
Fault-Tolerant Vector-Field Consistency
(extended abstract of the MSc dissertation)

André Santos
Departamento de Engenharia Informática

Instituto Superior Técnico

Advisors: Professors Paulo Ferreira & Luı́s Veiga

Abstract—In recent years there has been an exponential
growth of games on mobile devices. Multi-player ad-hoc net-
work games are not easily developed because of the inherent
issues of mobile devices and ad-hoc networks, such as limited
connectivity, low processing power and short battery time.
Vector-Field Consistency is an optimistic consistency model
which reduces network usage, by selecting important updates
to propagate to replicas. VFC is enforced by Mobihoc, a
middleware platform, whose goal is to ease the development
of multiplayer distributed games for ad-hoc networks. In this
work we extend the VFC model in order to support the entry
and departure of nodes from the system, that is, to make a
fault-tolerant VFC.

I. INTRODUCTION

Nowadays, mobile devices such as the cell phone are
widespread. They come equipped with technologies (e.g.,
bluetooth and wifi[1]) that ease the spontaneous creation of
ad-hoc networks[2]. With the proliferation of this kind of
devices, the number of applications specifically developed
for this kind of environments has also been increasing.
Specifically, mobile game has seen a huge growth. With
the advent of the ad-hoc networks, people can even play
distributed multiplayer games wherever they are (e.g. public
transports, restaurants).

In distributed multiplayer games, there is a very high need
for data exchange between network nodes (e.g., player po-
sitions need to be updated constantly on every node). In ad-
hoc networks, this kind of applications that require constant
communication, suffer from two major drawbacks. Firstly,
the high latency, the reduced network bandwidth and the
small processing power of mobile devices bring overheads
that dramatically hinder game playability. Secondly, high
rate network accesses and the processing of the game itself,
drain this devices batteries rapidly. Furthermore, the sole
nature of ad-hoc networks themselves suggest a constant
change of the network topology. Nodes can join or leave
the system in premeditated ways or, in the latter case, also
by failing (e.g., the devices batteries can run out).

Vector-Field Consistency (VFC) [3] is a consistency
model for replicated objects. This model ensures that two
replicas of the same object will eventually be consistent.
Although it can be applied to any kind of distributed
application, the main VFC purpose is to support distributed
multiplayer games over ad-hoc networks. VFC selectively

and dynamically strengthens or weakens replica consistency
based on the actual game state. It does this at the same time
that manages how the consistency degree changes through-
out game execution and how the consistency requirements
are specified. The consistency degree of each replica is
obtained through locality-awareness techniques. This model
considers that throughout the game execution, there are
certain ’observation points’, called pivots (e.g. player’s
position), around which the consistency is required to be
strong and weakens as the distance from the pivot increases.
Since the players position can change with time, so do the
requirements about the replicated objects consistency. The
consistency requirements are dealt with a tri-dimensional
vector that specifies the consistency degrees. Each vector
dimension bounds the replica divergence in time (delay),
sequence (number of operations) and value (magnitude
of modifications) constrains. The ability to choose which
updates should be propagated translates into a much more
efficient usage of the mobile devices resources.

This model, despite being developed for ad-hoc networks,
does not support the dynamic entry and exit of nodes in the
network. The main goal of this master thesis is to change
the VFC model in order to allow both orderly and disorderly
entry and exit of nodes in the system. Furthermore, it must
be possible to persistently store the current system state, in
order to safely re-join the game later, without loosing any
data.

In order to reach the proposed goals it is necessary to
overcome a few obstacles. The main obstacle is how to
keep executing the game (or any other type of application)
that uses the VFC model, after the departure of one of the
network nodes. Because VFC uses a Client-Server archi-
tecture, the solution gets even more difficult to achieve if
the node that left was responsible for executing the server.
In this specific case, not only must the departure of the
node be secured but another node must become the new
server. Unfortunately, handling how a node leaves is not the
only issue regarding node departures. First, the system must
know that a node has actually left, if it has not notified the
remaining ones before leaving. Another obstacle that must
be faced is how can the system state be stored persistently in
order to restart it later to the same point. This problem can
occur when a node leaves the network in an orderly fashion,
as well as in a disorderly fashion.

1



In spite of the solution that is developed to overcome this
obstacles, it will always bring some additional overheads to
the amount of data that is transferred between nodes. This
is the reason why, assuring that the benefits that are drawn
from the VFC model are maintained, is another obstacle that
must be overcome. It is very important that the use of a fault
tolerant VFC continues to reduce the amount of data that is
transferred between nodes, in comparison to the same system
without VFC. If communication is kept to a minimum, the
mobile devices batteries last longer.

This document is organized as follows. Section II we
present some related work. In section III we describe our
solution’s architecture and its most relevant implementation
details. Section IV presents the evaluation results of our
solution. Finally, in section V we draw some conclusions.

II. RELATED WORK

A. Replication

In distributed systems, data replication is a key technology
to achieve enhanced performance, higher availability and
fault tolerance [4]. It consists on the maintenance of copies
of data across multiple computers. For instance, a web
domain can replicate data over several servers to divide the
workload and to be able to answer client requests when a
server fails. Data replication should be transparent to the
user and a certain degree of data consistency between all
the replicas must be achieved.

1) Passive Replication: In the passive model of replica-
tion for fault tolerance, there is, at all times, only one replica
manager answering client’s requests. This replica manager
is known as the primary replica manager. All other replica
managers available in the system only serve as backups.

Each client only issues requests to a single replica man-
ager (the primary one), the remaining replica managers wait
for the primary to fail to take over and resume operation.

2) Active Replication: In the active replication model,
every replica manager has an equal role. They work as a
group and function like a state machine. Active replication
was first introduced by Leslie Lamport as state machine
replication [5].

As opposed to the passive replication model, in active
replication the front-ends send operations to the group of
replica managers, and not to a single primary one. For this
reason, if a replica manager crashes, it does not affect the
overall system performance, because every remaining replica
is performing the same operation.

3) Pessimistic Replication: Consists on the synchronous
coordination of replicas during accesses and the blockage of
other users during an update. With pessimistic replication,
when a replicated object is updated, every replica of that
object must be synchronously updated before another request
is performed on the system.

This model for replication is widely used in commercial
systems, but was mainly intended for working over local-
area networks, where latencies are small and failures are
scarce [6], [7].

4) Optimistic Replication: This kind of replication pro-
vides algorithms that allow access to replicated data without
a priori synchronization, based on the ”optimistic” assump-
tion that problems will rarely occur [8]. This approach
constitutes the exact opposite of the pessimistic one, where
synchronization is the primary concern to avoid possible
conflicts. In optimistic replication, updates are propagated on
the background and periodic conflicts are solved after they
happen. This replication strategy greatly improves availabil-
ity of systems, and optimistic algorithms can scale to a large
number of replicas. All these benefits, however, come at a
cost: optimistic replication must deal with issues regarding
diverging replicas and conflicts between concurrent opera-
tions. It is thus, only applicable for applications which can
tolerate occasional conflicts and inconsistent data.

The main objective of every optimistic replication system
is to be eventually consistent, that is, at some point in time
every replica will be consistent with one another. This goal
can be achieved through a variety of ways:

• Number of writers: a replication system can be single-
mastered or multi-mastered. A single-master system
can only have a single designated writer. All updates
originate at the master, and are then propagated to
the backups. In a multi-master system, updates can be
submitted at multiple sites, and are then propagated on
the background to the other replicas.

• Definition of operations: a replication system can be
state-transfer or operation-transfer. In the former case
when an object is updated it is propagated to the other
replicas. In the latter case, when an object is updated,
it is the operation that transformed the object that is
propagated to the other replicas.

• Scheduling: there can be two types of scheduling poli-
cies: syntactic and semantic. Syntactic policies sort
operations only with regards to their time, place or
author. Semantic policies exploit semantic properties,
such as commutativity or idempotency of operation.

• Handling Conflicts: can also be of the types syntactic
and semantic. Syntactic policies rely on the timing
of the operations for conflict detection, and are not
application-specific like the semantic policies.

• Propagation Strategies and Topologies: Ad-hoc topolo-
gies transfer operations through the network in a epi-
demic fashion, and out-perform fixed topologies in
dynamic scenarios. Regarding the degree of synchrony,
systems can be pull-based or push-based.

• Consistency Guarantees: define how much divergence a
client application may observe. They can be single-copy
consistent, eventual consistent or use the mechanism
of session guarantees[9] (read your rights, monotonic
reads, writes follows reads or monotonic writes).

B. Fault-Tolerance
1) Multicast Communication: Enables a group of pro-

cesses to receive copies of messages sent to the group with
delivery guarantees. These guarantees include agreement on
the set of messages that every process in the group should

2



receive and on the delivery ordering across every group
member[10].

Multicast algorithms can have different degrees of reliabil-
ity and ordering semantics. Basic multicast guarantees that
every correct process will eventually deliver a message, as
long as the multicaster does not crash. Reliable multicast
guarantees that if a correct process delivers a message,
every other correct process eventually delivers the same
message. Ordered multicast satisfies the same properties as
the previous ones and introduces three possible ordering
guarantees: FIFO, causal and total.

2) Group Membership: Manages the dynamic member-
ship of groups and multicast communication. It has four
main roles in a group communication system: providing an
interface for group membership changes, implementing a
failure detector, notifying members of group membership
changes and performing group address expansion.

3) Failure Detectors: Must be implemented in order to
detect when a group member has crashed[11]. It may be
reliable, over a synchronous system, or unrealiable, over an
asynchronous one.

4) View-Synchronous Group Communication: Extends
the reliable multicast semantics to include the changing
of group views. A new view is delivered to the group
of processes whenever there is a change on the group
membership (e.g. a process joins or leaves) and all members
are guaranteed to see the same view contents.

C. Rollback-Recovery

Rollback-recovery (checkpointing) is another technology
that adds reliability and high availability to distributed sys-
tems [12]. It accomplishes this by enabling processes to save
recovery information periodically at a stable storage device.
After a failure, a process can then restart computation from
an intermediate state by accessing the stored information.

A consistent system state is one in which, if the state of
a process contains the receipt of a message, then the state
of the corresponding sender also contains the sending of the
same message [13]. Reaching a consistent state is the main
goal of every checkpointing protocol when failures happen.

There are two main rollback-recovery approaches:
checkpoint-based and log-based.

1) Checkpoint-Based: Checkpointing protocols require
the processes to take periodic checkpoints with varying
degrees of coordination. These protocols do not keep track
of every interaction with the outside world, so, they do not
guarantee that the execution being performed before a failure
is exactly regenerated after a rollback.

With uncoordinated checkpointing each process is re-
sponsible for choosing the best time to take checkpoints.
Coordinated checkpointing requires the processes to orga-
nize themselves in order to take checkpoints. Finally, with
communication-induced checkpointing processes are respon-
sible for taking their own checkpoints, and they are also
induced to take semi-coordinated checkpointing by special
information piggybacked on each message.

2) Log-Based: This type of rollback-recovery is more
proper suited for applications that frequently interact with
the outside world. These protocols allow for the logging of
the determinants of nondeterministic events.

Pessimistic logging protocols log to stable storage the
determinant of each nondeterministic event before the event
is allowed to actually affect the computation. In Optimistic
logging, however, there is the assumption that logging will
complete before a failure occurs. Causal logging requires
non-stable determinants to be piggybacked on messages sent
to other processes, which can then be recovered after a
failure.

D. Mobihoc
Mobihoc [3] is a middleware platform aimed at supporting

the design of multiplayer distributed games for ad-hoc
networks. It follows a client-server architecture, where one
of the participating nodes must act as the server (it may
also act as a client at the same time). The server has the
role of providing write-lock management to the replicated
objects, update propagation and enforcing the VFC model
(section I).

With the exception of lock messages, the communication
between clients and server is divided in rounds which are
initiated periodically, and systematically, by the server. Each
round the server propagates the object updates to the clients.

Through VFC, Mobihoc enables the optimistic replication
of data, but it does not provide fault-tolerance to the system.

III. FAULT-TOLERANT VECTOR-FIELD CONSISTENCY

In our solution we propose a fault-tolerant Client/Server
architecture that supports the design of distributed games for
ad-hoc networks. We use Vector-Field Consistency (VFC) as
our optimistic consistency model to reduce the bandwidth
requirements imposed on both the users and the servers of
the game. The version of VFC implemented by our system
is an extension to the original model, designed to enable
its execution when in the presence of dynamic entries and
departures of nodes from the system. Furthermore, nodes
also have the possibility to save their current game state in
order to recover it later. For this reasons, we named our
system as ”UbiVFC” , since it is ubiquitous in the sense
that even when in the presence of failures, the server can
keep being executed on any node.

A. Vector-Field Consistency Model
As was described in section I, VFC is an optimistic

consistency model designed to manage replicated data across
mobile devices executing a multi-player distributed game.
The remainder of this section presents some details about
this model.

1) Consistency Zones and Consistency Vectors: A con-
sistency zone is a field around each pivot that resembles an
electric or gravitational field. In the same way that a metal
object is less attracted to a magnet as the distance between
them increases, so do the consistency requirements of an
object decrease as its distance to the pivot increases. Thus,

3



pivots generate consistency zones, concentric ring shaped
areas, that enforce the same consistency degree to objects
contained in the same consistency zone. Despite describing
the consistency zones as ring shaped areas, they are actually
implemented as concentric squares which improves the
performance of the computationally expensive operation of
determining the position of an object within a radial surface.

Consistency degrees are 3-dimensional consistency vec-
tors κ = [φ, θ, ν]. κ bounds the maximum divergence
between an object in a particular zone and the value of
its primary replica. Each dimension is a numerical scalar
that defines the maximum divergence of replicated objects
regarding the following metrics:

• Time (θ): Specifies the maximum time an object can
stay without being refreshed with its primary replica’s
latest value;

• Sequence (φ): Specifies the number of updates an object
can get without them being applied to its replicas;

• Value (ν): Specifies the maximum divergence between
the contents of the local copy of an object and its pri-
mary replica. This metric is application dependent since
the objects are defined by the application programmers;

2) VFC Generalization: VFC also introduces two gener-
alizations that allow a broader utilization of the VFC model:
multi-pivot and multi-view.

The multi-pivot generalization enables the existence of
more that one pivot on each view. It proves useful when
there is the need to update more often two or more positions
of a map, such as both the player’s avatar and the flag on a
”capture-the-flag” first-person shooter game. In a multi-pivot
setup, an object’s consistency zone is assigned with relation
to its closest pivot.

The multi-view generalization enables different sets of
objects to be defined with different consistency requirements
regarding the same pivot. Using the same example as before,
two different views can be used to define the consistency
requirements of our player’s team and the opposing one.

Despite this generalizations, only multi-pivots are imple-
mented in our system. We use VFC as a single-view model.

3) Consistency Enforcement: The VFC model is enforced
by a two-part algorithm, with each part being executed
independently. The first part is executed by function update-
received and the second part is executed by round-triggered:

• update-received: This function is executed each time a
client makes an update to a replicated object. When the
update is received, the number of missing updates to
that objects is increased by one for every client on the
system;

• round-triggered: This function is executed periodically
by VFC to propagate object updates to clients according
to their VFC settings. Each time it is executed it checks
which objects are dirty and sends them piggybacked on
round messages to the clients1.

1An object is considered dirty to a client when it violates the consistency
degree associated with the consistency zone it is located in.

B. System Architecture

Figure 1 presents the main components of our solution’s
system architecture. UbiVFC uses a client-server architec-
ture. The Network Layer is responsible for establishing the
connections between clients and server. It provides a generic
interface that allows game programmers to implement any
type of connection they require for their game. Clients and
server possess different UbiVFC layers, in spite of some
of the components bearing similar names. Just below the
application layer, lies the API which is to be implemented
by the game programmers to use the UbiVFC services.
On the client side, the Activity Manager implements the
services that are used by the server. On the server side,
the Notification Services allow the the server application to
acknowledge a series of events that may be important to the
game programmers.

The main UbiVFC components are the Consistency
Management Block (CMB), the Session Manager (SM),
the Object Pool (OP), the Membership Service (MS),
the Failure Detector (FD) and the Checkpoint Recovery
System (CRS). Only the first three components of this list
were also present in the original VFC design. The CMB
and the MS are only available at the server, as opposed
to the CRS, which only exists at the client. The remaining
components are present on both the clients and server,
presenting however, different characteristics.

The remainder of this section presents some details about
the UbiVFC components on both client and server.

1) Session Manager: The SM is responsible for executing
the protocol that enables the communication between clients
and server. The Server Session Manager (SSM) implements
the following services that process requests from clients:
subscribe, publish, enable, write, disable, leave, system info
and pingpong. This component manages all the interactions
between itself and the other components available at the
server. Moreover, the SSM is also responsible for triggering
the rounds that are required for the execution of VFC. Each
time a round is triggered, a new round update is broadcast to
the clients. On the other hand, the Client Session Manager
(CSM) does not only implement the services required to
process requests from the server, but also contains the
necessary functions that the application uses to communicate
with the server. The services implemented by the CSM
are the following: round, enable, disable, new server and
connect to new server. Like the server’s Session Manager,
the client’s one also manages the interactions between itself
and the rest of the components in the client.

2) Consistency Management Block: This component is
executed exclusively on the server and is responsible for the
enforcement of the VFC model. Both functions mentioned in
section III-A3 are in fact executed by CMB. This component
provides a generic interface allowing UbiVFC to support
different consistency models depending on the consistency
requirements of the game programmers.

In order to enforce the VFC model, CMB aggregates
the VFC consistency parameters specified by each client

4



Figure 1. UbiVFC architecture.

(section III-A1).
Each time a client makes an update to a replicated object,

the Server Session Manager dispatches it to the CMB where
it is stored and the number of missing updates to that
particular object are incremented. When a new round is
triggered by the Session Manager, the CMB uses the VFC
settings of each client to know if that object is to be
propagated to said client. After making this check for each
client and object on the system, it sends the updates to the
Session Manager, which propagates them to the clients.

3) Object Pool: The OP is the repository of all game
objects in the system. The server has the Object Pool
Primary (OPP) that keeps all the most up-to-date objects,
while clients have a mere replica.

The OPP is updated each time a client updates an object,
and the server session manager is notified of that event
through the write service. New objects can also be added
to the Object Pool when a new client joins the system.

The Object Pool Replica (OPR) in the clients is updated
each time a new round is triggered and the server’s CMB
finds new updates to propagate to that client.

4) Membership Service: The MS provides UbiVFC with
a means to manage the game clients. It allows the addition
and removal of clients from the system and chooses which
clients can be the next server.

The clients elected to be the next server are known as
backup clients and receive every new object update that the
server receives, with no regards to their VFC settings. This
ordered list of clients is subject to change at any given time.
It can change when a new client joins the system, or when an
existing one leaves. It can also change when a client sends
the server updated information about its mobile device’s
remaining battery life (with the System Info service).

Receiving constant updates of clients’ remaining battery
life, the Membership Service is able to estimate the ones that
are going to endure the execution of the game the longer,

and elects them as backup clients.
5) Failure Detector: A FD is implemented on both the

client and the server. The Server Failure Detector (SFD)
sends a ping request to any client that fails to communicate
with the server after a pre-defined number of rounds. If that
client does not acknowledge the request after another pre-
defined number of rounds, the SFD then notifies the SSM
of the assumption that that client has failed.

The Client Failure Detector (CFD) only needs to peri-
odically check the server for availability. Like the SFD, it
only sends a Ping request after not receiving any message
for a pre-defined number of rounds. When it detects a server
failure it initiates the protocol to join a backup server, or to
assume the server duties itself.

6) Checkpoint Recovery System: This component is re-
sponsible for periodically creating checkpoints of the current
client system state, so that the client can re-join the game
session later on, from the same state where it left-off.

Each time a new round message is received, the client’s
CRS checks for updates to its client’s owned objects. Then,
the objects that were updated that round are stored on their
storage devices.

When a client re-joins a running game session, if it has
recovery objects stored on its device, the client has the
choice to recover the game session, or create a new one.
Recovery objects are only available when the previous game
has crashed, or the client has explicitly requested to save the
game session when it previously left.

C. UbiVFC Protocols

This section presents the protocols that were implemented
to accomplish the goals we set out to get. They are what
distinguish the original VFC from our UbiVFC.

1) Client Subscribes: When a user wishes to join a game,
if its client has recovery data available, the user is asked if
he wants to recover the game state, or create a new one.

5



Either way, the protocol that is executed is presented on
the remainder of this section. However, if the user wants
to recover the previously saved game state, it waits until
the end of subscribe protocol to automatically execute the
publish protocol with the recovered data.

In order to join the game, the client must send a subscribe
request to the server. The SSM acknowledges the client if
the subscription was successful and then proceeds to take
one of two actions that depend on what state the game is
at: if the game is not yet started, the SSM adds the client
to the MS, which then proceeds to register it in the system;
if the game is already active, the SSM adds the client to
a subscription waiting queue where it stays until a publish
request is received from that same client.

2) Client Publishes: When a client sends a publish re-
quest to the server, the SSM sends back a response of
acknowledgment if the request was completed successfully.
In that case, the server can do one of two things, depending
on the state it is in:

1) If the game has not yet started, the SSM hands the
objects piggybacked on the publish message to the
OPP for storage, and notifies the CMB of the new
arrivals. It then propagates the new objects to the
remaining clients, and the rest available in the OPP
to the new client;

2) If the game is already running, the SSM adds the client
to a publishing waiting queue. When a new round
is triggered, the SSM checks the queue for entries,
and proceeds to execute the protocol described on the
previous point. Then, the SSM sends an enable request
to the client so that it can initialize the game.

3) Client Leaves: When a user wants to leave the game,
it is presented with an option to save the current game state
so that it can be resumed later on. Either way, it must send
a leave request to the server in order to do so in an orderly
fashion. If the game has not yet started, the SSM simply
asks the MS for the removal of that client’s personal data and
notifies the remaining clients of the departure. If the game is
already underway, the SSM puts the leaving client’s request
on a leaving waiting list. When a new round is triggered,
the server processes each client on that waiting list, first
notifying the remaining clients of the departure, and then
by asking the MS to remove that client’s information and
objects from their respective structures.

4) Client Fails: The Server Failure Detector periodically
checks if a client has failed by sending it ping messages,
when they fail to communicate for a certain amount of time.
Therefore, on the event of a client failure, the server has a
certain protocol that it must follow to allow the game to
keep running.

Each round trigger, the SFD checks if there was a client
that has not communicated with the server for a certain
amount of time. So, if λ has elapsed without the server
getting any message from a certain client, it sends a ping
message to that client. If another λ time has gone by without
receiving a pong response, or any other type of message,

the SFD notifies the SSM of this event. The SSM then
broadcasts the departure information to every other client,
and notifies the MS and the CMB to remove any data that
belonged to the failed client.

5) Server Leaves: When a server wants to leave the game,
the server role must be assumed by a client previously cho-
sen as backup (section III-B4). Each round, the SSM sends
the backup client all the updates received that round, and
some optional backup data2. The protocol that is followed
when the server wants to leave the game is as follows:

1) The server sends a new server request to the backup
client;

2) The backup client notifies the leaving server that it is
starting the new server;

3) When the server receives the acknowledgment from
the backup client, it notifies the remaining clients with
a connect to new server request;

4) When the remaining clients acknowledge the departing
server, it can safely shutdown;

5) The new server waits for the connections of the
remaining clients, and when all clients have re-joined,
the new server resumes the game.

In order for this protocol to work on a real-life environ-
ment, a set of backup measures were implemented:

• The new game server waits a certain amount of time
for the re-joining of the clients. If any clients fail to
re-join the game, the server automatically enables it,
removing the failed clients from the game.

• The clients that are connecting to the new server have a
certain amount of attempts to do so, before they assume
that the new server is not available.

• If the backup fails to start the server and if there is
another backup among the clients attempting to re-join
the game, that backup assumes the server role itself,
and the remaining clients attempt to connect to the
next backup elected by the previous server. The clients
iterate over all the backups on the game until they find
one that is available. If no backup is available, the client
quits the game.

6) Server Fails: The CFD works in a similar fashion to
its server counterpart, in order to detect server failures. It
waits λ time until it sends a ping request to the server,
if no message has been received during that time. If after
another λ time, the client has received no response from the
server, it initiates the game resuming protocol, which shares
some resemblance with the one explained on the previous
section III-C5.

1) The clients detect that the server has failed;
2) The first backup client assumes the server duties;
3) The remaining clients connect to the new server;
4) The new server enables the UbiVFC server, resuming

the game where it left-off when the previous server
failed.

2This optional backup data is only sent when there is a change in
membership or a client sent some updated battery information

6



Like was presented in the previous section, the same
backup measures can be taken if another failure is detected
when this protocol is being processed.

D. Supporting Data Structures
Table I presents a summary of the most important data

structures implemented in our solution. They are clearly
divided by their provenience, that is, if they were adapted
from the original VFC implementation, or if they were im-
plemented just for UbiVFC. The last table column presents
the corresponding data structure type.

As the table shows, much more data structures were
created just for UbiVFC than adapted from the original
VFC. However, many of these are empty on most situa-
tions. For instance, every structure in the Client Session
Manager except backupUsers is only available at backup
clients. Moreover, the clientsLeaving, clientsSubscribing and
clientsPublishing hash tables at the Server Session Manager
only have mappings when clients are leaving, subscribing
or publishing, respectively. Furthermore, the clientsRemain-
ingToResume list in the same component, only has strings
when a server is assuming another server’s role. Finally, the
ServerSyncData object is only used to transfer backup data.

IV. EVALUATION

In order to test our Fault-Tolerant Vector-Field Consis-
tency system, we decided to develop a multi-player version
of the Snake[14] game that did not require user intervention
to be played, and named it Snakes VFC. Each player starts
with a snake that randomly wanders the map searching for
apples. On the contrary of the original version, our snakes
do not grow or start to move faster, as apples are found.
However, with each found apple, the player adds a point to
his score.

Each snake only moves one time per round. The snake and
score are pivot objects owned by the clients while the apples
are owned by whatever player is the server at the moment.
Each player uses default VFC settings. This settings are
constituted by two consistency vectors that are defined for
two possible consistency zones. The first consistency zone
is the one that is comprised inside a 10 tile3 radius of the
pivot. The second zone is the area beyond the 10 tile radius.
For the first zone we have a consistency vector κ = [2,2,2],
while for the second zone we have a consistency vector of
κ = [.,10,5]4.

A. Quantitative Evaluation
1) Amount of Messages Exchanged: The first tests that

were performed on our solution are related to the amount
of messages that are exchanged between clients and server.
We executed the game for 100 rounds and measured how
many messages were sent by the clients to the server, and
how many messages were sent by the server to the clients

3A tile is an image that represents an object in the game map. For
instance, an apple in our game is a tile.

4The ”.” means that this vector imposes no constrains regarding the
number of rounds that have passed since this replica was last updated

using three different consistency models: non-VFC, VFC and
UbiVFC. We ran this tests with 2, 3 and 4 clients, separately.

Figure 2. Comparison between the number of messages sent from all three
models.

Since the amount of messages received by the server is
roughly the same using the three consistency models, in
figure 2 we compare the number of messages sent. As we can
see, the number of messages sent without VFC (represented
by the blue line) constantly increases as the number of
clients also increase. The other two lines (green representing
UbiVFC and red representing VFC) also constantly increase,
but they start with much lower values and have a much lower
slope. The UbiVFC line seems to get closer to the VFC one
as the number of clients increases.

The number of messages sent by the server using our
UbiVFC solution is higher than the original VFC implemen-
tation. However, it still is much lower than not using VFC
or UbiVFC. For the additional functionality that UbiVFC
brings, wee feel that this increase in messages sent is low
enough to still present a real viable solution.

2) Time Elapsed: The second tests that were performed
on UbiVFC are related to the amount of time the protocols
described in section III-C take to be executed. We compared
the results to the time it takes to perform other critical
protocols and algorithms in our system. As in the first battery
of tests, we also ran this with 2, 3 and 4 clients, separately.

Figure 3 presents a comparison between the average times
UbiVFC takes to execute different protocols and algorithms
when there are three clients in the game.

UbiVFC takes on average 0.01 seconds to compute the
updates it must propagate to one client. Since the backup
client always gets every update available, UbiVFC does not
need to compute the updates to send to it, so no time is spent.
To actually send an update to a client, our solution usually
takes around 0.1 seconds. This algorithm and protocol are
based on the original VFC implementation.

When there is a change in membership, and a new client
is selected as backup, a ServerSyncData object must be sent
to that client with all the backup data required. On average,
it takes 0.408 seconds to send the backup data and the round
updates to the backup client. If a client joins the game, but
the backup client stays the same, only some partial backup

7



Adapted New Type

Fundamental DataUnit DataUnit
UserAgent UserAgent

Object Pool DataPool DataPool

CMB
timesUpdated Map¡UserAgent, List(int)¿
lastUpdates Map¡UserAgent, List(DU)¿
updateQueue UpdateQueue

Server Session Manager

phi Map¡UserAgent, Phi¿
duAssociation Map¡int, UserAgent¿

clientsLeaving Map¡int, ClientLeaving¿
clientsSubscribing Map¡int, UASIPair¿
clientsPublishing Map¡int, Array¡DU¿
resuming boolean
clientsRemainingToRes List(String)

Client Session Manager

registeredUsers Map¡int, UserAgent¿
duAssociation Map¡int, UserAgent¿
phi Map¡UserAgent, Phi¿
usersURLs Map¡String, String¿
connectionType int
cliIdCount int
ObjectIdCount int
backupUsers Array¡String¿

Membership Service

registeredUsers Map¡int, UserAgent¿
usersURLs Map¡String, String¿
clientsOrdered List(BatteryRecords)
backupUsers List(UserAgent)
previousBackupUsers List(UserAgent)

Client Failure Detector lastNewsFromServer long
pingSent boolean

Server Failure Detector lastNewsFromClient Map¡int, ClientNews¿

Checkpoint Rec Sys ownedObjects Array¡int¿
objectsToBackup List(int)

Other ServerSyncData ServerSyncData

Table I
SUMMARY OF SUPPORTING DATA STRUCTURES IMPLEMENTED IN UBIVFC.

Figure 3. Comparison between the time it takes to execute each protocol
or algorithm in seconds.

data must be sent to that client, which on average takes 0.2
seconds to finish (including the round update data).

The client publishes protocol usually takes 0.751 seconds
to complete, the client leaves protocol takes on average
0.140 seconds, the client fails 0.120 seconds, the server
leaves protocol takes around 1.531 seconds and finally the
server fails protocol takes on average 0.763 seconds to
complete.

Examining the figure, we can plainly see that the three
protocols that require more time to complete are publish,
server leaves and server fails. The last two take this much
time because they are complex protocols that require the
termination and creation of new connections in order to
resume the game on another server. The publish protocol,
however, requires this much time because of the amount of
objects that must be diffused among the clients. Both the
compute updates to propagate algorithm and the send round
update to a client protocol need much less time to complete
than this three protocols. However, this last two processes
are performed every round and as many times as there
are clients, which does not happen with the three former
protocols. The publish protocol is only executed when a
client joins the game when it is already running, server
leaves is executed when a server leaves in an orderly fashion
and server fails is only executed when a server leaves in a
disorderly way.

B. Qualitative Evaluation

We cannot end the evaluation of our solution without
considering it from the eyes of the user. A user only wants
to play the game without problems, and does not care if a
server has failed, or how much time it takes for a round of
updates to be propagated to every client. For this reason we
tested our solution not only on android emulators[15] but
on real devices as well. The execution of the game on real

8



devices and on a real wifi network is a much smoother and
faster experience. This comes with no surprise since android
emulators (as well as other mobile devices’ emulators) are
known to be ”resource hogs”.

When a user leaves or joins the game, all other players
are notified of that event by a popup message informing the
players of membership changes, without being obtrusive.

When a client crashes, the remaining users of the game
barely notice that event, since in one round the player’s snake
is there, and the next it is not. However, when a client fails
by stopping communicating with the server, until the SFD
acknowledges this event, the failed client’s snake lingers in
the game. The time elapsed between a client’s failure and
the SFD finding it can, however, be tweaked by the game
programmers. If the time it takes for a FD to assume that
a client as failed is lower, the game experience is better for
the user, however, it is also easier to detect false-positives.

As it happens when a client crashes, when a server does,
the remaining clients automatically adjust to that situation,
electing a new one and only allowing the users to barely
notice that event. On the other hand, when a server fails by
stopping communicating with the clients, the users will take
notice. Since it is the server that triggers the rounds, if the
clients do not receive a round update, their game pauses.
The CFDs wait the number of rounds they are programmed
to wait, until they assume that the server has crashed. As it
happens with the SFD, the amount of time the client’s must
wait to take over a failed server can be changed by game
programmers.

Finally, when a game crashes, the possibility of recovering
the game session is very important for the user. For this
reason, we made it really simple to recover a crashed game.
When a user tries to connect to a game server, if UbiVFC
detects that there is recovery information on the mobile
device’s storage, the user is presented with a dialog that
asks if he wants to recover the game session. If he does, his
game session is recovered in the same state that it was before
the crash, if he does not, a new game state is launched.

V. CONCLUSIONS

In recent years, we have witnessed a proliferation of
mobile devices, which lead to an increased supply of appli-
cations designed specifically for this kind of environments.
Many of this applications are multi-player games that require
that two or more devices are connected to each other. In
this type of games there is a great need for data exchange
between nodes and since mobile devices have small process-
ing power, and the ad-hoc networks they form are subject to
high latency and reduced bandwidth, game playability may
be hindered, and the devices batteries drain faster.

Vector-Field Consistency (VFC) is a consistency model
that reduces network usage by selecting critical updates to
propagate to replicas (see section III-A). It is enforced by
Mobihoc, which is a middleware platform for multi-player
distributed games in ad-hoc networks (see section II-D).
Even though this model was developed for this kind of
networks, it does no support the spontaneous entries and

departures (orderly or disorderly) that are so common in this
environments. In this work we proposed to extend VFC in
order to support the dynamic entry and departures of nodes
from the system.

In this document we have discussed how current ap-
proaches, both commercial and academic, try to enable
constant membership changes and ensure availability when
in face of node failures. We focused on replication, fault-
tolerance and rollback-recovery because we consider this
three areas to be the most relevant to the achievement of
our goals.

We proposed UbiVFC, a fault-tolerant VFC that enables
the execution of the VFC model in the presence of node
failures. Our solution allows clients to join and leave the
game when they want and to recover their game session
data if they want to re-join a game they were playing.
Furthermore, it also allows the game server to leave or crash
at any moment, ensuring that the game keeps being executed
on another host. To create this solution we used replication,
fault-tolerance and checkpointing techniques such as: pas-
sive and optimistic replication, membership services, failure
detectors and coordinated checkpointing.

To test our system we developed a multi-player distributed
game called Snakes VFC. This game is based on the
old Snake game, much popular among late-nineties Nokia
phones owners. We used this game to compare the amount of
messages that are exchanged between nodes using VFC, not
using any consistency model and using our own UbiVFC.
We also compared the time it takes to execute the protocols
that allow UbiVFC to achieve its goals, in the presence
of a different number of users. Our results show that even
though the amount of messages that are exchanged between
nodes is bigger using UbiVFC than VFC, it still is less than
two thirds the amount of messages not using a consistency
model. Furthermore, the time it takes to execute critical
system protocols continues to be small.

ACKNOWLEDGMENTS

This work was partially supported by the Mercury project
and by FCT (INESC-ID multiannual funding) through the
PIDDAC Program funds.

REFERENCES

[1] P. F. Ferro, E., “Bluetooth and wi-fi wireless protocols: a
survey and a comparison.” IEEE Wireless Communications,
vol. 12, no. 1, pp. 12–26, 2005.

[2] R. Rajaraman, “Topology control and routing in ad hoc
networks: a survey.” ACM SIGACT News, vol. 33, no. 2, 2002.

[3] V. L. F. P. Santos, N., “Vector-field consistency for ad-
hoc gaming.” Proceedings of the ACM/IFIP/USENIX 2007
International Conference on Middleware, 2007.

[4] D. J. Coulouris, G., “Distributed systems: concepts and de-
sign.” 2005.

[5] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system.” Communications of the ACM, vol. 21,
no. 7, pp. 558–565, 1978.

9



[6] Oracle, Oracle7 Server Distributed Systems Manual., 1996,
vol. 2.

[7] D. Dietterich, “Dec data distributor: for data replication and
data warehousing.” Proceedings of the 1994 ACM SIGMOD
international conference on Management of data, p. 468,
1994.

[8] S. M. Saito, Y., “Optimistic replication.” ACM Computing
Surveys (CSUR), vol. 37, no. 1, pp. 42–81, 2005.

[9] D. A. P. K. S. M. T. M. W. B. Terry, D., “Session guarantees
for weakly consistent replicated data.” Proceedings of the
third international conference on on Parallel and distributed
information systems, pp. 140–150, 1994.

[10] K. I. V. R. Chockler, G., “Group communication specifi-
cations: a comprehensive study.” ACM Computing Surveys
(CSUR), vol. 33, no. 4, pp. 427–469, 2001.

[11] T. S. Chandra, T., “Unreliable failure detectors for reliable
distributed systems.” Journal of the ACM (JACM), vol. 43,
no. 2, pp. 225–267, 1996.

[12] A. L. W. Y. J. D. Elnozahy, E. N., “A survey of rollback-
recovery protocols in message-passing systems.” ACM Com-
puting Surveys (CSUR), vol. 34, no. 3, pp. 375–408, 2002.

[13] L. L. Chandy, K., “Distributed snapshots: determining global
states of distributed systems.” ACM Transactions on Com-
puter Systems (TOCS), vol. 3, no. 1, pp. 63–75, 1985.

[14] E. Koivisto, “Mobile games 2010.” Proceedings of the 2006
international conference on Game research and development,
pp. 1–2, 2006.

[15] Google, “Android development tools,” October 2011.
[Online]. Available: http://developer.android.com/sdk/eclipse-
adt.html

10


