
Auctions at Edge Clouds

Diogo Paulo Dias, n. 93980
diogopdias@tecnico.ulisboa.pt

Instituto Superior Técnico - Universidade de Lisboa
1049-001 Lisbon, Portugal

Abstract. The evolution of volunteer computing into community networks
and community network clouds has taken advantage of lower cost, and higher
energy e�ciency of lower-end compute and storage devices that populate the
edges of internet. This has made the internet's edge richer and �lled with a
large amount of still under utilized resources.
While users are initially willing to contribute, sustainability of these commu-
nity edge clouds depends heavily on the users being able to access relevant,
interesting services (often deployed as virtualized containers) and obtaining
some kind of positive return (incentives) for allowing others to operate on
their hardware. The easiest way to incentivize the users to share their own
resources is by adapting one or more existing well known trading systems,
paying resources or services with currency.
While promoting decentralized planning and scheduling, this work will explore
how market and auction based algorithms can be applied to allocate resources
and schedule work on edge clouds, advancing the state of the art container
orchestrators such as those on Docker.

Keywords: Edge Computing · Volunteer Computing · Market Algorithms ·
Auction Algorithms · Docker.

Table of Contents

1 Introduction . 3
1.1 Motivation . 3
1.2 Shortcomings of current solutions . 4
1.3 Document Roadmap . 5

2 Goals . 5
3 Related Work . 5

3.1 Edge Clouds . 5
3.2 Market Models . 9

3.2.1 Provider-Based Pricing . 9
3.2.2 Auctions . 11

3.3 Relevant Systems . 13
3.3.1 Envy-Free Auction Mechanism. 13
3.3.2 Multi-Round-Sealed Sequential Combinatorial Auction 13
3.3.3 Tycoon . 14
3.3.4 PeerMart . 15
3.3.5 Bellagio . 15
3.3.6 Lin et al. 15
3.3.7 Double Multi-Attribute Auction . 16
3.3.8 Auction Based Resource Co-Allocation . 16
3.3.9 Reverse Batch Matching Auction . 16
3.3.10Combinatorial Double Auction Resource Allocation 17

3.4 Analysis and Discussions . 18
4 Solution Proposal . 18

4.1 Distributed Architecture . 19
4.2 Resource Scheduling (Bidding Algorithm) . 21
4.3 Software Architecture . 23

5 Evaluation Methodology . 24
6 Conclusion . 24

Auctions at Edge Clouds 3

1 Introduction

Cloud Computing is a mature environment heavily used because of its properties
like global access, pay for what you use, resource elasticity, and others [31]. To meet
these alluring properties, typically Cloud Computing is executed with a couple of
geo-centered server farms at the Internet's backbone. This causes Cloud Computing
to work mostly at a long distance from the Internet's edge with Wide Area Network
latencies and expensive bandwidth for data to reach it.

The Internet Of Things paradigm is rising to new levels, enabling new concepts
such as smart cities. A smart city is one which uses information and communica-
tion technologies to make the city services and monitoring more aware, interactive
and e�ective [18]. This information feeds the network's edge with a lot of data and
this data needs to be transfered to the Cloud data centers in order to be processed.
The transfer of large amounts of data will cause bandwidth saturation and a big la-
tency. An e�ective pre-processing mechanism at the network's edge would reduce the
amount of data to send (to be processed or stored at Cloud) reducing the bandwidth
consumption and the latency to transport that data. The computing power and stor-
age are also growing at the networks edge: Raspberry PI [9], [29], laptops, desktops,
routers, hubs and others. Most of the time these resources are actually underutilized.
This ine�ciency is opening the doors to new studies, tools and migrations to the
Edge Computing in order to provide services with low latency and low bandwidth
requirements.

1.1 Motivation

There are still many di�culties in handling edge cloud resources. A structured view
of the existing resources, their characteristics and the role of all entities involved
in the edge cloud environment is vital. In addition, recon�gurations often need to
be performed in order to modify or allocate existing virtual resources, depending
on the usage or the service level agreement. Ine�cient allocation of resources has a
detrimental impact on performance and costs and also impact on the usability of the
system.

Market-based resource allocation. Developing resource management techniques
that guarantee scalability, performance, manageability and adaptability for the edge
cloud environment is crucial to resolve the aforementioned challenges. Traditional
approaches, such as system optimization, focus solely on system performance metrics
rather than economic factors, such as revenue, cost, income, and pro�t [24]. Comparing
with the system optimization approach, economic approaches and pricing can provide
the following advantages:

1. The demand for resources depends on the needs of the users. Also, the resources
provided depend on the capacity and needs of the providers. There may be times
when the demand is higher than the supply or vice-versa, the supply is higher
than demand. Pricing/economic strategies can be used to solve the problem of
scarce or abundant resources originated from dynamic demand and supply prices.

2. There are various entities, e.g. stakeholders, end-users, cloud providers, in edge
cloud environment that have di�erent objectives, e.g. cost, pro�t, revenue, income,
utility, performance, scalability, as well as di�erent constraints, e.g., the budget
and the technology. There are times when these objectives often clash with each
other, and this con�ict can be e�cienlty overcome with an economic/price model.
Using economic/pricing models for negotiation mechanisms can result in optimal
solutions for entities with di�erent objectivies, achievied in a mostly decentralized
manner.

4 Diogo Paulo Dias

3. In edge cloud environments, the resource providers' pro�t must be maximized
while ful�lling the client requirements. For this reason, price models based on
cost minimization and bene�t maximization may be used.

4. One of the most important services in the cloud is Video on Demand. This is a
service which o�ers video for people to watch, e.g., Net�ix, HBO, Youtube. These
providers o�er tons of terabytes of media, overwhelming the networks' bandwidth.
Price/economic approaches, e.g. smart data pricing, have been used to regulate
user demands and have an e�ciently use of bandwidth.

Therefore, economic and pricing approaches for resource management have been re-
searched, developed and sucessfully adopted to manage cloud computing deployments.

Cloud Containerization. In order to promote the use of multiple technologies and
the deployment of multiple technologies in a heterogeneous environment, it is neces-
sary to have virtualization, isolation, and security. The most used tools to promote
virtualization are System Virtual Machines, managed by hypervisors (e.g., ESXi, Xen,
QEMU, ...), or containers (e.g., Docker1, Warden Container, OpenVZ, LXC contain-
ers), which are much more lightweight. In Table 1 we show a comparison between
Virtual Machines and Containers in several quality attributes.

Parameter Virtual Machines Containers
Guest OS Each VM runs in its virtual

hardware and Kernel is loaded
into its memory region

All the guests share the same OS
and Kernel. Kernel is loaded into
physical memory.

Communication Will be through Ethernet De-
vices

Standard IPC mechanisms like
Signals, pipes, sockets, etc...

Performance Virtual Machines su�ers from a
small overhead due to the trans-
lation of guest OS instructions
to host OS instruction

Containers provide near native
performance

Startup time Virtual Machines take a few
minutes

Containers take a few seconds

Storage Virtual Machines have more
storage as the whole OS and the
programs that are associated to
run

Containers have lower storage
consumption due to the base OS
being shared

Table 1. Virtual Machine and Container feature comparison, based on [33]

Due to the advantages of Containers (mainly performance, startup, and storage),
their popularity is increasing and started being used at large scales in cloud couply
deployments.

1.2 Shortcomings of current solutions

There is a lack of decentralized edge-based cloud solutions. Most of cloud solutions:
OpenStack2, OpenNebula3, Swarm4 and others, have centralized architectures and
operate only in a controlled environment (not using volunteer solutions). The use of

1 https://www.docker.com
2 https://www.openstack.org/
3 https://opennebula.org/
4 https://docs.docker.com/engine/swarm/

Auctions at Edge Clouds 5

market algorithms to allocate resources in a volunteer environment has been studied,
and techniques to improve fairness, utility and truthful price have been applied, but
there is a lack of auction-based solutions in a peer-to-peer environment [34].

1.3 Document Roadmap

The rest of the document is organized as follows: in Section 2 we present the main
goals of our work and what we want to achieve. In Section 3 it is presented the study
and analysis of related work. In Section 4 we propose our solution to address the
shortcomings mentioned before. In Section 5 we describe the metrics and techniques
used to evaluate our solution; in Section 6 we wrap up all the important information
and present some concluding marks.

2 Goals

Our main goal is to develop an Edge Cloud system that enables us to deploy appli-
cations in the other edge nodes (normally volunteered resources) driven by a Market-
based approach, and using Docker as container technology. The strategy used to as-
sign a machine/resources to an application will be based on market algorithms, more
speci�cally auction mechanisms. The goals needed to achieve in our project are the
following:

� Investigate the Edge Cloud environment taxonomy, and di�erent purposes.
� Explore how market- and auction-based algorithms can be applied to distribute
work, the di�erent mechanisms, and their advantages and disadvantages.

� The sub-goals of our solution are:
• Create a peer-to-peer/decentralized system in order to have better scalability,
load balancing and avoid single point of failures.

• Use docker technology to deploy applications due to its lightweight property.
• Apply an auction algorithm that maximizes utility and price fairness.
• Test and evaluate our solution with experimental results.

3 Related Work

In this section we will discuss Edge Clouds in Section 3.1, describing its taxonomy,
what aspects di�er across various environments of Edge Cloud and in the end we
classify some tools based on the taxonomy we proposed. The second theme we explore
is the di�erent Market Models in Section 3.2. There are many di�erent market models,
and each one has is own advantages and disadvantages and di�er depending on the
usage context.

3.1 Edge Clouds

In this section we will present the main design dimensions of an Edge Cloud envi-
ronment and the di�erent values/types for those dimensions. These dimensions are
Resource Ownership, Architecture, Service Level, Target Application and
Access Technology. The taxonomy can be seen in Figure 1.

Resource Ownership is the dimension which represents the owner type of the
resources. Resource Ownership can be divided in three types: Single Owner, Volunteer
and Hybrid.

In Single Owner, the devices used to support an Edge Cloud environment are
owned by a single entity. Normally these entities already have a group of speci�c

6 Diogo Paulo Dias

Fig. 1. Edge Cloud Taxonomy

devices and already are con�gured for the purpose of sharing their own resources to
create an edge network. This type of ownership is normally used in big companies
which implement their own edge computation infrastructure. They have more control
of the system, having more security, reliability and other quality attributes, due to:
controlling all the devices and making their own con�gurations, controlling what types
of work will be computed, and the protocol used to communicate between the devices
and others.

The Volunteer type di�ers from the previous one. The resources are shared by end-
users and these resources are normally their personal devices like computers, tablets,
mobile phones, and others (e.g. Costa et al. [14], Cloudlets [37], Satyanarayanan et
al. [21], Cloud@Home [38], Babaoglu et al. [28] and Mayer et al. [32]). One of the
biggest di�erences in this type is that the devices aren't owned by a single entity.
Due to that, when we choose a Service Level we don't control the devices used to
provide that service, being more prone to disclosure of con�dential information or
other attacks. This type of ownership may have more end-devices if almost every
person shares the resources of their own devices. But these devices (normally personal
devices) could have lower capabilities resources in contrast with Single Owner because

Auctions at Edge Clouds 7

the purpose in Single Owner is to share devices, so, they normally buy devices with
high requirements.

The last one is a Hybrid type and is a mix of the last two. In this environment,
some resources belong to a single entity while others belong to users who share their
resources voluntarily. This type of environment with single and volunteer ownership
normally happens when the volunteer ownership comes from personal devices like
computers, mobile phones, and the single ownership comes from Internet Service
Provider devices like routers and hubs (e.g. Nebula [2], Chang et al. [17] and Mohan
et al. [26]). This type brings much more power resources to the Edge Cloud but su�ers
from the disadvantage that some resources may be owned by some malicious users.
Volunteer Ownership also su�ers from this disadvantage.

Architecture is another relevant design decision dimension. This dimension can
be divided in two main types: Centralized and Decentralized. When we are speaking
about Architecture we are speaking about the managers/orcherstrators distributed
architecture.

Centralized architectures have dedicated nodes to manage and orchestrate all the
resources of the Edge Clouds. One problem that arises with this approach is the bot-
tleneck which can be created by the large number of messages between the managers
and the worker devices. Also, it su�ers from Single Point of Failure issues, i.e., if the
managers crash the work stagnates.

Decentralized architectures are the opposite, as all nodes are equal and there
isn't a privileged group of managers or orchestrators. This type of architecture tends
to scale out better for having a better distribution than the previous one, reducing
the bottlenecks and it doesn't su�er from a single point of failure. Decentralized
architectures type is divided in two categories: Federated and P2P. In Federated
we have autonomous small clouds (also designated zones in some articles [6]) which
provide services. These small clouds can group with other autonomous small clouds
to supply a greater/powerful service. Similar, a Peer to Peer architecture makes all
nodes equal in terms of responsibilities/work, even if some fails the cloud continues
operating (e.g. Babaoglu et al. [28]), and they interconnect themselves creating one
Edge Cloud environment.

Service Level is a dimension that refers to the type of service which is provided
by a service in an Edge Cloud environment. Similar to Cloud Computing, an Edge
Cloud infrastructure o�ers similar services and for those services di�erent levels. The
three main types are Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS)
and Data-as-a-Service (DaaS).

IaaS provides infrastructure with CPU, RAM and network capabilities. As infras-
tructure, we have two di�erent categories: System Virtual Machines and Containers.
In the Virtual System Machine, the devices run a Virtual Machine like VMWare or
Oracle Virtual Box, and on top of that runs the operating system and applications
supplied by the client. The System Virtual Machine enables to run the clients' applica-
tions in a sandbox environment, and also, the client can deploy multiple applications,
which can have a relation between them, in one instance of a virtual machine. Using
Container technology, the clients only need to provide the application code and their
dependencies. Containers are a newer technology that is emerging and is being pre-
ferred over System Virtual Machines because they package the application's code and
that image is more lightweight than the full system image used to deploy in a System
Virtual Machine.

PaaS already supplies the runtime platform (Common Language Runtime, Java
Virtual Machine, etc) and the client only needs to send the application code to run
remotely. This code di�ers depending on what PaaS level (which are two) we are using.
If it is Application, the user must send all the application's code and its dependencies
to be deployed (.jar, .exe, .dll) as a self-contained program. The scalability is managed

8 Diogo Paulo Dias

by the PaaS's provider. The other type is Function-as-a-Service (Faas) [22], [3], a
new service with rising popularity, and is also named serverless architecture. In this
type of service, the client only needs to implement some functions to deploy his own
application. These functions only contain business logic and are stateless. All the data
is saved persistently in databases or blobs and all the logic to receive requests and
the code to scale out/in is handled by the FaaS's provider.

DaaS is a service where the provider is o�ering data storage to the end-users. In
contrast with the other types of services, this service doesn't involve computation,
the user only needs to provide the data that needs to be stored remotely. The data
that is being stored can be �les [7] or structured data [8]. Also, di�erent types of data
services o�ers di�erent qualities. These qualities are based on CAP5 theorem, where
we can only choose two of these three quality attributes: consistency, availability and
partitioning.

Target Application refers to the type of application we want to deploy on the
Edge Cloud. These applications take advantage of some characteristics of Edge Clouds,
like low latency. We have �ve types of relevant applications which could use Edge
Clouds: Data Intensive, Mobile O�oading, IoT, Data Storage and General Purpose.

Data Intensive applications are applications that process large chunks of data.
These processes may be cleaning, transformation to other data type/models or aggre-
gation. The chunks of data can't all be processed in one device, so, they are divided
into multiple end-devices to distribute the work, augmenting performance. By dis-
tributing the data chunks, the network will su�er a higher bandwidth demand which
will also cause latency by the processing of moving tons of data. To reduce these dis-
advantages, data intensive applications exploit the geo-location [2] of the data sources
themselves and try to process the data on the closest nodes to avoid the overhead and
cost of transfering the data.

Mobile O�oading applications are primarily used by mobile devices or devices
which have lower hardware speci�cations than those required to compute some work.
These lower speci�cations result from the trade-o�s in small and mobile devices. To
do heavy work in these environments, mobile phones o�oad their work to end-devices
residing on an Edge Cloud infrastructure to make computations on behalf of them.
This preserves the battery of mobile phones and the computation is much faster due to
better hardware speci�cations. The Cloudlet work [37] attempts to o�er a transparent
method for o�oading mobile application components to Edge Clouds so as to use the
apparently vast amount of resources.

IoT applications are similar to data intensive applications but in this case, while
the messages have a smaller payload, the number of messages is much higher. IoT
devices try to have a long lifetime to reduce the maintenance and to do that, they
take into account the battery drain on daily use. To reduce the battery consumption
they send, periodically or eventually, small messages. But a city can have tons of
IoT devices, resulting a large number of messages, burdening the network. In order to
reduce this burden, some applications aggregate the data in the network's edge before
reaching the Cloud [26].

Storage applications [20], [7] di�er from the previous ones because they don't have
computation. Their purpose is only to store and retrieve data. Using the millions of
devices of an Edge Cloud environment they can replicate the data having high avail-
ability and reduce the consistency. One downside is also the data may be inspected
when stored in malicious' users end-devices. If non-disclosure information is necessary,
then encryption is required. To have fast retrieval, data's location can be used to �nd
the nearest nodes with the required data.

5 https://en.wikipedia.org/wiki/CAP_theorem

Auctions at Edge Clouds 9

General Purpose applications are the last all-encompassing type. This type covers
all the other applications that didn't �t the previous types. These types of applications
can be simulators, servers, and others.

Access Technology is the dimension referring to the technology used to access
edge cloud services. One way is by using Ethernet protocol, if the service is near
and a physical connection can be used. Another similar approach, but without any
physical connection, is by using Wi-Fi (and variantes), more practical to the end-users
(being wireless) but can su�er more attacks from spoo�ng. Mobile devices can also use
4G/5G communication, for example, to o�oad work to edge cloud end-devices. IoT
devices can also use Wi-Fi, but this type of protocol has a high battery consumption.
To get high e�ciency in the communications other communications protocols like
SigFox6/LoRa7 which target IoT devices speci�cations.

Of the design choices of the work In Table 2 we have a summary. This classi�-
cation is based on the taxonomy presented in Figure 1. Fields with value '-' mean
no information was found or given about that entry. Because of the frequent lack of
speci�c information about Access Technology (relying on higher level protocols such
as TCP/UDP over IP), this dimension was removed from the table.

System/Tool
Resource
Ownership

Architecture
Service
Level

Target
Application

Edge-Fog Cloud [26] Hybrid P2P - IoT
Chang et al. [17] Hybrid Federated Containers General Purpose
Cloudlets [37] Volunteer Federated Application Mobile O�oading
Cloud@Home [38] Volunteer Centralized SVM General Purpose
Satyanarayanan et al. [21] Volunteer Federated SVM Mobile O�oading
Mayer et al. [32] Volunteer P2P Application General Purpose
Nebula [2] Hybrid Centralized FaaS Data Intensive
Babaoglu et al. [28] Volunteer P2P SVM General Purpose
Samsara [20] Volunteer P2P DaaS Storage
Past [7] Volunteer P2P DaaS Storage

Table 2. Edge clouds tools dimensions classi�cation

3.2 Market Models

Market models have been used to solve many issues in cloud environments, solving
some challenges and having the advantages mentioned in Section 1. Di�erent market
models o�er di�erent characteristics and provide di�erent speci�cations. To choose
the market model to use in one service it is �rst necessary to make a study about the
domain where that application will exist and the consumers of that service.

In this section, we will study di�erent market models, their characteristics, and
their advantages and disadvantages. We divided the market models into two cate-
gories, based on how the prices are set: Provider-Based Pricing and Auction-Based
Pricing.

3.2.1 Provider-Based Pricing In Provider-Based Pricing, the prices are set by
the resource provider. We address three types of provider-Based Pricing, e.g., cost-
based pricing, di�erential pricing, and pro�t maximization, where the prices are set
by the provider but the approach to �nd these prices di�ers from each other.

Cost-based pricing: This technique is a popular pricing strategy to calculate a
resources' price based on calculating the resources' total cost and adding, as a desired

10 Diogo Paulo Dias

bene�t, a value e.g. percentage of the cost or constant value. The objective of this
strategy is for the resources' provider, ensure some revenue or, in the worst case,
guarantee the minimum price to be equal to the cost of providing the resources. The
total-cost is created from the �xed cost and the variable cost. The �xed cost is the
cost that does not change depending on the supply or the number of requests. These
are normally hardware costs, e.g. RAM's price, CPU's price, disk storage's price. In
contrast, the variable cost varies with the number of requests or the service provider,
e.g. bandwidth used, the disk used, number of servers, and energy.

One of the advantages of the cost-based pricing is the easy way of setting the
price, being one function of the internal cost, e.g. the cost to generate the service [10].
One of the disadvantages is that the price doesn't take into account the price of other
providers (provider A may o�er the same service with the lowest pricing, getting more
sells) or the value which the users are willing to pay. Another disadvantage may be
the precision to calculate the variable cost. It is necessary to have good metrics and
a good monitor to convert those metrics to a cost. This technique has been mostly
used to calculate the service cost in geo-distributed data centers [1], [35].

Di�erential pricing: the previous market model, cost-based pricing, doesn't take
into account the value users are willing to pay. This misuse of information reduces
substantially the market area of users we want to target. To maximize the pro�t of
providers, it is necessary to attract these types of users. Therefore, it is necessary to
know the requirements of these users, know how much they are willing to pay, and
�nd a good price for them.

This technique is called di�erential price because the provider, may o�er resources
at di�erent prices to di�erent users, depending on the information aforementioned.
The user surplus here is the di�erence between the overall amount of money users are
willing to pay and the total amount of money they pay.

This strategy brings a great pro�t for the provider can be considered unfair to
the users, e.g. one user may pay a much higher value than another for almost similar
services. One of the examples of di�erential prices in the cloud market is the Alibaba8

group, which o�ers a discount to use their services, but they need to pay for one year.
Another application of di�erential pricing is used in bandwidth location for dynamic
demands in data center networks [13].

Pro�t maximization: The pro�t maximization is the usual technique used to max-
imize the number of resources shared and the corresponding price to get the highest
pro�t possible to the provider. To apply that technique we assume we have the number
of resources shared, denominated Q, and the price to share each resource, denomi-
nated P. The pro�t of a provider is given by the formula, π = R(Q,P) - C(Q), where
the π is the pro�t, the R is the revenue of one provider based on a number of resources
shared and the price to share that resources, and the C is the cost to operate and
share the resources. The cost could be divided into �xed cost and variable cost (these
costs were explained in the Cost-based pricing technique).

We want to �nd the optimal Q* where the pro�t is maximized Q* = max(π). With
the optimal Q* we �nd the optimal price, to share our resources, based on demand
curve. The demand curve is a linear function and represents how much the clients are
willing to pay for a resource based on its quantity. The demand curve is represented
by the following expression: P = a - bQ. The constant a and b are proper parameters.
If we �nd the optimal Q* using the demand curve we �nd the optimal price P* = a
- bQ*. To �nd the optimal Q*, we �rst compute the revenue function and the cost
function. Using these functions we obtain the pro�t function, we just need to subtract
the revenue function from the cost function. After obtaining the pro�t function, we
�nd the Q* where the pro�t was highest. Then, we use this Q* value and obtain the

8 https://www.alibabacloud.com/

Auctions at Edge Clouds 11

optimal price (P*) by intercepting the Q* value (which is a straight line) with the
demand curve.

These iterations of steps can be seen in Figure 2. One downside it's the price that
doesn't take into account the market competition. One di�culty in this approach is
to determine the demand curve. To create this curve, di�erent techniques are applied,
some use randomness, others follow a distribution function like gaussian.

Fig. 2. Find the optimal price based on pro�t maximization, extracted from [25]

3.2.2 Auctions

Auctions are one very relevant type of Market model. An Auction, in its simplest
form, is a process where one item is being bid by a group of buyers and the item is
sold to the highest bid [16]. This is one of the processes of the auction but there are
others with di�erent actions and we will speak about it bellow. In an auction, we may
have up to four types of peoples involved in a transaction. The bidder is the person
who wants to buy the product and bids to obtain it, e.g., end-users, cloud tenants.
The seller is the person who o�ered the product to be sold to obtain some pro�t,
e.g., cloud provider. Sometimes the seller is the same person as the auctioneer. The
auctioneer is normally an intermediary agent that conducts the auction and ensures
a winner is decided. In this section we will speak about the di�erent dimensions an
auction algorithm it can have. These dimensions are Con�dentiality, Direction,
Unity and Symmetry. The taxonomy structure can be seen in Figure 3.

Con�dentiality: this dimension refers to if the price that the bidder's bid, is
known by the other participants or not. It is open-cry if the bids are known by all
participants. If the bidders don't know the bids of the other participants are called
sealed-bid.

Direction: this type of dimension focus on where the competition comes from. It
is a forward auction if the bidders �ght among themselves for getting the item. To do
that the winner must bid the highest value. It is called reverse auction, when we only

12 Diogo Paulo Dias

Fig. 3. Auctions Taxonomy

have one buyer, and the sellers, compete among themselves, by lowering the price of
their product, until the buyer choose the item with the lowest price.

Unity: this dimension classi�es whether the good being bought is a solo unit,
or a combination of items. In a single item the customers only bid for one item, for
combinatorial, they can make combinations of goods and buy them as a bundle.

Symmetry: this dimension is related to whether the competition is only among
the buyers or between the buyers and the sellers. It is referred to as one-sided if the
competition is only between the bidders or the sellers (never both at the same time).
It is called double-sided if the competition is between bidders and sellers, meaning,
the buyers submit bids and the sellers can submit asks.

There are many of one-sided auctions. Some of them are: English auction, Dutch
auction, �rst-price sealed-bid auction and second-price sealed-bid auction (the second-
price sealed-bid auction can also be named Vickrey auction).

In an English auction, the auctioneer starts to sell an item from a low price (nor-
mally this low price is protected to ensure some return to the seller) and the buyers
bid the item by ascending the price. When no more buyers bid the item, the last
bidder or the person who bid a higher value wins the item. It is also open-cry, forward
auction and can be a combinatorial or single item.

A Dutch auction is also open-cry, can be combinatorial or single item and also
follows a forward auction, but the price to buy the item is descending. The auctioneers
start selling the item from a high value (normally higher than the real value), and
at each time reduces the value until some buyer bids the item to buy. Normally this
type of auction is faster than the English auction because there is no possibility of
recursing competition of bids between buyers; the �rst one to accept the price, wins
the resource.

The �rst-price sealed-bin di�ers from the previous ones, in the the con�dentiality
dimension. The �rst-price sealed-bid is sealed, meaning, bidders don't know the value
of others' bids. Each bidder secretly bids an item. After all the buyers bidding, the
seller/auctioneer, orders the bids based on the price bid, and the buyer with the
highest bid wins the item, paying the value bided. There only exists one bid per
buyer.

In second-price sealed-bid, the process is the same as the �rst-price sealed-bin, the
di�erence is that the winner of the auction, does not pay the value of his bid, but
pays the value of the second highest bid.

In double-side auctions, the buyer bids and the seller asks, creating more compe-
tition compared with one-sided auctions, and much more fairness due to both par-

Auctions at Edge Clouds 13

ticipants, the seller and the buyer, participate actively in the auction, generating a
demand and supply pro�les. The winner of this type of auction depends on two dif-
ferent aspects: aggregation and resource divisibility. If aggregation is not allowed, for
each ask, only one bid can be assigned. Resource divisibility means whether the re-
source can be divided among multiple buyers. Gode and Sunder [12] further divide
double auction into three categories: synchronized double auction (or discrete-time
double auction), continuous double auction (CDA) and semi-continuous double auc-
tion (or hybrid double auction). In a continuous double auction, a buy order or sell
order can be submitted at any time, and if there is a match between the buyer and
the seller, the trade can be made at that exact moment. In contrast, in synchronized
double auction, traders move at the same time.

In combinatorial auctions. The users may want to bid multiple resources like CPU
time, memory, and network bandwidth. The buyers normally, in this case, bid a
bundle that contains multiple resources/goods. The advantage of this approach is
that, in order to obtain a group of resources, the bidder only needs to attain to one
auction, in contrast to participating in multiple auctions, in each one, obtaining just
one type of resources. The disadvantage is the di�culty to obtain the correct price for
multiple combinations of resources/goods, then it is hard to �nd the set of bids that
maximizes the revenue generated. This problem is considered a NP-Hard problem
[23].

3.3 Relevant Systems

In this section we will speak about systems who proposed di�erent auctions algorithms
(often based on one-sided or double-sided but with some nuances) or use other type
of market mechanisms.

3.3.1 Envy-Free Auction Mechanism The mechanism proposed by Bahreini et
al. [36] handles allocation of resource available at two levels of the system by combining
two auctions, position and combinatorial auctions. The position auction disables the
use of resources from di�erent levels (levels represent where the resources are located,
in edge or cloud), also it is used to characterize the user's preference (edge or cloud).
The combinatorial enables to bid a bundle of resources in contrast to bid n times for
n di�erent/equal resources.

3.3.2 Multi-Round-Sealed Sequential Combinatorial Auction Amulti-round-
sealed sequential combinatorial auction mechanism is proposed by Zhang et al. [15].
This auction is combinatorial, meaning the good can be a bundle of items, also it
is multi-round. In one-round auctions, all the bidders submit their bids at the same
time, and the auctioneers choose the winners and match them with the resources.
This approach was not used because the architecture proposed by Zhang uses multi-
service providers, and one-round auctions need one controller following a centralized
architecture.

The auction mechanism is thus divided into three stages: bid strategy, winner
determination, and payment rule. At each round, the users send their resources re-
quirements and bids to all auctioneers (service providers) (bid submission). After that,
the service provider chooses the winner based on who brings the highest utility to the
service provider. The utility is based on the bidding value provided by the bidders.
The bidders who fail to obtain one service provider are moved to the loser vector.
The bidders from the loser vector will bid again in the next iteration/round receiving
a bid improvement. The iterations �nish when the number of max rounds has been
achieved or the di�erence between the utility of the current round with the previous

14 Diogo Paulo Dias

round is lesser than a threshold. In the last stage, payment rule, the bidders who
won the auctions pay the value equal to the second-highest bid, following the sealed
second-price auction (Vickrey Auction) approach.

3.3.3 Tycoon Tycoon [19] is a distributed market-based resource allocation on
an Action Share scheduling algorithm. In their architecture, the authors separated
the mechanism from the strategy. The strategy interprets users' and applications'
speci�cations and the resources desired. One example of that is: one web server may
have more concern about latency than throughput and is, therefore, willing to consume
lesser resources, but that resources should be located near the clients. The mechanism
provides incentives for users truthfully value the resources, and the providers provide
good resources. Their Auction Share is similar to proportional share, but enables them
to specify how they trade-o� throughput, latency, and risk.

In proportional share, a group of buyers o�ers some value to buy a group of
products that are divisible. Then the products will be divided into the buyers based
on their bids. The percentage of products provided to each buyer is proportional
to the bid value in comparison to other bid's value. This mechanism maximizes the
allocation of the product to a buyer because everything will be assigned to one buyer.
In Figure 4 we can observe three end-users bidding for a memory RAM of 100GB.
After each one bid his own price, the auctioneer divides the RAM proportional based
on the bid's value. Proportional share has various variants, another type of use is,
instead of dividing resources to multiple buyers, the buyers always obtain the total
resources, and what they are buying is the time of CPU usage, each one obtains the
CPU proportionally to the bidding price.

One of the advantages of Proportional Share is that it o�ers a higher time of
utilization and lower time of reservation.

Two drawbacks are that the product must be divisible for a group of bidders to
bid, the product will be divided, based on the bidder's value, to all the bidders, and
the Quality-of-Service is not secured. The Quality-of-Service is not secured because
one may want to rent all the products or none, but using the Proportional Share, if
another buyer bids too, one will lose some products to that bidder, ruining one goal
of getting all or none.

Fig. 4. Proportional share example

Auctions at Edge Clouds 15

For �ne-grained resources, it is used as a �rst-price sealed-bid auction or the
second-price sealed-bid auction. The bidder with the highest bid wins allocation to
a window slice time processor (each buyer gets their respective time to run their
applications on device's cpu). Because of being distributed, the system is fault-tolerant
and allocates resources with low latency.

3.3.4 PeerMart PeerMart [11] is a distributed technology which enables trading
of services using Double Auction algorithms over a peer to peer network. Their goal
was to maximize the consumers' utility and �nd sellers o�ering a particular service
at a low price, and the providers goal is to o�er their services at the highest price
possible and maximize their pro�t. The intermediary peers are responsible to match
consumers with the providers respecting the consumers' and providers' requirements
e�ciently.

The authors chose using pricing mechanisms to incentivize peers to provide ser-
vices, like �le storage. By choosing a peer to peer architecture, they don't have a
central authority to maintain the prices bid by the bidders or the sellers. One way to
communicate could be using broadcasts, but this does not scale and doesn't guarantee
that all peers are reached. They proposed to maintain routing tables at intermediary
peers. Then peers use these routing tables to �nd the peer who o�ered a given service
for a given price. The use of double auctions is derived from single-sided auctions and
it has the disadvantage of being consumer- or provider-oriented. One of the problems
of implementing a peer to peer infrastructure is that malicious or faulty users may
exist. To solve this problem, PeerMart uses public cryptographic keys to identify the
sender.

The auction algorithm works as follow: A provider (consumer) who wants to pro-
vide its service (consume a speci�c service), sends an o�er (request) to the respective
broker, which is composed of a set of peers. The broker replies with the highest buy
price (lowest sale price) o�ered by another peer. After the provider (consumer) re-
ceives the information, it sends a bid to the broker applying its own strategy. Then
the broker receives the bid and with that, chooses one of the two options: After receiv-
ing the o�ered price, there is no match if the o�ered price is higher (lower) than the
current bid price (ask price). Therefore, the o�ered price is either dropped or stored
on the table for future use. If there is a match, the price is sent to the peer who has
the highest bid. The price paid to the provider by the buyer, is the mean between
their o�ered prices.

To implement a peer-to-peer network, they choose to use FreePastry9. It is a tool
that is implemented in Java and the the overlay of the network is based on Pastry.

3.3.5 Bellagio Bellagio [5] is a resource management tool that allocates resources
using combinatorial auctions. To discover the resource existing in the network they
use SWORD [27]. The users submit the bids to a centralized auction, and they use
XOR language as the bidding language in order to simplify the learning curve of the
end-users. The auction is periodic and receives requests for heterogeneous resources
like disk space, memory and bandwidth.

3.3.6 Lin et al. Lin et al. [39] propose a dynamic auction mechanism to allocate
resources in a edge computing environment. They made two contributions: i) the
introduction of peak/o�-peak concepts into the resource allocation, ii) the system
contains two types of tasks, background, and �oat. The �rst contribution enables the
cloud provider to increase e�ciency and its revenue in a varying demand environment.

9 https://www.freepastry.org/

16 Diogo Paulo Dias

The second contribution enables the devices to distribute the resources to end-users
and have its own background process. The revenue is obtained from the inputs to
the background task and also the resources shared with the users. They use second-
price sealed bid, each user bids to a cloud service provider. The cloud service provider
collects the bids and orders them. They �nd how much capacity they can provide, e.g.
k, and from this capacity, they say the price is the (k + 1) highest bid. The k highest
bidders obtain the resources with the price from the (k + 1) highest bid. They employ
a truth-telling method due to the price to pay being determined by their own bids.

3.3.7 Double Multi-Attribute Auction Wang et al. [41] proposed a resource
allocation model based on the Double Multi-Attribute Auction (DMAA). Their model
focus on three important steps. Firstly they transform the non-price attributes in
a Quality Index that represents the assesment to the previous transactions. After
that, they use Support Vector Machines to predict the price. Lastly, they use Mean-
Variance Optimization to obtain an e�cient solution to allocate the resources (choose
the winners) to di�erent users.

Their system is divided in three actors: the Cloud Resource Provider (CRP),
Cloud Resource Consumer (CRC), and Auction Organizer (AO). The CRP provides
the resource in exchange of a payment. The CRC pays to a CRP to allocate resources.
The AO is the auction organizer responsible to collect the bids and asks, match the
transactions, and select the winners.

To calculate the price submited by the CRP/CRC a group of steps are necessary.
In CRP, they obtain three non-price attributes, namely, Quality of Service (QoS),
Level of Delivery (LoD) and Level of Spiteful Quote (LoSQ). The CRC also follows
the same logic but doesn't have the QoS attribute. Then they use these attributes
and transform them in a Quality Index by using a neural networks algorithm. The
activation function used was the Sigmoid function.

After having the quaility index, they use Support Vector Machines to predic the
price. In order to �nd the estimated transaction price, they also use quality index
and other metrics (created by themselves) like reserve price of provider, ration supply
demand and expected sale amount of provider. After that, the CRP/CRC obtains the
estimated transaction price. To train the Support Vector Machine classi�er, they use
historical samples from the previous auctions and input information.

Then, the AO makes the match between the CRC and CRP based on this in-
formation, and determines the winner by using Mean-Variance Optimization. This
algorithm enables to �nd the most e�cient way to distribute the resource to the
users.

3.3.8 Auction Based Resource Co-Allocation Auction Based Resource Co-
Allocation (ABRA) [4] is a model that improves upon a previous novel combinatorial
auction model called multi-unit nondiscriminatory combinatorial auction (MUNCA).
The new model penalizes the non-allocated resources after an auction, having a bet-
ter resource utilization and hence increasing the revenue. Their model can be math-
ematically formulated by using integer linear programming. In the paper, it was also
proposed a set of �ve new heuristic algorithms that are based on well-known meta-
heuristic techniques. These �ve heuristics are: (i) simulated annealing, (ii) threshold
accepting, (iii) list based threshold accepting, (iv) variable neighborhood search and
(v) genetic algorithm.

3.3.9 Reverse Batch Matching Auction Wang et al. [40] proposed a Reverse
Batch Matching Auction (RBMA), that is based on reverse auction, but has addi-
tional features like batch matching, to improve the reverse auction e�ciency, and

Auctions at Edge Clouds 17

twice-punishment mechanism to prevent fraud and milicious users. RBMA has three
participants in the system: Cloud Resource Consumer (CRC), AI (Auction Intermedi-
ary) and Cloud Resource Provider (CRP). AI the is key component to control the sys-
tem. It stores the resource information, applies the reverse auction, batch-matching,
and twice-punishment mechanism. The CRC and CRP send their tendencies/intent
(e.g. bids, resource ammounts) to the AI. Then, the AI starts the auction process
that is divided in three stages: waiting period, preparation period and auction period.
The waiting period is the period that the buyers and the sellers send their tenden-
cies/intent to the AI, and these are ordered in ascending order, if are seller bids, and
in desdending order, if are buyers bids. The start of the auction is marked when the
system receives the �rst buyer's parameters. In the preparation period, it is where the
AI selects the buyers and sellers that can participate in the auction. This selection
is a time-restriction. Auction period is the last stage. There is a matching between
the CRC and CRP based on the bidding prices. At the end of the auction it is used
the twice-punishment mechanism. After that, the resource allocation mechanism uses
Immune Evolutionary Algorithm and the transaction price to otimize the resources
allocation. Also, the CRP service is graded to improve future services that CRC ob-
tains. To evaluate the auction, three evaluation criteria were applied by them: market
e�ciency, user satisfaction and quality service.

3.3.10 Combinatorial Double Auction Resource Allocation Samini et al.
[30] proposed a Combinatorial Double Auction Resource Allocation (CDARA). To
simulate the prototype of this auction, it was used CloudSim, which is a Java-based
simulator for simulate cloud environments in order to extract metrics and evaluate the
e�ciency of the auction algorithm. In their environment, there are four entities: the
user, the broker, the cloud provider, and the cloud market place. The cloud market
place is composed of cloud information service (CIS) and auctioneer. From the article,
it stems the cloud market place as being a centralized entity. CDARA is divided into
seven communication phases.

At �rst phase, the cloud providers send their resources, and their respective prices,
to the CIS. The users send their tasks to the broker and, for each task, the broker
gets the list of resources that match the requirements to run that task.

The second phase, the broker generates bundles (a combination of resources) and
the price for each bundle. The cloud provider does the same action. Both send price
(bids) to the auctioneer.

In the third phase the auctioneer communicates to the broker and the cloud
providers the end of the auction.

In the fourth phase, the winner is determined. In this phase, the users and cloud
providers are ordered depending on what resources they are bidding/sharing and the
respective price.

In the �fth phase (called resource allocation), the auctioneer checks if the cloud
provider has the necessary requirements, requirements de�ned by the user, to run the
tasks. If the �rst cloud provider cannot ful�ll the requirements, the auctioneer passes
to the second cloud provider. After the requeriments of the �rst user are satis�ed, the
auctioneer applies the same procedure for the next user.

In the sixth phase it is selected which pricing model to use to decide the payable
price by a user to a cloud provider for allocating resources. To use this model, it is
used the number of requested items by the user and the number of o�ered items by
the cloud provider.

In the last phase, the user sends the task to run in the cloud provider's resources.
And the user makes the payment to the cloud provider.

18 Diogo Paulo Dias

3.4 Analysis and Discussions

After studying and classifying taxonomically the edge cloud environment, in our solu-
tion, it will be followed a distributed nature, more precisely, we will aim to implement
a peer-to-peer architecture. The reason of this choice is because, peer-to-peer is much
more scalable and our solution will target all end-devices that users use, which could
be millions of devices. Of course, this choice also brings disadvantages, and one of
them is the existence of malice users.

On top of our overlay network, it will be used an auction mechanism to match
the resources being sold to a buyer. The auctions follow more a price/demand curve
comparing with the other market mechanisms because multiple sellers or providers
in�uence the price

It was hard to choose which type of auction we will be based on to implement. This
di�culty was due to the di�erent characteristics they have between them, and these
di�erences aimed to solve di�erent problems. We decided to adapt auction mecha-
nisms, that would �t better in our domain (sharing resources) and our architecture
(peer-to-peer).

4 Solution Proposal

In this section, we present our proposed solution with architecture, mechanisms and
platform, which enables the allocation of resources by deploying applications on other
devices. In order to have scalability and not su�er from a single point of failure, the
solution is based on peer-to-peer (all nodes are equal) architecture, and it will include
auctions algorithms to assign a resource to an application. To deploy the application
on remote devices, container technology will be used, more precisely Docker, due to
its lightweight characteristics. We can observe in Figure 5 our proposed solution.

Fig. 5. Solution Overview

Our approach is to develop a peer-to-peer architecture (with client application),
that enables to allocate the resources of other peers by using a number of selected
auctions, more speci�cally: one-sided, double-sided and combinatorial auctions. Com-
binatorial enables to the user to buy multiple resources in only one bid, and because
it is double-sided, the sellers and buyers participate actively to determine the price
of a group of resources. The auction algorithms are based on existent ones [30], [11],

Auctions at Edge Clouds 19

[39], but they will be extended and adapted to our distributed architecture and our
domain. We will focus �rst to extend and adapt the double auction algorithm [11]
and then the others.

To facilitate the sharing of resources, it is necessary to have an identi�er (Global
Unique Identi�er). This identi�er needs to contain the information of CPU and mem-
ory RAM capacity that a user is selling or buying. This identi�er, it will help to match
the buyer to an auction that is selling the same resource.

In order to implement this approach, two issues need to be addressed in particular.
The �rst one is the auction/resource discovery. Because it is a peer-to-peer network,
it is important to have an e�cient search of auctions. When a client wants to deploy
its own application, it wants to �nd an auction that matches the requirements (e.g.
a client may want at least 8GB of memory) as fast as possible. So, it's imperative
to have an e�cient auction/resource discovery. The other problem is to schedule the
resources using auctions. It is important to have a fast auction and also reliable, in
order to assign a resource to a buyer, and both the seller and the buyer be satis�ed
with the outcome.

4.1 Distributed Architecture

As aforementioned, it will be implemented a peer-to-peer architecture. Using this type
of architecture, a lot of challenges arise. One of them is the information not being
centralized. As a consequence, we need to have a way of tracking/routing information.
In our context, we want to buy/sell resources, and we want to know who are the nodes
that are selling/buying the resources that we want. One way could be broadcasting
a message to all nodes, which would not scale due to the overhead on the networks.
Another way is by having a structured overlay network, sending the messages to the
respective nodes that have the information that we want.

Auction Discovery (Overlay Structure). A structured peer-to-peer architecture
is a network overlay organized in a speci�c topology, and the protocol ensures an
e�cient search/routing even with millions of nodes. The most common type of struc-
tured peer-to-peer architecture is to implement a distributed hash table, based on
consistent hashing. To implement an e�cient peer-to-peer architecture, we found two
approaches to our solution.

In the �rst approach, each user, independently of being a buyer or a provider,
will get a Global Unique Identi�er (GUID). This GUID is created based on their
intention to buy or sell, and what type of resources want to obtain. In Figure 6 we
can see the composition of the GUID, each circle represents a bit, and it is only used
8 bits to simplify the explanation (in reality, we can use 64 or 128 bits). The �rst
section, Intention Section, shows if the user is with the intent to buy or to sell. The
Random Section is to mitigate collisions of GUIDs for two users that are selling or
buying the same resources, in that way, they will have di�erent GUIDs even if they
sell the same thing. The last section, Resources Requirements Section, represents the
resources that the user wants to buy or sell, for example, if a user wants to buy 1GB
of memory and 1 core, this could be encoded to 0111. This is an example where the
request of 1GB of memory and one CPU could be mapped to the code 0111, the fourth
bit (counting from right to left) represents the number of CPUs: bit '0' represents 1
CPU and bit '1' represents two CPUs. The other three bits represent the memory,
where '111' represents 1 GB of RAM which, in this example, could be the maximum
of memory that is possible to share.

This allows fast lookup and routing of requests and resources and balance the
load uniformly across nodes/providers. In this type of structure, we want to �nd the
user that is selling or buying a given resource. These resources are associated with an

20 Diogo Paulo Dias

Fig. 6. GUID decomposition from the �rst approach

auction mechanism in order to be sold. For example, imagine that we only have 6 bits
to encode all GUIDs in the ring and the resource we are trading is a memory that
varies between 0 and 1GB. If I want to sell 0.5 GB of Memory, I join the ring with the
GUID 4 and try to send messages that I am selling 0.5GB to the buyers that want to
buy 0.5 GB. If I don't �nd any suitor, instead of �nding one buyer that wants to buy
0.5GB of memory, I try to �nd two buyers that want to buy 0.25GB of memory. The
other way around also works, when a buyer wants to buy 0.5GB of memory, he could
send a message to the peer with GUID 4, supposing the 0 came out in the random
bits section, with the intent to buy those resources.

The advantage of this approach is that, they are able to know the nodes' intent,
whether it is selling or buying, based on GUID. We could instantly �nd the user's
GUID that is selling/buying what we want and talk to him to trade. Reducing the
number of messages to �nd an auction that is selling a given resource and reducing
data replication, or don't need to tell the other peers that I am selling a given resource
because my GUID already is showing my intent.

One disadvantage is that a buyer could be buying resources more expensive than
the necessary. For example, we have two sellers selling 1GB, one at 10ethe other at
20e. Both sellers will have di�erent GUID because of the random bits section. When
a buyer calculates a GUID to �nd a seller that is selling 1GB, it could be talking with
the seller that sells for 20e, depending on the number the buyer obtained from the
random bits section. Paying 10emore that the necessary because there was another
seller that was selling the same resource but a much cheaper price.

In the second approach the users' GUID is random, e.g., the hash of its own IP.
After obtaining its own GUID, depending on the GUID, some nodes will aggregate
the auctions of other users. As we can see in Figure 7, node A, with GUID 4, is
responsible to aggregate all requests to sell or buy from resources that are encoded
from 1 to 4 (low number of bits were used to simplify the explanation). The node with
GUID 8 is responsible from 5 to 8, and so on. If there aren't nodes with aggregators'
GUIDs, the successor of that nodes will be responsible for aggregate.

For example, we already have a node with GUID 4, and this node is responsible
to aggregate all intentions to sell and to buy from 0 to 0.5GB. After that, a seller
enters the ring with GUID 6 (it was randomly obtained), and it wants to sell 0.5GB,
so, sends that information to node with GUID 4. The node with GUID 4 receives
that information and saves it. Afterward, a buyer (node 1) enters in the ring and
wants to buy 0.5GB, so asks for sellers to node 4, because it knows it is responsible
for aggregate/save all sales from 0 to 0.5 GB. Finally, node 4 responds to node 1 that
node 6 is selling what it requires.

The advantage of this approach is that one node only needs one GUID, in contrast
with the previous one, each node could have more than one GUID depending on the
number of resources to buy or sell.

One disadvantage of this solution is the propagation of information. When a user
wants to sell some resources, it noti�es the responsible nodes to save that information.
Having much memory consumption than the previous solution.

Auctions at Edge Clouds 21

Fig. 7. Ring structure aggregation

To implement our distributed architecture, we will �rst use the second approach,
then we will try to implement the �rst in order to evaluate the tradeo�s between
them.

4.2 Resource Scheduling (Bidding Algorithm)

After �nding the required resources, it is necessary to match those resources to a user.
As it was previously mentioned, it will be used auction algorithms to assign resources
to a user. The auction algorithms are inspired on (and extended) some auction algo-
rithms that were already created. To have a better study we will choose three di�erent
types of auction algorithms: combinatorial double auction model [30], distributed dou-
ble auction [11] and dynamic auction mechanism [39]. These three auction mechanisms
fall into three di�erent categories (one-sided, double-sided and combinatorial), having
a better diversity in the study in order to have better evaluation and improvement.
Thus, those algorithms by themselves are not suited for auctioning cloud resources
in edge cloud (either because they don't handle resources, or they don't scale in a
peer-to-peer deployment), so, they will be adapted and extended to our domain of the
problem and our distributed architecture. As it was previous mentioned, we will focus
�rst to extend and adapt the double auction algorithm [11] and then the others. This
choice is due to, the double auction mechanism enables fast assignment of a buyer to
a seller and both participate in the price.

Bids Lifetime. Due to the auctions nature, and the limited resources, it is neces-
sary to control the bid's validity. The bids' TTL (time-to-live) vary between three
possibilities: time-window, count and immediately.

Supposing that we are using an English auction, we need to reserve a time-window
to wait for bids. The more time we wait, the higher is the probability to have more
bids. Another approach is, instead of using a time window to receive the bids, we could
use a counter. Con�gure a number maximum of bids for each auction, and only after
that number is reached, we choose the winner. The problem with these approaches is
the delay to match a buyer to a seller. These approaches may be used in combinatorial
double auction [30] or dynamic auction mechanism [39]. It is also possible to combine
the time-window with the count threshold, only waiting for one of them to �nish.

The last way would be doing a match immediately. This last time dimension only
works with double auctions, due to the sellers also participate in the auction, and
both (the buyer and the seller) show their intent. The immediately match is used in
distributed double auction [11].

22 Diogo Paulo Dias

Prototypical Example. We will explain one use case to sell resources and to deploy
an application in those resources. In this example, it will be used the second approach
to implement a peer-to-peer network and the auction algorithm will be based on
PeerMart [11]. In this type of network overlay, we have groups of nodes responsible to
aggregate the biddings and asks from the buyers and sellers. We need to distinguish
the biddings from the asks, their values, the resources that which one wants to obtain,
and the identi�er of the responsible node that made the request. In Table 3 we can
observe the information stored in a aggregator node to enable transactions in a peer-
to-peer environment. Due to the restrictions of memory, we can't save all the o�ers
from buyers and sellers that could be unbounded over time. To address this constraint,
two techniques may be used. One is, distribute the information to other nodes in order
to use all the existent resources. The other option is to remove some o�ers no longer
relevant for decision, for example, remove the lowest bids for the same resource, or
remove the highest asks for the same resource.

Bid value Resources Buyer GUID Ask value Resources Seller GUID
9 124653247 6546836 10 124653247 9995354
6 124653247 6574396 13 124653247 7658070
30 847558735 7428993 10 657984368 9995354

Table 3. Data stored in aggregator nodes

For example, suppose we want to allocate a node with 2 cores and 1 GB of RAM.
First, we obtain the sellers that are selling those resources and the respective price.
Based on that price we make a bid to the node. Because we are using a double auction
[11], if the bidding price is higher or equal to the lowest ask from the sellers, a match
is found and a transaction is started (lines 2-6). In the transaction phase, the buyer
pays to the seller, and also deploys its own docker application in the seller's resources.
If the bid is lower, it is saved on the node in case new sellers enter on the ring and sell
their resources at a lower price (line 7). We can observe in Algorithm 1 the behavior,
in pseudo-code, after an aggregate node receives a bid from a buyer:

Algorithm 1 Node behavior after receiving a bid

1: function Bidding(buyerGUID, buyerBid, resources)
2: asks← askTable.filter(a− > a.resources == resources)
3: descendingOrderAsks← asks.orderByAscendingPrice()
4: lowestAsk ← descendingOrderAsks.getF irst()
5: lowestAskPrice← lowestAsk.price
6: if lowestAskPrice ≤ buyerBid then

askTable.Remove(lowestAsk)
return lowestAsk

7: else

bidTable.Add(buyerGUID, buyerBid, resources)
8: end if

9: return ”BidSaved”
10: end function

The behavior is similar when the aggregate node receives an ask from a seller. The
di�erence is that it searches the highest bid from the bid table, and if no match was
found, the ask is saved in ask table.

Auctions at Edge Clouds 23

4.3 Software Architecture

Based on the behavior explained in the previous Sections, we now present the modules
that contain those functionalities. For each module, we explain their responsibilities
and interactions. A model view type using decomposition and uses styles can be seen
in Figure 8.

Fig. 8. Software architecture

User Controller: this is the module responsible to trigger the users' requests. It
o�ers a bridge between the user commands and the actions made by the application.

Containers Controller: this is the module responsible for managing the containers
deployed in the machine. After the resources are assigned to a user, this controller is
used to deploy the application in a container to run.

Auction Discovery: this is the module responsible to �nd auctions that sell re-
sources required by the user.

Resource Scheduler: this is the module responsible to deploy the users' application
is other machines using Auction Discovery module, or to o�er its own resources to
deploy a users' application.

P2P Controller: is the module responsible to communicate with other peers and
creates the structured overlay network.

24 Diogo Paulo Dias

5 Evaluation Methodology

Below, we enumerate the metrics that we will use to evaluate our prototype solution:

1. Allocation Success Rate: This metric helps to assess how e�ective is our approach
to �nd auctions and allocate resources. This is important in a peer-to-peer en-
vironment, where we don't have a centralized component and some allocation
requests could not be ful�lled, causing retries (overhead) thus will compromise
the level of ine�ectiveness in our prototype.

2. Overhead Extra Memory Space Distributed: this metric assesses how much mem-
ory is consumed by a node just by running our program. It is necessary to know
if it is sustainable to a node and if all the information is evenly or approximately
distributed between nodes. Also, it allows to verify how much this metric grows
when the number of nodes increases.

3. Overhead Extra CPU/Network: this metric helps to calculate the overhead of the
device by running our prototype. This helps to know if our application is CPU-
intensive or IO-intensive even when the user is idle (without buying or selling
anything, the prototype is just running in the background).

4. Scalability: this metric assesses how much our solution is degraded by accommo-
dating a large number of nodes. This degradation could be due to the exponential
increase in the number of messages by adding nodes.

5. Reliability in a Crash Environment: this metric helps to observe if the solution
is able to retry the deployment of applications that were interrupted, due to the
crash of the device, in another device (even if with longer execution or worse
performance).

6. Ideal Price Deviation: This metric will tell how much more the buyers had paid to
get a resource that was being sold at a lower price somewhere else in the network.
One example is we have two users, selling the same amount of memory (1GB)
but one for 10eand another for 5e. Then a buyer arrives and o�ers 10eto buy
1GB of memory. In an ideal environment, the transaction should happen with
the user that is selling for 5e, but because of the absence of centralized control
in a peer-to-peer architecture, he could buy from the user that is selling for 10e.
This raises a problem where buyers don't buy the cheapest resource because of
the distributed environment.

7. Distribution of Revenue: this metric studies the revenue of the di�erent sellers
and buyers, in order to check the e�ciency of the pricing mechanism. Verify if
doesn't exist attackers that explore the mechanism and obtain large quantities of
money.

To have a realistic simulation, the user's requests were generated from Google Cluster
Data10 (CPU, RAM). This data is provided from 12.5k-machine cell in May 2011.

6 Conclusion

Our thesis will study the use of auctions mechanisms in an edge environment in order
to allow the allocation of resources. With that in mind, we will be implementing
a solution that is built on top of a peer-to-peer network overlay which enables the
deployment of Docker applications in other computers by buying those resources. The
modus operandi to assign a resource to a Docker application will be based on auctions
mechanisms.

10 https://github.com/google/cluster-data

Auctions at Edge Clouds 25

Firstly we made an introduction in both cloud and edge computing, secondly, we
present the advantages of using market mechanisms to allocate resources. Lastly, we
compared Containers and Virtual Machines technology.

After research on edge cloud environment, we presented a taxonomy for edge cloud.
It was also explored the market and auction mechanisms used to allocate resources.
We also proposed our taxonomy for auction mechanisms. At the end of related work,
it was explored some articles that o�er di�erent auctions mechanisms to allocate
resources.

Afterward, we proposed our solution where we highlight two fundamental problems
(auctions discovery and resource scheduling) and how we will aim to solve it. At the
end of the section, we exposed our architecture and its components. We ended the
document with the methodology used to evaluate and study our work.

References

1. Albert Greenberg, James Hamilton, David A. Maltz, Parveen Patel: The Cost of a Cloud:
Research Problems in Data Center Networks. ACM SIGCOMM computer communica-
tion review, vol. 39, no. 1, pp. 68�73, Jan. 2008 (2008)

2. Albert Jonathan, Mathew Ryden, Kwangsung Oh, Abhishek Chandra, Jon Weissman:
Nebula: Distributed Edge Cloud for Data Intensive Computing (2017)

3. Alex Glikson, Stefan Nastic, Schahram Dustdar: Deviceless Edge Computing: Extend-
ing Serverless Computing to the Edge of the Network. Proceedings of the 10th ACM
International Systems and Storage Conference Article No. 28 (2017)

4. Ali Haydar Özer, Can Özturan: AN AUCTION BASED MATHEMATICAL MODEL
AND HEURISTICS FOR RESOURCE CO-ALLOCATION PROBLEM IN GRIDS
AND CLOUDS. Fifth International Conference on Soft Computing, Computing with
Words and Perceptions in System Analysis, Decision and Control (2009)

5. Alvin AuYoung, Brent N. Chun, Alex C. Snoeren, Amin Vahdat: Resource allocation
in federated distributed computing infrastructures. In Proceedings of the 1st Workshop
on Operating System and Architectural Support for the On-demand IT Infrastructure
(2004)

6. Amin M. Khan, Felix Freitag, Luís Rodrigues: Current Trends and Future Directions in
Community Edge Clouds (2015)

7. Antony Rowstron, Peter Druschel: Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. Proceeding, SOSP 01 Proceedings of the
eighteenth ACM symposium on Operating systems principles, Pages 188 - 201 (2001)

8. Avinash Lakshman, Prashant Malik: Cassandra - A Decentralized Structured Storage
System. ACM SIGOPS Operating Systems Review, Volume 44 Issue 2, April 2010 (2010)

9. Claus Pahl, Sven Helmer, Lorenzo Miori, Julian Sanin, Brian Lee: An Information Frame-
work for Creating a Smart City Through Internet of Things (2016)

10. Costas Courcoubetis, Richard Weber: Cost-based Pricing. John Wiley & Sons, pp.
161�194 (2003)

11. David Hausheer, Burkhard Stiller: PeerMart: The Technology for a Distributed Auction-
based Market for Peer-to-Peer Services. IEEE International Conference on Communica-
tions (2005)

12. Dhananjay (Dan) K. Gode, Shyam Sunder: Double auction dynamics: structural e�ects
of non-binding price controls. Journal of Economic Dynamics and Control, Volume 28,
Issue 9, July 2004, Pages 1707-1731 (2004)

13. Dinil Mon Divakaran, Mohan Gurusamy, Mathumitha Sellamuthu: Bandwidth alloca-
tion with di�erential pricing for �exibledemands in data center networks. Computer
Networks, vol. 73, no. 1, pp. 84�97 (2014)

14. Fernando Costa, Luís Veiga, Paulo Ferreira: Internet-scale support for map-reduce pro-
cessing. Journal of Internet Services and Applications, vol. 4, no. 1, pp. 1-17 (2013)

15. Heli Zhang, Hossein Badri, Heli Zhang, Fengxian Guo, Hong Ji, Chunsheng Zhu: Combi-
national Auction-Based Service Provider Selection in Mobile Edge Computing Networks.
IEEE Access

26 Diogo Paulo Dias

16. Hui Wang, Huaglory Tian�eld, Quentin Mair: Auction Based Resource Allocation in
Cloud Computing. Multiagent and Grid Systems, 2014, Volume 10, Number 1, May
2014, pp. 51-66 (2014)

17. Hyunseok Chang, Adiseshu Hari, Sarit Mukherjee, T.V. Lakshman: Bringing the Cloud
to the Edge (2014)

18. Jiong Jin, Jayavardhana Gubbi, Slaven Marusic, Marimuthu Palaniswami: An Informa-
tion Framework for Creating a Smart City Through Internet of Things (2014)

19. Kevin Lai, Bernardo A. Huberman, Leslie Fine: Tycoon: a Distributed Market-based
Resource Allocation System

20. Landon P. Cox, Brian D. Noble: Samsara: Honor Among Thieves in Peer-to-Peer Storage.
Proceeding, SOSP 03 Proceedings of the nineteenth ACM symposium on Operating,
systems principles, Pages 120-132 (2003)

21. Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, Nigel Davies: The Case for
VM-based Cloudlets in Mobile Computing (2009)

22. Michaª Król, Ioannis Psaras: NFaaS: named function as a service. Proceedings of the 4th
ACM Conference on Information-Centric Networking, Pages 134-144 (2017)

23. Muralidhar V. Narumanchi, José M. Vidal: Algorithms for Distributed Winner Deter-
mination In Combinatorial Auctions. Agent-Mediated Electronic Commerce. Designing
Trading Agents and Mechanisms pp 43-56 (2005)

24. Nguyen Cong Luong, Ping Wang, Dusit Niyato, Wen Yonggang, Zhu Han: Resource
Management in Cloud Networking Using Economic Analysis and Pricing Models: A
Survey. IEEE Communications Surveys & Tutorials, Volume: 19, Issue: 2, Secondquarter
2017 (2017)

25. Nguyen Cong Luong, PingWang, Dusit Niyato, Wen Yonggang, Zhu Han: Resource Man-
agement in Cloud Networking Using Economic Analysis and Pricing Models: A Survey.
IEEE Communications Surveys & Tutorials, Volume: 19 , Issue: 2 , Secondquarter 2017
(2017)

26. Nitinder Mohan, Jussi Kangasharju: Edge-Fog Cloud: A Distributed Cloud for Internet
of Things Computations (2016)

27. Oppenheimer, D., Albrecht, J., Patterson, D., Vahdat, A.: Scalable wide-area resource
discovery. In: USENIX WORLDS. vol. 4 (2004)

28. Ozalp Babaoglu, Moreno Marzolla, Michele Tamburini: Design and Implementation of
a P2P Cloud System (2012)

29. Paolo Bellavista, Alessandro Zanni: Feasibility of Fog Computing Deployment based on
Docker Containerization over RaspberryPi (2016)

30. Parnia Samimi, Youness Teimouri, Muriati Mukhtar: A combinatorial double auction
resource allocation model in cloud computing. Information Sciences, Volume 357, 20
August 2016, Pages 201-216 (2016)

31. Peter Mell, Timothy Grance: The NIST De�nition of Cloud Computing: Recommenda-
tions of the National Institute of Standards and Technology (2011)

32. Philip Mayer, Annabelle Klar, Rolf Hennicker, Mariachiara Puviani, Francesco Tiezzi:
The Autonomic Cloud: A Vision of Voluntary, Peer-2-Peer Cloud Computing (2013)

33. Rajdeep Dua, A Reddy Raja, Dharmesh Kakadia: Virtualization vs Containerization to
support PaaS. IEEE International Conference on Cloud Engineering (2014)

34. Saurabh Garg, Rajkumar Buyya: Market-Oriented Resource Management and Schedul-
ing: A Taxonomy and Survey. Cooperative Networking, Chapter 14 (2011)

35. Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, Harbinder
Bhogan: Volley: Automated Data Placement for Geo-Distributed Cloud Services. NSDI,
San Jose, California, USA, Sep. 2010, pp. 17�32 (2010)

36. Tayebeh Bahreini, Hossein Badri, Daniel Grosu: An Envy-Free Auction Mechanism for
Resource Allocation in Edge Computing Systems. 2018 Third ACM/IEEE Symposium
on Edge Computing (2018)

37. Tim Verbelen, Pieter Simoens, Filip De Turck, Bart Dhoedt: Cloudlets: Bringing the
cloud to the mobile user (2012)

38. Vincenzo D. Cunsolo, Salvatore Distefano, Antonio Pulia�to and Marco Scarpa:
Cloud@Home: Bridging the Gap between Volunteer and Cloud Computing (2009)

39. Wei-Yu Lin, Guan-Yu Lin, Hung-Yu Wei: Dynamic Auction Mechanism for Cloud Re-
source Allocation. Proceeding CCGRID '10 Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing Pages 591-592 (2010)

Auctions at Edge Clouds 27

40. Xingwei Wang, Jiajia Sun, Min Huang, Chuan Wu, Xueyi Wang: A resource auction
based allocation mechanism in the cloud computing environment. IEEE 26th Interna-
tional Parallel and Distributed Processing Symposium Workshops & PhD Forum (2012)

41. Xingwei Wang, Xueyi Wang, Cho-li Wang, Keqin Li, Min Huang: Resource Allocation
in Cloud Environment: A Model Based on Double Multi-Attribute Auction Mechanism.
IEEE 6th International Conference on Cloud Computing Technology and Science (2014)

28 Diogo Paulo Dias

Planned Gantt Chart

