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Abstract. Function-as-a-Service (FaaS) is a cloud computing model that allows
developers to build and deploy functions without having to worry about the
underlying infrastructure. Current challenges such as cold start delay are still
being actively studied, which is seen as a delay in setting up the environment
where functions are executed, and one of the most significant performance issues.
Causing great deals of latency and reduced quality of service to the customer
of this model. It is still difficult for users to allocate the right resources, namely
CPU and memory, due to a variety of function types, dependencies, and input
sizes. Resource allocation errors lead to either under or over-provisioning of func-
tions, which results in persistently low resource usage and significant performance
degradation. This thesis presents a novel approach to optimizing the performance
of FaaS systems using a utility function that takes into account customer entries.
This utility function uses feedback from customers, in the form of preferences and
pricing goals, to determine the relative importance of different functions to the
overall system. This information is then incorporated into the scheduling process,
ensuring that the most customer desired functions receive the necessary resources
to perform optimally. This work presents an architecture to successfully imple-
ment the new approach into a scheduler in Apache OpenWhisk that utilizes a
utility function that receives customer entries to better determine resource allo-
cation. We also present the evaluation methodology to assess the implementation
and analysis of the overall approach performance.

Keywords: Cloud Computing, Resource Scheduling, Function-as-a-Service, Pricing,
Utility, Function-as-a-Service

1 Introduction

Edge computing [32], a development of cloud computing, has benefited from the cheaper
cost and improved energy efficiency of lower-end computation and storage equipment
that are common at the internet’s outer edges. As a result, the edge of the internet is
now richer and loaded with numerous resources that are yet mostly untapped.

Although users are initially willing to contribute, the sustainability of these com-
munity edge clouds depends on the users’ access to interesting, relevant services, which
are frequently deployed as virtualized containers, and their ability to get something in
return (incentives) for letting others use their hardware [29].

At the same time, more organized and elastic applications, with reduced latency and
better resource use, are made possible by serverless computing and the Function-as-a-
Service model (also know as FaaS) [35].



1.1 Motivation

Current implementations of the Function-as-a-Service architecture such as Amazon AWS
and Microsoft Azure focus deeply on the optimization of systems resources and perfor-
mance while paying little attention to the individual desires of each customer. We propose
a scheduling optimization in the Function-as-a-Service model that receives input from
the customer to assist its execution for a more intelligent and focused quality of service.

Current scheduling mechanisms [54,19] attempt to maximize available resources for
the least cost, be that cost resource consumption or execution time. Customers tend to
wish for execution times to be as low as possible, however, this is in general terms as
not all customers are the same when it comes to urgency. One customer might just be
requesting a project to be done by the end of the day and has little interest in when it
is done in a few minutes or an hour, while another customer might need a request to be
done as soon as possible; this information can be leveraged by providers, by employing
fewer resources when they are scarce, while reducing the price charged to users [50]. We
propose an optimization to the scheduling mechanism that will take into account these
customer differences in priority as well as provide monetary profits for the provider using
our proposal by adjusting the price of the service depending on the priority desired by
the customer. This implies that a customer using our system will be provided a few
additional options, depending on the state of the server, when attempting to put in a
request such as monetary discounts for slower execution times or extra monetary costs
for his request to be completed in a timely manner. The latter is presented in case the
system is saturated and unable to confidently complete customer requests in the initially
expect time frame.

While scheduling mechanisms are crucial when resources are limited, we also propose
using these to maximize customers’ quality of service when the system is not yet satu-
rated (has an abundance of resources available). To achieve this, we propose a scheduling
optimization that uses more resources than necessary, when the system has an abun-
dance of resources, to generate faster execution on repeated requests from a user. More
resources than necessary are allocated, however, this comes at a price. Given this, to
complement this optimization, we propose a corresponding pricing adjustment for the
new total allocated resources. This allows the provider to still be able to offer a fair price
to his customers.

1.2 Objectives

In order to accomplish our desired Function-as-a-Service quality of service described
above, we set out to do the following objectives:

1. Examine the most cutting-edge FaaS technology in use today to comprehend their
key challenges, scheduling integrations, and customer-facing pricing models.

2. Survey current state-of-the-art open-source FaaS technology to determine the best
suited environment to develop and present our proposed scheduler.

3. Design an architecture on the desired open-source FaaS technology that adheres to
the requirements set forth by our vision.

4. Develop and implement our proposed architecture in Apache OpenWhisk.
5. Create a structured evaluation methodology to easily asses if our future implemen-

tation fulfills our desired requirements.

These objectives are explored and described in the remaining sections of this work.
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1.3 Document organization

This document is organized in two main sections, Section 2 and Section 3, followed by
an evaluation methodology used and a conclusion, Section 4 and Section 5 respectively.
Section 2 is dedicated to the related work in this field, primarily focused on Function-
as-a-Service architecture. Following the related work is Section 3 where this document
presents our proposed architecture deployed in Apache Openwhisk outlining and ex-
plaining how we wish to implement our desired scheduling extension adhering to the
requirements presented in Section 1.1.

2 Related work

This section will discuss the most cutting-edge techniques and technologies currently
being used in this field and it is subdivided into three parts: Section 2.1 where a brief
introduction to the Function-as-a-Service architecture as well as presenting its benefits,
use cases, and challenges; Section 2.2 presents current scheduling and pricing mechanisms
used throughout cloud computing; finally Section 2.3 currently used and developing
Function-as-a-Service technologies that this work considered and studied.

2.1 Function as a Service

In terms of architectural layers of Cloud Computing, the Cloud is typically considered
as numerous Cloud Services [29]. In essence, it relates to who will oversee these Ser-
vices’ many layers, these can be classified as IaaS (Infrastructure-as-a-Service), PaaS
(Platform-as-a-Service), SaaS (Software-as-a-Service), BaaS (Backend-as-a-Service) and
finally FaaS (Function-as-a-Service) the main cloud service used of this work.

2.1.1 Other Cloud Services and FaaS IaaS in the context of cloud computing
refers to the management of the hardware and virtualization layer, which includes
servers, storage, and networking, by the cloud provider. Applications developed over
infrastructure built on top of IaaS are managed by the end user, including virtual in-
stances, operating systems, applications, availability, and scalability. This service is the
closest to the user, providing the most amount of control over the system to the user as
well has to have the lowest transparency [29].

PaaS consists in providing a Service where the cloud provider can offer a platform
that controls the OS, availability, scalability, and virtual instances of instances built on
top of IaaS. A provided runtime environment can be used if there is no specific runtime
environment requirements [29].

SaaS provides complete abstraction of the software and backend. These are full pro-
grams that don’t require any further effort from the user and may be utilized remotely.
However, the restriction is that the organization has no control over the application [3].

BaaS and FaaS are now two additional service models. Both are thought to be server-
less, as such BaaS and FaaS are frequently used in conjunction because they share op-
erational characteristics (such as no resource management) [39,17]. Applications that
heavily rely on third-party (cloud-hosted) apps and services to manage the server-side
logic and state are referred to as BaaS applications. The client then houses the bulk of
the business logic, such applications are frequently referred to as “rich client” applica-
tions, including single page applications and mobile apps. Google FireBase is a prime
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example of BaaS. It is a complete mobile development platform that is hosted in the
cloud and has direct client communication capabilities. As a result, there is no server
in the way, and all resource and management concerns are handled by the database
system [3].

FaaS offers the ability to deploy code (also known as functions) in the cloud and
it’s the greatest difference from BaaS. As a result, the developer can utilize his own
programming without having to handle the hardware itself. An operator of a cloud
service platform does not control everything, because the abstraction with FaaS is greater
than with PaaS. The provider also manages the data as FaaS must come before PaaS
(e.g., the state of the server). Scalability is another significant distinction between FaaS
and PaaS. While FaaS scaling is completely transparent, PaaS requires the organization
to still consider how to scale. Only the specific functions of the application are now
deployed on FaaS [3].

When FaaS is invoked, the request is first authenticated using an authentication
method, and FaaS is only triggered when the Invoker is given permission to do so.
The code logic provided while deploying the FaaS function is used to activate FaaS
for execution. Function instances are terminated once function execution is finished. By
storing the state during the execution phase in consistent state resources such as NoSQL
databases, parameter stores, etc., the state of the FaaS function can be preserved by
external means. This defines the FaaS lifecycle and it provides security as well as ease
of use [29].

FaaS is our best prospect for this work due to the user only needing to worry himself
with the business logic presented to him as shown in Table 1.

2.1.2 FaaS benefits FaaS is a fairly straightforward implementation technique for
micro-distributed APIs. The user only pays for the period of time that the FaaS was in
operation [29].

The application’s scalability and availability are not the user’s concerns. FaaS is
naturally highly available and automatically scalable. This greatly simplifies Design
architecture. FaaS can scale from a few requests per day to thousands of requests per
second, automatically depending on the demand that is necessary on the API. FaaS
is extremely available by nature; even if one event fails, another one will be ready to
fulfill the request in a short period of time. Since the FaaS function is only accessible via
API to end users, it separates internal cloud resources from them and increases security
because backend servers are hidden from view outside of the FaaS function [29].

2.1.3 Use Cases FaaS can be used for a variety of use cases from Infrastructural
where it is used as a middleman to achieve scalability and availability on top of an
existing system such as in edge computing. However it can also just as well be used as
an application where it can offer a easy and scalable way to resolve requests such as
image and video Manipulation for more direct results but in machine learning as well
for more controlled results.

2.1.3.1 Infrastructural Low latency is frequently needed for use cases like monitoring
people’s vital signs during emergencies or in daily life [31]. To save lives in the event of
a big disaster, paramedic assistance must arrive quickly. User-wearable sensors can offer
vital details about a patient’s health and assist in establishing a priority list for patient
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Cloud Business App Data Runtime/ Virtualization/ Examples
Services Logic OS Storage

On-premise User User User User User Home
Computer

IaaS User User User User Provider Apache
Cloudstack

PaaS User User User Provider Provider AWS Elastic
Beanstalk

BaaS User User Provider Provider Provider Google
Firebase

FaaS User Provider Provider Provider Provider Apache
OpenWhisk

SaaS Provider Provider Provider Provider Provider Google
Workspace

Table 1. Cloud services and their levels of user control.

monitoring. Support for low latency is one of the primary forces for edge computing.
In this situation, a serverless computing framework can handle server, network, load
balancing, and scaling operational tasks [32].

There are a number of open-source FaaS frameworks that have been suggested to
enable serverless computing on private infrastructure and prevent vendor lock-in. Re-
cent studies have assessed the performance and utility of a few open source serverless
frameworks [28,21], but these studies do not take into account the limitations imposed
by an edge-based environment [35].

FaaS is a scalable and flexible event-based programming model so it’s a great fit for
IoT events and data processing [35]. Consider as an example a connected switch and
printer. When the button is pressed it sends an event to a function in the cloud which
in turn sends a command to the printer to turn itself on. The three components are
easily connected and only the actual function code would need to be provided. Thanks
to managed FaaS, this approach also scales from two devices to thousands of devices
without any additional configuration [35].

One FaaS solution made specifically for edge situations is tinyFaaS. Edge nodes can
be single-board computers with low power or entire data centers, depending on their
capabilities. FaaS platforms primarily focus on these larger data centers or clusters of
servers, however, tinyFaaS also take into account the more prevalent limited edge nodes,
such as single servers or single-board computers. Edge nodes are far more cost-effective
in the huge quantities needed for edge computing, even though they have much less
computational capacity than a full data center and are sufficient for many use cases [8].
These low-power edge nodes differ from cloud apps, which must scale across multiple
cloud computers, in part because they are monolithic [35].

While scalability and fault tolerance are constrained if a large number of devices
approach edge for computation offloading requests, node management is drastically sim-
plified, and platform management overhead is kept to a minimum. One of the key reasons
to process data at the edge rather than the cloud is latency, which is a crucial compo-
nent of the IoT. Alternative messaging protocols like MQTT or CoAP, which tend to be
much more resource-efficient, can help to reduce latency [22,30]. An edge FaaS platform
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should therefore natively handle such IoT messaging protocols while being able to do
without the need for specialized triggers that are specific to cloud applications [35].

2.1.3.2 Applications Basic image and video processing that doesn’t require a
state to be saved for subsequent calls is a good fit for FaaS. Basic image and video oper-
ations like resizing, transformation, cropping, image to text conversion, and thumbnail
creation can be carried out [29]. Due to its frequent use and ease of data analysis, this
case study is frequently used for performance evaluations. For example, in [38] by man-
aging an image resizing case study and in [40] where they considered a more complex
image processing pipeline consisting of three functions in the final experiment. The first
method generates a thumbnail version of an image by downloading it from its URL;
the second function mirrors the image, and the third function converts the image to
grayscale.

Application development is quick and reliable when using a distributed architecture
based on microservices that can use multiple cutting-edge programming languages
simultaneously for different modules. With the aid of FaaS, it is possible to create and
distribute websites and applications without using backend servers for processing. Due
to the built-in feature of autoscaling and the high availability of FaaS, applications and
APIs can be scaled automatically. The developer should only concentrate on endpoint
integration and processing logic [29].

The benefits of FaaS have triggered a growing interest in how to use it in machine
learning (ML). Recently, research from both academia and industrial communities has
focused their attention on the FaaS model for those applications. For instance, in the
study [59] it was found that deep neural networks could benefit from the FaaS paradigm
since users are allowed to decompose complex model training into multiple functions
without managing the server. A novel FaaS architecture for the deployment of neural
networks is discussed in [55]. Furthermore, various frameworks have been proposed to
deploy machine learning in FaaS environments. For example, SIREN is an asynchronous
distributed machine learning framework based on FaaS. AWS also provided one example
of ML training in AWS Lambda using SageMaker [41] and AutoGluon [4]. SageMaker
is a fully managed service that provides the necessary tools to create, train, and deploy
ML models. AutoGluon is an open-source library that automates ML tasks [11].

A lot of efforts have been done to identify the possible ways to deploy FaaS for applica-
tions where scientific computing is crucial. Existing studies, such as [12] demonstrated
the feasibility of using the FaaS model for scientific and high-performance computing by
presenting various prototypes and their respective measurements. In [12], the authors
proposed a high-performance FaaS platform that enables the execution of scientific ap-
plications. A prototype for executing the scientific workflows in FaaS environments has
been developed and evaluated by [26].

Without the need for intricate cluster-based systems, FaaS can also be activated from
a variety of events generated, such as system logs, data events, scalability events, etc.
Event streaming pipeline, queue, and stores can all be used as inputs for monitoring
systems [29]. Table 2 shows the use cases and their various studies.

2.1.4 FaaS challenges

2.1.4.1 Cold start delay The cold start delay, which is seen as a delay in setting up
the environment in which functions are executed, is one of the most significant perfor-
mance issues [57].
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Use cases Studies

Edge computing [28,21,8]

Image and Video Manipulation [38,40]

Multi-language Applications [29]

Auto-scaling highly available Websites and APIs [29]

Machine Learning [59,55,11]

Scientific Computing [12,26]

Event streaming [26,29]

Table 2. Use Cases and theirs various studies.

Popular systems most frequently use a pool of warm containers, reuse the contain-
ers, and regularly call routines to reduce cold start delay. However, these techniques
squander resources like memory, raise costs, and lack knowledge of function invocation
trends over time. In other words, while these solutions reduce cold start delay through
fixed processes, they are not appropriate for environments with dynamic cloud architec-
ture [56].

Despite the fact that serverless computing reduces some of the major IoT difficulties,
these convergent technologies still have unique limits such as cold start time that must be
addressed holistically. In the work [56], the authors proposed an intelligent method that
chooses the optimum strategy for maintaining the containers’ warmth in accordance with
the function invocations over time in order to lessen cold start delay and take resource
usage into consideration.

While in the work [7], the authors assume that the FaaS platform is a ”black box” and
use process knowledge to reduce the number of cold starts from a developer perspective.
They suggested three methods to lessen the number of cold starts based on indicating the
naive approach, the extended approach, and ultimately the global approach, as well as
a lightweight middleware that can be deployed alongside the functions for this purpose.

A straightforward illustration of provider-side cold start optimization is OpenFaaS.
For each deployed function, it always maintains a single warm container, according
to [48]. However, this only takes into account situations where the increase in arrival
rate is smaller than one divided by the typical cold start latency. Cold starts continue
for every additional concurrent request [7].

Likewise, Apache OpenWhisk [6] uses so-called “stem cells” which are running con-
tainers that use a base image without the function code and its libraries. This reduces
the cold start time as containers are already ”semi-ready”.

An alternative FaaS platform called SAND combines the functionality of a single
application into a single container, preventing cold start buildup. SAND does not require
our method, but as a research prototype, it is not yet suitable for production, therefore
we must still deal with today’s FaaS services [7].

2.1.4.2 Resource Allocation Due to a variety of function types, dependencies, and
input sizes, it is still challenging for users to assign the proper resources, namely CPU
and memory. Resource allocation errors cause functions to be either under or over-
provisioned, which results in persistently low resource use which generates considerable
performance degradation.

Resource managers (RM) for FaaS platforms like Freyr [62] and SmartHarvest [58] op-
timize resource efficiency by dynamically harvesting free resources from over-provisioned

7



operations and shifting them to under-provisioned services. Spock [16] suggests a cost
and SLO-improving FaaS-based VM scaling architecture. [19] and [54] both aim to
automatically change CPU resources when detecting performance degradation during
function executions for FaaS resource management, which helps address the problem of
resource over-provisioning.

The CPU resources allotted to functions by existing FaaS systems are typically dis-
tributed in proportion to the user-configured memory allocation. Apache OpenWhisk
uses the same approach. In particular, the shares option of a newly constructed con-
tainer for a certain action is set in proportion to the memory value defined for the
activity. By doing this, the OS-level scheduler will, in the event of contention, offer
actions with bigger memory allocations a higher share of CPU time [40].

2.1.4.3 Security Applications using FaaS raise several security challenges. Applica-
tions are vulnerable to a number of security flaws since they are integrated with database
services, and back-end cloud services, and are connected through networks and events.
For instance, event-data injection occurs when an application receives an unauthorized
and untrusted data entry and executes it without checking it first. This kind of injection
can target the container’s stored functions’ source code and other confidential informa-
tion. Denial of Service or Denial-of-Wallet attacks can be launched by an attacker due
to insecure deployment setup and flawed access control. In order to increase costs or get
unauthorized access to function resources, these attacks take the use of functions hav-
ing lengthy timeouts. Poisoning the good attacks, which frequently affect libraries and
platform code, involves inserting harmful code into a library that numerous programs
rely on [11].

To address some of these issues, there are numerous commercial security solutions
available [2,51]. Aqua [2] is a program that continuously checks container images and
function’s code, to make sure that developers don’t add vulnerabilities in a library,
embedded secrets (keys and tokens), or permissions. while for instance, Snyk [51] is one
of the widely used tools for securing FaaS applications by identifying, addressing, and
monitoring any security flaws in open-source dependencies.

Researchers have also addressed security concerns and put forth a number of reme-
dies [18,42]. SecLambda is an extensible security framework that [18] proposes for car-
rying out complex security activities to safeguard a FaaS application and ensure control
flow integrity, credential protection, and DoS rate limitation. A workflow-sensitive au-
thorization approach for FaaS apps was created by the authors and published in [42].
It proactively examines the permissions of all workflow functions for external requests.
This minimizes the application’s attack surface by enabling the program to quickly reject
illegitimate requests. Table 3 summarizes the FaaS challenges and their various studies.

FaaS challenges Studies

Cold start delay [56,5,20,45,7,48]

Resource allocation [62,58,16,19,54]

Security concerns [18,42,11]

Table 3. FaaS challenges and theirs various studies.
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2.2 Utility

There is a constant conflict between the provider and the customer throughout the entire
product industry. The supplier must work to increase revenue while still enhancing its
product for the benefit of the customer. There has been a lot of research done on cloud
computing’s optimization [40,24,25], but this rarely or never considers the potential
revenue that these optimizations can provide [14]. We present both sides of the conflict in
this section. When it comes to scheduling, the provider can use optimization techniques
to improve the customer experience with little to no thought to the financial implications.
And pricing is the most recent development in cloud computing pricing methodologies
that aim to maximize revenue.

2.2.1 Scheduling In distributed systems, scheduling is frequently studied to establish
a connection between requests and available resources. For clusters [43], clouds [23], and
cloud-edge (Fog) systems [37,44], numerous solutions have been put forth. Load balanc-
ing [24], maximizing resource use [60] and energy efficiency [27], minimizing execution
costs [13], and maximizing performance are the typical objectives of scheduling [9]. In
edge computing, scheduling is necessary when services must be successfully offloaded.
Offers scheduling innovations for edge computing that can be used in FaaS systems
for this purpose [25]. They provide many approaches that present a fair priority-based
scheduling system by taking into account the client and each request.

In the work presented in [40], they offer a cutting-edge scheduling system for FaaS
that is QoS-Aware and implemented in Apache OpenWhisk. By adding a Scheduler
component, which takes over from the Controller’s load balancing function and allows
more scheduling policies, they expanded Apache OpenWhisk. In this new design, incom-
ing requests are routed through the Scheduler rather than the Controller in order to be
immediately scheduled to the Invokers. This Java-based scheduler, which serves as mid-
dleware, is a meaningful inspirational factor in our work. Arrivals and Completions are
the two basic events that the Consumer receives. Upon receiving fresh requests, the Con-
troller publishes arrival events, which cause the related activation to enter the Scheduler
buffer. In contrast, when activation processing is finished, Invokers publish completion
events. The Controller in the standard version of Apache OpenWhisk uses this data,
and their Scheduler also makes use of it to monitor the workload of the Invoker. While
many of the objectives we hope to attain are illustrated in this study, pricing approaches
are missing.

2.2.2 Pricing The viability of cloud ecosystems is fundamentally dependent on ser-
vice pricing [14]. Given the size of cloud computing environments, it is essential to offer
an energy-conscious cloud architecture in addition to a business strategy with sensible
resource pricing and allocation [46]. The bulk of studies places a strong emphasis on
lowering overall energy use while paying little attention to other aspects like service
pricing and proper cloud service billing [14].

One of the most crucial elements that could draw clients in is the pricing strategy.
They consistently seek the best quality of service at the lowest cost. In contrast, cloud
service providers strive to increase income while reducing expenses by implementing
more modern technologies [1]. For the cloud services they require, different users ask
for different quality service classes. Both the requested services and their quality are
subject to change over time. Because it lacks the necessary capability to respond to the
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dynamic changes in service demands and their quality, the fixed price strategy, although
simple, is not a fair technique for both consumers and suppliers. Customers prefer to
pay for what they have really used, and service providers prefer to publish a fair pricing
structure so that they can bill their clients fairly and be competitive [14].

There are three basic difficulties with pricing models in cloud computing. Users of
cloud services are often unable to understand billing events since they take place within
the cloud architecture. To do this, a thorough taxonomy that takes into account all
significant aspects of pricing schemes is required. The discrepancy between resource uti-
lization and billing time is another issue. Bills are issued far after the use of the resource
or service because the billing system is not synchronized with resource consumption. By
reducing the processing time, using a suitable pricing model can also reduce the gap
that was previously noted [14].

Not least of all, cloud service providers frequently combine or aggregate various events
into a single line of code by combining the code of various requests into a single line
to be executed. It speeds up the delivery of consumer bills and lowers the computing
complexity for cloud providers, but accuracy and fine-grained information in the system
are sacrificed. While everyone can agree on a clear fair pricing strategy that both service
providers and customers are happy with, fair pricing is a subjective idea [10].

2.2.2.1 Compounded Moore’s Law and beginning expenditures In [47] the
primary focus was ensuring that cloud service users received a high level of quality of
service by establishing two distinct price restrictions. The upper bound is determined
by the compounded Moore’s law, a modified form of the original Moore’s law, while
the lower bound serves to cover the beginning expenditures. The variables that make
up the initial costs are taken for granted in this analysis. Additionally, neither the cost
calculation method nor a model to distinguish between the various parameter categories
is disclosed [14].

2.2.2.2 Spot Instance The Spot Instance approach, which was extensively discussed
in [52], is one of the realistic attempts to apply dynamic pricing. The actual issues
with the application of this strategy are explained in this paper. The considerable price
fluctuation of this pricing scheme is one of its drawbacks. Additionally, clients are unable
to relate to the many fluctuations that occur in the price and quality of the given services
since the pricing mechanism is not transparent to them. Last but not least, because
applications may abruptly end in Spot Instances, this approach is unsuitable for real-
time, interactive, or applications that require a stable level of quality of service and
response time.

2.2.2.3 Price-at-risk The major goal of the work [33] was to address pricing uncer-
tainty for on-demand computing services by providing a Price-At-Risk technique. All of
the dynamic conditions described above are taken into account by Price-at-risk. The key
issues for which the Price-At-Risk methodology attempts to identify a workable solution
are difficulties with demand estimation accuracy and demand price elasticity. Machine
learning can be used to tailor pertinent parameters based on the application and the
type of service in order to address this problem. The problem of coarse-grained granu-
larity by using general formulas could be resolved, and the precision could be improved,
by using machine learning algorithms and other cutting-edge technologies [14].
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2.2.2.4 Customer classification and resource consumption status In economics,
the term ”price discrimination” is used to refer to varying prices [34]. To design advanced
reservation pricing in Computer Grids, [53] relies on two key pillars: revenue optimiza-
tion [36] and price discrimination. In order to assess income performance based on the
aforementioned user types, the authors divide users into premium, business, and budget
groups. Meanwhile, resource utilization can be classified as peak, off-peak, or saver. Two
crucial cloud factors — customer classification and resource consumption status — were
carefully taken into account in this study. The primary shortcoming of this research is
the coarse granularity of variable rates, as establishing a better pricing strategy for ev-
ery person requires more precise application parameters as well as service specifications.
Table 4 summarizes the characteristics of the various pricing mechanism’s highlighting
their advantages and drawbacks.

Study Pricing method Advantages Drawbacks

[47] Compounded Moore’s law High degree Initial cost
and beginning expenditures of QoS taken for granted

[53] Customer classification and Income performance Coarse granularity
resource consumption status based on user types of variable rates

[52] Spot Instance Realistic Considerable
dynamic pricing price fluctuation

[33] Price-At-Risk Price elasticity Lack of accuracy

Table 4. Characteristics of the various pricing mechanism’s.

In order for us to create a comprehensive and appropriate FaaS Scheduling that
maximizes revenue we must take into account the interests of both the developer (with
financial offerings to keep supplying and improving the service) and as well as the
user/consumer (with the use of the service for his own needs), and not simply the
performance of the cloud service.

2.3 Relevant and Related FaaS Systems

One benefit of cloud computing is the vast array of options from which a user can select
the one that best suits his needs. This also holds true for all developers worldwide,
enabling them to support and expand current solutions or even develop new ones. Even
though this idea of expanding already existing work occurs much more frequently in
open-source projects, it is still essential to have a thorough understanding of what private
businesses are providing to foster innovation within the cloud computing industry. We
outline the most popular FaaS implementation options in this section, along with open-
source options that we as developers can tailor.

2.3.1 Amazon AWS Lambda Service [29], a FaaS implementation in AWS, can scale
up automatically as needed and can handle from small numbers of requests per day up
to thousands per second.

AWS Lambda offers the runtimes for Java Script, Python, Ruby, Java, Go, and .Net
as well as other programming languages as a platform for execution.
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Support for custom library uploads is now offered for AWS lambda deployment.
Numerous AWS services, monitoring events on AWS CloudWatch, and URLs can all be
used to trigger Lambda.

2.3.2 Google Cloud In Google Cloud FaaS, a feature known as ”Cloud Function” is
included. This feature can scale up automatically as necessary and can handle anywhere
between a small number of daily requests and millions of daily demands.

Java Script, Python, and Go Runtime are offered by Cloud Function as Platform.
Support for custom library uploads is not offered for Cloud Function deployment.

Cloud Function can be called manually, or it can be triggered by HTTP, Cloud Storage,
or Cloud Pub/Sub events [29].

2.3.3 Microsoft Azure The ”Azure” function implementation in Microsoft Azure
Cloud FaaS has the ability to scale up automatically when enabled.

As platform options, Azure Function offers PHP, Java, Java Script, PowerShell, C
Sharp, and Python Runtime. Support for uploading custom libraries is offered for Azure
Function deployment.

With the necessary IAM policies, Azure Function can use auxiliary services like
Blob Storage, Cosmos DBs, EventGrid, Event Hub, HTTP, webhook, IoT Hub, Graph,
Notification, Queue, Table storage, Timer, etc [29].

2.3.4 OpenStack-Cloud Cloud FaaS is implemented in OpenStack using a vari-
ety of platforms, including ”Apache Whisk”, ”Fission”, ”IronFunctions”, ”Fn Project”,
”OpenLambda”, ”Kuberless”, and ”OpenFaaS.”

Underlying FaaS is implemented in OpenStack using services from Docker and Ku-
bernetes. By developing the appropriate docker image, execution language support can
be added as needed. Similarly, RAM and core requirements can be customized accord-
ing to the docker image implementation for FaaS. As a result, OpenStack Cloud offers
a lot of customization options for microservices-based architecture. FaaS workloads and
microservices application containers are typically managed in OpenStack FaaS imple-
mentations using Kubernetes. This makes it possible to implement the FaaS paradigm
with precise control over memory and processing power.

The benefit of implementing FaaS using OpenStack technologies is that it can be
more hardware specific by using the Ironic service. Additionally, specific memory and
processing power requirements can be configured when implementing the microservice
distributed service architecture. However, public cloud users have restrictions when tak-
ing these points into account [29]. These open source technologies are likewise open
source, making it simple to access the source code and giving developers everywhere in
the globe the tools they need to contribute (including us).

2.3.5 Kubeless Kubeless is a FaaS framework that is native to Kubernetes. Func-
tions, triggers, and runtime are the three primitives on which the Kubeless programming
paradigm is built. The code that will be executed is represented by a function, and an
event source is a trigger. Depending on the type of event source, a trigger may be con-
nected to a single function or a collection of related functions.

This platform’s key element is a controller, which constantly monitors for changes
to function objects and takes the required actions, such as creating or deleting a new
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function object, as needed. The runtime image used to deploy a function may be explic-
itly supplied by the user, the image artifact may be generated on the fly, or the function
code may be delivered into the associated Kubernetes pod using a pre-built image [28].

2.3.6 OpenFaaS The fundamental building block of the OpenFaaS programming
paradigm is the function. A handler and a function need to be provided by the developer.
An API gateway is this platform’s primary element. The API gateway interacts with
the orchestration engine to offer scaling, metrics collection, and access to the functions
(i.e., Kubernetes). Each function is packaged into a Docker container using a command
line interface. Every container has a watchdog, which is a webserver that serves as an
entry point and calls the function. The Kubernetes Horizontal Pod Scaler (HPA) or the
AlertManager component (coupled with Prometheus) are used by OpenFaaS to allow
the zero-scale capability where idle functions can be configured to scale down when they
haven’t received any requests for a period of time [28].

2.3.7 Knative The Istio and Kubernetes platforms, which offer application (container-
based) runtime and sophisticated network routing, serve as the foundation for the Kna-
tive framework. As a result, Knative is able to add CRDs to the Kubernetes platform
in order to support higher levels of abstraction.

Building, Serving, and Eventing are this platform’s three key pillars. The Build com-
ponent is a pluggable paradigm for building apps (in containers) from source code and is
implemented using a Kubernetes CRD. Based on the requests it receives, this component
offers scale-to-zero support and leverages Istio for network routing. The essential prim-
itives for consuming and creating events are provided by the eventing component. The
implementation of higher-level API concepts, CLIs, tooling, etc. is left to the discretion
of particular vendors since Knative is not a full-featured FaaS platform [28].

2.3.8 Apache OpenWhisk Actions, Triggers, and Rules are the three primitives
on which the Apache OpenWhisk programming paradigm is built. A trigger is a group
of events that can be caused by a variety of sources, whereas an action is a stateless
function that runs code. A trigger and an action are connected by a rule. A sequence is a
lengthier processing pipeline that combines multiple actions from various languages. The
orchestration of the dataflow between functions and the language selection is separated
by the composition process’ polyglot character [28].

This platform’s core building blocks are made up of an NGINX webserver, a con-
troller, an Apache Kafka component, an Invoker component, and a CouchDB database
for storing user credentials, action information, namespaces, and definitions of actions,
triggers, and rules.

The entire system uses the Nginx webserver as a reverse proxy. Each request is
authenticated, authorized, and routed by the controller component before control is
transferred to the following component. The connection between the controller and In-
vokers is controlled by the Kafka component. Code from the CouchDB component is
copied by the Invoker component and injected into a Docker container. Additionally,
this component keeps track of the active Docker containers where actions are running.
The outcome of a particular action is saved in the CouchDB component for retrieval
once the execution of that action is complete.
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2.3.9 Kubernets A flexible open-source platform called Kubernetes is used to orches-
trate and manage containerized applications. Applications are executed in a cluster using
pods, deployments, and services by Kubernetes. In Kubernetes, pods are the smallest
deployable pieces of an application. They contain either a single container or a collection
of containers that share an IP address and are running in the same execution environ-
ment. One of the Kubernetes objects used to specify how to operate an application
container as a pod and regulate the replica count is called a deployment. Services are
abstractions that specify access rules and maintain a set of pods in the cluster. A name
that is associated with one or more pods can be used to refer to any service established
in the cluster. The CoreDNS DNS server for Kubernetes resolves the service names. Any
DNS request is answered with an IP address by the service discovery tool CoreDNS. It
monitors service events and makes any necessary DNS record modifications. When a
user creates, modifies, or deletes a service or any of its associated pods, these events are
triggered.

For the execution of FaaS applications, Kubernetes provides a number of functions,
including auto-scaling, scheduling, load balancing, health checking, and self-healing of
containers. One of Kubernetes’ key automation features, auto-scaling, helps organiza-
tions adapt swiftly to demand spikes. The Horizontal Pod Autoscaler (HPA) is one of
the well-known scaling techniques. In accordance with the current resource usage, such
as CPU or memory utilization, the HPA is used to automatically scale up and down the
number of pods associated with a single application.

The Kube-scheduler uses scheduling as a mechanism to choose the best node for
pod placement. When the Kube-scheduler has a pod to deploy, it ensures that the
allocated node satisfies all of the pod’s unique needs, including those for CPU and
memory resources. It begins by selecting the relevant nodes utilizing a set of filters in
order to accomplish that. For instance, it makes use of affinity and anti-affinity rules,
which are defined by labels and annotations that put restrictions on where pods can be
placed. Second, the Kube-scheduler scores every node, giving nodes with higher affinity
a higher score and nodes with higher anti-affinity a lower score. The node with the
greatest score receives the pod last. The technique of effectively distributing the traffic
among various pods of a particular service is known as load balancing. The Kube-proxy
component routes the traffic that is sent to a Kubernetes service. By using iptables
rules to build a virtual IP for a service, the Kube-proxy by default employs the random
selection mode, which directs incoming requests to a service’s randomly selected pod.
The most adaptable method for exposing services to the outside world is Ingress, which
functions as a controller in a dedicated pod and offers routing rules to govern access to
the Kubernetes services.

Kubelet continuously checks the health of pods using a straightforward technique to
learn more about their current situation. The readiness probes may form the basis of the
health check. The health and readiness of the pods are checked using a readiness probe
before they may begin accepting traffic. When every container inside a pod is prepared,
the pod is deemed ready. A pod gets removed from service load balancers when it is not
prepared. The readiness probe can be implemented in three different ways: by an HTTP
request, a TCP socket in which the IP and port of the container are checked, and through
a user-defined command. Kubernetes uses self-healing, an automated recovery technique,
to make sure the cluster is actually in a healthy state. It includes automatic insertion,
automatic restart, and automatic replication. For instance, if a pod fails, Kubernetes
restarts a new one. Similarly, if a node goes down, Kubernetes immediately reschedules
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all the pods from the downed node onto other healthy nodes (which may take up to 5
minutes). Many open-source FaaS frameworks shift the duty of container orchestration
functions to Kubernetes and concentrate solely on FaaS features in order to benefit from
the robust Kubernetes infrastructure.

3 Architecture

In this section, it will be presented firstly an overview of Apache Openwhisk’s systems
more specifically its scheduling methodology followed by our proposed scheduling exten-
sion which is subdivided into two components, during an under-provisioned server state
and an over-provisioned server state.

3.1 Apache Openwhisk overview

To create new functions, invoke existing ones, and query the outcomes of invocations,
Apache OpenWhisk exposes a REST interface built using NGINX. Users initiate in-
vocations using an interface, which is then transmitted to the Controller. To schedule
the function invocation, the Controller chooses an Invoker, which is commonly hosted
utilizing virtual machines. Based on (1) a hashing method and (2) information from the
Invokers, such as health, available capacity, and infrastructure state, the Load Balancer
in the Controller schedules function invocations. After selecting an Invoker, the Con-
troller delivers the function invocation request to the chosen Invoker via a Kafka-based
distributed message broker. After receiving the request, the Invoker uses a Docker con-
tainer to carry out the function. Functions are commonly referred to as actions within
Apache Openwhisk. The Invoker sends the outcomes to a CouchDB-based Database
after the function execution is complete and notifies the Controller of the results. The
Controller then synchronously or asynchronously returns to users the outcomes of the
function executions [61].

3.2 Scheduler extension

Our new scheduler, shown in Figure 1 as the blue container, communicates with Apache
OpenWhisk’s Controller feeding relevant information such as the state of the server and
the invocation’s specific requests (mainly the pricing method desired by the user). Given
this information, it will calculate a utility function to decide the best server/container to
be used and deliver this new information back to the controller allowing it to proceed with
the operation. This scheduler is transparent and optional, offering easy compatibility
with old systems that utilize Apache OpenWhisk and allowing them to effortlessly deploy
this new scheduler at their own pace. Since the scheduling will be mainly performed by
our scheduler and it will overwrite the original scheduling function the base Apache
OpenWhisk deploys.

The Completion state given by the CouchDB to the Controller will be also given to
the scheduler to allow it to update the pricing models offered based on server state feed-
back. After this information is processed it will be given back to Apache OpenWhisk’s
Controller. After the operation has been completed the customer will receive the output
of the action as well as an update of the server state as well as the pricing model if it
was updated (see Section 3.3).

15



Fig. 1. General architecture with newly added scheduler component

Two pricing options will be provided if the servers are in an over-provisioned state
meaning there are no queuing issues with the requests. (1) Merely finishing the request,
or (2) finishing the request slower but discounting part of the final cost by the number
of extra resources consumed. The second option is to use the request to create warm
containers for this particular user’s repeated uses, resulting in future execution times
that are quicker. The user will receive all of this information for transparency’s sake and
encourage continued use.

Three different pricing options will be provided if the servers are under-provisioned
meaning some requests may need to wait in line before being executed. (1) Standard
priority, which offers no priority when it comes to scheduling requests but still offers
the same cost per execution time as when the servers are under-provisioned. (2) Urgent
priority offers increased request scheduling priority (though not an absolute priority),
but at a higher cost for customers that has self-perceived time-critical actions to be
performed. An example of a such customer is someone that detected a mistake in a
database and wishes it to be fixed as soon as possible so to furthers uses of the database
not be compromised. (3) Reduced priority which offers, for a reduced price tag, a lower
priority in the system for customers that have little interest in the execution delay of
the operations, for example, a student that is ahead of schedule for project delivery.

3.3 Introduction to Apache OpenWhisk’s base scheduling system

The Apache Openwhisk controllers are responsible for the organization of requests re-
ceived by the users. To do so the controllers manage Invokers. Invokers in turn are
responsible for the management of the container pools that will deploy the actions.

Based on the total number of pools that are available as well as the overall number
of controllers in the system, Apache OpenWhisk assigns a certain number of Invokers
to each controller. When a controller leaves or enters the system, these Invokers are
dynamically changed. When a controller receives an action, it uses a hash function to
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identify the action’s home Invoker, which is responsible for deploying that specific action
on subsequent calls unless the Invoker is full, in which case the action is deployed to
another Invoker.

Busy Pool, Free Pool, and Pre-Warm Pool are the three different types of pools that
house containers in these Invokers. The busy pool is responsible for running the code
for deployed actions, so if it is overloaded with action deployments, it won’t be able to
run the code for any additional deployed actions. After an action has been deployed,
containers are stored in the free pool; these containers, which are also referred to as
warm containers for that particular action, are reused if the action with which they are
associated is deployed again. Last but not least, the pre-warm pool contains containers
that only need code initialization, making them quicker than newly created containers
but slower than the particular container of an action.

Upon receiving a new action request the scheduler will first attempt to schedule it in
his home Invoker, however, if its Busy pool is saturated it will then attempt to schedule
the action over all other Invokers. If all Invokers are saturated the scheduler will queue the
action using a FIFO (first-in-first-out) priority method and wait until enough resources
are freed. Given that the Busy pool of a specific Invoker is not saturated it will first
try to deploy the action using a container for the specific action in the free pool, if no
container exists it will then try to utilize a pre-warm container from the pre-warm pool,
and finally if this attempt also fails it schedules the Invoker to create a new container
and deploy the action. Finally, before any creation of new containers (including using
pre-warm containers), the scheduler deletes the least recently used container if the sum
of containers in the free pool and busy pool equals the max pool size. The algorithm 1
exemplifies in pseudo-code the steps described above.

3.4 Proposed Scheduling modification

When the available resources by the system is above a threshold the pricing model of our
scheduler will inform the controller to update the information given to the customers
to swap the pricing model shown to the over-provisioned state and vice-versa. This
transition has a grace period so as to not update the model too many times while the
resources available are close to the threshold.

3.4.1 Proposed scheduling modification during an over-provisioned state
The scheduling system will operate as usual if no pricing mechanism is used, or, in other
words, if the request demands a standard fee. However, the scheduling system will send
the action to all Invokers provided with an additional condition to all but the home
Invoker if the customer requested the additional pricing mechanism. This additional
requirement prevents existing containers in the free pool from being deleted, preventing
other requests from needing more time to complete in their respective home Invokers.

In the event that the action is repeatedly requested, saturating the home Invoker,
enables much faster execution following the initial deployment. Customers are further
encouraged to use our system repeatedly because doing so will result in faster execution
times. This updated algorithm 2 will still queue the action if all Invokers are semi-
saturated (the sum of busy and free pool containers is equal to the max pool size), while
the original scheduling algorithm will only queue if all Invokers are saturated (busy pool
is equal to the max pool size). This however is a challenge that should rarely if ever arise
during an over-provisioned state where this algorithm is designed for.
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Algorithm 1 Simplified scheduling algorithm
Action← A
ActionContainer ← Action
for all Invokers do

if BusyPoolSize = MaxPoolSize then
continue

else if ActionContainer ∈ FreePool then
FreePool← FreePool \ActionContainer
BusyPool← BusyPool ∪ActionContainer
return

else
if FreePoolSize+BusyPoolSize = MaxPoolSize then

FreePool← FreePool \ LeastRecentContainer
end if

end if
if PreWarmPoolSize > 0 then

PreWarmPool← PreWarmPool \ PreeWarmContainer
ActionContainer ← PreWarmContainer
BusyPool← BusyPool ∪ActionContainer

else
ActionContainer ← ColdContainer
BusyPool← BusyPool ∪ActionContainer

end if
return

end for
Queue← Queue ∪Action

18



Algorithm 2 over-provisioned scheduling algorithm
Action← A
ActionContainer ← Action
for all Invokers do

if BusyPoolSize = MaxPoolSize then
continue

else if ActionContainer ∈ FreePool then
FreePool← FreePool \ActionContainer
BusyPool← BusyPool ∪ActionContainer
return

else
if FreePoolSize+BusyPoolSize = MaxPoolSize then

if Invoker ̸= HomeInvoker then
continue

else
FreePool← FreePool \ LeastRecentContainer

end if
end if

end if
if PreWarmPoolSize > 0 then

PreWarmPool← PreWarmPool \ PreeWarmContainer
ActionContainer ← PreWarmContainer
BusyPool← BusyPool ∪ActionContainer

else
ActionContainer ← ColdContainer
BusyPool← BusyPool ∪ActionContainer

end if
end for
Queue← Queue ∪Action
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All of the results of the multiple executions of the action are received by the controller.
The cost of the requested action is calculated as usual but the final cost charged to the
customer is a discount of the action cost proportional to the extra resources consumed
by the scheduling extension. Consequently, the cost that the user will be charged is given
by the equation 1.

final cost = α c+ (1− α)
c2

C
, (1)

where α is the percentage of cost that remains static, c is the cost of the specific action,
and C is the total cost of all actions deployed.

This creates a situation where if no additional actions were deployed on other Invokers
the final costs are equal to the normal pricing model but as more actions are deployed
creating additional delay the final cost is reduced.

3.4.2 Proposed scheduling modification during an under-provisioned state
As stated in the final part of section 3.3, a FIFO priority method is used in case action
start being queued due to the server being saturated, this in turn creates a very low
urgency methodology for the customers. This work proposes a more advanced priority
aware system that allows more time-critical situations that customers might have to be
more easily resolved but for a cost as well as the inverse situation if the need arises.

The algorithm is based on a priority value coined aPrio, standing for absolute priority.
If two actions have the same values of aPrio the FIFO priority will be applied. This aPrio
value will be updated every second while the request is in the queue. Given a request’s
priority ranking of reduced, standard and urgent the aPrio value will be incremented by
+p1, +p2, and +p3, respectively. Figure 2 exemplifies four seconds of this algorithm in
progress where p1 = 1, p2 = 2 and p3 = 5.

Fig. 2. Four seconds of execution of the priority queue algorithm

t represents the timestamp used in the system in seconds. Yellow requests are in the
queue while red requests are the selected actions for when resources are freed.
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The pricing model utilized is similar to what is offered during the over-provisioned
state. The final cost is given by the equation 2

final cost = α c+ (1− α)
c p

p1
, (2)

where α is the percentage of cost that remains static, c is the cost of the specific action,
p represents the value of the priority system used for the action, and p1 is the value of
the reduced priority system.

4 Evaluation Methodology

In this section, we will go into depth about the system goals and the assessed metrics.
We will implement the system by deploying Apache Openwhisk on a development en-
vironment based on Docker. The base open source code of Apache Openwhisk will be
extended to the requirements presented by the architecture in Section 3. Data will be
assumed to be stored locally or on some cloud storage in the same location.

4.1 FaaS Benchmarks

Four diverse FaaS workloads will be used in the evaluation of our system those being
Sleep functions, File hashing, Video Transformation, and Image classification [15]:

Sleep functions are a good FaaS benchmark because it is a simple, low-overhead opera-
tion that can be used to measure infrastructural overheads, in our case the scheduling
infrastructure, of a FaaS platform.

File hashing is also a good benchmark because it is a relatively simple operation that
can be used to test the ability of the system to handle file inputs and outputs.

Video Transformation is a good benchmark for FaaS systems because it exercises
many of the key features of the system, such as scalability, concurrency, and per-
formance. Video transformation tasks, such as transcoding, are typically compute-
intensive and require parallel processing. This makes them well-suited for testing the
ability of the FaaS system to handle high levels of concurrency and scale horizontally.

Image classification is a good FaaS benchmark for our evaluation as well due to it
being a complex operation that requires significant computational resources and
can be used to test the ability of the system to handle more demanding workloads.
Additionally, Image classification is a common use case for FaaS [40], especially in
machine learning applications [59,55], so using it as a benchmark can help to evaluate
the system’s ability to handle real-world workloads.

4.2 Metrics

Latency, Scheduling delay and Resource Usage will be the three main metrics considered
to determine the overall success of our system:

Latency is a metric that represents the amount of time it takes for a request to be
processed and for a response to be received. It is an important metric for evaluating
the performance of a system because it directly measures how long it takes for the
system to respond to a user’s request. Systems that have low latency are able to
respond quickly, which can lead to a better user experience. Systems that have high
latency may result in slow response times and cause user frustration.
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Scheduling delay is a metric that assesses the amount of time that elapses between
when a user request is ready to be executed and when it is actually given the oppor-
tunity to run by the scheduler. It is an important metric for evaluating the perfor-
mance of a system because it measures how well the scheduler is able to distribute
resources and manage the execution of tasks. A low scheduling delay indicates that
the scheduler is able to quickly and efficiently assign resources to tasks, which can
lead to better overall system performance. On the other hand, a high scheduling de-
lay can lead to poor resource utilization, decreased system throughput, and increased
response times.

Resource Usage is a good metric to evaluate FaaS systems because it provides insight
into how efficiently the system is utilizing resources such as memory and CPU. By
measuring resource usage, one can identify any bottlenecks in the system and make
adjustments to improve performance and reduce costs. Additionally, monitoring re-
source usage can help in identifying and troubleshooting issues such as resource
leaks, and it could be combined with information on how effectively applications are
making use of the resources allocated to them [49].

These metrics will be measured and compared with the Apache OpenWhisk base
scheduler.

5 Conclusion

Our work described the current state of cloud computing’s Function-as-a-Service tech-
nology, along with some of its key benefits and difficulties. In order to better understand
the common customer concerns and desires, and to better assess our requirements, we
also examined the cutting-edge scheduling and pricing mechanisms utilized throughout
our cloud computing.

We created a scheduler extension architecture that takes user preferences into account
when adjusting scheduling, to provide a higher quality of service to the user. Better
quality of service for the user is part of our suggested architecture, and it applies to
both under-provisioned and over-provisioned system states. Apache Openwhisk will be
used to implement our suggested solution. Finally, we also proposed a methodology to
assess how well the system we implemented performs.
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8. Bermbach, D., Pallas, F., Pérez, D.G., Plebani, P., Anderson, M., Kat, R., Tai, S.: A
research perspective on fog computing. In: Proceedings of the International Conference on
Service-Oriented Computing. pp. 198–210. Springer (2018)

9. Binh, H.T.T., Anh, T.T., Son, D.B., Duc, P.A., Nguyen, B.M.: An evolutionary algorithm
for solving task scheduling problem in cloud-fog computing environment. In: Proceedings of
the International Symposium on Information and Communication Technology. pp. 397–404
(2018)

10. Bolton, L.E., Warlop, L., Alba, J.W.: Consumer perceptions of price (un) fairness. Journal
of Consumer Research 29(4), 474–491 (2003)

11. Bouizem, Y.: Fault tolerance in FaaS environments. Ph.D. thesis, Université Rennes 1
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A Schedule

Tasks Duration
Environment setup 0.5 month

Prototype development Code implementation 1.5 months
Workload setup 1 month

Data evaluation 1 month
Dissertation writing 1 month
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