMThread class to intercept thread creation: (i) thread
before start, triggered before the native thread is launched; (ii) thread before start after id, triggered

after the thread has been assigned a replay identifier; and (iii) thread after start, triggered after

the native thread has been launched. The first and last hooks are used to enter and exit a critical

58 CHAPTER 4. IMPLEMENTATION DETAILS

section that keeps replay identifiers unique, while the second is used to perform thread state

initialization that requires the replay identifier to be known. Thread termination is intercepted

by a hook in the RVMThread.terminate method, right before the Java runtime is notified of

the thread’s death. Ditto uses this hook at record-time to complete the trace of the thread by

dumping its trace memory buffers to disk.

Synchronization: Monitors Monitor acquisitions can occur in three different contexts. The

first are acquisitions performed directly by the application through a synchronized method or

block, implemented by having the compiler insert calls to a method inside the VM that per-

forms the lock operation. When such an acquisition is to be traced, Ditto simply replaces the

target of that call at compile-time, pointing it to a wrapper method responsible for tracing the

event. The second are acquisitions performed by the VM during the execution of synchro-

nization methods, such as wait and suspend, which Ditto traces using hooks in those same

methods. To avoid doing runtime tests, Ditto has the compiler produce code that activates a

flag right before each call to a synchronization method that is to be traced. The third and last

are acquisitions performed by native code, which Ditto intercepts through a hook in the VM

method that implements the corresponding JNI call. Since the VM does not compile native

code, we were unable to avoid performing a runtime test for each JNI monitor acquisition that

inspects the stack to decide whether or not to trace the event.

Shared Memory Accesses During method compilation, accesses to shared memory are

wrapped in two calls, one before and one after, to methods that trace the operation. This

instrumentation is performed after HIR optimizations have been executed on the method, al-

lowing Ditto to take advantage of optimizations that remove object, array or static field ac-

cesses. Such optimizations include common sub-expression elimination, object/array replace-

ment with scalar variables using escape analysis, among others.

4.2.2 Thread, Object and Field State

The thread state required by Ditto is kept in the RVMThread objects and initialized when the

corresponding thread is created, using the thread lifetime hooks. Keeping object and field state

is a more challenging issue. We use a section of the object header reserved by Jikes RVM for

extensions to store a reference to a state object, which includes the instance’s state and that of its

fields. The reference on its own introduces a memory overhead of one word per instance. The

object scanning mechanism of the GC was modified so that this new reference in the header is

checked and the state marked as a live object. This approach allows us to keep state for as long

as the corresponding object is alive, but no longer than that. State creation and initialization is

performed on-demand, in order to avoid unnecessary memory consumption.

4.3. WAIT AND NOTIFY MECHANISM 59

4.2.3 Handling Deadlocks

Ditto requires the trace file to be complete once the execution is over in order to replay it. When

the execution ends up in a deadlock state, the JVM will never exit and, as a result, the trace

file may not be finished, as memory buffers are not dumped to disk. This problem is solved

by adding a signal handler to JikesRVM which intercepts SIGUSR1 signals and instructs the

replay system to finish the trace file. The user is responsible for sending the signal to the JVM

before killing its process if a deadlock is thought to have been reached.

4.3 Wait and Notify Mechanism

During execution replay, threads are constantly testing whether their next event of interest can

be performed. When the conditions for advancement do not hold true, the thread is forced to

wait. Hence, the mechanism through which they wait and are later notified of state changes is

a very significant implementation detail. Algorithms 3.4, 3.5 and 3.6 were presented in Section

3.3 as the ones used to handle each one of the three types of events of interest: loads, stores

and monitor acquisitions. In these, threads wait on the field or object whose current state is

keeping them from proceeding and are notified every time the same state is modified. Once

notified, threads have to re-evaluate the conditions they require to advance and, if these remain

unmet, go back to waiting for further state changes. This is the simplest approach, but notifying

all waiting threads every time a state is modified leads to a bottleneck when they compete to

reacquire the field’s (or object’s) associated monitor. In practice, Ditto uses a much more refined

solution.

The replay-time states of fields and objects are augmented with a table, which we refer to

as the wait table. It is indexed using keys of three types: (i) load keys, used by load operations

to wait for a specific store clock; (ii) store keys, used by store operations to wait for a specific

combination of store clock and load count; and (iii) synchronization keys, used by monitor

acquisitions to wait for a specific synchronization clock. Let us use an example to demonstrate

the mechanism. A thread Ti attempts to perform a load operation on a field f , but finds that f ’s

store clock is lower than its target store clock, i.e., the value to be loaded is yet to be stored in

the field. Ti then creates a load key using the target store clock tsc and adds a new entry to the

wait table using the key as both index and value. Ti then invokes wait on the key. By having

the key classes implement custom hashcode and equals methods whose return values are

based on the contents of the key, other threads are able to create their own keys and index the

wait table to find threads waiting for a very specific state. Going back to our example, a thread

Tj might come along and perform a store operation on f which updates its store clock to tsc.

Tj creates a load key with tsc as the store clock and a store key with tsc as the store clock and

0 as the load count. It indexes the wait table using both keys and finds that there is a value in

60 CHAPTER 4. IMPLEMENTATION DETAILS

Metadata
bits

Value type

00 Positive clock increments
and load counts01

10 Free runs

11 Negative clock increments

Table 4.1: Distribution of metadata bits per value type.

it for the load key. This implies that at least one thread is waiting for the store clock to become

tsc in order to perform a load operation and, indeed, Ti is that thread. Tj invokes notifyAll

on the key retrieved from the table, allowing Ti to verify that f ’s store clock is now at the right

value and proceed with the load.

An additional technique used to reduce the amount of overhead imposed by repeated calls

to wait and notifyAll is to have threads perform a processor yield the first time the require-

ments for advancement test negative. Only after regaining the processor and again negatively

evaluating the requirements for advancement do threads actually perform a wait invocation.

Given that memory accesses are performed quite regularly, there is a high chance that the con-

ditions for advancement will be met until the thread regains the processor after having yielded

it. This mechanism could probably still be improved upon by using more complex polling

techniques usually employed by I/O devices.

4.4 Trace File

4.4.1 Metadata

A critical issue that affects the trace file size is the way different kinds of values are encoded.

As described in Section 3.8, the trace is organized as a set of order constraint streams, one for

each thread. The streams themselves are easily identified using the table chunks and intra-file

pointers. Structuring the streams is another challenge. Given the way Ditto records executions

(Section 3.3) and the logical clock value optimization (Section 3.8.2), we need ways to encode

the following types of values: (i) clock increment values; (ii) free run values; and (iii) load count

values. Furthermore, as the clock value optimization does not provide us with an upper limit

on how large a clock increment can be, the number of bytes used to store each value is flexible,

requiring the introduction of a mechanism to encode that information as well.

Encoding the three different kinds of values is achieved by using the two most significant

bits of each value as identification metadata. Table 4.1 shows how these metadata bits are used.

Since two bits can encode four states but we only require three, the two states corresponding

4.5. MEMORY MANAGEMENT 61

to a most significant bit of zero are grouped together to represent positive clock increments

and load counts. The choice to take space from the negative increments to use as free runs is

not arbitrary, as we expect most clock increments to be positive due to the inherent monotonic

increase of logical clocks.

Representing the size of values is a different issue. For one, at least two bits are needed

to encode the possible sizes for values that we consider – 1, 2, 4 or 8 bytes. Storing this in-

formation as additional metadata for each value would total four metadata bits, leading to a

crippling reduction of the value range that each entry can represent. Furthermore, it is usual

for consecutive values to have equal size, leading to a lot of redundant information if the size is

declared for each individual entry. Taking these observations into consideration, we introduce

meta-values to the streams which encode the size of values that follow them and how many

they are. These meta-values take up two bytes, but our experiments show that their number is

insignificant in comparison to the total number of values stored, allowing for very significant

trace file size reductions.

4.4.2 Writer Thread

Having reasoned in favor of a single-file trace file in Section 3.8, we set off to optimize I/O

operations and minimize the amount of time threads spend waiting for them to complete. To

achieve this goal, a daemon thread was added to Ditto, whose sole purpose is to write trace

buffers to disk. Additionally, application threads are given two trace memory buffers. When

one becomes full, it is given to the writer thread, while the application thread is free to continue

executing and filling the second buffer. In most cases, the former buffer is written to disk faster

than the latter is filled; a situation in which application threads do not have to wait for I/O at

all.

4.5 Memory Management

A small memory footprint was a significant design driver for our implementation of Ditto. In

this section we discuss the practical aspects of memory management; the theoretical memory

requirements have been progressively stated throughout Chapter 3. Our highest priority was

to have Ditto’s memory consumption be constant in regards to the execution time, i.e., memory

usage should only increase with new threads or objects. We achieve this by recycling the objects

used by Ditto’s internal mechanisms, avoiding the creation of instances unless the number of

threads or objects has grown. Not only does this reduce the memory footprint of Ditto, but it

also reduces overhead associated with object creation and garbage collection processes.

Another key issue regarding memory is the management of trace buffers. Ditto creates

62 CHAPTER 4. IMPLEMENTATION DETAILS

trace streams for each thread, which means buffers are associated with threads. The first benefit

of this is that there is a low upper limit on how much memory can be spent with trace buffers,

since the maximum number of simultaneously running threads is small. A second benefit

is that it is easy to place hooks at key moments of a thread’s lifetime, allowing us to easily

initialize thread state and dump the trace buffer when a thread terminates. This is not as easy

to do when buffers are associated with class fields, as they are in LEAP [20], or if we were to

associate trace streams with each instance field. The size of trace buffers can also be subject to

optimization. On the one hand, we want them to be large enough that it takes the application

more time to fill one than it takes for the writer thread to dump the previous one to disk. On the

other hand, buffers size should be minimized due to the fact that the writer thread mechanism

uses two buffers per thread. The size of each buffer can be specified through a command line

argument.

4.6 Consistent Thread Identi�ers

The consistent thread identifiers assigned by Ditto to application threads are attributed in a

sequential manner. For applications that spawn a high amount of threads the values of iden-

tifiers may grow large. As such, we store identifiers using 4 to 8 bytes. For Ditto, this is not

very problematic, as thread identifiers are only stored once in the trace file, inside one of the

chunk tables. For recorders whose trace is composed of thread identifiers, such as DejaVu or

LEAP, the size of identifiers is more important. Though our implementation does not do so,

it would be possible to recycle replay identifiers in the same way the Java API recycles iden-

tifiers of dead threads. This optimization would place an upper limit on the possible value of

an identifier, namely the maximum number of threads that the JVM can run concurrently. The

identifiers could then be stored using significantly less space.

4.7 Modifying the Original Application

Debugging methodologies like cyclic debugging are based on performing multiple iterations

of the faulty program in hopes of making observations that would allow the programmer to

reduce the set of possible causes for the fault at hand. Many times, the process of information

gathering relies on the introduction of new statements into the program which allow the pro-

grammer to take a glimpse of program state which was not observable before. At first glance,

this way of debugging seems to be incompatible with Ditto’s requirement that the stream of

events of interest not change between recording and replaying, though it is not.

The metadata provided by the JVM environment about program structure enables us to

avoid monitoring events of interest generated in certain parts of the application. There are

4.7. MODIFYING THE ORIGINAL APPLICATION 63

many ways in which a user may modify the target application and instruct Ditto to ignore

events of interest that originate from those modifications. Events generated within methods can

be ignored either by specifying method signatures as a command line parameter or by adding

an annotation to the methods. Since method invocations are not monitored, this technique

allows for arbitrary execution of code without changing the stream of events handled by Ditto.

These two techniques can also be used to ignore events whose target is a specific class field,

instead of events generated during the execution of specific methods. Extending the scope of

command line parameters and annotations from method and field level to class or package

level is also a possibility. All events associated with fields and generated by methods of the

specified class or classes of the specified package are ignored by Ditto.

64 CHAPTER 4. IMPLEMENTATION DETAILS

5Evaluation
This chapter describes the evaluation process to which Ditto was subjected and reports on its

results.

5.1 Evaluation Methodology

We evaluate Ditto by assessing its ability to correctly replay recorded executions and by mea-

suring its performance in terms of record overhead, replay overhead and trace file size. Though

comparing performance results with those of previous approaches is very beneficial to un-

derstand how well Ditto performs, doing so based solely on their corresponding publications

would be nearly impossible. To bypass this problem, we implemented three previous pub-

lished solutions to replaying Java applications inside JikesRVM, using the same runtime hooks

and other facilities used by Ditto itself. These are: (a) DejaVu [8], a global-order replayer;

(b) JaRec [16], a partial-order, Lamport clock-based replayer; and (c) LEAP [20], a partial-order,

access vector-based replayer. DejaVu and JaRec were originally designed to replay synchro-

nization races in uni-processor or data-race-free settings. Thus, we extend their approaches to

trace every shared-memory access. We followed the respective publications as closely as pos-

sible and, in some aspects, improvements were even introduced. Indeed, DejaVu and JaRec

are allowed to take advantage of the TLO static analysis just like Ditto and LEAP. Moreover,

our implementation of LEAP actually follows its publication better than the publicly available

version, which neglects to regularly dump the trace to disk, compress simultaneous accesses to

a field by the same thread, or even wrapping memory accesses and their corresponding trace

operation in a critical section.

We start, in Section 5.2, by assessing the correctness of the replayed executions using both a

highly non-deterministic microbenchmark and a number of applications from the IBM Concur-

rency Testing Repository 1 which, between themselves, exhibit various concurrent bug patterns

[13, 14]. This is followed, in Section 5.3, by a thorough comparison between Ditto’s runtime per-

formance characteristics and those of the other implemented approaches. The results are gath-

ered by performing a microbenchmark and running select applications from the Java Grande

and DaCapo benchmarks. Even though the DaCapo benchmark consists of real-world appli-

1https://qp.research.ibm.com/concurrency_testing

https://qp.research.ibm.com/ concurrency_testing

66 CHAPTER 5. EVALUATION

cations, we planned to further evaluate the overhead imposed by Ditto on actual programs

publicly available on the Internet. Unfortunately, the combined limitations of JikesRVM, the

GNU Classpath, and our own system, made it impossible to run most of these on top of Ditto.

Experiments were conducted on a 8-core 3.40Ghz Intel i7 machine with 12GB of primary

memory and running 64-bit Linux 3.2.0. Results for variable number of processors were ob-

tained using the same machine by limiting the JikesRVM process to a subset of cores.

5.2 Replay Correctness

Even though the correctness of replayed executions is of the utmost importance, deciding

whether an execution is a correct replay of another depends on how faithfully we want to re-

produce it. As such, in section 5.2.1, we start by defining what replay correctness means in the

context of our work. Only then do we assess whether Ditto can faithfully replay executions by

attempting to reproduce (1) a highly erratic, non-deterministic microbenchmark (Section 5.2.2);

and (2) the bugs exhibited by a collection of applications from the IBM Concurrency Testing

Repository [13] (Section 5.2.3).

5.2.1 Defining Replay Correctness

With the exception of some hardware-based solutions [51, 31], most deterministic replayers do

not attempt to reproduce executions to the highest possible level of fidelity. In fact, probabilistic

approaches, by their very definition, have to relax their fidelity guarantees. For instance, a

replay performed by ODR [4] is only guaranteed to generate the same output as the original,

while one performed by PRES [37] is considered faithful if the recorded fault reoccurs, even if

the execution deviates from the original in other ways. Non-probabilistic approaches, on the

other hand, tend to allow replayed executions to deviate from the originals only during those

periods in which tasks do not modify shared program state. This means that, during replay,

the shared state is forced through the transitions it experienced during recording, while the

collection of task local states is allowed to go through different transitions.

Ditto was developed with the latter fidelity guarantee in mind. As a result, a replay ex-

ecution is considered correct if and only if the shared program state goes through the same

transitions as it did during recording.

5.2.2 Microbenchmark

The main design driver for our microbenchmark is to produce a highly erratic and non-

deterministic output, so that we can confirm the correctness of replay with a high degree of

5.2. REPLAY CORRECTNESS 67

Application Bug Pattern

Account Wrong Lock or No Lock
Airline Tickets Non-atomic Operation
Booking Non-atomic Operation
Bounded Buffer notify instead of notifyAll, Deadlock
Bubble Sort Non-atomic Operation, Orphaned Thread
Linked List Non-atomic Operation
Liveness Dormancy, Lost notify
Loader sleep Interleaving
Lottery Non-atomic Operation, Wrong Lock or No Lock
Manager Non-atomic Operation
Merge Sort Non-atomic Operation
Pingpong Wrong Lock or No Lock
Piper Condition for wait, Deadlock
Producer Consumer Orphaned Thread
Shop sleep Interleaving, Double-checked Locking

Table 5.1: Summary of evaluated applications from the IBM Concurrency Testing Repository

assurance. We accomplish this by having threads randomly increment multiple shared coun-

ters without any kind of synchronization and using the final counter values as the output.

Various parameters can be specified, such as the number of threads, number of iterations and

number of shared counters. The microbenchmark’s source code is available online2.

After a few iterations, the final counter values are completely unpredictable due to the non-

atomic nature of the increments. Naively re-executing the benchmark in hopes of getting the

same output will prove unsuccessful virtually every time. On the contrary, by using Ditto, one

is able to reproduce the final counter values every single time, even when stressing the system

by providing high parameter values for number of threads and iterations.

5.2.3 IBM Concurrency Testing Repository

The IBM Concurrency Testing Repository contains a number of small applications that exhibit

various concurrent bug patterns while performing some practical task. The next few para-

graphs describe the functionality and bugs of a representative subset of applications in the

benchmark suite we used to evaluate Ditto. Table 5.1 summarizes the whole suite by listing

every evaluated application along with the concurrent bug pattern they exhibit, which are for-

mally defined in [14].

Account Functionality. Simulates a bank; each thread manages accounts by depositing, with-

drawing and transferring money. Bug. Methods are synchronized, but when transferring from

2https://github.com/gdeOo/ditto

https://github.com/gdeOo/ditto

68 CHAPTER 5. EVALUATION

account A to account B, only A’s monitor is acquired. An example of the Wrong Lock bug

pattern.

Airline Tickets Functionality. Threads act as agents that sell airline tickets. Like in the real

world, the amount of tickets distributed between agents is larger than the total number of

actual seats. Thus, before selling a ticket, the agent must make sure that there are still seats

available by communicating with a central point. Bug. Due to wrong atomicity assumptions,

the last ticket can end up being sold to multiple clients by different agents. An example of the

Non-atomic Operation pattern.

Bounded Buffer Functionality. A buffer is shared between multiple consumer and producer

threads, which may have to wait in a queue if the buffer is empty or full, respectively. Bug.
Consumers and producers share the same wait queue, but notify is used to wake them. If,

for example, a producer fills the buffer’s last spot and notifies another producer by chance, the

application deadlocks. An example of the notify instead of notifyAll bug pattern.

Liveness Functionality. A server deals with a limited number of concurrent client requests.

Additional clients wait in a queue and are notified once server slots are available. Bug. The

server may finish dealing with all its clients and issue a notify before a to-be-waiting client

actually calls wait, but after it has decided to do so. An example of the Lost notify and

Dormancy bug patterns.

Loader Functionality. Performs bubble sort on a list of integers, with each iteration being

performed by a different thread. Bug. The initialization of child threads issues a sleep which

is believed to always produce the expected interleaving: the parent completes its task before

the child starts its own. An example of the sleep Interleaving bug pattern.

Piper Functionality. Passengers, represented by threads, try to enter a plane. If the plane is

full, they wait in a queue until a notifyAll awakens them. Bug. The wait call is wrapped

in an if statement instead of a while statement. As such, if there are more passengers in the

queue than there are seats, some of the awaken passengers won’t have an available seat, but

they won’t go back to the queue either. An example of the Condition for wait bug pattern.

Producer Consumer Functionality. A master threads assigns work to slave threads through a

bounded buffer. Bug. A local slave bug can make the queue inconsistent and crash the master,

leaving all the other slaves waiting forever and deadlocking the system. An example of the

Orphaned Thread bug pattern.

Results

Ditto is capable of correctly reproducing each and every of the bugs exhibited by the applica-

tions in Table 5.1. Although these do not constitute the whole benchmark suite, they do amount

5.3. PERFORMANCE RESULTS 69

2 4 8 16 32 64
0.25

1

4

16

64

256

1024

Number of Threads

R
ec

or
d

Ti
m

e
(s

)

Ditto Global JaRec LEAP Baseline

2 4 8 16 32 64
0

500

1000

Number of Threads

Tr
ac

e
Fi

le
Si

ze
(M

B)

2 4 8 16 32 64

0.25
1
4

16
64

256
1024
8192

Number of Threads

R
ep

la
y

Ti
m

e
(s

)

Figure 5.1: Microbenchmark’s performance results for Ditto and previous replayers as a func-
tion of the number of threads.

to the subset of the suite which does not rely on input for bugs to manifest and is compatible

with JikesRVM, the vast majority. Since any program state transitions triggered by specific in-

put, such as the results of a random number generator, are outside the scope of Ditto, we can

safely assert that it successfully replayed every bug in the IBM Concurrency Testing Repository

which is triggered by memory non-determinism.

5.3 Performance Results

Having asserted Ditto’s capability to correctly replay many kinds of concurrent bug patterns,

we set off to evaluate its performance by measuring record overhead, trace file size and re-

play overhead. To put the resulting experimental results in perspective, we use the same per-

formance indicators to evaluate three previous approaches that represent the state-of-the-art

deterministic replay techniques for Java programs – DejaVu, JaRec and LEAP, as detailed in

Section 5.1. To start with, we perform a flexible microbenchmark that provides us with a very

clear picture of how Ditto performs in relation to the other replayers across multiple axes. The

ensuing results are presented in Section 5.3.1. In addition, we measure recording overhead

and trace file size for executions of benchmark applications from the Java Grande and DaCapo

suites, the results of which are reported in Sections 5.3.2 and 5.3.3, respectively.

70 CHAPTER 5. EVALUATION

0 2.5 · 106 5 · 106 7.5 · 106 10 · 106
0.25

1

4

16

64

256

Number of Operations p/ Thread

R
ec

or
d

Ti
m

e
(s

)

Ditto Global JaRec LEAP Baseline

0 2.5 · 106 5 · 106 7.5 · 106 10 · 106
0

200

400

600

800

Number of Operations p/ Thread

Tr
ac

e
Fi

le
Si

ze
(M

B)

0 2.5 · 106 5 · 106 7.5 · 106 10 · 106
0.25

1

4

16

64

256

1024

Number of Operations p/ Thread

R
ep

la
y

Ti
m

e
(s

)

Figure 5.2: Microbenchmark’s performance results for Ditto and previous replayers as a func-
tion of the number of memory access operations performed by each thread.

5.3.1 Microbenchmark

For this evaluation step we return to the microbenchmark used to assess replay correctness

in Section 5.2.2. The benchmark achieves very high non-determinism by having threads con-

currently access random fields of random counter objects in a non-synchronized manner. This

time, however, we use five input parameters to modify the benchmark’s properties in a con-

trolled manner, namely (i) number of threads; (ii) number of memory access operations per-

formed by each thread; (iii) load:store ratio; (iv) number of fields per shared object; and

(v) number of shared objects. This allows us to analyze how different application properties

are reflected in the performance of each replayer.

In the next few sections we report on how each replayer performs along these axes using

a collection of plots depicting their record execution time, trace file size and replay execution

time. Note that execution time plots use logarithmic scales due to order-of-magnitude-sized

differences between replayers. Finally, we evaluate how performance scales with the number

of processors by limiting the VM’s process to a subset of available CPUs.

5.3. PERFORMANCE RESULTS 71

1:1 2:1 4:1 8:1 16:1 32:1

0.5
1
2
4
8

16
32
64

Load:Store Ratio

R
ec

or
d

Ti
m

e
(s

)

Ditto Global JaRec LEAP Baseline

1:1 2:1 4:1 8:1 16:1 32:1
0

50

100

150

200

Load:Store Ratio

Tr
ac

e
Fi

le
Si

ze
(M

B)

1:1 2:1 4:1 8:1 16:1 32:1
0.25

1

4

16

64

256

Load:Store Ratio

R
ep

la
y

Ti
m

e
(s

)

Figure 5.3: Microbenchmark’s performance results for Ditto and previous replayers as a func-
tion of the load:store ratio.

5.3.1.1 Effect of the Number of Threads

The performance results for each recorder in function of the number of threads are depicted in

Figure 5.1. Record execution times grow linearly with the number of threads, but Ditto out-

performs its competitors in terms of absolute values by at least one order of magnitude. A

similar trend is observed in replay execution time measurements, though Ditto’s advantage

increases to two orders of magnitude and LEAP behaves in an exponential manner. As for

trace file sizes, Ditto stays below 200Mb while no other replayer comes under 500Mb, with the

maximum being achieved by LEAP at around 1.5Gb.

5.3.1.2 Effect of the Number of Memory Access Operations

All algorithms increase the record overhead, replay overhead and trace file size linearly with

the number of operations performed by each thread. We believe this result can be attributed to

two factors: (i) none of the algorithms keeps state whose complexity increases over time, and

(ii) our conscious effort during implementation to keep memory usage constant by avoiding

unnecessary garbage collections and object creations. Though all replayers react in the same

way, Ditto is superior in terms of absolute values, having better efficiency in the record phase

by at least an order of magnitude, in the replay phase by two orders of magnitude, and a

trace file size substantially smaller than the competing approaches. Figure 5.2 presents the

72 CHAPTER 5. EVALUATION

1 2 4 8 16

0.5
1
2
4
8

16
32
64

Number of Fields
R

ec
or

d
Ti

m
e

(s
)

Ditto Global JaRec LEAP Baseline

1 2 4 8 16
0

50

100

150

200

Number of Fields

Tr
ac

e
Fi

le
Si

ze
(M

B)

1 2 4 8 16
0.25

1

4

16

64

256

Number of Fields

R
ep

la
y

Ti
m

e
(s

)

Figure 5.4: Microbenchmark’s performance results for Ditto and previous replayers as a func-
tion of the number of fields of shared objects.

measurements supporting these observations.

5.3.1.3 Effect of the Load:Store Ratio

Ditto is the only evaluated replayer that claims to take advantage of the different semantics

of load and store memory access operations. As such, we expect it to be the only replayer to

positively react in the presence of a higher load:store ratio. The experimental results shown in

Figure 5.3 are consistent with these expectations. As the ratio increases, Ditto’s record execution

time, trace file size and replay execution time consistently decrease, with the most significant

improvement being in terms of trace file size. The remaining replayers react to a higher ratio

either in a negative or neutral way. Furthermore, Ditto remains superior in terms of absolute

values for execution times by multiple orders of magnitude.

5.3.1.4 Effect of the Number of Fields of Shared Objects

The amount of fields of shared objects is relevant for replayers that trace at such granularity.

Of the four evaluated replayers, only LEAP and Ditto have this property. Thus, we expect both

of these to improve their performance as the number of fields increases. Figure 5.4 shows the

measurements of our experiments, which are consistent with these expectations. In terms of

execution times, both LEAP and Ditto take advantage of a higher number of fields, though,

5.3. PERFORMANCE RESULTS 73

1 2 4 8 16 32 64 128 256 5121024

0.5

1

2

4

8

16

32

64

Number of Shared Objects

R
ec

or
d

Ti
m

e
(s

)

Ditto Global JaRec LEAP Baseline

1 2 4 8 16 32 64 128 256 5121024
0

50

100

150

200

Number of Shared Objects

Tr
ac

e
Fi

le
Si

ze
(M

B)

1 2 4 8 16 32 64 128 256 5121024
0.25

1

4

16

64

256

Number of Shared Objects

R
ep

la
y

Ti
m

e
(s

)

Figure 5.5: Microbenchmark’s performance results for Ditto and previous replayers as a func-
tion of the number of shared objects.

surprisingly, LEAP increases its trace file size, a behavior we believe is a direct result of the

access vector approach to tracing. Ditto’s absolute execution times remain the lowest by over

one order of magnitude in both recording and replaying phases.

5.3.1.5 Effect of the Number of Shared Objects

Figure 5.5 shows performance results as a function of the number of shared objects. This is

the only application property along whose axis Ditto is overtaken by one of the competing

replayers. Though both Ditto and JaRec take advantage of the number of shared objects to

lower record overhead, JaRec manages to acquire the position for most efficient recorder past

the 64 object mark. The exact same result is observed in the trace file size measurements. In

terms of replay execution time, however, JaRec returns to the usual high overheads while Ditto

positively reflects the increase in number of objects. As expected, the global order and LEAP

replayers are not affected by the change in the amount of objects, as none differentiates between

different instances.

74 CHAPTER 5. EVALUATION

1 2 4 8
0.5
1
2
4
8

16
32
64

128

Number of Processors
R

ec
or

d
Ti

m
e

(s
)

Ditto Global JaRec LEAP Baseline

1 2 4 8
0

100

200

300

400

Number of Processors

Tr
ac

e
Fi

le
Si

ze
(M

B)

1 2 4 8

1

4

16

64

256

1024

Number of Processors

R
ep

la
y

Ti
m

e
(s

)

Figure 5.6: Microbenchmark’s performance results for Ditto and previous replayers as a func-
tion of the number of processors.

5.3.1.6 Effect of the Number of Processors

By limiting the JikesRVM process to a subset of processors in our 8-core test machine, we pro-

duced the performance results depicted in Figure 5.6, which show how each replayer deals

with a growing number of processors and, as a consequence, parallelism. Ditto is the only al-

gorithm that lowers its record execution time as the number of processors increases, promising

increased scalability to future deployments and applications in production environments. Ad-

ditionally, though the traces it generates grow very slightly in size as we increase the amount

of processors, they are smaller than those of other recorders. The replay execution time also

increases slightly with the number of processors, but Ditto is still three orders of magnitude

more efficient than the second best replayer at the 8 processor mark.

5.3.1.7 Trace File Compression

Trace files generated by Ditto can benefit greatly from compression algorithms to reduce their

size. Table 5.2 summarizes the result of using gzip3 to compress the trace files created during

the microbenchmark experiments. The compression rates are quite high, averaging 41.8%.

3http://www.gzip.org/

http://www.gzip.org/

5.3. PERFORMANCE RESULTS 75

Trace file compression rate

Average Std. Dev. Minimum Maximum

41.8% 7.0% 30.1% 64.1%

Table 5.2: Trace file compression rates across the microbenchmark experiments.

2 4 8 16 32 64

80

90

100

Number of Threads

Tr
ac

e
Fi

le
R

ed
uc

ti
on

(%
)

Program order only Program order & partial TR

2 4 8 16 32 64

0

100

200

Number of Threads

R
ep

la
y

Sp
ee

du
p

(%
)

2 4 8 16 32 64

100

200

300

400

Number of Threads

R
ec

or
d

Sp
ee

du
p

(%
)

Figure 5.7: Effects of Ditto’s pruning algorithm on perfomance.

5.3.1.8 Effects of the pruning algorithm

To demonstrate the potential benefits of Ditto’s pruning algorithm, we changed the bench-

mark’s random access pattern to a more sequential pattern in which each thread is responsible

for a portion of counters that overlaps with the portions of two other threads. We then measure

the trace file reduction, record-time speedup and replay-time speedup of Ditto when using pro-

gram order pruning only and program order pruning plus partial transitive reduction. Figure

5.7 presents the experimental results thereof. Program order pruning alone is enough to reduce

trace file size by 78.3 to 99.1%. The combination of program order pruning and partial transi-

tive reduction reduces the trace file size by 81.6 to 99.8%. With reductions of this magnitude,

instead of seeing increased execution times, we actually observe significant drops in overhead,

due to the avoided tracing efforts. The observed drop in speedup between 32 and 64 threads

seems to be caused by the combination of the memory access pattern of the benchmark and the

fact that the number of shared objects is also 64, as the recording time and trace file size are

76 CHAPTER 5. EVALUATION

MolDyn from Java Grande

of
Threads

Recorder

None Ditto Global JaRec LEAP

Record Execution Time (s)
2 0.740 17.108 59.718 21.518 >28.248*
4 0.447 11.402 168.904 13.051 >28.389*
8 0.404 11.840 >733.649* 16.106 >56.381*

Record Overhead
2 N/A 2212% 7970% 2808% >3817%*
4 N/A 2451% 37686% 2820% >6351%*
8 N/A 2831% >181596%* 3887% >13956%*

Trace File Size
2 N/A 42 KB 80 MB 8 MB >2 GB*
4 N/A 98 KB 514 MB 118 MB >2 GB*
8 N/A 239 KB >2 GB* 188 MB >2 GB*

* Current implementation cannot deal with trace files over 2 GB.

Table 5.3: Record-time performance results for the MolDyn benchmark of the Java Grande
suite.

both larger in the 32 thread measurement.

If the application uses a random shared memory access pattern, the benefits are not as

visible. Sometimes the additional overhead caused by the maintenance of extra state required

by the pruning algorithm is actually not worth the small trace file reductions. As an example,

when recording the random access microbenchmark with 8 shared objects and 64 threads, the

pruning algorithm incurs 15.2% extra overhead and only achieves a reduction in of 6.4% in

trace file size. However, simply increasing the shared objects to 64 changes the picture to 2.7%

additional overhead and a 24.0% file size reduction. We believe this risk of extra overhead for

little benefit is well worth the potential benefits shown in Figure 5.7

5.3.2 Java Grande Benchmark

The Java Grande benchmark suite4 contains so-called ”Grande” applications – ones with large

requirements in either memory, bandwidth or processing power [46]. The multi-threaded ver-

sion of the suite, designed for parallel execution on shared memory multi-processors, is com-

posed of multi-threaded versions of a subset of the benchmarks in the sequential version. In

practice, there are three large scale concurrent applications, all of which are highly computation

intensive: (a) MolDyn, a molecular dynamics simulation; (b) MonteCarlo, a monte carlo simu-

lation; and (c) RayTracer, a 3D ray tracer. The purpose of using the Java Grande benchmarks

is measuring the record overhead and size of trace files produced by Ditto in comparison with

previous recording algorithms.

MolDyn The benchmark performs a simulation of the interactions between a number of par-

ticles. The simulation is computationally intense when calculating the forces acting on each
4http://www.epcc.ed.ac.uk/research/java-grande

http://www.epcc.ed.ac.uk/research/java-grande

5.3. PERFORMANCE RESULTS 77

particle, which involves an outer loop over all particles and an inner loop over a subset of

them. The iterations of the outer loop are performed by different threads.

Table 5.3 reports on the performance results obtained by Ditto and the other recorders

(Global, JaRec and LEAP) when recording executions of MolDyn. Ditto manages to obtain the

best results in terms of overhead, though it remains still too excessive for production environ-

ments in such computationally intensive scenarios. Ditto is also the recorder that creates the

smaller trace file, which is almost insignificant in view of the execution time, indicating that

most monitored memory accesses were actually not involved in inter-thread interactions. We

consider that this result highlights an opportunity for future work: a better may-happen-in-

parallel static analysis may be able to further reduce the subset of instructions that are moni-

tored and, as a result, improve recording overhead. Another interesting result is the enormous

difference between the insignificant trace file sizes produced by Ditto and the ones produced

by the Global and LEAP approaches. Due to a current limitation of our recorder implementa-

tions, the trace file size is limited to 2 GB, as Java integers are used as position pointers by some

classes in the java.nio package. which is always surpassed by LEAP independently of the

number of threads, keeping us from materializing its record execution time. Nonetheless, we

present the lower bound on that time – the moment the trace reaches 2 GB.

MonteCarlo The benchmark performs a financial simulation, using multiple monte carlo it-

erations to price products. The monte carlo iterations can be attributed to different threads

and run concurrently. The record-time performance results of the various recorders for execu-

tions of MonteCarlo are listed in Table 5.4. The record overheads for this benchmark are a lot

lower than for MolDyn, but remain above 100%, with Ditto again taking the lead. The Global

and LEAP recorders generate large traces, while Ditto and JaRec do not. The result indicates

that there are few inter-thread interactions, again suggesting the usefulness of a better static

analysis algorithm.

RayTracer This benchmark runs a 3D ray tracer algorithm over a scene. Parallelism is, again,

obtained by splitting the outermost loop iterations over multiple threads. Table 5.5 shows the

performance results obtained by each recorder, which are very similar to those obtained for the

MolDyn benchmark, though with higher overall record overheads. Once again, Ditto generates

immensely small trace files, even though its recording overhead is greater than 4000%. We

witness that most monitored memory accesses are not involved in inter-thread interactions.

5.3.3 DaCapo Benchmark

The DaCapo benchmark suite5 consists of a set of open source, real world applications with

non-trivial memory loads [6]. Many are concurrent, exhibiting different levels of inter-thread

5http://dacapobench.org

http://dacapobench.org

78 CHAPTER 5. EVALUATION

MonteCarlo from Java Grande

of
Threads

Recorder

None Ditto Global JaRec LEAP

Record Execution Time (s)
2 1.325 4.352 11.646 4.619 9.176
4 0.783 3.002 23.872 3.072 13.031
8 0.559 2.741 445.383 2.852 57.510

Record Overhead
2 N/A 228% 779% 249% 593%
4 N/A 283% 2949% 292% 1564%
8 N/A 390% 79575% 410% 10188%

Trace File Size
2 N/A 127 KB 56 MB 0.12 KB 97 MB
4 N/A 208 KB 139 MB 0.21 KB 144 MB
8 N/A 248 KB 1273 MB 0.39 KB 336 MB

Table 5.4: Record-time performance results for the MonteCarlo benchmark of the Java Grande
suite.

RayTracer from Java Grande

of
Threads

Recorder

None Ditto Global JaRec LEAP

Record Execution Time (s)
2 0.923 49.817 118.342 46.837 >31.007*
4 0.544 24.899 327.427 25.123 >31,880*
8 0.443 21.391 >730.406* 23.466 >42.958*

Record Overhead
2 N/A 5297% 12721% 4974% >3359%*
4 N/A 4477% 60089% 4518% >5860%*
8 N/A 4729% >164877%* 5197% >9697%*

Trace File Size
2 N/A 0.76 KB 160 MB 111 KB >2 GB*
4 N/A 2.07 KB 940 MB 28 MB >2 GB*
8 N/A 4.72 KB >2 GB* 21 MB >2 GB*

* Current implementation cannot deal with trace files over 2 GB.

Table 5.5: Record-time performance results for the RayTracer benchmark of the Java Grande
suite.

interaction granularity. We evaluate the record-time performance of Ditto and the other

recorders using three applications from the 9.12-bach version of the suite. Table 5.6 summa-

rizes the results.

Lusearch The benchmark uses lucene6 to do a text search of keywords over a corpus of data

comprising the works of Shakespeare and the King James Bible. It is multithreaded and driven

by one client thread per hardware thread, requiring little interaction between threads. For

this benchmark the static analysis algorithm seems to succeed in identifying the right memory

accesses involved in thread interactions, allowing all recorders to achieve very low record over-

heads. In this low interaction application, Ditto’s higher complexity makes it the least efficient

recorder, albeit with smaller trace files and low absolute overhead. The fastest recorders are
6http://lucene.apache.org

http://lucene.apache.org

5.3. PERFORMANCE RESULTS 79

Recorder

Ditto Global JaRec LEAP

lusearch Record Overhead 4.56% 1.89% 2.26% 0.69%
Trace File Size 3 KB 288 KB 3 KB 564 KB

xalan Record Overhead 5.23% 4.52% 2.71% 2.73%
Trace File Size 6 KB 475 KB 0.2 KB 485 KB

avrora Record Overhead 378% 2771% 372% –*
Trace File Size 22 MB 565 MB 23 MB >2 GB*

* Current implementation cannot deal with trace files over 2 GB.

Table 5.6: Record-time performance results for the lusearch, xalan and avrora benchmark ap-
plications of the DaCapo suite.

Global and LEAP, though their trace files remain the largest.

Xalan An application that transforms XML documents into HTML. Multithreaded and explic-

itly driven by the number of hardware threads available, each thread taking an element from

a work queue. Interactions between threads are limited to little more than access to the work

queue. Our static analysis algorithm identifies shared fields quite well, allowing all recorders

to, once again, achieve low overheads. The results are overall very similar to those obtained

for the lusearch benchmark.

Avrora Simulates a number of programs run on a grid of AVR microcontrollers. It is driven

by a single external thread, but internally multithreaded with each simulated element using a

thread (i.e. each node in a grid of simulated nodes is threaded). Avrora demonstrates a high

volume of fine granularity interactions between simulator threads. These fine interactions lead

to record overheads which resemble those obtained when recording the Java Grande applica-

tions, with Ditto and JaRec leading in terms of efficiency. This time, however, Ditto generates

significant trace data, indicating that the monitored memory accesses were indeed used by

threads to interact with each other.

5.3.4 Discussion

From the experiments with the microbenchmark and the Contest benchmark suite described

in Section 5.2 we can safely say that Ditto’s record and replay algorithms are capable of repro-

ducing non-deterministic behaviors and many associated concurrent bug patterns. The most

interesting results, however, arise from the comparative performance evaluation of Ditto and

previous solutions, described in Section 5.3.

Firstly, the experiments with the flexible microbenchmark allow us to easily visualize and

compare the most relevant runtime characteristics of the recording and replaying algorithms

employed by each system. Overall, the results show that Ditto is superior in terms of record-

80 CHAPTER 5. EVALUATION

ing overhead, trace file size and replaying overhead across multiple dimensions of application

properties and behaviors. Though Ditto has better record-time overhead, the most significant

improvements over previous techniques are observed in the trace file size and replaying over-

head. Ditto is the most well-rounded solution, as the other recorder/replayers seem to neglect

either trace file bandwidth or replay phase efficiency in favor of lower recording overhead.

The second interesting result was obtained from the evaluation results of Ditto when

recording executions of the Java Grande benchmark suite’s applications. Though Ditto incurs

extremely high overheads, which are still lower than those imposed by the other recorders, it

generated trace files are of negligible size. This indicates that the vast majority of monitored

operations, responsible for the high overhead, are not involved in actual inter-thread interac-

tions. By itself, the reduction of the trace file is an improvement over the other recorders, but

we believe the most important thing to take from these results is an opportunity for future

work: the offline static analysis should be improved on to, somehow, correctly categorize the

memory accesses not involved in thread interactions as accessing thread local state. We believe

that the next step in deterministic replay research should be focused on effectively reducing the

amount of monitored operations, instead of new recording algorithms.

A third result we want to underline was observed when measuring performance of record-

ing executions of the DaCapo applications. In the two benchmarks that exhibited very coarse

thread interaction granularity, Ditto was the least efficient recorder, even though its absolute

overhead was quite modest still. It is our belief that this result is a consequence of Ditto’s

higher complexity in comparison with the other recorders. We argue, however, that all other

solutions have limitations that make them a worse option than Ditto, even when their record-

ing overhead is lower. To start with, the Global and LEAP recorders generate much more trace

data than Ditto and JaRec. Secondly, JaRec’s thread-focused recording can delay events for a

long time during replaying, a behavior which introduces false dependencies between threads

and can easily lead to deadlocks. Finally, the replay phase of Ditto is the one that allows for the

most concurrency and is, thus, the most faithful to the original execution.

A final and very important result is that neither Ditto nor the other evaluated replay sys-

tems are capable of providing sufficiently low overheads for every concurrent application.

From our experiments, it is clear that only coarse thread interactions can be efficiently repro-

duced. For applications with finer inter-thread interactions, we place our hopes in future work

on static analysis of parallelism.

6Conclusions
The rise of multi-processor machines in the past decade has brought on the ubiquity of concur-

rent paradigms of software development. Reasoning about concurrency does not come easy to

programmers, making programs developed under these paradigms especially prone to faults

arising from unanticipated interactions between parallel tasks. These bugs are easy to hatch,

but hard to find, as most have quite specific and rare pre-conditions. Conventional debugging

methodologies are not prepared to handle non-deterministic faults. As such, there is a need

for debugging tools capable of reproducing these faults within a reasonable amount of time,

so that developers can dedicate their time to fixing them. The value proposition of determin-

istic replayers is just that: enabling debugging methodologies that rely on fault-determinism

to be used in the context of non-deterministic concurrent programs. Though executions can be

reproduced efficiently if the program is perfectly synchronized or if it occurs on a single pro-

cessor machines, the same cannot be said for execution on multi-processors. This is the open

problem which we addressed in this thesis.

We developed Ditto, a deterministic replay system for the JVM, capable of correctly re-

playing executions of imperfectly synchronized applications on multi-processor machines. It

is based on a pair of novel execution recording and replaying algorithms that combine state-

of-the-art and original techniques to outperform previous replayers aimed at Java programs.

These techniques include (a) managing the semantic differences between load and store mem-

ory accesses to reduce trace data and increase replay concurrency; (b) serializing memory ac-

cesses at the finest possible granularity, distinguishing between distinct static, instance and ar-

ray fields; (c) using a modified version of transitive reduction to prune the trace file on-the-fly;

and (d) taking advantage of TLO static analysis, escape analysis and compiler optimizations to

reduce the amount of monitored memory accesses. Moreover, we introduce a set of trace file

optimizations that greatly lower its size.

Ditto was successfully evaluated to ascertain its capability to reproduce different concur-

rent bug patterns and highly non-deterministic executions. Its performance was compared

with that of a global-order based replayer similar to DejaVu [8], JaRec [16] and LEAP [20].

Ditto outperformed all of them in terms of record-time overhead, trace file size and replay-

time overhead across multiple application properties, namely number of threads, number of

processors, number of memory access operations, load to store ratio, number of shared objects

and number of fields per shared object. Our experiments clearly show that Ditto is the most

82 CHAPTER 6. CONCLUSIONS

well-rounded system, performing well in all three indicators, while others neglect trace file size

and/or replay overhead. Even so, Ditto’s record-time overhead is still too high for production

environments when targeting applications with fine-grained inter-thread interactions.

6.1 Future Work

It is our belief that future work should focus on creating better static analysis modules to iden-

tify static, instance and array field accesses that are involved in inter-thread interactions. This

is evidenced by the negligible amount of trace data generated by Ditto when recording execu-

tions of the Java Grande benchmark applications, even though the overhead was unreasonably

high. Such a result implies that very few inter-thread interactions actually occurred, but that

the TLO static analysis was overly conservative.

It would also be beneficial to identify thread-locality not at field level, but at individual

memory access level; a field may be involved in inter-thread interactions in some accesses, but

not in others. This may actually be possible using Soot’s implementation of TLO, but we did

not tackle this potential improvement.

Bibliography

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J.

Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R.

Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan,

and J. Whaley. The jalapeño virtual machine. IBM Syst. J., 39(1):211–238, January 2000.

[2] B. Alpern, S. Augart, S. M. Blackburn, M. Butrico, A. Cocchi, P. Cheng, J. Dolby, S. Fink,

D. Grove, M. Hind, K. S. McKinley, M. Mergen, J. E. B. Moss, T. Ngo, and V. Sarkar. The

jikes research virtual machine project: building an open-source research community. IBM
Syst. J., 44(2):399–417, January 2005.

[3] Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber, Stephen Smith, Ton Ngo,

John J. Barton, Susan Flynn Hummel, Janice C. Sheperd, and Mark Mergen. Implementing

jalapeño in java. SIGPLAN Not., 34(10):314–324, October 1999.

[4] Gautam Altekar and Ion Stoica. Odr: output-deterministic replay for multicore debug-

ging. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,

SOSP ’09, pages 193–206. ACM, 2009.

[5] David F. Bacon and Seth Copen Goldstein. Hardware-assisted replay of multiprocessor

programs. In Proceedings of the 1991 ACM/ONR workshop on Parallel and distributed debug-
ging, PADD ’91, pages 194–206. ACM, 1991.

[6] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.

McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z.

Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish

Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-

dermann. The dacapo benchmarks: java benchmarking development and analysis. SIG-
PLAN Not., 41:169–190, October 2006.

[7] Thomas C. Bressoud and Fred B. Schneider. Hypervisor-based fault tolerance. ACM Trans.
Comput. Syst., 14:80–107, February 1996.

[8] Jong-Deok Choi and Harini Srinivasan. Deterministic replay of java multithreaded appli-

cations. In Proceedings of the SIGMETRICS symposium on Parallel and distributed tools, SPDT

’98, pages 48–59. ACM, 1998.

83

84 BIBLIOGRAPHY

[9] Frank Cornelis, Andy Georges, Mark Christiaens, Michiel Ronsse, Tom Ghesquiere, and

Koen De Bosschere. A taxonomy of execution replay systems. In In Proceedings of the In-
ternational Conference on Advances in Infrastructure for Electronic Business, Education, Science,
Medicine, and Mobile Technologies on the Internet, 2003.

[10] Carl Dionne, Marc Feeley, and Jocelyn Desbiens. A taxonomy of distributed debuggers

based on execution replay. In In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, 1996.

[11] George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen.

Revirt: enabling intrusion analysis through virtual-machine logging and replay. SIGOPS
Oper. Syst. Rev., 36:211–224, December 2002.

[12] George W. Dunlap, Dominic G. Lucchetti, Michael A. Fetterman, and Peter M. Chen.

Execution replay of multiprocessor virtual machines. In Proceedings of the fourth ACM
SIGPLAN/SIGOPS international conference on Virtual execution environments, VEE ’08, pages

121–130. ACM, 2008.

[13] Yaniv Eytani, Klaus Havelund, Scott D. Stoller, and Shmuel Ur. Towards a framework and

a benchmark for testing tools for multi-threaded programs: Research articles. Concurr.
Comput. : Pract. Exper., 19(3):267–279, March 2007.

[14] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug patterns and how to test them.

In Proceedings of the 17th International Symposium on Parallel and Distributed Processing. IEEE

Computer Society, 2003.

[15] Dennis Geels, Gautam Altekar, Scott Shenker, and Ion Stoica. Replay debugging for dis-

tributed applications. In Proceedings of the annual conference on USENIX ’06 Annual Technical
Conference, pages 27–27. USENIX Association, 2006.

[16] A. Georges, M. Christiaens, M. Ronsse, and K. De Bosschere. Jarec: a portable record/re-

play environment for multi-threaded java applications. Softw. Pract. Exper., 34:523–547,

May 2004.

[17] Zhenyu Guo, Xi Wang, Jian Tang, Xuezheng Liu, Zhilei Xu, Ming Wu, M. Frans Kaashoek,

and Zheng Zhang. R2: an application-level kernel for record and replay. In Proceedings of
the 8th USENIX conference on Operating systems design and implementation, OSDI’08, pages

193–208. USENIX Association, 2008.

[18] Richard L. Halpert, Christopher J. F. Pickett, and Clark Verbrugge. Component-based

lock allocation. In Proceedings of the 16th International Conference on Parallel Architecture and
Compilation Techniques, pages 353–364. IEEE Computer Society, 2007.

BIBLIOGRAPHY 85

[19] Derek R. Hower and Mark D. Hill. Rerun: Exploiting episodes for lightweight memory

race recording. In Proceedings of the 35th Annual International Symposium on Computer Ar-
chitecture, ISCA ’08, pages 265–276. IEEE Computer Society, 2008.

[20] Jeff Huang, Peng Liu, and Charles Zhang. Leap: lightweight deterministic multi-processor

replay of concurrent java programs. In Proceedings of the eighteenth ACM SIGSOFT inter-
national symposium on Foundations of software engineering, FSE ’10, pages 207–216. ACM,

2010.

[21] Joel Huselius. Debugging parallel systems: A state of the art report. Technical report,

2002.

[22] João M. Silva and Luı́s Veiga. Reprodução probabilı́stica de execuções na jvm em multi-

processadores. In INFORUM 2012.

[23] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging operating systems

with time-traveling virtual machines. In Proceedings of the annual conference on USENIX
Annual Technical Conference, ATEC ’05, pages 1–1. USENIX Association, 2005.

[24] Ravi Konuru. Deterministic replay of distributed java applications. In In Proceedings of the
14th IEEE International Parallel and Distributed Processing Symposium, pages 219–228, 2000.

[25] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21:558–565, July 1978.

[26] Tobias Landes. Dynamic vector clocks for consistent ordering of events in dynamic dis-

tributed applications. In Proceedings of the International Conference on Parallel and Distributed
Processing Techniques and Applications, pages 31–37. CSREA Press, 2006.

[27] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs with instant replay.

IEEE Trans. Comput., 36:471–482, April 1987.

[28] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a

comprehensive study on real world concurrency bug characteristics. SIGOPS Oper. Syst.
Rev., 42:329–339, March 2008.

[29] Friedemann Mattern. Virtual time and global states of distributed systems. In Proceedings
of the International Workshop on Parallel and Distributed Algorithms, pages 215–226. Elsevier

B.V., 1989.

[30] Charles E. McDowell and David P. Helmbold. Debugging concurrent programs. ACM
Comput. Surv., 21:593–622, December 1989.

86 BIBLIOGRAPHY

[31] Pablo Montesinos, Luis Ceze, and Josep Torrellas. Delorean: Recording and determin-

istically replaying shared-memory multiprocessor execution efficiently. In Proceedings of
the 35th Annual International Symposium on Computer Architecture, ISCA ’08, pages 289–300.

IEEE Computer Society, 2008.

[32] Pablo Montesinos, Matthew Hicks, Samuel T. King, and Josep Torrellas. Capo: a software-

hardware interface for practical deterministic multiprocessor replay. In Proceeding of the
14th international conference on Architectural support for programming languages and operating
systems, ASPLOS ’09, pages 73–84. ACM, 2009.

[33] Satish Narayanasamy, Cristiano Pereira, and Brad Calder. Recording shared memory de-

pendencies using strata. In Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, ASPLOS-XII, pages 229–240. ACM,

2006.

[34] Satish Narayanasamy, Gilles Pokam, and Brad Calder. Bugnet: Continuously recording

program execution for deterministic replay debugging. In Proceedings of the 32nd annual
international symposium on Computer Architecture, ISCA ’05, pages 284–295. IEEE Computer

Society, 2005.

[35] Robert H. B. Netzer. Optimal tracing and replay for debugging shared-memory parallel

programs. In Proceedings of the 1993 ACM/ONR workshop on Parallel and distributed debug-
ging, PADD ’93, pages 1–11. ACM, 1993.

[36] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. Kendo: efficient deterministic

multithreading in software. In Proceeding of the 14th international conference on Architectural
support for programming languages and operating systems, ASPLOS ’09, pages 97–108. ACM,

2009.

[37] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu H. Lee,

and Shan Lu. Pres: probabilistic replay with execution sketching on multiprocessors. In

Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles, SOSP ’09,

pages 177–192. ACM, 2009.

[38] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: transparent check-

pointing under unix. In Proceedings of the USENIX 1995 Technical Conference Proceedings,

TCON’95, pages 18–18. USENIX Association, 1995.

[39] Gilles Pokam, Cristiano Pereira, Klaus Danne, Lynda Yang, Sam King, and Josep Torrellas.

Hardware and software approaches for deterministic multi-processor replay of concurrent

programs. Intel R©Technology Journal, 13, 2009.

BIBLIOGRAPHY 87

[40] M. Ronsse, K. De Bosschere, and J. Chassin de Kergommeaux. Execution replay and de-

bugging. eprint arXiv:cs/0011006, November 2000.

[41] Michiel Ronsse and Koen De Bosschere. Recplay: a fully integrated practical record/re-

play system. ACM Trans. Comput. Syst., 17:133–152, May 1999.

[42] Mark Russinovich and Bryce Cogswell. Replay for concurrent non-deterministic shared-

memory applications. In Proceedings of the ACM SIGPLAN 1996 conference on Programming
language design and implementation, PLDI ’96, pages 258–266. ACM, 1996.

[43] Yasushi Saito. Jockey: a user-space library for record-replay debugging. In Proceedings
of the sixth international symposium on Automated analysis-driven debugging, AADEBUG’05,

pages 69–76. ACM, 2005.

[44] José Simão, Tiago Garrochinho, and Luı́s Veiga. A checkpointing-enabled and resource-

aware java virtual machine for efficient and robust e-science applications in grid environ-

ments. Concurrency and Computation: Practice and Experience, 24(13):1421–1442, 2012.

[45] J. H. Slye and E. N. Elnozahy. Supporting nondeterministic execution in fault-tolerant

systems. In Proceedings of the The Twenty-Sixth Annual International Symposium on Fault-
Tolerant Computing (FTCS ’96), FTCS ’96, pages 250–. IEEE Computer Society, 1996.

[46] L. A. Smith, J. M. Bull, and J. Obdrzálek. A parallel java grande benchmark suite. In

Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), Supercomputing

’01, pages 8–8. ACM, 2001.

[47] Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, and David A. Wood. Safetynet: improv-

ing the availability of shared memory multiprocessors with global checkpoint/recovery.

SIGARCH Comput. Archit. News, 30:123–134, May 2002.

[48] Sudarshan M. Srinivasan, Srikanth Kandula, Christopher R. Andrews, and Yuanyuan

Zhou. Flashback: a lightweight extension for rollback and deterministic replay for soft-

ware debugging. In Proceedings of the annual conference on USENIX Annual Technical Con-
ference, ATEC ’04, pages 3–3. USENIX Association, 2004.

[49] John Steven, Pravir Chandra, Bob Fleck, and Andy Podgurski. jrapture: A capture/replay

tool for observation-based testing. In Proceedings of the 2000 ACM SIGSOFT international
symposium on Software testing and analysis, ISSTA ’00, pages 158–167. ACM, 2000.

[50] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sun-

daresan. Soot - a java bytecode optimization framework. In Proceedings of the 1999 confer-
ence of the Centre for Advanced Studies on Collaborative research, pages 13–. IBM Press, 1999.

88 BIBLIOGRAPHY

[51] Min Xu, Rastislav Bodik, and Mark D. Hill. A ”flight data recorder” for enabling full-

system multiprocessor deterministic replay. In Proceedings of the 30th annual international
symposium on Computer architecture, ISCA ’03, pages 122–135. ACM, 2003.

[52] Min Xu, Mark D. Hill, and Rastislav Bodik. A regulated transitive reduction (rtr) for longer

memory race recording. In Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, ASPLOS-XII, pages 49–60. ACM,

2006.

[53] Min Xu, Vyacheslav Malyugin, Jeffrey Sheldon, Ganesh Venkitachalam, Boris Weissman,

and Vmware Inc. Retrace: Collecting execution trace with virtual machine deterministic

replay. In In Proceedings of the 3rd Annual Workshop on Modeling, Benchmarking and Simula-
tion, MoBS, 2007.

	Introduction
	Problem Statement
	Ubiquitous Concurrency
	The Challenge of Concurrent Programs
	Deterministic Replay
	Deterministic Replay on Multi-processors

	Objectives
	Contributions
	Results
	Publications
	Document Roadmap

	Related Work: Deterministic Replay
	Deterministic Replay
	Usage Models
	Abstraction Level
	Types of Non-determinism
	Input Non-determinism
	Memory Non-determinism

	Replay Start Point
	Replaying Input Non-determinism
	User-level Replay
	System-level Replay
	Software vs Hardware Approaches

	Replaying Memory Non-determinism
	Target System Model
	Multi-processor Support
	Data-race Support
	Task Creation Model

	Recording Mechanism
	Algorithm type
	Traced events
	Sharing Identification
	Trace Optimization

	Replay Mechanism
	Determinism
	Probabilistic Replay

	Software-only Solutions
	Synchronization Race Approaches
	Data Race Approaches

	Hardware-assisted Solutions
	Point-to-point Approaches
	Chunk-based Approaches

	Distributed Replay
	Summary

	Ditto
	Overview
	Events of Interest
	Base Record and Replay Algorithms
	Recording
	Consistent Thread Identification
	Replaying

	Recording Granularity
	Pruning Redundant Order Constraints
	Program Order Pruning
	Transitive Reduction
	Free Runs
	Order Constraint Pruning Algorithm

	Thread Local Objects Static Analysis
	Array Escape Analysis
	Trace File
	Trace File Format
	Logical Clock Value Optimization

	Concluding Remarks

	Implementation Details
	The Jikes Research Virtual Machine
	Thread Management
	Compilers

	Hooks, Instrumentation & State
	Intercepting Events of Interest
	Thread, Object and Field State
	Handling Deadlocks

	Wait and Notify Mechanism
	Trace File
	Metadata
	Writer Thread

	Memory Management
	Consistent Thread Identifiers
	Modifying the Original Application

	Evaluation
	Evaluation Methodology
	Replay Correctness
	Defining Replay Correctness
	Microbenchmark
	IBM Concurrency Testing Repository

	Performance Results
	Microbenchmark
	Effect of the Number of Threads
	Effect of the Number of Memory Access Operations
	Effect of the Load:Store Ratio
	Effect of the Number of Fields of Shared Objects
	Effect of the Number of Shared Objects
	Effect of the Number of Processors
	Trace File Compression
	Effects of the pruning algorithm

	Java Grande Benchmark
	DaCapo Benchmark
	Discussion

	Conclusions
	Future Work

