
Scalable and Efficient Resource Discovery in P2P Grids∗

[Extended Abstract]

Raoul Felix
INSEC-ID / IST

Rua Alves Redol 9
Portugal

rf@rfelix.com

Paulo Ferreira
INSEC-ID / IST

Rua Alves Redol 9
Portugal

paulo.ferreira@inesc-
id.pt

Luís Veiga
INSEC-ID / IST

Rua Alves Redol 9
Portugal

luis.veiga@insec-id.pt

ABSTRACT
Distributed computing enables us to harness all the resources
and computing power of the millions of computers connected
to the Internet. Therefore, this work describes the construc-
tion of an efficient and scalable resource discovery mech-
anism, capable of searching not only for physical resources
(e.g. CPU, Memory, etc.), but also services (e.g. facial recog-
nition, high-resolution rendering, etc.) and applications (e.g.
ffmpeg video encoder, programming language compilers, etc.)
from computers connected to the same Peer-to-Peer Grid
network. This is done in a novel way by combining all
resource information into Attenuated Bloom Filters, which
also allows us to efficiently route messages in a completely
decentralized unstructured P2P network (no super-peers).
The research shows that previous P2P, Grid, and Cycle
Sharing systems tackled this problem by focusing on each
resource type in isolation, such as (physical) resource dis-
covery and service discovery. Methods to minimize storage
and transmission costs were also researched. The discov-
ery mechanism was evaluated with a number of different
test scenarios that varied resource distribution, resource val-
ues, topologies, etc. For comparison, we also evaluated the
Random Walk discovery method which served as a baseline.
The results were favorable over Random Walk, having higher
query success rates with less hops while requiring increase
in message size and storage space at each node (for routing
information), thus attaining our objectives of effectiveness,
efficiency, and scalability.

1. INTRODUCTION
There are millions of computers connected to the Internet1

with more and more going online each day due to laptops,

9∗A scientific paper describing a preliminary version of this work
was published and presented at the conference INForum 2010 un-
der the title “Scalable and Efficient Discovery of Resources, Appli-
cations, and Services in P2P Grids.”
91http://www.internetworldstats.com

netbooks, PDAs, and smartphones. With so many devices
connected to the same network, distributed computing on
such a large scale cannot be ignored. As such, resource shar-
ing has become immensely popular and has led to the de-
velopment of Grid and Peer-to-Peer (P2P) infrastructures
dedicated to that purpose. These infrastructures ease the
sharing of various types of resources, that range from simple
files, to software offering different services, and even hard-
ware like CPUs and Printers.

The most popular form of resource sharing across the Inter-
net is File Sharing via Peer-to-Peer applications, occupying
roughly 50%-90% of all Internet traffic.2 A lot of work has
been done in this area to create robust and scalable sys-
tems, capable of efficiently supporting a large number of
users in a decentralized manner. P2P Infrastructures can
be divided between those that do not perform any node or-
ganization (Unstructured systems), such as Gnutella [1] and
Freenet [2]; and those that structure their nodes to improve
message routing (Structured systems), such as Chord [3],
CAN [4], and Pastry [5].

Grid and Cycle Sharing systems are similar in nature, as
their objective is to perform large-scale parallel computa-
tions in scientific and commercial communities. While Grid
systems harness the power of many interconnected networks
of computers, which are usually centrally or hierarchically
managed by the institutions that run them; Cycle Shar-
ing systems take advantage of the many idle computers and
game consoles already connected to the Internet, volunteered
by home users.

Even though Peer-to-Peer and Grid systems are different,
the literature [6–9] says that they will eventually converge.
In this fashion, GINGER3 [10], or simply GiGi, is a P2P
Grid infrastructure that fuses three approaches (grid infras-
tructures, distributed cycle sharing, and decentralized P2P
architectures) into one. GiGi’s objective is to bring a Grid
processing infrastructure to home users, i.e. a “grid-for-the-
masses” (e.g. achieve faster video compression, face recogni-
tion in pictures/movies, high-res rendering, molecular mod-
eling, chemical reaction simulation, etc.).

The common theme between these different systems is that

92http://torrentfreak.com/bittorrent-dominates-internet-traffic-
070901
93Grid Infrastructure for Non-Grid EnviRonments



users have a task that they want to accomplish: share files
in P2P file sharing systems; perform scientific calculations
in Grids; or perform CPU intensive tasks over a massive
amount of idle home user computers in Cycle Sharing sys-
tems. Tasks require discoverable resources that satisfy cer-
tain requirements that can range from almost no require-
ments (file sharing), to simple requirements (idle CPU), to
complex requirements (free CPU with X much RAM, with
at least Y much storage space, and with application Z in-
stalled). This is where the work described in this paper
comes in, where the objective is to create an effective, effi-
cient, and scalable discovery protocol of resources, applica-
tions, and services for inclusion in the GINGER project.

The rest of this work is structured as follows. In Section 2 we
discuss similar systems that also provide service or resource
discovery. Section 3 describes the architecture of SERD4,
while in Section 5 we show some relevant performance re-
sults. Section 6 concludes this paper offering final remarks.

2. RELATED WORK
This section can be divided into three main areas: i) ef-
ficient data representation where reducing the size of data
storage and transmission is the objective, ii) resource dis-
covery which only deals with the discovery of physical (e.g.
CPU, RAM, etc.) or virtual (e.g. files) resources, and iii)
service discovery where the main concern is discovering the
services (e.g. facial recognition, high-resolution rendering,
applications, etc.) provided by computers in a network.

2.1 Efficient Data Representation
Efficient Data Representation is important in this work be-
cause nodes have to store and transmit resource information
about themselves and neighbors. Compression reduces the
size of highly redundant information via a dictionary based
(LZW [11]) or statistic based (Huffman coding [12]) encod-
ing process. RSync [13] and the Low-Bandwidth File Sys-
tem [14] use Chunks and Hashing to divide data into
chunks, calculating the hash of each chunk, and only trans-
mitting those that have changed between versions of the
same file. Erasure codes take another approach, and en-
code a message into a few symbols which can then be used
to reconstruct a partially received message. Reperasure [15]
uses this technique to provide data replication without stor-
ing full-replicas. The three techniques, although important,
are not directly applicable in this work. The reduced mes-
sage size cancels the need to compress messages or divide
them into chunks. We also do not need to perform any for-
ward error correction nor replicate data.

The final and most useful technique is a space-efficient prob-
abilistic data structure called Bloom Filters, which effi-
ciently test whether an element is a member in a set with the
possibility of a false-positive occurring. A set S = {x1, x2, ..., xn}
of n elements is stored in an array of m bits all initially set
to 0. It must also use k different hash functions, each of
which maps some element to one position in the m bit ar-
ray. Because Bloom filters are implemented as bit arrays,
the union of two sets can be computed by performing the OR

operation between the two, while their approximate inter-
sections can be computed using the AND operation. Insertion

94Scalable and Efficient Resource Discovery

is performed by passing the element through each of the k
different hash functions and setting the resulting position in
the m bit array to one. To test whether an element is in
the set or not, it has to be passed through all hash functions
and if all the resulting positions in the array are set to one,
then the element has a high probability of being in the set.
If any position has the value zero, then we know for definite
that it is not in the set (no false negatives). The small false
positive rate arises from the fact that when querying for an
element that is not in the set, some hash functions may re-
sult in positions that were already used (have the value one)
for a previously inserted item. Therefore, the more elements
are inserted into the Bloom filter, the higher the chance of
a query resulting in a false positive. Another shortcoming is
the inability to remove an element from the Bloom filter, as
simply setting the positions given by the k hash functions to
zero have the side effect of removing other elements as well.

Bloom Filter variations exist to either extend their function-
ality or address some limitation. Counting Bloom Fil-
ters [16] allow both insertion and removal of elements by
using an array of counters, instead of bits. In [17], Mitzen-
macher shows that Compressed Bloom Filters can ei-
ther occupy the same space but have a lower false-positive
rate, or reduce their size and maintain their false-positive
rate. Almeida et al. [18] created a Scalable Bloom Fil-
ter that dynamically grows in order to support the desired
false-positive rate.

Finally, Attenuated Bloom filters were proposed in [19]
to optimize search performance w.r.t. locality of objects. It
uses an array of Bloom filters with depth d, where each row i,
for 1 ≤ i ≤ d, corresponds to the information stored at nodes
i hops away. As the depth increases, more information will
be stored in that Bloom filter row, making the respective
filter more attenuated and resulting in a higher probability
of false positives. Therefore, information closest to the node
is more accurate, and less so the further away. The major
advantage of this technique is that it permits us to efficiently
locate objects up to d hops away, using as little storage space
as possible (due to the Bloom filters) at the cost of a certain
false positive rate. The disadvantage is that it only lets us
search information about nodes up to d hops away.

2.2 Resource Discovery
Resource Discovery systems do a subset of what we want
to accomplish with this work: locating physical or virtual
resources to perform jobs. They can be split into three cat-
egories: Peer-to-Peer, Grid, and Cycle Sharing.

Peer-to-Peer systems do not distinguish between clients
and servers; all nodes are equal and have no central co-
ordination, making them decentralized. This leads to the
various types of node topology organization: unstructured,
structured, and hybrid. Unstructured system nodes are
randomly connected to a fixed number of neighbors; there
is no information about where resources are located so mes-
sage routing has to be performed by flooding. Searching can
be uninformed or informed. Uninformed searches use no ad-
dition information to route queries, they are either flooded
to all neighbors (Gnutella [1]), or are forwarded to a ran-
domly selected neighbor (Iamnitchi et al. [20]). Informed
searches are more intelligent and route messages based on



collected information, but require more memory. Lie et
al. [21] and the learning-based technique in Iamnitchi et al.
forward queries to nodes that have replied to similar re-
quests. Another strategy called best-neighbor in Iamnitchi
et al. [20] just forwards queries to nodes with the highest
success rate. Structured systems, such as Chord [3] and
CAN [4] organize nodes into a rigid structure, called a Dis-
tributed Hash Table (DHT), which enables efficient exact-
match query routing. Each node is assigned an identifier
(key) which makes him responsible for all content (values)
whose hash resolves to that key. Finally, Hybrid systems
try to combine the best of both worlds without their disad-
vantages. Some systems in this category, like Pastry [5] and
Kademlia [22], tend more towards structured systems, albeit
with a less “rigid” structure, where any node belonging to
a defined key subspace can act as a contact for those val-
ues. Others follow a more unstructured approach and use
super-peers [23] that communicate between themselves on
the behalf of less capable nodes (in terms of bandwidth or
CPU performance), thus increasing routing performance.

Grid and Cycle Sharing systems share the same objec-
tive: to combine many geographically dispersed computer
resources in order to perform tasks that require lots of CPU
processing power, or that need to process huge amounts of
data. Tasks like these are common when dealing with sci-
entific, technical, or business problems. Grid systems can
run in LAN environments such as that of a university, or in
a much larger network compromised of interconnected net-
works that belong to different institutions, corporations, or
universities. Condor [24] and Legion [25] are typical exam-
ples of such systems, where information about all resources
are stored in a central component, known as the Matchmaker
in Condor, and in Legion is divided into 3 subcomponents:
the Collection, Scheduler, and Enactor. This central compo-
nent receives job requests, tries to match their requirements
to available resources, and reserve those resources while no-
tifying the requester. Cycle Sharing systems rather oper-
ate over the Internet, which can be highly unreliable with
variable connection quality. Another important difference is
that anyone with a computer can join a cycle sharing project
of interest (e.g. SETI@Home [26] or Folding@Home) and
volunteer their resources during idle times. This brings the
additional problem of unreliable peer connections and pos-
sibly forged results from untrusted peers.

2.3 Service Discovery
Service Discovery systems, like Resource Discovery, do
the missing subset of this work: enabling the automatic
detection of services provided by computers in small LAN
environments, like home networks, or in large-scale enter-
prise networks, like a corporation or university. SLP [27]
and Jini [28] use a client/server architecture, where servers
collect service information and perform lookups for clients.
SLP can function without directory servers using multicast
to find services, but only in small LAN environments.

The systems presented by Goering et al. [29] and Lv and
Cao [30] use a Peer-to-Peer architecture instead, with the
objective of being able to function in ad-hoc networks. Go-
ering et al. propose a service discovery protocol based on the
use of Attenuated Bloom Filters, which provide a method to
locate objects, giving preference to objects located nearby.

It is simply an array of Bloom Filters of depth d, where
each row represents objects at different distances which, in
this case, is in term of hops. Each node has an Attenuated
Bloom Filter for each of its neighbors, which is consulted
when a query is received in order to send it in a direction it
will have a higher chance of success. The first level of the
Attenuated Bloom Filter corresponds to the services that
are one hop away, the second to services two hops away, and
so forth. Therefore, the larger the distance from the node,
the more services will be contained in the corresponding At-
tenuated Bloom Filter which will increase the chance of false
positives. Relying solely on Attenuated Bloom Filters gives
this system a big limitation: only the services located up to
d-hops away can be easily found. Lv and Cao resolve this
drawback by having nodes more than d+ 1 hops away coop-
erate among themselves. Thus, when a query is received, it
follows the same process of checking the Attenuated Bloom
Filters of its neighbors like Goering et al, but if no services
are found, then the query is forwarded to a node d+ 1 hops
away where the search begins again.

3. ARCHITECTURE
The objective of this work is to enhance the resource dis-
covery mechanism in GINGER [10], also known as GiGi,
by making it completely decentralized and more complete.
This completeness regards the system’s ability to discover,
not only basic resources (e.g. CPU, Bandwidth, Memory,
etc.), but also specific installed applications (e.g. video en-
coders, simulators, etc.) and services (e.g. face recognition,
high-res rendering, etc.). Because GiGi can be used in many
different ways (“grid-for-the-masses”), it has to be flexible
enough to run different types of jobs normally performed by
home-users.

In order to cope with a dynamic peer population and high
churn rate, this system uses an unstructured peer-to-peer
approach to resource discovery, even though message rout-
ing may not have optimum efficiency. If a structured system
were to be used, the messages needed to keep the struc-
ture intact with an unstable population, such as home-users,
could possibly result in a high overhead. Attenuated Bloom
Filters are used to enhance message routing and speed up
resource location. Note that this solution is different to the
systems mentioned in the Related Work because it combines
all types of different resources into one discovery mechanism.
It is especially different to the works [29,30] that also make
use of Attenuated Bloom Filters due to usage of one aggre-
gated Attenuated Bloom Filter (explained next), and the
fact that all the different types of basic resources, services,
and applications are encoded in the Bloom Filter.

Each node in the network stores a cached version of the At-
tenuated Bloom Filters of their neighbors. This information
is then merged into one single Attenuated Bloom Filter by
inserting the union (OR operation) of all neighbor Bloom Fil-
ters at a certain depth k into depth k + 1 (Figure 1). The
consequence of using an Attenuated Bloom Filter of, for ex-
ample, depth d = 2 is that a node will only know about the
resources of nodes up to 2 hops away. A solution for this
problem is discussed further in Section 3.



Level 2
Level 1
Level 0

Level 2
Level 1
Level 0

Level 2

Level 1

Level 0
Neighbor 1 Neighbor 2

Node A

Figure 1: Example of a node A creating a single
Attenuated Bloom Filter by merging each Level i of
its neighbors’ Attenuated Bloom Filters into Level
i + 1.

Discovery Mechanism. The discovery of resources, appli-
cations, and services (illustrated as a flowchart in Figure 2)
will be performed in the following way. When a node receives
a query, it will check its own information to see if it can sat-
isfy the requirements. If it does, a reply is sent directly to
the node that originated the query. If not, it goes through
its aggregated Attenuated Bloom Filter, which contains the
combined information from its neighbors Attenuated Bloom
Filters. This way, we can quickly determine if the query
cannot be satisfied with nodes up to d hops away, in which
case it will be sent directly to a node d + 1 hops away to
restart the search. If the query can be satisfied with nodes
at most d hops away, the node then needs to determine the
direction to send the query for it to be resolved. This is
done by checking all the cached Attenuated Bloom Filters
of its neighbors to determine which one has the requested
resources. If found, it then forwards the query to that neigh-
bor. If not, then it is because the aggregated Attenuated
Bloom Filter returned a false positive, which is mitigated
by simply sending the query to a node more than d+ 1 hops
away so it can be resolved. As each message is forwarded to
a node, the sender adds his own ID to the resource query’s
Bloom Filter which keeps track of where the message has
been sent. This Bloom Filter is cleared when a query jumps
to a node d + 1 hops away. If any node received a query
message and its ID is in the Bloom Filter, then there must
have been a false positive and therefore the query should
fail.

Dynamic Resources. Some resources are mostly static and
do not change often, like the Operating System, CPU and
Disk speed, certain application versions, etc. But there are
other resources whose values can change quite often, such as
amount of RAM occupied, amount of CPU in use, etc. For
those cases, if we used a classic Bloom Filter then it would
need to be rebuilt periodically since it does not support the
removal of elements. More, this rebuilding procedure would
require resending information about resources that are not
expected to change, thus wasting bandwidth.

Therefore, instead of using a classic Bloom Filter to store
the information about the dynamic resources, a separate
Counting Bloom Filter is used. To compensate the fact that
a Counting Bloom Filter occupies more storage space than a
classic one, we use a smaller Counting Bloom Filter size (less
precision), as the number of static resources is greater than
dynamic ones. The usage of this new Bloom Filter mirrors
that described in the previous sections: queries for dynamic
resources use Aggregated Counting Bloom Filters instead

End

Start

Compare query requirements 
against myself

Query 
Satisfied? Reply to query originator

Compare query requirements 
against aggregated 

attenuated Bloom filter

Query 
Satisfied?

Resend and restart query to a 
node d + 1 hops away

Compare query requirements 
against each neighboring 

node's attenuated Bloom filter

Query 
Satisfied?

Forward query to that 
neighbor

Yes

No

No

Yes

No

Yes

Figure 2: Flowchart of resource, service, and appli-
cation discovery from Section 3

12

5

3

6

7

4

Figure 3: Example showing how resource queries are
forwarded with an Attenuated Bloom Filter of d = 1.
When a neighbor has information about the desired
resource, such as Node 3, then query is forwarded to
that peer, who in turn forwards the query to Node 6
which contains the resource. In another case, when
there is no information about the desired resource
in Node 1’s area (consisting of Nodes 1, 2 and 3),
then the query is forwarded to an Outer Limit Node
4, where the search is then restarted.



and are checked after the static Aggregated Bloom Filter.
The difference is that when a dynamic resource changes,
it is removed from all Attenuated Bloom Filters. Only if
that alteration was drastic and affected the key used for
the resource in the Bloom Filter (explained next) do the
neighbors need to be notified. This is done by defining a pe-
riodic interval which checks for alterations to the resources
in the main Attenuated Bloom Filter, which is then sent to
the node’s neighbors. Each neighbor also does this periodic
check for alterations, and then resends its own Attenuated
Bloom Filter with the changes to its neighbors. This con-
tinues until everyone is up to date. By using this periodic
interval to send updates, we avoid wasted messanges and
bandwith when resource values jitter.

Node Entry/Departure. For a node to join the network,
it has to contact an already participating member. When
the new node establishes a connection, the already existing
member returns its Aggregated Attenuated Bloom Filter in-
formation. After the new node integrates this new informa-
tion, it sends its own Aggregated Attenuated Bloom Filter
to the already existing node which the updates its tables,
and then sends the Aggregated Attenuated Bloom Filters
with dynamic and static resource information to its direct
neighbors. Those direct neighbors will eventually do the
same until all proper neighbors are updated.

With regards to node departure/failure, each member of the
P2P network periodically sends a Ping message in order to
verify if its neighbors are still alive. If there is no response,
then in the next periodic check, that neighbor’s information
is purged from the Aggregated Attenuated Bloom Filter and
its cache is deleted. The node that detected the failure then
needs to rebuild its Aggregated Attenuated Bloom Filter and
resend it to its neighbors. Bloom Filters are then exchanged
until all neighbors are up to date. Note that this system
assumes that the TCP protocol is used for Ping messages
so if there is no reply, we can consider the node has left the
network.

Outer Limit Peer Discovery. Using an Attenuated Bloom
Filter of a certain depth d limits the amount of information
a node has about its surrounding neighbors. If a query is
received and cannot be satisfied using the information the
node knows about its peers in the same area, then it forwards
the query to another node that is d + 1 hops away (which,
conceptually, is part of another area).

To find outer limit peers, a simple random walk strategy is
used, where a peer discovery query is forwarded to a random
neighbor until it reaches a node l hops away, in which case
a reply is sent directly to the originating node with contact
information (e.g. IP address). If a node is not able to for-
ward the discovery message to a node that has not seen the
message before, then it replies to the originating node letting
it know that the path did not lead to an outer limit node.
The originator node then restarts the discovery process, this
time sending it to a different neighboring node (this infor-
mation is stored along with the query message) in order to
try another path that might result in an outer limit peer.

3.1 Resource Representation
Information about resources, applications, and services that
each node offers are represented inside a Bloom Filter. But,
because a Bloom Filter is only capable of performing mem-
bership tests given a key (in this case a string), we need to
add information about the actual resource (like type, value,
etc.) to that key on insertion for it to be useful in discov-
ering resources. Therefore, keys use namespaces to differ-
entiate between resources and their values, which also helps
with performing membership tests for resources. The nam-
ing convention uses a 3-level namespace, each separated us-
ing the colon (“:”) as a delimiter, and follows the following
rules:

• Level 1 : Name of the Resource, Service, or Application
(e.g. CPU or ffmpeg)

• Level 2 : Type of the Resource, Service, or Application
(e.g. MHz or version)

• Level 3 : Actual value of the Resource, Service, or Ap-
plication

For instance, if we wanted to store the fact that a node has
a CPU of 3 GHz, the key we would insert into the Bloom
Filter would be: “CPU:GHz:3”. Or, if a node has the appli-
cation ffmpeg version 2.3 installed, the key would look like:
“ffmpeg:version:2.3”. But, for different nodes to be able to
communicate with each other and search for the same re-
sources, the naming of resources, services, and applications
need to be the same between all of them. An ontology could
be used, but that is out of the scope of this work. For the
time being, the system reads a configuration file that spec-
ifies the name of the resource among other things. This
configuration file needs to be the same for all nodes in the
network.

Insertion. However, just following a naming convention will
not suffice for the discovery of resources. We also need to
take into account the values used for each resource. If we
do not restrict the possible values, we would need to employ
a brute force strategy when querying for resources, trying
each value combination and testing the Bloom Filter. For
example, to find a node that at least contains a CPU of 2.6
GHz, we would need to test for values such as 2.6, 2.7, 2.8,
2.9, 3.0, etc., which is highly inefficient. To speed this up,
we define a minimum, maximum, and a quantum for each
resource value type (which are also specified in a configura-
tion file). The minimum (resp. maximum) is the smallest
(resp. largest) value that the resource will have encoded in
the Bloom Filter. The quantum defines how the value space,
from minimum to maximum, will be divided. When a re-
source is inserted into the Bloom Filter, it is first inserted
with the key that corresponds to its range, and then with all
the other keys that correspond to ranges smaller than the
resource’s value. For example, if we define minimum = 0,
maximum = 4000, and quantum = 1000 for CPU values
in MHz, then the range of values is divided into the fol-
lowing segments: ]0, 1000]; ]1000, 2000]; ]2000, 3000]; and
]3000, 4000]. Or, if a CPU of 999MHz were to be inserted
into the Bloom Filter, it would need to be inserted under
the value 1000: “CPU:MHz:1000”; and so on.



Querying. Now, when querying a Bloom Filter for a value,
the range the value falls under needs to be determined for
the specified resource and checked. For instance, if a query
requires a CPU of at least 2600 MHz, we would only need
to perform one exact match query using the range the value
in the requirements belongs to, which in this case is 3000
(2600 ⊂]2000, 3000]). Therefore, we only need to test the
key “CPU:MHz:3000” against a Bloom Filter because pro-
cessors with a faster CPU will also be registered under this
key. This strategy avoids the brute-force approach and effi-
ciently speeds up the querying process. However, one needs
to take care when specifying the quantum value due to pre-
cision problems. In this example, a CPU of at least 2600
MHz is required, but testing the Bloom Filter with key
“CPU:MHz:3000” can result in CPUs that belong to the in-
terval ]2000, 2599], thus not satisfying the requirements. In
a real-world system, using a quantum = 200 would probably
be more suitable, giving enough precision without requiring
too much overhead. This, and searching for a resource with
a key one quantum value higher than required will ensure
query satisfaction.

4. IMPLEMENTATION DETAILS
This work was implemented using the PeerSim [31] simu-
lator with its Event Driven capabilities, approximating the
simulation more to real-life as opposed to a Cycle Driven
simulation. Because PeerSim is implemented in Java, the
SERD discovery mechanism is also implemented in Java,
which also allowed us to use an open source Bloom Filter
implementation from the well known Hadoop project, pro-
viding us a certain amount of confidence w.r.t. its quality.

In order to be able to evaluate this work, we had to build
an infra-structure around PeerSim to allow things such as
topology creation, resource distribution, and node activity
specification. The Topology Manager allows the gener-
ation of random topologies, with minimum and maximum
number of neighbors and network size as parameters. It
also allows the loading of existing topologies in two differ-
ent file formats. Node Resource Description Language
(NRDL) allows us to distribute resources among nodes ei-
ther in a static way (specifying each node’s resources), or
in a more random fashion by specifying criteria to select a
certain number of nodes to distribute the resource to. Dis-
tribution criteria can be the number of hops between nodes,
the density/frequency of nodes that have the resource, or
even the homogeneity of resource distribution. Node Ac-
tivity Specification Language (NASL) allow us to script
the actions of the virtual nodes where we can select nodes
using various types of specifiers (e.g. randomly, exact match,
nodes with a certain resource, etc.) along with the actions
that they should perform (e.g. search for some resource) and
when that action should be executed (in terms of simulation
cycles or periodicity). The Scenario Manager combines
all the previous components into one which allows us to save
and load simulation scenarios, and thus easily reproduce ex-
periment results.

Test scenario generation was performed using the Ruby util-
ity rake and ERB which enabled us to automate test gener-
ation and embed Ruby code into the configuration files of
the aforementioned components. This way, we were able to
include complex logic during test generation. During the

simulation of those tests, various metrics were collected in
order to be analyzed later on. This was done using Peersim
Controls that intercepted various calls from the discovery
mechanism via hooks (or callbacks) and stored the data into
a key-value backend called Redis.

5. EVALUATION
We created various test scenarios in order to determine if the
SERD discovery mechanism was able to achieve its goals of
being effective, efficient, and scalable. We also compared
our system to another, albeit simpler, discovery mechanism
called Random Walk which functioned as our baseline.

5.1 Test Scenarios
The test scenarios were generated using the components
from Section 4, and were executed with the Random Walk
protocol (RW) and three variations of SERD: SERD1, SERD2,
and SERD3 which correspond to the Attenuated Bloom Fil-
ter depths of 1, 2, and 3, respectively. The test scenarios
were generated with the following parameters and values
(one set focused on static resources and the other on dy-
namic resources):

• Network Size: 5000 nodes and 10000 nodes (the topol-
ogy statistics can be seen in Figure 4)

• Number of Neighbors: 3 neighbors and 6 neighbors per
node, for each Network Size

• Resource distribution: 50% (very abundant resource),
25% (abundant resource, and 5% (scarce resource),
for each combination of Network Size and Number of
Neighbors

For each of the three resource distribution categories (very
abundant, abundant, and scarce), two types of resources were
distributed accordingly: one type with uniform values (al-
most no variation) and another with non-uniform values
(with a lot of variation). The uniform resource chosen for
the static tests was the GCC v4.2 application, and the avail-
ability of a node to be used exclusively for the dynamic tests
(either the systems have the resource or do not). For the
non-uniform resources, the CPU speed (MHz) was chosen
with a minimum, maximum and quantum of 1000, 3000, and
1000, respectively for the static tests; whereas for the non-
uniform resource in the dynamic tests, the resource Hard
Drive storage (GB) was chosen with a minimum, maximum,
and quantum of 0, 1000, and 50, respectively.

During each of the static and dynamic tests, every 5 cycles
10% of the nodes in the network sent resource queries that
could be satisfied by at least one node in the network. The
difference between the two types of tests was that in the
dynamic scenarios, the resource values had to change over
time. This was done by defining typical times of resource
consumption of 5 cycles (short task), 10 cycles (typical task),
and 20 cycles (long running task). Each of these values were
then picked randomly until the total was at least 5 cycles less
than the maximum defined for the Peersim simulation (100
cycles). At each point in that list, one third of each resource
went down 20%, the other one third of the resources main-
tained their value, and the rest of resources were increased
by 20% of their value.



Figure 4: Statistics about the generated topologies

Parameter Value Description
Join Protocol Halt 1 Number of cycles of inac-

tivity to stop the join pro-
tocol

Outer Limit
Jumps

log2(NW
SIZE)

Maximum number of
outer limit jumps

Attenuated Bloom
Filter Rebuild

2 Period that defines when
filter should be rebuilt af-
ter receiving an update

Dynamic Update
Period

3 Period that defines when
to send resource updates

Bloom Filter - N 100 Number of items to store

Bloom Filter - P 1.0e−9 False positive probability
Couting Bloom
Filter - N

50 Number of items to store

Couting Bloom
Filter - P

1.0e−9 False positive probability

Table 1: The parameters used for the SERD proto-
col during the tests with RW

5.2 SERD Protocol Parameters
The discovery mechanism in this work has many config-
urable parameters. As it would be impossible to test the
effect of all parameters, we executed some preliminary tests
in order to figure out reasonable parameters to use in the
tests against the RW protocol. These tests were executed
with two topologies of 10381, and 10000 nodes with 3 and 6
maximum number of neighbors respectively (both topologies
were intended to have 10000 nodes, but due to the topology
manager generation process, from Section 4, one topology
resulted in 10381) . Every 5 cycles 10% of the nodes send
queries for resources that can be satisfied by at least one
in the population, for each resource. The resource included
both the static and dynamic resource categories (uniform
and non-uniform) where the distribution was the worst pos-
sible: 5 percent (scarce). The parameter values used, along
with their respective description, can be seen in Table 1.

5.3 Result Analysis
During the execution of the many test scenarios we collected
various metrics in order to help evaluate the effectiveness,
efficiency, and scalability of our system. These metrics we
collected for the static and dynamic tests were:

• Resource Query Satisfaction

• Average Number of Resource Query Hops

• Total Number of Sent Messages

• Average Size of Storage at each Node, and Message
Size

Static Scenario Results. With regards to the satisfaction
of resource queries (Figure 5), SERD1 and SERD2 consis-
tently got a percentage rate above 90% except for the scarce
scenarios with a maximum of 3 neighbors. This can be ex-
plained by the fact that the depth of the Attenuated Bloom
Filters did not allow the forwarding of queries with much
hindsight, especially in a scenario where very little nodes
actual contain the resource and where each node only has
a maximum of 3 neighbors, thus further limiting a node’s
knowledge about the network. SERD3 in almost all sce-
narios had a satisfaction rate of 100%, and in others 99%.
As the algorithm had a greater depth, it was able to di-
rect queries in the right direction for them to be satisfied.
The RW algorithm’s lack of intelligence in the forwarding of
queries is a great contrast, with almost all satisfaction rates
below or around 80%. While it performs better in scenarios
where the resources are abundant, it suffers in the scarce
ones.

0%

20%

40%

60%

80%

100%

50 25 5 50 25 5 50 25 5 50 25 5

RW SERD1 SERD2 SERD3

Resource Query Satisfaction

3 6 3 6

5 000 10 000

Figure 5: Query Satisfaction for Static Scenarios

The number of hops a query messages takes in order for it
to be satisfied is another important aspect in a discovery
system, which needs to be as low as possible due to network
latency. As we can see in Figure 6, RW queries were con-
sistently higher than any of the SERD protocols because of
the lack of query success, which made the query reach the
maximum number of hops (Outer Limit Jumps value) and
fail. SERD1 to SERD3 all had an average below 3 hops
in all tests except for the scarce ones with a maximum of
3 neighbors. In those cases, SERD1 performed the worst,
while SERD3 the best. This can be explained by the fact
that the lack of resource knowledge (defined by the Atten-
uated Bloom Filter depth) made queries take non-optimum
routes while looking for the resource, or even fail.

In Figure 7, we can see the total messages sent by each pro-
tocol. It is to be expected that in this case, the RW protocol
typically uses a lot less messages because it does not have to
trade resource information. The cases where RW uses more
messages than any of the SERD protocol is because of the
low query success rate, which means that there were a lot
of messages that traveled until the maximum depth. It is
also to be expected that SERD3 uses more messages than
SERD1 or SERD2, especially in the scenarios with 6 maxi-
mum neighbors, due to the greater Attenuated Bloom Filter
depth. Its depth and the amount of neighbors each node



0

3

6

9

12

50 25 5 50 25 5 50 25 5 50 25 5

RW SERD1 SERD2 SERD3

Average Number of Query Hops

3 6 3 6

5 000 10 000

Figure 6: Average Query Hops for Static Scenarios

has knowledge of influences greatly the joining phase of the
discovery process where Attenuated Bloom Filters have to
be traded among nodes until everyone is up-to-date.

0

100,000

200,000

300,000

400,000

500,000

50 25 5 50 25 5 50 25 5 50 25 5

RW SERD1 SERD2 SERD3

Total Number of Sent Messages

3 6 3 6

5 000 10 000

Figure 7: Total Sent Messages for Static Scenarios

Figure 8 confirms what we already expected: the greater
the Attenuated Bloom Filter depth, the higher the storage
costs at each node and the bigger the message size due to
the trading of resource information. The RW protocol uses
so little storage space that it does not appear on the graph
(average of 483.38), which is normal as it has no informa-
tion about neighboring nodes and shows in terms of query
satisfaction. Nonetheless, in a real scenario, RW would have
to store increasingly larger information regarding local re-
sources at each node, which unoptimized would occupy much
space. SERD not only keeps information about its own re-
sources, but also caches the Attenuated Bloom Filters of
its neighbors. Note that these results do not depend on the
number of items actually stored in the Bloom Filters as they
have a fixed size (defined in Subsection ??).

Dynamic Scenario Results. Figure 9 shows us the query
satisfaction for the dynamic resource scenarios, which are
expected to not be as high as the static scenarios due to
the varying values of the resources. Once again SERD out-
performed the RW protocol, which display a success rate
of 80% and lower. In almost all tests, the SERD protocols
were above 80%, except for the scarce scenario tests. In

0

5,400

10,800

16,200

21,600

27,000

32,400

37,800

43,200

48,600

54,000

Storage Space Message Size

RW SERD1 SERD2 SERD3

Average Storage and Message Sizes (bytes)

Figure 8: Average Message Size and Storage Size
for Static Scenarios

those, SERD1 struggled the most seeing as it hardly has
information about the neighborhood. SERD2 and SERD3
only displayed a satisfaction rate lower than 80% when the
scarce scenario was combined with a maximum of 3 neigh-
bors, which limited the available options when forwarding
query messages. RW in those cases was hardly able to reach
20% query satisfaction, making its lack of intelligence ever
so apparent.

0%

20%

40%

60%

80%

100%

50 25 5 50 25 5 50 25 5 50 25 5

RW SERD1 SERD2 SERD3

Resource Query Satisfaction

3 6 3 6

5 000 10 000

Figure 9: Query Satisfaction for Dynamic Scenarios

With not so stellar satisfaction results, the RW protocol in
Figure 10 shows that with high hop averages, being mostly
around or higher than 6 hops. The SERD protocols contin-
ued to show consistency with lower hop averages, although
they had a higher increase in the scenarios where query sat-
isfaction was lower than usual. An increase is query failures
leads to a higher amount of hops as queries only fail if they
reach the maximum Outer Limit Jumps.

Contrary to the static scenarios, where there were cases that
the RW protocol consumed more messages than the SERD
protocol, in the dynamic scenarios (Figure 11) SERD consis-
tently used much more messages than RW. This is not at all
surprising given that not only do nodes exchange resource
information when new peers join the network, but also re-
source information when the dynamic resources change val-
ues during the simulation. The Figure display an interesting



0

3

6

9

12

50 25 5 50 25 5 50 25 5 50 25 5

RW SERD1 SERD2 SERD3

Average Number of Query Hops

3 6 3 6

5 000 10 000

Figure 10: Average Query Hops for Dynamic Sce-
narios

result: no matter the resource distribution for each topology,
the number of sent messages stayed more or less the same.
Another interesting result is that the topology of 5000 nodes
with a maximum of 6 neighbors, and the 10000 topology
with 3 maximum neighbors did not vary that much. Even
though the former topology has less nodes, it sent more mes-
sages due to the bigger number of connections; whereas the
latter has more nodes sending messages, but were doing so
to a smaller number of connections.

0

250,000

500,000

750,000

1,000,000

1,250,000

1,500,000

1,750,000

2,000,000

50 25 5 50 25 5 50 25 5 50 25 5

RW SERD1 SERD2 SERD3

Total Number of Sent Messages

3 6 3 6

5 000 10 000

Figure 11: Total Sent Messages for Dynamic Sce-
narios

Figure 12 does not present us with any new information and
just confirms what happened in the static scenarios: the
deeper the Attenuated Bloom Filter, the bigger the storage
requirements are and the bigger the messages sent in the
network are.

6. CONCLUSION
GiGi [10] allows home users to take advantage of Grid com-
puting which was previously only available to scientific and
corporate communities. Tasks that would usually take a
lot of time, such as audio and video compression, signal pro-
cessing related to multimedia content (e.g. photo, video, and
audio enhancement), intensive calculus for content genera-
tion (e.g. ray-tracing, fractal generation), among others, can
now be sped up by parallelizing and distributing them over

0

5,400

10,800

16,200

21,600

27,000

32,400

37,800

43,200

48,600

54,000

Storage Space Message Size

RW SERD1 SERD2 SERD3

Average Storage and Message Sizes (bytes)

Figure 12: Average Message Size and Storage Size
for Dynamic Scenarios

many computers.

However, to distribute the tasks GiGi needs to locate the
resources that satisfy task prerequisites. Therefore, the ar-
chitecture presented in this work is a discovery mechanism
capable of locating physical resources, services, and appli-
cations from many computers connected to the same P2P
Grid. This is done in a novel way by storing all resource,
application, and service information in Attenuated Bloom
Filters. We created a decentralized discovery mechanism
that is efficient and scalable for the GiGi project and uses
an unstructured P2P network in order to accommodate a
highly dynamic node population. Even though this work
addresses the GiGi project, it is completely independent and
can be used in other types of networks, such as cycle-sharing
networks.

In conclusion, the SERD discovery mechanism described in
this dissertation performed well in the various test scenar-
ios that included static and dynamic resoures, and outper-
formed the RW protocol which was our baseline. Our system
proved to be effective in locating various types of resources,
and scalable as the number of nodes in the network did not
affect the mechanism’s resource query satisfaction. The re-
sults obtained are encouraging towards our objective of ef-
ficiency, taking into consideration that the more resources
each node has (expected in real case scenarios), the more
space RW will use and thus incur a higher storage cost than
SERD (with the Bloom Filters). Although message size in
SERD is larger than RW, it is also able to satisfy a lot more
resource queries than RW. Taking these points into consid-
eration, we also conclude that SERD is an efficient discovery
mechanism.

7. REFERENCES
[1] Gnutella Protocol Specification. Last checked: 2009-12-18.

http://wiki.limewire.org/index.php?title=GDF.

[2] I. Clarke, S.G. Miller, T.W. Hong, O. Sandberg, and B. Wiley.
Protecting free expression online with Freenet. IEEE Internet
Computing, 6(1):40–49, 2002.

[3] I Stoica, R Morris, D Karger, and M Kaashoek. Chord: A
scalable peer-to-peer lookup service for internet applications.
Proceedings of the 2001 conference on Applications, Jan 2001.

[4] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Schenker. A scalable content-addressable network. In
Proceedings of the 2001 conference on Applications,



technologies, architectures, and protocols for computer
communications, page 172. ACM, 2001.

[5] A Rowstron and P Druschel. Pastry: Scalable, decentralized
object location and routing for large-scale peer-to-peer systems.
Lecture notes in computer science, pages 329–350, Jan 2001.

[6] S Androutsellis-Theotokis and D Spinellis. A survey of
peer-to-peer content distribution technologies. ACM
Computing Surveys, Jan 2004.

[7] I. Foster and A. Iamnitchi. On death, taxes, and the
convergence of peer-to-peer and grid computing. Lecture Notes
in Computer Science, pages 118–128, 2003.

[8] D. Talia and P. Trunfio. Toward a synergy between p2p and
grids. IEEE Internet Computing, 7:96–96, 2003.

[9] A. Iamnitchi and D. Talia. P2p computing and interaction
with grids. Future Generation Computer Systems,
21(3):331–332, 2005.

[10] L Veiga, R Rodrigues, and P Ferreira. Gigi: An ocean of
gridlets on a” grid-for-the-masses. Seventh IEEE International
Symposium on Cluster Computing and the Grid, 2007.
CCGRID 2007, pages 783–788, 2007.

[11] M Nelson. Lzw data compression. Dr. Dobb’s Journal, Jan
1989.

[12] D Huffman. A method for the construction of
minimum-redundancy codes. Resonance, Jan 2006.

[13] A. Tridgell. Efficient algorithms for sorting and
synchronization. Doktorarbeit, Australian National
University, 1999.

[14] A Muthitacharoen, B Chen, and D Mazieres. A low-bandwidth
network file system. Proceedings of the eighteenth ACM
symposium on Operating systems principles, pages 174–187,
Jan 2001.

[15] Z Zhang and Q Lian. Reperasure: Replication protocol using
erasure-code in peer-to-peer storage network. 21st IEEE
Symposium on Reliable Distributed Systems (SRDS’02),
pages 330–339, Jan 2002.

[16] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z Broder.
Summary cache: a scalable wide-area web cache sharing
protocol. IEEE/ACM Trans. Netw., 8(3):281–293, 2000.

[17] Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM
Trans. Netw., 10(5):604–612, 2002.

[18] PS Almeida, C Baquero, N Preguiça, and D Hutchison.
Scalable bloom filters. Information Processing Letters,
101(6):255–261, 2007.

[19] Sean C Rhea and John Kubiatowicz. Probabilistic location and
routing. 2002.

[20] A Iamnitchi, I Foster, and D Nurmi. A peer-to-peer approach
to resource location in grid environments. INTERNATIONAL
SERIES IN OPERATIONS RESEARCH AND
MANAGEMENT SCIENCE, pages 413–430, Jan 2003.

[21] L Liu, N Antonopoulos, and S Mackin. Social peer-to-peer for
resource discovery. Proceedings of the 15th Euromicro
International Conference on Parallel, Distributed and
Network-Based Processing, pages 459–466, Jan 2007.

[22] P Maymounkov and D Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. Proceedings of
IPTPS02, Jan 2002.

[23] C Mastroianni, D Talia, and O Verta. A super-peer model for
building resource discovery services in grids: Design and
simulation analysis. Lecture notes in computer science,
3470:132, Jan 2005.

[24] D Thain, T Tannenbaum, and M Livny. Condor and the grid.
Grid Computing: Making the Global Infrastructure a Reality,
pages 299–335, Jan 2003.

[25] S Chapin, D Katramatos, and J Karpovich. Resource
management in legion. Future Generation Computer Systems,
Jan 1999.

[26] D.P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. SETI@ home: an experiment in public-resource
computing. Communications of the ACM, 45(11):61, 2002.

[27] E Guttman. Service location protocol: Automatic discovery of
ip network services. IEEE Internet Computing, Jan 1999.

[28] J Waldo. The jini architecture for network-centric computing.
Communications of the ACM, Jan 1999.

[29] P Goering and G Heijenk. Service discovery using bloom
filters. Proc. Twelfth Annual Conference of the Advanced
School for Computing and Imaging, Belgium, Jan 2006.

[30] Qingcong Lv and Qiying Cao. Service discovery using hybrid
bloom filters in ad-hoc networks. Wireless Communications,
Networking and Mobile Computing, 2007. WiCom 2007.

International Conference on, pages 1542–1545, 2007.

[31] PeerSim. Last checked: 2009-12-27.
http://peersim.sourceforge.net/.


