
Approxate: Stateful Functions for Approximate Stream
Processing - Extended Abstract

João Francisco

Instituto Superior Técnico, Universidade de Lisboa

joao.silva.francisco@tecnico.ulisboa.pt

Abstract
Approximate Computing is a computing model that can be

used to increase performance or use fewer resources in stream

and graph processing. It can be used to achieve performance

requirements (e.g. throughput, lag) about stream processing

by lowering the amount of effort that the applications need

to process the datasets. This is achieved by lowering the re-

sults’ precision (i.e. approximate results). Currently, there are

multiple stream processing platforms, most of them do not

support approximate results natively. Stateful Functions is a

platform that allows to easily build stream and graph process-

ing applications. It is an API that uses Flink and allows the

functions to exchange their state arbitrarily. It also retains

Flink’s characteristics, like stateful computations, the fault-

tolerance, the ability to scale, the graph processing library

Gelly and the control events. This document proposes the

design and implementation of an extension to be used with

Stateful Functions that supports approximate results. It can

also support more efficient stream and graph processing by

allocating the available resources intelligently and variably

using user-defined requirements about throughput, lag, and

latency. This extension allows flexibility in trade-offs (e.g. the

user can trade accuracy for performance). The user can choose

which metrics should be guaranteed at the costs of the others,

and/or the accuracy.

Keywords: Stateful Functions, Apache Flink, Stream Process-

ing, Approximate Computation

1 Introduction
More data is being generated than ever, and it can be processed

by stream processing platforms. Stream processing consists in

processing items of data (tuples, events) that are continuously

arriving at an application. These events can be processed

as soon as they are created or they can be stored and later

processed as a batch [10]. The processing of the stream can

originate results that can later be used again or can originate

a new stream.

These events range from connections on social media to

bank transactions, so different types of events can have differ-

ent approaches that are optimal, in some cases low latency is

better than maximizing accuracy, in other cases consuming

fewer resources is the better approach, just to nominate some

examples.

Since the input data rate can fluctuate the scalability of

the platform is important. If a platform is not scalable it can

lead to a waste of resources when the data rate is lower than

expected since the allocated resources will not be fully utilized.

It can also lead to the opposite situation where the input rate

is greater than what the system can handle without leaving a

high amount of lagging events waiting to be processed.

By allowing the system to scale up or scale down when nec-

essary the resource efficiency will increase and the amount of

wasted resources are reduced. However, the scaling should be

efficient, slight variations in the input rate should not trigger

a scaling process. If the scaling is not done in an optimal way

it can also lead to wasted resources.

Another important characteristic is the fault-tolerance, if a

system does not contain some sort of mechanism to recover

from fails, then the data will not be consistent if a failure

occurs. If the data loses consistency then the results will not

be precise [15]. The data consistency can also be affected by

other factors like stream partitioning [6] or synchronization

in distributed systems.

Usually, these systems need to have high throughput and

low latency since they can receive a lot of events constantly to

be processed as soon as possible [8]. Those can be affected by

many characteristics, but one that can have a major negative

impact is the state sharing between operators. One operator

might need data from another one to process some event, if

that is the case, then the other operator must share the data.

If the operator that is sharing its state writes it into persis-

tent storage and then the other operator needs to read the data

from there, it introduces a costly operation in the dataflow

which will decrease the performance [15]. For state sharing

to be an efficient operation it cannot utilize persistent storage.

The access to the persistent storage increases the latency of

the operations and also decreases the throughput.

Another feature that not many platforms support is ap-

proximate computation, which is a computation model that

reduces the precision of the results to decrease the load on

the system and/or increase the performance. This can be done

utilizing multiple ways at both, hardware and software level

[1, 9, 12].

In summary, a stream processing platform should support

an efficient scaling, should have data consistency and fault-

tolerance, should operate with low latency and high through-

put, it should allow the operators to share their state efficiently

without costly operations that access persistent storage and

should support approximate computation to improve the per-

formance if that is necessary.

Currently, there are not many mainstream stream process-

ing platforms that support dynamic resources allocation, that



allow to easily build applications, that can auto-scale effi-

ciently, that can use state sharing between the operators with-

out using a storage component, and that allows the user to

define the requirements that must be met by trading other

characteristics. The support for using less precise results in

popular stream processing platforms is also not common. The

loss of precision can be used to do the trade-offs to achieve

the user-defined processing requirements. The purpose of this

work is to give Stateful Functions the ability to use approx-

imate results and to dynamically adjust the allocation of its

resources based on user-defined requirements.

2 Related Work
In this section is an overview of some stream and graph pro-

cessing platforms’ characteristics and design. It also explains

approximate computation in more detail.

Flink [3] is a framework and distributed processing en-

gine for stateful computations over bound and unbounded

streams. Flink can run any kind of application on unbounded

streams because it has precise control of time and state. That

control allows it to treat an unbounded stream as if it was

multiple bounded streams. It is also a scalable engine that

allows parallel processing by having multiple instances of the

same operator at the same time. It also includes Gelly [3], a

library to be used in graph processing [4].

The operators can also have a state and share it. This plat-

form tries to keep the state only in memory so the access can

be efficient. Flink contains control events to save the state

that can be recovered later in case of a failure. The state is

periodically saved in checkpoints. A checkpoint save is called

a snapshot and also contains the state of the stream, to avoid

process the already processed elements again. This model

provides data consistency and fault-tolerance.

Flink also guarantees exactly-once state consistency in case

of failures by periodically and asynchronously checkpointing

the local state to durable storage. In case an application fails,

it can retrieve the last correct state that is checkpointed.

The Flink jobs that are part of the applications are in the

form of a dataflow, where there is a chain of operators that

receive an event, apply some operation to it, and then send it

to the next ones. The job is submitted to the Job manager or

the Master that then distributes the job to one or more tasks

or Workers. One of the components in the Flink Master is the

Resource Manager that allocates or deallocates the available

task slots to the operators, the number of which will depend

on the parallelism level.

Stateful Functions [2] is an API that utilizes Flink and

that simplifies the process of building distributed stateful

applications. It has the benefits of Flink like the control events,

the fault-tolerance, the scalability, the operators’ state, and

the operations that Flink supports.

It also allows the operators tomessage others in a decoupled

(the communication does not need to occur in the dataflow’s

order) and efficient way without using persistent storage. This

platform currently supports Kafka [16] as a data broker to

receive the events that the applications process and then to

send the results.

Spark [14] is a scalable framework that is used for process-

ing large-scale data. It offers functionalities like memory man-

agement, job scheduling, data shuffling, and fault recovery.

Spark uses Resilient Distributed Dataset (RDD) [18], which

are read-only partitioned collections of records, as the data

core abstraction. They are fault-tolerant and can be used to

share data between users. They can be used to generate new

RDDs that can be the result of transformations or operations

applied to their data.

This platform supports linear scalability, fault-tolerance,

and also in-memory processing, where multiple operators can

process some data, and only after that, the results are stored

in storage. Spark can also work in a distributed way with the

operators spread across multiple clusters.

Spark has cluster managers and like the name implies they

are responsible for acquiring and releasing cluster resources

depending on the jobs that are being executed. The cluster

manager also has the job of managing the resource sharing

between Spark applications.

Storm [17] is a real-time fault-tolerant distributed and

scalable stream processing platform.

The data processing architecture consists of streams of

tuples flowing through topologies, where a topology is a di-

rected graph. The vertices of the graph are the operators that

process the events and the edges are the relationship between

the operators. The edges represent the data flow. The ver-

tices are divided into two categories, the spouts which are the

sources for the topologies, and the bolts which are the vertices

that receive data from other vertices and then pass it to the

next. Each topology can define its own partition strategy for

distributed processing.

The Storm distributed cluster has master nodes that receive

topologies from the clients. Each master is responsible for

distributing and coordinating the execution of the topology,

which is executed by workers. If the system has enough mem-

ory, Storm can keep all the data and state from the operators in

memory, instead of using storage to get more efficient access

to the data and improve the performance.

2.1 Approximate Computation
Approximate Computation is a computing model where the

results are not completely accurate. It can be used in scenarios

where the applications or systems can tolerate some loss of

accuracy [9, 11].

One method is through load shedding [12], where some of

the input events are dropped when the system is overloaded.

With load shedding we can lower the accuracy by dropping

some events instead of processing them, if we drop 10% of

the events randomly we would probably get 90% of accuracy.

However, one concern with just randomly dropping some



Docker Client 

Docker REST
API 

Docker
Daemon 

Flink Master / Job Manager

Flink Worker / Task Manager

Docker Containers

manages

Flink REST API

Middleware

Flink Runtime

WebMonitorEndpoint

MetricReporter

Controller Module

- Decide new execution parameters
- Use Communication Module to apply the new parameters 

Scheduled

Metrics Reporter

- Collect metrics periodically
- Analyse metrics to change
accuracy if necessary
- Send metrics to Middleware 

Flink Job

Approximate
Library Instace 

Metrics Analyser Module

- Analyse metrics
- Send results to Controller Module

Communication Module

- Receives metrics from Metrics Reporter 
- Receives data from Docker Daemon
- Changes execution parameters 

manages

Task Slot 1

Flink Job

Approximate
Library Instace 

Task Slot N

Figure 1. System Overview

events is the fact that the events can come from different

data sources. This can lead to some data sources being less

represented than the others, so it is also necessary to have

attention to the source of each event [12]. If the data source

of the events is not considered in the dropping decision, the

approximate results will not reflect the events from all of the

data sources and will, possibly, be meaningless.

There are other techniques of approximate computation [1,

11] like loop perforations, approximation of arithmetic com-

putations, approximation of communication between compu-

tational elements, precision scaling, among others.

Results can also be approximated by carefully delaying

the re-execution of workloads (e.g., Map-Reduce workflows)

when new input or updated data arrives, providing previous

results in response. This way, execution is avoided until the

amount and/or significance of the data pending processing

reaches application-defined criteria for Quality-of-Data. This
can be useful to save resources in shared or multi-tenant

environments [7] and can be further fine-tuned with machine

learning [5].

3 Solution
The solution isApproxate, it is an extension of Stateful Func-

tions that manages stream and graph processing applications.

The applications use Kafka [16] as the data-broker to get the

events and then to send their results. The applications also

run in containers using Docker [13], which is the official way

of deployment of Stateful Functions applications.

Approxate allows the user to define requirements for the

lag (number of produced events that are not yet processed),

the throughput (number of results being produced per unit

of time), and the latency of the producers (time that is neces-

sary for a produced result to be sent to Kafka). The user can

also define the maximum andminimum values for the amount

of memory that can be used, for the level of parallelism, and

the minimum accuracy which is defined as the percentage

of processed events (Equation 1). To achieve this Approxate

will scale the system according to the load and the defined

requirements, and if it is necessary it can use approximate

computing to improve the performance and still keep the

results meaningful.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙𝐸𝑣𝑒𝑛𝑡𝑠
(1)

Approxate is composed of three components, the Approxi-

mate Library (Section 3.4) which is responsible for receiving

the events and then deciding based on the accuracy level if

they are processed or dropped (load shedding). The second

component is theMetrics Reporter (Section 3.5) which collects

the execution’s metrics, verifies if the application is under

load and/or meeting the requirements and if necessary re-

duces the accuracy. After that, it sends the metrics to the final

component, the Middleware (Section 3.6). The Middleware

receives the metrics and does a more extensive analysis of

them and then it decides if it should adjust the application’s

resources, the parallelism level, and the accuracy.

When the Middleware changes the memory that the appli-

cation is allowed to use or the parallelism level it is necessary

to restart the application so the changes take effect. Usually,

the restart is fast (few seconds to a minute depending on how

fast Flink takes and restores snapshots), and for the adjust-

ments in the resources to be worth the time that the restart

takesmust be less than the time saved by adjusting the require-

ments. The formula to calculate the time saved is in Equation

3, the time saved is given by multiplying the number of events

that are to be processed by the difference between the rate

of processing with the adjusted resources and the rate before

the adjustment, and then subtracting the time it takes for the

restart to happen.

𝑁𝑒𝑤𝑅𝑎𝑡𝑒 = 𝑅𝑎𝑡𝑒 [𝐴𝑑 𝑗𝑢𝑠𝑡𝑒𝑑] − 𝑅𝑎𝑡𝑒 [𝐵𝑒 𝑓 𝑜𝑟𝑒𝐴𝑑 𝑗𝑢𝑠𝑡] (2)

𝑇𝑖𝑚𝑒𝑆𝑎𝑣𝑒𝑑 = 𝐸𝑣𝑒𝑛𝑡𝑠 ∗ 𝑁𝑒𝑤𝑅𝑎𝑡𝑒 − 𝑅𝑒𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒 (3)



In Figure 1 there is a system overview where we can see

how the different components will interact with each other.

The Approximate Library is instantiated in each Flink job

and it does not communicate with the other components di-

rectly; the Metrics Reporter runs inside the Flink Worker con-

tainer, it collects, uses and send the metrics to the Middleware;

the Middleware can adjust the resources of the applications

and containers, and restart the applications. It interacts with

Docker through the Docker Client and with Flink through

Flink’s REST API which uses the WebMonitorEndpoint class.

3.1 Flink
Stateful Functions [2] uses Flink [3], so it has access to its com-

ponents. One of those is Flink’s Metric System. This system

can be used to gather various metrics and can be extended to

create custom metrics reporters. This system also allows the

reporters to perform their actions on a schedule. This way it

can collect the metrics at a fixed time rate. Approxate uses

this system to collect the following metrics:

• Recent CPULoad: This metric is produced by the JVM

and indicates the load of the CPU for a short period of

time;

• Memory Heap Used andMemory Non-Heap Used:
These metrics are produced by the JVM and they in-

dicate the amount of heap and non-heap memory in

use;

• MemoryHeapCommitted andMemoryNon-Heap
Committed: These metrics are produced by the JVM

and they indicate the amount of heap and non-heap

memory that is committed;

• Records Lag Max: This metric is produced by Kafka

and indicates the maximum value of events lag, it indi-

cates the number of events that a consumer has not yet

consumed in a partition;

• Request Latency Max: This metric is produced by

the Kafka producers and it measures the time between

the sending of the message by the producer and the

message being received, the latency of the applications

are not being measured since that requires custom code

for each application;

• Record Send Rate: This metric is produced by the

Kafka producers and indicates the number of events

that are being sent by the producer per unit of time.

The latency value of the application (amount of time that an

event takes to travel from the consumer to the producer inside

the application) is not being utilized nor calculated because

there is no way of calculating it in a general way. To calculate

that value is necessary custom code for each application and

so is not being used.

3.2 Kafka
Kafka [16] is a distributed, partitioned, and replicated publish-

subscribe messaging system. It can be used to route messages

(events) through different applications. The Kafka integration

with Flink is done with Kafka Connectors (Kafka-Consumers

and Kafka-Producers). The consumers and producers are exe-

cuted inside the Flink applications. The consumers can con-

sume events and will keep the offset value to know howmany

events they consumed and how many are they behind from

the latest (lag value). The producers are used to write events.

The Flink internal metric system receives the Kafka metrics

by using the Kafka Connector which allows it to receive the

metrics periodically.

3.3 Docker
Docker [13] is a platform that allows the user to run appli-

cations in containers. It offers controls to the resources that

an application can access, including a priority system for the

CPU time, so one container can have priority over the others.

However, if the containers with higher priorities are not using

the CPU, the containers with less priority can use it. Approx-

ate uses Docker to limit the resources that each application

has and, if necessary, also restart the containers where the

applications are running.

3.4 Approximate Library
This component is used inside the Stateful Functions applica-

tions. It is instantiated in each instance of the operators and

is used to perform approximate computation based on the ac-

curacy values defined by the Metrics Reporter or Middleware.

𝑅𝑎𝑡𝑒 =
𝐷𝑟𝑜𝑝𝑝𝑒𝑑𝐸𝑣𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙𝐸𝑣𝑒𝑛𝑡𝑠
(4)

It is invoked for each event and uses a random selector,

based on the current accuracy level, to decide if it should

be considered to be dropped. Before a event is dropped, this

component will verify if it can drop that event by checking its

origin, the data source. This is done to drop events in the same

percentage across the data sources. This leads to an eventual

balance of the data sources’ representation in the results. To

do this the Library registers the number of dropped events

and the total number of events (4) globally and for each data

source. This is represented in Algorithm 1.

𝑅𝑎𝑡𝑒 (𝐷𝑎𝑡𝑎𝑆𝑜𝑢𝑟𝑐𝑒) − 0.1 ≤ 𝑅𝑎𝑡𝑒 (𝐺𝑙𝑜𝑏𝑎𝑙) (5)

Algorithm 1 Event Selector

1: function Invoke

2: event← received event

3: accuracy← get accuracy

4: if accuracy < 100 then
5: if randomSelect(accuracy) == true then
6: if EventCounter.canSkip() == true then
7: 𝑠𝑘𝑖𝑝 (event)
8: return
9: 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑 (event)



Figure 2 contains an example of two ways of performing

load shedding on the same dataset. The dataset consists of 8

events from source A, 4 events from source B, and 6 events

from source C. They arrive with the order that is in Part (1)
of the figure. After they arrive some events are randomly

selected to be dropped (A2, C2, C3, A3, A4, C4, A5, A8, B2,

B4, and C6).

In Part (2) the load shedding is done without verification

for the data sources representations, so the selected events

are simply dropped. We can see that the events that were not

dropped do not represent all data sources equally, the source

A has 3/8 (37,5%) of events represented. The B has 2/4 (50%)

and the C has 2/6 (33.3%). This could affect the accuracy of

the results.

In Part (3) the load shedding is donewith the algorithm. The

events that were randomly selected to be dropped must verify

the condition of Equation (5). The GR is the current global

rate (4) value in each iteration before deciding if that event

is dropped or not. That value is used to decide if the event is

dropped, together with the XR value, which represents the

rate for a specific data source X.
In the second iteration where the event A2 is selected both

of the dropped rates are 0, so the event can be dropped. In

iteration 5 (event C2) the C data source rate is 0 and thus, the

event can be dropped. In the next iteration, the Global rate

is 0.4, since that 2 events were dropped out of the 5 so far,

and the C rate is 0.5 because there were 2 events from data

source C and only one had been dropped, so this event can

be dropped since 0.5 - 0.1 ≤ 0.4.

The iterations continue and in iteration 11, which corre-

sponds to event A5, we have the first example of the algorithm

not dropping a selected event. The A data source rate was

0.75 and the global rate was 0.6, and since (0.75 - 0.1 = 0.65) is

not less or equal to 0.6 the event was not dropped.

When the results from both parts are compared, we can

notice that in Part (3) all data sources got an equal repre-

sentation of 50%, contrary to what happened before where

each data source got a different representation. However, the

percentage of dropped events was 50% instead of 61%.

The subtraction of 10% of the rate in (5) is necessary to

keep the percentage of dropped events closer to the defined

percentage. Without that subtraction, the Library will not

drop most of the events, unless they are chosen in ideal con-

ditions (same percentage for each data source). With less 10%

the amount of dropped events is closer to the targeted one

and the different representations between the data sources

are still maintained.

This component uses a model for approximate computa-

tion that employs an eventual balance of the data sources’

representation. This component could have used a precise

balance, however, that would increase the processing cost of

each arriving event when deciding if it would be dropped or

forwarded to the functions. It trades a total balance of the

data sources representation for performance.

Data Source A 

Data Source B 

Data Source C 

A2 A3

A6 A7

A4

A8

A1

A5

B2

B4

B1

B3

C2 C3

C5 C6

C1

C4

A1 A2 B1 C2 C3C1 A3 A4 C5C4 A5 A6 A8A7 B2 B4B3 C6

A1 A2 B1 C2 C3C1 A3 A4 C5C4 A5 A6 A8A7 B2 B4B3 C6

(1)

(3)GR: 0
AR: 0 

Yes

GR:
1/4 

CR: 0 

Yes

GR:
2/5 
CR:
1/2 

Yes

GR:
3/6 
AR:
1/2 

Yes

GR:
4/7 
AR:
2/3 

Yes

GR:
5/8 
CR:
3/4 

Yes

GR:
6/10 

AR: 3/4 

No

GR:
6/13 

AR: 3/7 

Yes

GR:
7/14 

BR: 0

Yes

GR:
8/16 

BR: 1/3 

Yes

GR:
9/17 

CR: 3/5 

No

A1 B1 C1 C5 A6A5 B3 C6A7

A1 A2 B1 C2 C3C1 A3 A4 C5C4 A5 A6 A8A7 B2 B4B3 C6

A1 B1 C1 C5 A6 A7 B3

(2)

Figure 2. Load Shedding

3.5 Metrics Reporter
This component uses Flink’s classesAbstractReporter, which
allows the system to aggregate the metrics, and Scheduled
which allows the system to perform the reporter actions with

constant intervals, to collect the execution metrics periodi-

cally. Both of these classes are part of Flink’s Metric System.

By using the Metric System, the Reporter can collect the

JVM (resources) and Kafka (requirements) metrics that are

used to evaluate the processing. After collecting the metrics it

analyses them by comparing their values with the minimum

desired values in the requirements if they exist (latency, lag,

throughput). It will also verify if the CPU usage or memory

utilization is adequate to the quantity of allocated resources.

The logic is detailed in Algorithm 2.

The Reporter can vary the execution’s minimum accuracy

value immediately after analysing the metrics, this way is not

necessary to wait for the Middleware decision if the require-

ments are not being met. This component does not wait for

the Middleware because they both analyse the metrics period-

ically. Even if the period is the same on both, they will likely

be desynchronized. This may happen because of the period

that it takes for the Flink applications to restart after some of

their resources being modified, every time an application is

restarted it starts to count the time for the metrics’ analysis

from zero.

After modifying the accuracy if it was necessary, the Met-

rics Reporter will send the metrics to the Middleware that will

do a more in-depth analysis of the metrics and decide what



the execution resources should be. Depending on the metrics,

the accuracy can be maintained, increased, or decreased.

Algorithm 2 Metrics Reporter Pseudo-Code

1: function ReportMetrics

2: resMetrics← get resource metrics

3: reqMetrics← get requirements metrics

4: requirements← get requirements

5: resRes = AnalyseResources(resMetrics)
6: if ResourceUsageIsNotOk(resRes) then
7: LowerAccuracy()
8: else
9: reqRes = AnalyseReq(reqMetrics, requirements)
10: if RequirementsAreNotMet(reqRes) then
11: LowerAccuracy()
12: else
13: if CanIncreaseAccuracy(resRes, reqRes) then
14: IncreaseAccuracy()
15: SendMetrics() Send metrics to the Middleware

3.6 Middleware
The Middleware is responsible for managing the applications’

executions by deciding the resource allocation and the mini-

mum accuracy. This component has three modules, the Con-

troller Module; the Metrics Analyser Module; and the Com-

munication Module. The Controller Module is responsible

for controlling the other two modules. It uses the Communi-

cation Module to receive the metrics from Flink and then it

sends them to the Metrics Analyser where they are analysed.

After that, it receives the results from the Metrics Analyser

and it verifies which adjustments are possible to perform (e.g.

the results can indicate to increase the parallelism, but it is

already at the maximum value). When an adjustment can be

done it uses the Communication Module to perform it. Lastly,

it will use again the Communication Module to restart the

application if that is necessary.

This component analyses the metrics that are described in

Section 3.1. It uses the CPU and memory metrics to check if

the resources are good, lacking, or are more than necessary.

The requirements (lag, throughput, and latency) are verified

by comparing the metrics’ values with the desired ones.

The analysis is done with percentages (e.g. if a requirement

is not being met, it is verified by how much in terms of per-

centage), so the Middleware knows the quantity of resources

that should be allocated.

After all of the metrics are analyzed the Middleware com-

bines their individual results. This combination of results

produces a new list of results. The combination of results

has the purpose of produce better results, e.g. the analysis of

the resources could indicate that there is too much memory

reserved, but the requirement results could indicate that one

of the requirements is not being met, so it is necessary to

increase the parallelism. With the increase of parallelism, the

memory usage will likely increase, so in this situation, the

combination of results does not decrease the memory.

The adjustments of the available CPU are done with Docker

by limiting the time that the containers have access to it.

Approxate does not put hard limits on the level of CPU usage

that the application can have, we use a soft limit by using

Docker’s CPU shares. The number of shares that a container

has is the level of priority over other containers. This approach

was chosen because it allows defining a priority given the

conditions of each application. It also allows them to use more

CPU time if they need it and it is not being used.

The Middleware can modify the reserved memory for the

application. It also changes the amount of memory that the

container can access through Docker. Defining a hard limit

of memory when using Docker is important because if it is

not defined then Docker will continue to use the memory

until the system crashes. This component can also adjust the

parallelism level of the Flink operators, and the accuracy level

of the approximate results.

4 Implementation
This section describes some of the implemented components’

aspects. All of them are implemented using Java, which is the

language used by Flink and Stateful Functions.

4.1 Approximate Library: Implementation
The Approximate Library contains one class that is used as a

wrapper for the events that arrive at the applications. It is a

generic class, so it can work with any type of event. This class

represents an object and it stores the necessary information

for the Approximate Library to use about an event. This class

contains 3 fields: a String Id which is the event identifier; a

String Ingresswhich is the events’ data source identifier; and

a generic type Message which is the event.

Another class is used to keep track of the percentage of

global and data sources dropped events. It does this by keeping

a counter of the total number of events and of dropped events

for each data source. The other classes are used to select the

events that might be dropped randomly based on the accuracy.

This component gets the current accuracy by using the

Java Virtual Machines Properties (when the application is

started Flink loads the system property that contains the

accuracy). After that, it checks if its value is below 100. If the

accuracy is below 100 then it will generate a random value,

with aRandom Java util object, between 0 and 100, and if it is

greater than the accuracy value, then the event is a candidate

to be dropped.



4.2 Metrics Reporter: Implementation
The Metrics Reporter is a Flink plugin. This component uses

a class that extends Flink’s AsbstractReporter and imple-

ments Flink’s Scheduled classes. It is responsible for filtering

and analysing the collected metrics by Flink’s Metric System.

It uses 2 analysers, one for the metrics generated by the

JVM that checks the utilization of the available resources, and

another for the metrics generated by Kafka. The latter loads
the user-defined requirements about throughput, latency, and

lag through the JVM properties system (the values are loaded

by Flink when the application starts) and uses the metrics

to check if they are being met or not. The analysers return

a value between -1 and 2 for each metric. If it is -1 it means

that a requirement is not being met or the system’s resources

are almost fully utilized and should be increased.

Listing 1. Calculate Result
1 private static int calculateResult(String

property , int curr) {
2 String propertyValue = System.getProperty

(property);
3 if (propertyValue == null) {
4 return 0;
5 }
6 int max = Integer.parseInt(propertyValue)

;
7 int difference = max - curr;
8 if (difference <= 0) {
9 return -1;
10 }
11 return difference > max / 2 ? 2 : 1;
12 }

If the value is 1 or 2 it means that the system may have

more allocated resources than those that are necessary. If the

value is 0 it means that the requirement was not analysed

because it was not defined. This component does not increase

or decrease the resources but it can increase/decrease/main-

tain the accuracy. An example of one of the metrics being

analysed is in Listing 1 where the metric value is compared

to the desired one.

Lastly, it will send the metrics to the Middleware through a

DatagramPacket, which is a component of Java that is used

to represent datagram packets. The datagrams are used to

route messages between machines through the network. This

is a fast way to send messages without the need of having

to establish a connection between the machines, however,

there is no delivery guarantee, the packet can get lost in the

network.

4.3 Middleware: Implementation
The Middleware is comprised of 3 different modules, the Con-

troller Module which contains the main method from the

Middleware, this module controls the other two. Next is the

Metrics Analyser Module which is responsible for analysing

the metrics, and the last module is the Communication Mod-

ule which is used to communicate with the outside world.

After Middleware starts it reads its configuration file that

contains several parameters. They are used to know the Flink’s

address, docker address, the requirements, among others. Af-

ter that, it creates a Web Socket that is kept running in a

thread in the background. It is used to receive the datagrams

sent by the Metrics Reporter.

After the metrics are received, they are sent to the Metrics

Analyser Module. After this module returns the results, the

Controller Modules uses the Communication Model to do the

adjustments. For that, it needs to save the applications’ state.

It uses a OkHttpClient1 object to send the HTTP requests to

Flink’s REST API. This class builds the requests according to

the Flink API, to do that it creates the necessary JSON objects.

To save the job it needs to know the job ID, so to save the

state it needs to send a request to receive the job ID, and then

it uses the ID to build and send the request to save the state.

Listing 2. Get Container Statistics method

1 private Statistics getContainerStats(String
containerId) throws
DockerRequestException {

2 Statistics stats;
3 InvocationBuilder.AsyncResultCallback <

Statistics > callback = new
InvocationBuilder.AsyncResultCallback
<>();

4 dockerClient.statsCmd(containerId).exec(
callback);

5 try {
6 stats = callback.awaitResult ();
7 callback.close();
8 return stats;
9 } catch (IOException e) {
10 throw new DockerRequestException("

retrieve container statistics");
11 }
12 }

To get and modify the Docker containers (priority of the

application’s containers and information to identify which

containers belong to the application), the Middleware uses

an instance of docker-java2 API. This is an API for Java ap-

plications that allows them to send requests to the Docker

daemon. They allow performing various commands such as

stopping containers, retrieving statistics, change the priority

of the resources, and restricting the resources that a container

can use. This API uses Docker Engine API, it converts the

requests made in Java to requests that the Docker Engine’s

API can accept and understand. In Listing 2 is an example of

one request that is made with the DockerClient to retrieve

the statistics about one container.

1
https://square.github.io/okhttp/4.x/okhttp/okhttp3/-ok-http-client/

2
https://github.com/docker-java/docker-java



Another way of communicating with Docker that is used

to restart the containers is through the Docker Compose.
This is done with the Java Runtime class which interacts

with the operating system to call the Docker Compose tool.

The Docker Compose is used because the characteristics of

the tested applications’ containers are defined in this format.

The Middleware also modifies the Flink and Docker con-

figuration files that are used in each application to adjust the

resources and accuracy. Although Flink allows multiple appli-

cations running in the same cluster, the Middleware can only

analyse the resources and requirements of one application at

a time, so it cannot be used with clusters that support multiple

applications.

5 Evaluation
5.1 Setup
Approxate was evaluated in local and in cloud setups

3
. The

cloud machines had different resources (16/8/4 vCpus with

64/32/16 GB of memory). We choose the different machines

so we could illustrate how the system behaves in different

scenarios where it has access to different resources. They also

show how approximate computation can be used to improve

the performance level in lower-end machines to get near, or

match, the performance of higher-end machines.

5.2 Metrics
In the following list are described the metrics that are used

to evaluate the impact and performance of Approxate when

compared to vanilla Stateful Functions:

• Accuracy: Approxate must be able to utilize approxi-

mate computing to lower the accuracy of the results in

exchange for a performance improvement however, the

results should still be acceptable;

• Scalability: Approxate must allow the applications to

scale-up and scale-down according to their load and the

user-defined requirements;

• Processing Time: Approxate must take less time to

process the same dataset with the same resources;

• Throughput: Approxate must be able to process more

data in the same time with the same resources;

• Resource Utilization: Approxate must be able to pro-

cess the same dataset with fewer resources with the

same time;

• Resources’ Overhead: Approxate’s overhead should

not have a significant impact on the amount of used

resources;

• Cost-Benefit: In cases where it is not possible to im-

prove any of the metrics above, Approxate should not

impact them negatively significantly. In cases where it

can improve the overhead of Approxate should be less

than the performance gains.

3
https://cloud.google.com/compute

5.3 Benchmarks
We tested Approxate with micro-benchmarks (simple Flink

tests) to check the added overhead andwithmacro-benchmarks

(realistic applications workloads).

There are two micro-benchmarks, the greeter and the ad-
processing. The greeter counts the number of messages that

are sent by each user and replies to it. The messages are

generated with random user-ids. The ad-processing receives

events that indicate if a user clicked in an ad. The application

calculates the ratio of users that clicked in each ad and how

many times a user clicked in each ad. These are some of the

more simple stream processing applications that can be done

and their purpose is to check if the solution’s components

affect the performance negatively.

There are 6 macro-benchmarks, 3 of stream processing and

the other 3 of graph processing. The Taxi-Trip Benchmark
uses real data from trips in New York

4
from 2 different compa-

nies and calculates various averages values from the trips like

the number of trips per weekday, the money earned per day

for each month, the average distance of the trips per weekday,

among others.

The Linear Road Benchmark uses synthetic data
5
that is

simulating a variable toll system in four highways. It processes

information about the vehicles that are traveling through the

highways and it calculates the accidents that happened, the

tolls that each vehicle passed by, and it also uses historical

information to predict how long it will take to travel through

the segments of the highway based on the weekday and the

hour.

The Synthetic Benchmark uses randomly generated syn-

thetic data and simply applies a load for each received event

that consists of creating and shuffling a list.

Two of the graph benchmarks (the Yahoo Groups and
Messenger) use real data from Yahoo Groups andMessenger

6

and consist of finding communities in the graphs. The other

graph benchmark is Triangle Counting and uses synthetic

data
7
to calculate the number of triangles in a graph.

5.4 Results
This section contains the results of 2 types of tests. The first

consists of having the application use the Approximate Li-

brary to see how much performance increases it is possible to

achieve and how that affects the results’ precision. The second

type of test has a variable input rate to test how Approxate

handles that by adjusting the resource allocation.

The micro-benchmarks results showed that the Approx-

imate Library with 100% of accuracy increased the processing

time by 2% which is mostly negligible. However, just dropping

1% of events led to at least 4% of performance improvement.

4
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

5
https://www.cs.brandeis.edu/ linearroad/index.html

6
https://webscope.sandbox.yahoo.com/catalog.php?datatype=g

7
http://graphchallenge.mit.edu/data-sets



Table 1. Taxi-Trip: Comparison between machines

Resources Events (%) Time Precision(%) Time (%)

16 / 64 100 06:21 100 100

8 / 32 70 08:32 74 134

4 / 16 50 21:05 51 332

The results from the taxi-trip benchmark with 10% of

the events dropped achieved 91% of precision using only 71%

of time. By dropping 50% of the events, it only needed 45%

of the time, and retained 52% of precision. The precision got

a close relationship with the percentage of dropped events

since these tests were calculating averages about values of

a fixed period (the calculated values were always divided by

the same amount). Due to the nature of this benchmark, we

can get a result with a precision of around 96%, by using (6).

The results from the linear-road benchmark demonstrate

that Approxate could save 27% of the time and remain with

88% of precision when dropping 30% of the events.

𝑉𝑎𝑙𝑢𝑒 =
𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑𝑉𝑎𝑙𝑢𝑒 ∗ 100

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦
(6)

The tests performed in the cloud show that lower-end ma-

chines can get an increase in performance that can get close

to the performance of higher-end machines. Table 1, where

the Resources are the quantity of vCpus and memory in gi-

gabytes respectively, contains the results from the taxi-trip

benchmark performed in 3 cloud machines. We can see that

the middle-machine got 74% of precision and needed 134% of

the time when compared to the better machine, however, this

machine has half of the resources of the higher-end machine,

so with 50% of the resources it only needed 34% more time

instead of 50% more. The lower-end machine with a quarter

of the resources and dropping half of the events processed

in 332% of the time which demonstrates that with 25% of the

resources it needed more 232% of time instead of 300% more.

The second type of test with variations on the input rate

tests how the system adapts the resources and accuracy to the

variations to meet the requirements. These were performed

with the taxi-trip benchmark and the synthetic bench-
mark applications. In Figure 3 we have a running of the

taxi-trip local test that shows how Approxate managed the

resources, the scalability, and the accuracy variation. Those

results were similar in the different applications.

We can observe that the system responded to the increase

of events arriving by increasing the memory, the parallelism,

and lowering the accuracy. In minute 2 the accuracy dropped

from 100 to 70 (the minimum value) and it was caused by the

Metrics Reporter, the same thing happened in minute 4, and

in minute 10.

Between minutes 6 and 9 there was no need of lowering the

accuracy. Then in minute 10, there was an increase of events

arriving at the application, which increased the memory, the

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

CPU (%)
Memory Reserved (%)
Parallelism (%)
Minimum Accuracy (%)

Time (minutes)

Figure 3. Taxi-Trip Benchmark: Resources Variation

parallelism, and reduced the accuracy. In the minute after, it

got stable, so the accuracy started to increase. In minute 12 the

parallelism was reduced, and then in minute 14 it was reduced

to the minimum value, while the accuracy increased to the

maximum. The memory stayed stable in the last 4 minutes.

In the end, when no more events were arriving, the memory

utilization did not fell enough to lower the reserved memory.

This happened because of the historical data that this applica-

tion keeps. This result shows that Approxate can identify the

necessary resources to adjust, the different resources were

adjusted at different rates.

The Yahoo Groups benchmark got a maximum of 61%

of time saved with 50% of dropped events while keeping a

minimum precision of 75%. With 30% of dropped events, it

achieved a minimum precision of 87% and needed a maximum

of 70% of the time depending on the used graph and machine.

With the cloud tests, the middle cloud machine got a similar

processing time using 90% of the events as the higher-end

machine processing all of the events, and still kept a precision

of 97%.

The Yahoo Messenger benchmark got similar results

as the Yahoo Groups when using graphs with medium/high

density. However, one case with a high-density graph lost

26% of precision with only 5% of dropped events. Although

using approximate computation could lower the necessary

time, this type of test (community counting) with the tested

high-density graph has too much loss of precision.

The Triangle Counting benchmark using a very low-

density graph got 100% of precision in 86% of the time. This

benchmark with a high-density graph got 78% of precision

in 47% of the time with 30% of the events dropped. Dropping

10% led to a time saving of 5% but with 98% of precision.

5.4.1 Summary. Figure 4 shows the effect of using approx-
imate results in all tested applications. These results are the

averages. We can see that the percentage of saved time is

always greater than the loss of precision. On average, we can

get 78% of precision and save 36% of time. It is also possible

to save 21% of time and only lose 9% of precision.

The results show that Approxate allows a variable accuracy

in the results, the user can choose to trade-off accuracy for

performance, which can allow the applications to improve

the performance in some cases to around 50% and still get

meaningful results. Approxate can scale up and scale down



50

55

60

65

70

75

80

85

90

95

100

Time (%)
Precision (%)

Figure 4. Time and Performance Relationship

the applications based on the defined requirements about lag,

latency, and throughput, and also based on the current load.

It can reduce the time that is needed to process the data. They

also show that the performance gains are greater than the

overhead. They show that all of the evaluation’s metrics were

achieved.

6 Conclusion
This work contains a proposal and implementation of an ex-

tension to be used with Stateful Functions for stream and

graph processing. It adds an intelligent and variable resource

management that will vary the allocation of the resources

based on the state of the execution and the desired user re-

quirements (latency, lag, throughout). Approxate is capable of

approximate computation, of improving the resources’ alloca-

tion, scalability, and performance. It can also vary the level of

accuracy if that is necessary to meet the requirements, while

keeping the results meaningful.

The benchmarks show that with Approxate it is possible

to have lower-end machines processing the same dataset in

times close to the ones of higher-end machines. They also

show that Approxate can save up to 50% of the processing

time and remain with acceptable results.

6.1 Future Work
To improve stream processing, the Middleware can be ad-

justed to analyse the metrics of multiple applications’ con-

tainers, including where Kafka is running. Another way to

improve Approxate is to convert the Approximate Library

to work directly in the Kafka Broker in situations where it

knows the data sources. That would avoid the events being

transferred through the network to the application where

they are dropped.

Another way is to adapt the Library for specific types of

events, instead of a generic type. By adapting for a specific

event type (and its expected value distribution) we could

extract and process some information of the event instead of

discarding it completely. Lastly, Approxate could be adapted

to manage multiple applications.

References
[1] Ankur Agrawal, Jungwook Choi, Kailash Gopalakrishnan, Suyog Gupta,

Ravi Nair, Jinwook Oh, Daniel A Prener, Sunil Shukla, Vijayalakshmi

Srinivasan, and Zehra Sura. 2016. Approximate computing: Challenges

and opportunities. In 2016 IEEE International Conference on Rebooting
Computing (ICRC). IEEE, 1–8.

[2] Adil Akhter, Marios Fragkoulis, and Asterios Katsifodimos. 2019. State-

ful functions as a service in action. Proceedings of the VLDB Endowment
12, 12 (2019), 1890–1893.

[3] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif

Haridi, and Kostas Tzoumas. 2015. Apache flink: Stream and batch

processing in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering 36, 4 (2015).

[4] Miguel E. Coimbra, Alexandre P. Francisco, and Luís Veiga. 2021. An

analysis of the graph processing landscape. J. Big Data 8, 1 (2021), 55.
https://doi.org/10.1186/s40537-021-00443-9

[5] Sérgio Esteves, Helena Galhardas, and Luís Veiga. 2018. Adaptive Ex-

ecution of Continuous and Data-intensive Workflows with Machine

Learning. In Proceedings of the 19th International Middleware Conference,
Middleware 2018, Rennes, France, December 10-14, 2018, Paulo Ferreira

and Liuba Shrira (Eds.). ACM, 239–252. https://doi.org/10.1145/3274808.
3274827

[6] Sergi Esteves, Nico Janssens, Bart Theeten, and Luis Veiga. 2017. Em-

powering stream processing through edge clouds. ACM SIGMOD Record
46, 3 (2017), 23–28.

[7] Sérgio Esteves and Luís Veiga. 2016. WaaS: Workflow-as-a-Service for

the Cloud with Scheduling of Continuous and Data-Intensive Work-

flows. Comput. J. 59, 3 (2016), 371–383. https://doi.org/10.1093/comjnl/
bxu158

[8] Buğra Gedik, Scott Schneider, Martin Hirzel, and Kun-Lung Wu. 2013.

Elastic scaling for data stream processing. IEEE Transactions on Parallel
and Distributed Systems 25, 6 (2013), 1447–1463.

[9] Jie Han and Michael Orshansky. 2013. Approximate computing: An

emerging paradigm for energy-efficient design. In 2013 18th IEEE Euro-
pean Test Symposium (ETS). IEEE, 1–6.

[10] Haruna Isah, Tariq Abughofa, Sazia Mahfuz, Dharmitha Ajerla, Farhana

Zulkernine, and Shahzad Khan. 2019. A survey of distributed data

stream processing frameworks. IEEE Access 7 (2019), 154300–154316.
[11] Sparsh Mittal. 2016. A survey of techniques for approximate computing.

ACM Computing Surveys (CSUR) 48, 4 (2016), 1–33.
[12] Do Le Quoc, Ruichuan Chen, Pramod Bhatotia, Christof Fetzer, Volker

Hilt, and Thorsten Strufe. 2017. Streamapprox: Approximate comput-

ing for stream analytics. In Proceedings of the 18th ACM/IFIP/USENIX
Middleware Conference. 185–197.

[13] Babak Bashari Rad, Harrison John Bhatti, andMohammad Ahmadi. 2017.

An introduction to docker and analysis of its performance. International
Journal of Computer Science and Network Security (IJCSNS) 17, 3 (2017),
228.

[14] Salman Salloum, Ruslan Dautov, Xiaojun Chen, Patrick Xiaogang Peng,

and Joshua Zhexue Huang. 2016. Big data analytics on Apache Spark.

International Journal of Data Science and Analytics 1, 3-4 (2016), 145–164.
[15] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. 2005. The 8

requirements of real-time stream processing. ACM Sigmod Record 34, 4

(2005), 42–47.

[16] Khin Me Me Thein. 2014. Apache kafka: Next generation distributed

messaging system. International Journal of Scientific Engineering and
Technology Research 3, 47 (2014), 9478–9483.

[17] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jig-

nesh M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong

Fu, Jake Donham, et al. 2014. Storm@ twitter. In Proceedings of the
2014 ACM SIGMOD international conference on Management of data.
147–156.

[18] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauly, Michael J Franklin, Scott Shenker, and

Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant abstrac-

tion for in-memory cluster computing. In Presented as part of the 9th
{USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 12). 15–28.

https://doi.org/10.1186/s40537-021-00443-9
https://doi.org/10.1145/3274808.3274827
https://doi.org/10.1145/3274808.3274827
https://doi.org/10.1093/comjnl/bxu158
https://doi.org/10.1093/comjnl/bxu158

	Abstract
	1 Introduction
	2 Related Work
	2.1 Approximate Computation

	3 Solution
	3.1 Flink
	3.2 Kafka
	3.3 Docker
	3.4 Approximate Library
	3.5 Metrics Reporter
	3.6 Middleware

	4 Implementation
	4.1 Approximate Library: Implementation
	4.2 Metrics Reporter: Implementation
	4.3 Middleware: Implementation

	5 Evaluation
	5.1 Setup
	5.2 Metrics
	5.3 Benchmarks
	5.4 Results

	6 Conclusion
	6.1 Future Work

	References

