
BennuFC, a Distributed System for Document
Management

Pedro Miguel Afonso Completo Bento

Instituto Superior Técnico

Lisbon, Portugal

ABSTRACT

Document management systems are crucial in any

organization. The storage infrastructure required by

these systems assumes the existence of a shared file

system with selective access by users and groups. In

most document management systems there are web

interfaces which can be used to add, update or delete

files. Although functional and client independent,

these interfaces require the user to access a web page

to transfer documents, usually one at time. This type

of interaction may become tedious when one has to

manage a large number of files and documents.

The goal of this work is to develop a generic client

application for a specific document repository at IST

based on the Bennu framework. The client application

must provide transparent communication with the data

repository, access control at user and group levels,

confidential access and must be seamless integrated

with the existing authentication infrastructure and

identity management subsystems. As this system will

be used over unknown network conditions, it will be

developed a delta encoder in order to ease the bottle-

neck constraints often imposed by the network.

1 INTRODUCTION

For many years, document management systems

consisted in: management of files and physical filing

and retrieve of information in their documents. But

with the ascension of the first word processors in

1980, digital documents became a reality.

Today, document management systems are crucial

in any organizations. These systems are designed to

keep all information of an organization and make it

accessible to whoever is allowed to access it. To ease

the access, they assume the existence of shared file

systems with selective access by users and groups. In

most document management systems there are web

interfaces which can be used to add, update or delete

files. Although functional and client independent,

these require the user to access a web page to transfer

documents, usually one at time. Likewise it can be-

come tedious since web interfaces usually require the

user to stay at same page for some time until the trans-

fer is completed, particularly in large files. An alterna-

tive to web interface for sharing data files within

workgroups and organizations are distributed file sys-

tems (DFS). They allow a reliable storage by using

high performance storage servers and a transparent

access to user’s files at different workstations. This

can be accomplished with the development of a client

system that keeps a local copy at user’s workstation.

Wherever the user modifies a file, it will automatically

synchronize with the storage servers. Once the syn-

chronization is complete the new version is available

to any other workstation controlled by that user or to

the user’s workgroup. In the same way, if someone

else in the user’s group updates a file, everyone in the

workgroup will receive the update. Success uses of

this approach are Dropbox and Google Drive, for

example.

This thesis creates a solution to implement a client

which can synchronize files among various users in a

transparent way and tries to go a little further studying

and implementing a way to shorten file transferences.

2 RELATED WORK

2.1 IST document management repository

This client is designed to work along with the IST

document management repository. This repository is

integrated with the IST Bennu Framework [1] and it

serves as an interface to access the repository file sys-

tem. So far the only graphical user interface it pro-

vides is a web interface where after the user is authen-

ticated, he can manage his repository data. Additional-

ly, the user can also add extra information to his files

using existing metadata templates, which eases the

user search and simplifies the repository’s organiza-

tion.

The core features of this framework reside in

standalone independent modules that are joined to-

gether with maven [2]. Among the various modules in

Bennu’s core features, there are two which are the

most import for this work: the Authentication, which

provides an API to communicate with the IST Central

Authentication Service and the File Storage module,

who keeps the server file system. This framework

stacks over the Fenix Framework [3] which allows the

development of Java-based applications that need a

transactional and persistent domain model.

The File Storage module is responsible for maintain

an abstract File System over any file system. To keep

the persistence the repository’s structure is modeled in

the Fenix Framework as a SQL schema. Therefore the

file system internal structure can be viewed as a SQL

schema:

Fig. 1. File Storage Internal Structure

2.2 Distributed File systems

The idea of creating a client which synchronized

files remotely is not new. This problem has been, and

it is still being addressed in several systems distributed

file systems, according to the hardware challenges

existing in the time that they were developed.

The Network File System (NFS) [4] [5] uses a cli-

ent-server paradigm to allow multiple distributed cli-

ents to shared access to files that either a server or a

client can export from his file systems or subdirecto-

ries. The NFS clients have a local cache that is con-

nected by a network to a file server with a disk and a

local cache. At start clients cache all file attributes and

only small blocks of files from the servers. But as the

servers were stateless, the client never knew when the

file was updated, which lead to inconsistencies.

Later the Andrew File System (AFS) [6] tried to

address by creating stateful servers and solve the con-

currency problem using callbacks. Its objective is to

record what a client has cached and while a callback

exists, the file is valid and it is the most up to date

version. On close if the file has been modified, its

contents were written back to the server. This way all

callbacks related to that file become invalid and others

clients had to reopen the file to get the new version.

The only problem was when two clients closed the

same file, at same time, because in this case, none of

them will notify the other, resulting in unpredictable

results.

While the two previous distributed file system cli-

ents offered interfaces to communicate and synchro-

nize files with their repositories, none of them could

keep the availability of the system when disconnected

from the network. The Coda File System [6] [7] im-

plements AFS-2 focusing on its best features: scalabil-

ity, performance and security, and additionally high

availability. This is accomplished by two of the main

features in Coda: server replication and support for

disconnected operation. This system uses hoarding as

a way to mitigate the problems during the disconnec-

tion. While disconnected, it uses the files cached to

serve the file requests, so a user is limited to access

only the previously cached files. Lastly, on reconnec-

tion, it has to propagate the updates to the Coda serv-

ers.

Although of its great ideas, this file system was

plagued by bugs, bad performance and it was never

applied in real world applications.

Today cloud services have become more and more

popular. Great examples of such systems are Dropbox

[8] and Google Drive [9]. What makes Dropbox so

popular is the client application which combines a set

of unusual features: automatic synchronization, ver-

sioning of files, delta encoding and web-interface.

Dropbox supports two ways to access the user own

workspace: by the web interface and client applica-

tion. The web interface allows the user to make simple

operations to manage files. The second way requires a

user to install the Dropbox client who will autono-

mously synchronize all file and folders present in a

special directory. What makes this directory special is

that it will mirror all the server-side data. Dropbox

also allows the data to be modified offline and re-

synchronized later. This system also optimized both

the data transferences and data storage by executing a

“binary-diff” [10] which will mark the portions of the

data that have been modified and only those changes

are transferred to the server-side letting this way to

keep the low bandwidth usage, especially in large

files. The data storage is also improved by using a

deduplication algorithm [11], which when uploading a

file, will send the hashes of the file and try to find a

matching hash within the already indexed hashes. If it

finds any matching parts of the data, those parts are

not transferred.

Google Drive [9] is the Google’s file storage and

synchronization service which was released at 24

April 2012. It offers cloud storage, file sharing and

collaborative tools. Just as Dropbox, Google offers a

web interface which allows the user to upload and

download files and as an alternative also provide a

client which synchronizes the files autonomously.

However, Google Drive’s client does not support any

kind of binary compression. The main advantage of

Google Drive is the integration with the service

Google Docs. This service is a web-based office suite

which allows users to create and edit documents

online concurrently with other users.

2.3 Efficient data transfer

A crucial factor which can quite influence the user

experience, especially in low bandwidth networks is

the length in file transferences. This however can be

lessened by using a set of techniques.

Compression can reduce the size of the transfer-

ence by eliminating the redundant or duplicated data.

This can be achieved by using a dictionary approach

LZW [12] or a statistical based approach, Huffman

coding [13].

Chunks and Hashing is an alternative to compres-

sion by exploiting the similarities of different versions

the same of file. The idea comes from the fact that

usually a file does not change completely between two

versions. So exploring these similarities we are able to

save time and bandwidth, since those parts are not

needed to be transferred. Usually this is accomplished

by dividing a file in chunks, or fragments, and sending

only the new or modified chunks over the network. In

a file transfer Rsync [14] analyses files by splitting it

in a fixed size blocks and for each it calculates two

checksums: a weak “rolling” 32-bit checksum and a

stronger MD5 checksum. They are sent to the receiver

and by comparing the hashes with the file, the receiver

decides which blocks are needed and only those are

transferred.

LBFS [15] and Microsoft DFS [16] [17] compute

the differences in files by dividing it in blocks of vari-

able size. The block size is determined per block by

computing the local maxima of the block using a fin-

gerprinting function. This function it is a rolling hash

function that will be computed incrementally over the

block. When it reaches the local maxima, the current

byte position is chosen as a cut block boundary. After

the division of blocks, for each one it is computed a

stronger hash. The signatures can then be used to

compare the contents of another file. The matching

ones are assumed to be the same blocks and therefore,

they do not need to be transferred again.

Microsoft also improved the storage services by us-

ing data deduplication [18]. This method aims at find-

ing duplicated file blocks and replaces them with a

reference to a single copy of the block. To apply this

algorithm the blocks are divided in variable size

blocks, between 32 and 128KB, analyzed, as de-

scribed above, and the blocks of a file are reorganized

into special container files in the System Volume In-

formation folder.

3 ARCHITECTURE

The objective of this work is to develop and im-

plement a client which can synchronizes autonomous-

ly with the IST repository, making it more complete.

The actual working system of Bennu is capable of

maintain by itself a repository through a web portal.

However, it is not capable of autonomously synchro-

nize the files present in the user workspace and the

repository. The point of the client is to ease this pro-

cess by a complete separation of duties, in such way

that, the user can work freely in his workspace, while

the client takes care of the whole process of managing

updated files either from repository to the workspace

or otherwise.

Furthermore, whenever a change is made in a file,

even if the change was small, in a normal file transfer

it implies sending the entire content of the file to the

repository. This work also aims to develop a method

to synchronize files by exploiting the similarities be-

tween different versions of the file. To conceive this

solution will be used an approach based on delta en-

coding using a static block size analysis.

Through this method is possible to achieve high

compression rates in transferences, as only the

changed parts are transferred.

The system is divided into modules where each one

plays a different role. The next figure will present the

architecture of the solution.

Fig. 2. System architecture

Authentication module. One of the requirements of

this project was to use the same authentication ser-

vices that IST provides. But as the user authentication

credentials are provided by IST, it has strict rules

about security and tries to avoid solutions that require

the user to input both username and password directly

in a 3rd party programs. For this reason Central Au-

thentication Service (CAS) [19] was the chosen au-

thentication service. Still, so far this protocol has only

been used in the authentication between the user’s

web browser and IST web applications.

The solution was developed with a method similar

to the one used in magnet links of torrent clients.

When the browser founds an URL protocol that it

cannot handle, it will search on the OS for a suitable

application. In the Windows, the browser will search

on the Windows Registry for a previously registered

application associated with that protocol. If it founds

any, that application is executed using the browser

link as the argument.

The solution is as simple as this, as long as there is

no client running at the moment of the login. Other-

wise, it has the main problem that every time it is

necessary to perform a new login (for example when

session expires) the browser would launch a new cli-

ent. This would generate conflicts in the access to

common resources, such as database or user work-

space. The solution was accomplished using a com-

mon Inter-Process Communication method: TCP

Sockets. When the client starts, it will bind a specific

port and create a server socket. This way, if a new

client is started and tries to bind that port, it will fail,

meaning that probably there is a client running at that

port. In this case, the newly created client will deliver

the CAS ticket to the older client using that already

existent TCP socket and then exits.

Cache. The cache concept used in this project is

very similar to same concept used in remote commu-

nications, if the requested data is available locally,

then it can be retrieved immediately without further

communication with the repository. Otherwise it

would increase its access time.

Physically, the cache is just a regular folder of the

OS created in the user’s computer which can contain

other folders and files. The cache can be read or writ-

ten by the user’s applications or by the repository,

through the client application. This way is possible to

take advantage of OS functionalities and features,

such as search and keep the OS interfaces to access

the cache, which are more familiar to the user. The

success of this component is, however, highly related

to the storage space available. The larger the infor-

mation we hold in cache, the faster it is its access, but

it comes at cost of storage space. Also by having all

user data in the cache will insure that if the client can-

not access the online repository, the user can still ac-

cess to all files he had stored on his remote space.

File System Watcher. While the cache on its own

can bring huge improvements in the access times, it

does not suit us well if the coherence between the

local cache and the remote repository is not main-

tained. For this reason was created the File System

Watcher (FSW). This component is responsible for the

connection between the local cache and the client

application. When a user makes modifications on his

workspace, i.e. in the local cache, it is important that

the application is aware of such modifications to take

further measures. The solution developed was to mon-

itor the local cache using a hybrid algorithm of direc-

tory monitoring and extensive file search. When the

client starts, it registers the application to receive noti-

fications of the cache directory. After this point any

notifications made in files, folders or sub-folders will

be received by the client. But since the client cannot

receive notifications that occurred before it was start-

ed, it will run the extensive file search, where it will

check the previous last modified date that the client

knows of with the actual “last modified date” of the

file. If they are different, the file was modified.

Event Queue. This component is responsible for

keeping the persistent state of the client along the

various executions. To preserve the state of the appli-

cation we use a local database. Its goal is to mirror the

local file system, but with additional metadata infor-

mation about synchronization state of each file and

directory. In order to keep the database, the Event

Queue receives events generated by the FSW, and

they are processed and stored in the database. The

events sent to the Event Queue can be of three types:

create, modify and delete. When those events are pro-

cessed the database is updated with the corresponding

actions, to keep the database cache structure identical

to the cache itself. These events will later be used to

execute the modifications at the remote repository.

Besides these events, there is also another type of

event. Just as FSW, the remote repository can also

send events to the client. This occurs if the remote

repository suffers a modification of any type. But if

that file is in use by the user, the client cannot over-

write it. So to prevent skipping the event, it is saved in

the database and from time to time, the client will try

to execute it.

Client Dispatcher. The client dispatcher is the re-

sponsible for the connection between the client and

the repository. The whole process of file synchroniza-

tion involves several stages and in a higher level of

abstraction it can be divided in two main steps.

The first is to decide which files should be trans-

ferred from and to the repository. This is decided by

retrieving the events of modified files and folders

from the repository and crossing that information with

the local changes previously stored on the database.

The result of this stage is a unified list of operations

either from the remote repository or to the repository.

The final stage is about executing the operations

that were fetched in the first stage and transfer the

files needed from repository and to the repository. The

transference of files is made using file encoding,

which is built on delta encoding. The idea is that files

with same name and in the same folder, can have simi-

lar contents. So to take advantage of this similarity,

the encoder analyzes both files and transfers only the

differences between them.

Delta Encoder. One of the challenges in distributed

file systems is the network, as its conditions can

change often. Since this client should provide mobili-

ty, it will face unpredictable conditions which can

lower the user experience, especially in long file trans-

ferences. One way to achieve this reduction is by ex-

ploiting the similarities between the files. If a file has

already been transferred previously to the remote re-

pository, then it is possible to exploit the file similari-

ties by only transferring the changes.

To solve this problem, we implemented a file trans-

fer protocol based on Rsync algorithm [14]. The aim

of this algorithm is to allow the transformation of

Data1 in Data2 by sending only the minimum infor-

mation possible over the network.

In summary, the algorithm is processed in three

steps:

 Generate a description of the previous file ver-

sion (File 1)

 Detect changes between files

 Transformation of the file (File 1 into File 2)

Fig. 3. Delta encoding process

Step1: Suppose that the repository has a modified

version of the File 1 present in client, the File 2. When

the client detects that there were modifications, it will

send a resumed description of the contents of File 1

(block file hashes) to the repository, over the network.

Step2: The repository will detect the modifications

between both versions and will generate two tempo-

rary files. One file contains the new contents found in

the File 2, the binary file, while the other references

the structure of the resulting file, i.e. instructions to

transform the File 1 into File 2. This file is named

instructions file. For example, it can contain infor-

mation about where to put the new contents or leave

the existing ones. These two files are merged in a

unique file resulting in a delta file.

Step3: In the final step, the delta file is sent through

the network to the client. The delta file is read and by

merging the existing contents of the local File 1 with

the delta file that came from the repository, the client

reconstructs the File 2.

4 IMPLEMENTATION

The BennuFC client was developed entirely in the

scope of this project. Just like the repository, it was

developed in Java which provides great portability. To

keep the persistence, it uses SQLite which provides

most of the features needed of a SQL relational data-

base, but does not requires any installation. The con-

nections between the repository and the client were

made using Jersey RESTful WebServices 1.7 [20].

The client was implemented and tested in Windows 7.

The delta encoder uses Rabin Fingerprints, whose

purpose is to do a fast comparison between blocks.

What makes it faster than others is his rolling hash

property. This hashing algorithm is backed up by

SHA1 which offers a considerable resistance to colli-

sions, relatively fast computing and hashes of 160 bits.

5 EVALUATION

To test the application, we created various test sce-

narios to determine if the overall behavior of the client

was according to the defined functional requirements

of the project. These are defined and explained in the

main dissertation document.

Secondly, we tested the performance of delta en-

coding algorithm. The tests made will cover various

scenarios and will check the gains in data transfer

using the delta encoder algorithm versus a normal file

transfer. Also it will present the results of delta encod-

er algorithm using different block sizes.

The overall tested system is composed by the Ben-

nuFC client and IST repository, and was tested in a

single machine. This allowed testing the simplest case

where there is one client connecting the repository and

eliminate the possible network latency variations. The

test machine has the following hardware setup: Intel

i7-2670QM CPU @ 2.20 GHz, 6GB RAM, Windows

7 64 bits and HDD 5400 RPM.

5.1 Results

The delta encoder algorithm test was performed by

creating a separate application which had as input two

files and a file block size to execute the algorithm. The

main advantage of isolating the algorithm from the

rest of the system is that, the benchmarks will reveal

only the costs involved in the computation of the algo-

rithm. The final objective of the application is to trans-

form the original file into modified file by executing

the delta encoding algorithm.

In this algorithm the block size plays a critical role,

because it will determine the precision in finding the

modification in a file. The smaller the block size, the

more accurate is the algorithm in detecting the modifi-

cation, which means it will transfer smaller parts of

the file. Still, it comes at cost of computational power

and a larger hash file. The smaller the block size is,

the bigger the hash file transferred initially will be and

the lengthier will be the comparison between the

hashes and the second file. To evaluate how these

variables affect the algorithm’s performance, special

conditions were simulated to emulate the best, normal

and worst case scenarios.

5.1.1 Test setup

The file sizes used in tests were: 16 KB, 1 MB, 5

MB, 20 MB, 52 MB, 100 MB and 500 MB.

The block sizes tested were: 2 KB, 4 KB, 8 KB, 16

KB, 524 KB and 1 MB.

The results for each scenario are presented in two

different graphics. The first graphic will show the

performance tests measured for each file transferred,

using delta encoder with different sizes and a normal

file transfer. In the normal transfer, the value present-

ed corresponds to the expected transfer time with a

static connection of 200 KB/s. In delta encoding trans-

fer, the value corresponds to total operation time plus

the expected transfer time (delta file + block hashes),

with the same connection of 200 KB/s.

The second graphic will present the total data ex-

changed for each file transferred, using delta encoder

with different sizes and a normal file transfer. In the

normal transfer, the value presented corresponds to the

file size. In delta encoding, it represents the block

hashes file plus the delta file transferred.

5.1.2 Best case scenario

Objective

This case was created just to demonstrate how the

algorithm operates in optimum conditions, that is,

when all blocks match the ones on hash file and are

ordered.

Results

Fig. 4. Performance tests when transferring each file through

delta encoding, using different block sizes

0,01

0,10

1,00

10,00

100,00

1000,00

10000,00

1
6

 K
B

1
 M

B

5
 M

B

2
0

 M
B

5
0

 M
B

1
0

0
 M

B

5
0

0
 M

B

To
ta

l o
p

e
ra

ti
o

n
 t

im
e

 (
se

co
n

d
s)

File size

Block size of 2 KB Block size of 4 KB

Block size of 8 KB Block size of 16 KB

Block size of 500 KB Block size of 1 MB

Full file transfer

Fig. 5. Total data exchanged when transferring each file

through delta encoding, using different block sizes

Remarks

To evaluate this scenario, the files mentioned above

were used to compare them with themselves. This

ensured that every block matched to the other on the

other file, which is the best case scenario. Overall the

most time consuming operations were detected in

smaller block sizes, because they generate more block

hashes, which requires a longer search when trying to

find a matching hash.

5.1.3 Normal case: file with 2 insertions

Objective

This case corresponds to the case where the user

made two insertions, of two bytes, in the original file.

Fig. 6. Performance tests when transferring each file through

delta encoding, using different block sizes

Fig. 7. Total data exchanged when transferring each file

through delta encoding, using different block sizes

Remarks

In this test, the algorithm will start by computing

the Rabin fingerprint between the 1
st
 byte and 2048

th

byte. As there were 2 bytes inserted in the beginning

of the file, the generated hash between those bytes will

be different from any other of the known hashes. This

happens because with the insertion of two bytes in the

beginning of the file, all the blocks of the original file

were “shifted” two bytes to right in the modified file.

So only those new bytes are added to the binary file

while, the matching blocks are referenced in the in-

struction file.

5.1.4 Normal case: file with 2 modifications

Objective

This case corresponds to the case where the user

made two modifications in the original file.

The main difference between this scenario and the

previous is that, previously the blocks were shifted by

two bytes, but were intact. So, as the hash moves

along the contents of the file, they will be found even-

tually. Here the contents of the block were actually

changed. This way the algorithm will never find the

differences, because none of the hashes will match.

The same would happen, if instead a modification,

there was a deletion of in two points of the file. The

algorithm would not recognize any of the changed

blocks and mark them as new.

0,10

1,00

10,00

100,00

1000,00

10000,00

100000,00

1000000,00

1
6

 K
B

1
 M

B

5
 M

B

2
0

 M
B

5
0

 M
B

1
0

0
 M

B

5
0

0
 M

BTo
ta

l d
at

a
e

xc
h

an
ge

d
 (

K
B

)

File size

Block size of 2 KB Block size of 4 KB

Block size of 8 KB Block size of 16 KB

Block size of 500 KB Block size of 1 MB

Full file transfer

0,01

0,10

1,00

10,00

100,00

1000,00

10000,00

1
6

 K
B

1
 M

B

5
 M

B

2
0

 M
B

5
0

 M
B

1
0

0
 M

B

5
0

0
 M

B

To
ta

l o
p

e
ra

ti
o

n
 t

im
e

 (
se

co
n

d
s)

Block size

Block size of 2 KB Block size of 4 KB

Block size of 8 KB Block size of 16 KB

Block size of 500 KB Block size of 1 MB

Full file transfer

0,10

1,00

10,00

100,00

1000,00

10000,00

100000,00

1000000,00

1
6

 K
B

1
 M

B

5
 M

B

2
0

 M
B

5
0

 M
B

1
0

0
 M

B

5
0

0
 M

BTo
ta

l d
at

a
e

xc
h

an
ge

d
 (

K
B

)

Block size

Block size of 2 KB Block size of 4 KB

Block size of 8 KB Block size of 16 KB

Block size of 500 KB Block size of 1 MB

Full file transfer

Fig. 8. Performance tests when transferring each file through

delta encoding, using different block sizes

Fig. 9. Total data exchanged when transferring each file

through delta encoding, using different block sizes

Remarks:

In this test, just as in previous, the algorithm will

start by computing the Rabin fingerprint between the

1
st
 byte and 2048

th
 byte. While in the previous case the

contents of the blocks were intact, which generate

known block hashes, in this test, the actual contents of

the blocks were modified. For this reason, those

blocks will not generate known block hashes. This

way the modified blocks will be merged in the binary

file, while the others are referenced in instruction file.

5.1.5 Worst case scenario

Objective:

This case will only happen when the user replaces

entirely the contents of the file.

Fig. 10. Performance tests when transferring each file

through delta encoding, using different block sizes

Fig. 11. Total data exchanged when transferring each file

through delta encoding, using different block sizes

Remarks:

This case is shows the scenario where there are no

matching blocks, because the content of all blocks was

changed. As so, it will calculate the hashes from byte

to byte until finds a known block hash, but as it will

never find one, the algorithm just calculate the hash of

every byte.

0,01

0,10

1,00

10,00

100,00

1000,00

10000,00

1
6

 K
B

1
 M

B

5
 M

B

2
0

 M
B

5
0

 M
B

1
0

0
 M

B

5
0

0
 M

B

To
ta

l o
p

e
ra

ti
o

n
 t

im
e

 (
se

co
n

d
s)

Block size

Block size of 2 KB Block size of 4 KB

Block size of 8 KB Block size of 16 KB

Block size of 500 KB Block size of 1 MB

Full file transfer

1,00
10,00

100,00
1000,00

10000,00
100000,00

1000000,00

1
6

 K
B

1
 M

B

5
 M

B

2
0

 M
B

5
0

 M
B

1
0

0
 M

B

5
0

0
 M

B

To
ta

l d
at

a
e

xc
h

an
ge

d
 (

K
B

)

Block size

Block size of 2 KB Block size of 4 KB

Block size of 8 KB Block size of 16 KB

Block size of 500 KB Block size of 1 MB

Full file transfer

0,01

0,10

1,00

10,00

100,00

1000,00

10000,00

1
6

 K
B

1
 M

B

5
 M

B

2
0

 M
B

5
0

 M
B

1
0

0
 M

B

5
0

0
 M

B

To
ta

l o
p

e
ra

ti
o

n
 t

im
e

 (
se

co
n

d
s)

Block size

Block size of 2 KB Block size of 4 KB

Block size of 8 KB Block size of 16 KB

Block size of 500 KB Block size of 1 MB

Full file transfer

1,00
10,00

100,00
1000,00

10000,00
100000,00

1000000,00

1
6

 K
B

1
 M

B

5
 M

B

2
0

 M
B

5
0

 M
B

1
0

0
 M

B

5
0

0
 M

B

To
ta

l d
at

a
e

xc
h

an
ge

d
 (

K
B

)

Block size

Block size of 2 KB Block size of 4 KB

Block size of 8 KB Block size of 16 KB

Block size of 500 KB Block size of 1 MB

Full file transfer

The bigger files were not benchmarked with small-

er block sizes, as they were taking too long to com-

pute. The most expensive operation identified in this

test was the comparison of the block hashes. For ex-

ample, the 50 MB file with block size of 16384 bytes,

from the total operation time of 208 seconds (exclud-

ing transfer time), 131 seconds were spent on block

comparison.

While Rabin’s hash is fast to compute, the same

cannot be said about the second hash. Another aspect

to take in consideration in this test is that, there are no

matching blocks, so the Rabin hash of every byte is

going to be computed. As this hash is weaker than the

second, the chance of some false-positives matches

occur can be higher. This can lead to a frequent calcu-

lation of the second hash, which would slow down the

overall operation.

6 CONCLUSION

This dissertation introduces a solution to an appli-

cation client who synchronizes user files autonomous-

ly with the IST repository. The solution designed is

not final, as for the same problem, there are many

solutions. Still, it was shaped based on the systems

studied, my own academic experience and guidance

and ideas from my supervisors.

One of the most challenging parts of this project

was surprisingly the cache. The interception of I/O

requests is not an easy task, especially when one of

the requirements that we do not want to give up is

portability. The answer was to use the newest file

change notification API of Java 7 called Watch Ser-

vice API. This takes advantage of native FS support

for file changes, but it does not report who made the

modification. This made the monitor even more com-

plex, because the FS can generate more than one event

of the same type. So, when the client application

writes a file in the cache (coming from the repository),

it would see several notifications of modify events on

that file. However there is no way to verify if all of

them were generated by the client modification. The

solution was to lock the file while it was being modi-

fied by the client. This way, the user could not modify

it at same time. After 5 seconds of the file was closed,

the lock was released and the user is free to make

changes. Meanwhile until the release of the lock all

modify events were discarded.

The final addition to the client was the delta encod-

er. On overall the algorithm achieved its purpose and

is possible to achieve high compression levels. For

example, given a file with 500 MB with two modifica-

tions, it is possible to transfer only 1 MB and recon-

struct the entire file back. The worst performance of

the algorithm is when it is assigned to compare two

totally different files. How badly it will perform will

depend on the block size chosen. For this reason is

important to balance the block size with the total file

size. Smaller block sizes will bring advantages when

files are similar, but when they are very different, they

can decay the algorithm performance, especially in

huge files.

In conclusion, the client prototype elaborated in this

dissertation meets all predefined requirements. The

client authentication system is well integrated with

IST CAS authentication system and keeps the single

sign-on feature. Additionally, as the authentication

credentials are inserted in the IST authentication

webpage, it offers more confidence to the user. The

integration with IST repository was also successful,

however, it might require some future work, as the

repository is still in development phase and a lot can

change. Finally the introduced delta encoding algo-

rithm can improve the file transfers, especially under

normal conditions. While the worst case scenario can

be discouraging, it can be mitigated by tuning the

block size.

7 BIBLIOGRAPHY

[1] Instituto Superior Técnico, “Bennu

Framework,” 26 July 2012. [Online].

Available: https://fenix-

ashes.ist.utl.pt/fenixWiki/BennuFramework.

[Last access 7 May 2013].

[2] Apache Software Foundation, “Apache

Maven,” 2013. [Online]. Available:

http://maven.apache.org/. [Last access 7 May

2013].

[3] Instituto Superior Técnico, “Fénix

Framework,” [Online]. Available:

https://fenix-ashes.ist.utl.pt/trac/fenix-

framework. [Last access 7 May 2013].

[4] Sun Microsystems, Inc., “RFC 1094 -

NFS: Network File System Protocol

Specification,” March 1989. [Online].

Available: http://tools.ietf.org/html/rfc1094.

[Last access 25 December 2011].

[5] B. Pawlowski, C. Juszczak, P. Staubach,

C. Smith, D. Lebel e D. Hitz, “CiteSeerX -

NFS Version 3 - Design and

Implementation,” 1994. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary

?doi=10.1.1.35.6. [Last access 26 December

2011].

[6] M. Satyanarayanan, “A Survey of

Distributed File Systems,” February 1989.

[Online]. Available:

http://www.cs.cmu.edu/~satya/docdir/satya8

9survey.pdf. [Last access 20 December

2011].

[7] M. Satyanarayanan, “Coda: A Highly

Available File System for a Distributed

Workstation Environment,” 1989. [Online].

Available:

http://www.cs.cmu.edu/~satya/docdir/satya-

wwos2-1989.pdf. [Last access 29 November

2011].

[8] Dropbox, “Dropbox - Features - Simplify

your life,” 2012. [Online]. Available:

http://www.dropbox.com/features. [Last

access 7 January 2012].

[9] Google, “Google Drive,” 2013. [Online].

Available:

https://www.google.com/intl/en/drive/start/in

dex.html. [Last access 4 January 2013].

[10] Dropbox, “Does Dropbox always

upload/download the entire file any time a

change is made?,” 2013. [Online]. Available:

https://www.dropbox.com/help/8/en. [Last

access 7 May 2013].

[11] Dropbox, “Dropbox Privacy Policy,” 10

April 2013. [Online]. Available:

https://www.dropbox.com/terms#privacy.

[Last access 7 May 2013].

[12] “LZW Data Compression,” 1 October

1989. [Online]. Available:

http://marknelson.us/1989/10/01/lzw-data-

compression/. [Last access 5 December

2011].

[13] D. Huffman, “A Method for the

Construction of Minimum-Redundancy

Codes,” September 1952. [Online].

Available:

http://compression.ru/download/articles/huff/

huffman_1952_minimum-redundancy-

codes.pdf. [Last access 5 December 2011].

[14] J. Jenkov, “RSync - Remote

Synchronization Protocol,” [Online].

Available:

http://tutorials.jenkov.com/rsync/index.html.

[Last access 7 May 2013].

[15] A. Muthitacharoen, B. Chen e D.

Mazières, “A Low-bandwidth Network File

System,” 2001. [Online]. Available:

http://pdos.csail.mit.edu/papers/lbfs:sosp01/l

bfs.pdf. [Last access 7 December 2011].

[16] Microsoft, “Distributed File System,” 11

September 2007. [Online]. Available:

http://technet.microsoft.com/en-

us/library/cc753479(v=ws.10).aspx. [Last

access 7 May 2013].

[17] Microsoft, “How DFS Works,” 23 March

2003. [Online]. Available:

http://technet.microsoft.com/en-

us/library/cc782417(v=ws.10).aspx. [Last

access 7 May 2013].

[18] Microsoft, “Data Access and Storage,” 19

November 2012. [Online]. Available:

http://msdn.microsoft.com/en-

us/library/windows/desktop/ee663264(v=vs.

85).aspx. [Last access 7 May 2013].

[19] Jasig, “About CAS,” 2009. [Online].

Available: http://www.jasig.org/cas/about.

[Last access 8 January 2012].

[20] Jersey, “Jersey,” 2013. [Online].

Available: http://jersey.java.net/. [Last access

7 May 2013].

[21] T. McIndoo, “Paperless Office in

Perspective,” June 2009. [Online]. Available:

http://pt.scribd.com/doc/15686308/Paperless-

Office-in-Perspective-A-Document-

Management-System-for-Today-. [Last

access 7 May 2013].

