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Resumo

O surgimento de sistemas de partilha de �cheiros na núvem tem sido motivado pelas necessidades
reais dos utilizadores para partilhar dados. Existem muitas soluções de apoio à partilha de dados,
tendo todos o objetivo comum de ser amplamente escalável, enquanto garantindo aos utilizadores
uma partilha coerente dos dados partilhados. No entanto, a oferta de coerência de dados está
em desacordo com a escalabilidade, uma vez que requer muitas mensagens e largura de banda
disponível para transferência de �cheiros.

A largura de banda de rede pode ser minimizada através de várias técnicas, tais como a
deduplicação, a compressão, o delta-encoding, etc. No entanto, estas abordagens não têm em
conta que nem todos os �cheiros necessitam uma coerência total em todos os momentos para
todos os utilizadores.

Neste trabalho, melhoramos a escalabilidade de um sistema de partilha de �cheiros na
núvem, chamado VFCbox, tendo em conta a noção de interesses dos utilizadores. Por outras
palavras, o VFCbox gere a coerência dos dados dos utilizadores em relação às necessidades co-
muns sobre os �cheiros, de forma a evitar o envio de dados inúteis pela rede. De facto, alguns
�cheiros não necessitam de ser constantemente propagados para todos os utilizadores, já que
alguns deles não exigem tal imediatismo dada a semântica particular dos dados partilhados.

O VFCbox utiliza técnicas não só de deduplicação para minimizar a utilização da rede,
mas também um modelo de coerência de dados que tem em conta os interesses dos utilizadores.
O resultado é um sistema de partilha de �cheiros na núvem escalável e e�ciente que providencia
aos utilizadores uma partilha coerente de dados de acordo com as susas necessidades.

5





Abstract

The emerging of cloud �le sharing systems has been motivated by real user needs to share data.
There are many solutions providing such sharing support all having the common goal of being
widely scalable while providing users with consistent shared data. However, o�ering consistent
data is at odds with scalability as it requires many messages and available network bandwith for
�le transfer.

Network bandwidth can be minimized using several techniques such as compression, dedu-
plication, delta encoding, etc. However, these approaches do not take into account that not all
�les must be fully consistent at all times for all users.

In this paper we further increase the scalability of a cloud �le sharing system, called
VFCbox, by taking into account the notion of users interest. In other words, VFCbox considers
users consistency needs regarding shared �les, to avoid sending useless data through the network.
As a matter of fact, some �les do not need to be constantly propagated to to all users, because
some of them do not require such immediacy given the particular semantics of the shared data.

VFCbox uses not only deduplication techniques to minimize network usage but also a
consistency model that takes into account the interests of users. The result is a scalable and
e�cient cloud �le sharing system that ful�lls users needs regarding data sharing.
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Chapter 1

Introduction

The increasing development of the ubiquitous and pervasive computing areas[44] have been creating a re-
quirement for new and more e�cient ways of sharing data. Ally to this, there are �le sharing systems that
foster this sharing of data and its manipulation amongst users. These types of tools are being spread for many
environments, in which there are many limitations such as reduced memory and low bandwidth networks.
Due to this, e�cient information sharing is considered a fundamental aspect to the consistent sharing of �les.

File sharing systems are becoming an emergent solution to the problem of sharing and updating data
between multiple users. Therefore, and due to this emergent utilization, these systems are requiring new
methods and new techniques to synchronize data in a more e�cient way, specially w.r.t. bandwidth usage
that is still considered a scarce resource and a bottleneck to this type of systems.

Consider for instance a team of co-workers that want to share and change a set of �les. To do this, they
can use a �le sharing system that shares data consistently. Furthermore, users can be working with either
a desktop that has a high speed connection; a laptop linked to a low bandwidth network, or even with a
smartphone with an intermittent connection to the network. Additionally, we may �nd that many times
most of the elements of the team are only interested in some �les or even parts of a �le. For instance, a
team of co-workers writing a document may have elements that are only working in a speci�c part of the
document, not being really interested on the rest of the document. Taking this into account. we may say
that it might not be a concern to the elements of a working team, if parts of the sharing data in which they
are not interested are not consistent at all times. Nevertheless, if two users are working in the same chapter
of a document, they may want to ensure the consistency of that data through time.

The goal of this work was to design and build a system called VFCbox that e�ciently manages the
consistent sharing and storage of data across a multi-user network. The system is required to be e�cient,
regarding not only the extra overhead required for synchronization, but also the memory usage required for
storage and network bandwidth. Another requirement is that the system has to be scalable to large networks
and to manage large amounts of data. Ideally, the system should also be able to reduce the latency of data
which is considered as interest to users and improve concurrency amongst users. To deal with large networks
and avoid the problem of having a bottleneck in the network communication, VFCbox has to consume the
minimum of network bandwidth, reducing communication channels where they are not fundamental as well
as data to be transfered. To deal with large amounts of data and avoid an over�ow of the storage site's disk
capacity, this system has to reduce the amount of data stored.

To ful�ll the above mentioned requirements, VFCbox has to deal with the following challenges: i) reduce
the space used to store data through the use of compact forms of representing data; ii) reduce the amount
of data to be transfered through compact forms of representing data to be transfered; iii) allow concurrent
access to �les, while preserving replica consistency; iv) ensure the correct data synchronization, while re-
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ducing the use of network resources; v) deal with con�icts, supporting ways of detecting and resolving them
through the merge of concurrent data updates; vi) support disconnected work.

Many of the current solutions either to synchronize or store data in distributed systems such as Semantic-
chunks[40], BackupChunk [24], Venti[28] and LBFS[23], are based in similarity between data. Data similarity
or data redundancy is the concept related with the fact that most of the data that we share and store is
similar to other pieces. This redundancy can be detected using data deduplication[21] techniques that
compare the similarity between portions of data. With this data similarity exploitation, we may achieve
higher performance in the storage of data, eliminating redundant data, and substituting it by references to
a single instance storage. E�cient synchronization may also be achieved by not sending data that is found
as redundant between two sites. Nevertheless, these solutions have the problem of not reducing/postponing
communications between sites, due to the inability to adapt consistency guarantees according to the needs.

Other solutions are based in Optimistic Replication[32], which enables the bounded divergence of data
consistency. These type of solutions try making a trade-o� between weaker consistency guarantees and the
possibility of a higher performance on availability and access to the replica objects. Nevertheless, most of
these solutions do not contemplate an e�cient management of updates. Most solutions decide to take an
approach to either enforce strong consistency guarantees to all updates, or non at all. Additionally, these
solutions also do not cope with the requirements of low memory usage, not being able to sometimes avoid
over�owing the disk's storage site.

Some solutions such as Semantic-chunks[40] and VFC for Cooperative Work [11] also take into account
the interest management[16](or locality-awareness) of a user to �lter massive volumes of data in large-
scale distributed systems. These tools try to reason about the importance of each update, performing an
intelligent management of updates and performing a selective scheduling based on this importance. Many
times, users are only concerned with a small subset of the total sharing set of �les. Nevertheless, systems
waste resources by updating users with updates which are of no interest to them. Thus, the notion of interest
management brings bene�ts by �ltering data updates of low interest to users. Systems can enforce higher
consistency guarantees over data subsets in which users are most concerned, and enforce low consistency
guarantees over the others. This can have great impacts reducing the amount of updates and bandwidth
usage.

VFCbox combines deduplication techniques with an optimistic replication schema that is capable of
adapting consistency guarantees according to user's interests. Through information provided by the user,
the system is able to identify the user's interest over each data set. The bene�ts of this interest management
are dual. Firstly, data with higher interest is forwarded to users in advance, reducing its latency and helping
users to receive it ahead of data with less interest. Secondly, it reduces the number of updating messages
regarding data of low interest. Additionally, deduplication techniques allow the system to reduce the redun-
dant data stored and transfered between sites, reducing space and bandwidth usage. Thus, the system aims
to an e�cient way of sharing data, reducing its redundancy and the amount of communications taking into
account the subsets of data that are more relevant to users.

In this work we present the implemented prototype of the VFCbox solution. This prototype consists in
a multi-user �le sharing system capable of performing an e�cient data sharing, w.r.t. bandwidth usage. To
accomplish this, the system makes use of deduplication techniques to exploit the redundant data. Addition-
ally, the system implements a consistency model that takes into account the interest of users over parts of
the shared �les in order to enforce multiple consistency levels. To extract the user's interests, the application
makes use of an interface were users may specify their interest level over certain �les or even over certain
parts of a �le (for instance a chapter or a section of a document).

The remainder of the document is organized as follows. Chapter 2 describes the related work and brie�y
presents some relevant systems. In Chapter 3 we present the architecture of our solution. Chapter 4 presents
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the implementation details of the VFCbox prototype. Chapter 5 presents the methodology used to evaluate
the system and an analysis over the obtained results. Finally, Chapter 6 presents the conclusions of this
work and discusses some of the possible improvements that may be performed in future.
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Chapter 2

Related work

This chapter presents the state-of-the-art of work suitable for the �le sharing system proposed in this docu-
ment. Relevant design choices are studied and existing systems are presented and discussed.

The remainder of the chapter is organized as follows.
Section 2.1 describes the related work on data redundancy, in which several data deduplication techniques

used to minimize data storage and data transfer are presented.
Section 2.2 addresses the topic of optimistic replication, in which several topics about the consistency of

data are presented.
Section 2.3 address the topic of adaptive consistency and presents the TACT and the VFC model, two

replication models that adapt consistency guarantees according to the required.
Section 2.4 describes the inherent problems of storage systems over large-scale networks (e.g. Internet)

and addresses the topic of cloud computing, a highly scalable, reliable, secure, fast and inexpensive way for
storing data.

2.1 Data Redundancy

Nowadays, we may �nd that most computational systems have a large percentage of redundancy in stored
data[21]. This redundancy is related to the fact that there is a high duplication of data parts, or a high
similarity between distinct �les.

For instance, a system that keeps an history of multiple �le versions has a substantial redundancy be-
tween multiple versions. This is because most of �le versions only append a portion of data w.r.t. previous
version, or if not, only modify a con�ned part of it. Apart from this, there are also other situations where
we may �nd a high similarity between data, such as a �le heading that several �les use or even a piece of
code that is auto-generated, and so duplicated across several �les.

There are two distinct types of redundancy. One is related with the redundancy between versions of the
same �le and is called cross-version redundancy. The other one is related to parts of information within a
�le that are similar to other parts within another �le, and is called cross-�le redundancy.

Data redundancy can be detected using deduplication techniques that compare the similarity between
portions of data - called chunks. With this data similarity exploitation, higher performance in the storage
of data may be achieved, by eliminating redundant data, and replacing it by references to a single instance
storage of a chunk. E�ciently synchronization may also be achieved by not sending data that is found as
redundant between two sites.
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These techniques di�er in 3 fundamental dimensions[21]: algorithm, timing, and placement. The choice of
the algorithm depends on its e�ciency in storage reduction, reconstruction time, network bandwidth usage
and impact in system's resource consumption.

Current algorithms are divided in three main families: Delta-Encoding, Compare-by-hash and Version-
Based deduplication. W.r.t. timing, deduplication can be performed as Synchronous/In-Band, Asynchronous/Out-
of-Band, or as Semi-Synchronous operation. Finally, regarding the placement of deduplication, it can be
placed at the client side or at the server side. This placement choice may a�ect resource utilization, for
instance, client-based placement might improve the bandwidth utilization.

2.1.1 Delta-Encoding

Delta-Encoding[18, 13] is a deduplication technique that consists in the encoding of a �le relatively to an-
other. It is often used between versions of the same �le, where the new version may contain a large part of
the content of the previous version.

This technique compares each byte of the �le (binary di�) to be compressed against another one called
reference �le, and calculates a delta between them. This delta contains the modi�cations that were made
to the reference �le. The goal is to transfer and store only the delta �les, keeping references to the original
data regions, improving the storage space and bandwidth usage (by transferring only the deltas).

To take advantage of this technique it is fulcral to detect pairs of �les in which there is a high probability
of existing data similarity. Applying this technique to two completely di�erent �les would end up in the
storage of both �les, without any storage gains. Thus, it is important to have an heuristic to help in the
detection of reference �les. Version control systems like CVS[10] and SVN[15] use Delta-Encoding with the
naming of �les as the heuristic. This heuristic explores most of the cross-version redundancy, since a �le
name is normally maintained through multiple versions.

As this technique needs to compare two �les to exploit redundancy, it is only able to explore redundancy
locally. This type of redundancy is called locally trackable redundancy [7] where data redundancy occurs
only locally, and is the contrast to the locally untrackable redundancy [7], which exploits redundancy be-
tween two sites without the need to have both �les in the same site. This is a limitation to systems that
may want to explore similarities between data that came from multiple sites (locally untrackable redundancy).

Another limitation of this technique is the inability to detect redundancy within a set of versions. As the
algorithm makes use of the comparison between two �les, it is only possible to detect similarities between
them, and not within a set of �les.

2.1.2 Compare-by-hash

Compare-by-hash[23, 38, 12, 5] is a deduplication technique based on the comparison of hash values of each
chunk of data. These hash values have to be collision resistant so that we can assume that a content of a
chunk is redundant relatively to another one, only by comparing the hash values[14, 31]. If one hash is equal
to another one, we may say that the content of both chunks is identical.

This algorithm is thus capable of identifying either cross-version or cross-�le redundancy, only by com-
paring hash values. It improves data storage by detecting chunks with the same hash value (same content),
eliminating duplicates and substituting them by references to a single instance storage.

Furthermore, it is also capable of exploring locally untrackable redundancy, and improve the bandwidth
usage. This technique is able to achieve this by transferring hash values between two sites.
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For instance, a site S may have a �le to send to site R. Instead of sending the whole �le, S could only
send the hash values of the data chunks. Then, R would only have to search locally for chunks with the
same hash value, and return to S the information about the data chunks that are missing - called literal
data. By the end, S would only have to send to R the literal data, avoiding to send chunks that R already
has (redundant data). This process is depicted in Figure 2.1.

E�cient synchronization may then be achieved by not sending data that is found as redundant between
two sites. However, in terms of data transmission, this technique introduces a new round-trip to the transfer
protocol and an increase in the volume of meta-data exchange.

Figure 2.1: Example of the chunk transference protocol.

In terms of granularity, this technique can be separated in Whole File Hashing, Fixed Block Hashing or
Variable Block Hashing.

Whole File Hashing (WFH):

The Whole File Hashing technique used by systems such as Single Instance Storage[8] consists on the
hashing of a whole �le and its comparison against others. It is the simplest technique of the compare-by-hash
algorithms and it is a simple method to detect duplicated �les. As it takes into account a whole �le, it has not
to calculate chunk boundaries, making it easier to implement and more e�cient in terms of time processing.

A SHA-1[14] or MD5[31] hash of the �le can then be computed and compared to the pre-existing hashes
in the system, in order to identify duplicates. Nevertheless, it needs an heuristic to detect similar data
blocks, for e.g. the name of �les (a simple �le renaming breaks this heuristic). It is also unable to detect
other forms of redundancy, not detecting redundancy between �le versions, or between parts of �les.

Fixed Block Hashing (FBH):

The Fixed Block Hashing technique consists in detecting data redundancy through the hashing of chunks
of the same size. Systems such as Venti[28] and Rsync[38] use this technique of partitioning �les into chunks.
When compressing a �le, it has to split a �le into chunks, calculating its boundaries according to a constant
size (chosen a priori).

Afterwards, it has to calculate their respective hash values (using a SHA-1 or MD5 hash over each block),
and then to search for chunks with an equivalent hash. Thus, it is able to detect redundancy in a more �ne-
grained way, according to the speci�ed size block.
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This is an improvement when compared to Whole File Hashing, achieving better compression rates.

However, this approach is very sensitive to modi�cations performed on consecutive versions of a �le. Since
chunk's boundaries are calculated with a �xed size, a simple insertion of data may shift all the boundaries
of the blocks from that point until the end of the �le. Thus, these blocks will all be considered as new data
blocks. Figure 2.2 illustrates this problem of overlapping chunks. This technique may be appropriate to
situations where modi�cations to �les are only appending data. Nevertheless, it is unable to detect a high
percentage of redundancy when there is a shifting of chunk's boundaries.

Figure 2.2: Example of application of FBH. The gray color identi�es the chunks that were considered as new
chunks.

Other problem inherent to this solution is to �nd the optimal block size, which is a non-trivial task.
Further, it depends on the type of the data. For instance, bigger blocks work better with highly redun-

dant data. However, a smaller block size is able to �nd more redundancy, especially in less similar data. But
then, using smaller blocks requires more meta-data and, at some point, the size of the meta-data generated
does not pay the savings in space by using smaller blocks.

Variable Block Hashing (VBH):

The Variable Block Hashing technique consists in splitting data into chunks according to its content.
This content-de�ned chunking is used in many systems such as LBFS[23], Pastiche[12], BackupChunk[24],
Haddock-FS[6] and ShiftBack[39].

Instead of calculating boundaries with a �xed sized, it calculates it having the content of a �le into
account. Thus, it avoids the problem of shifting of boundaries (Figure 2.3), improving e�ciency in data
compression.

Figure 2.3: Example of application of VBH. The gray color identi�es the chunks that were considered as
new chunks.
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To divide a �le into chunks, the algorithm examines every 48-byte regions of the �le and with a proba-
bility of 2−13 over each region's contents considers it to be the end of a data chunk. It can also be limited
with a minimum and a maximum constant size (chosen a priori), to restrict very small or very big chunks
of data. After calculating chunk's boundaries, this technique only has to calculate a SHA-1 or a MD5 hash
over each chunk of data, and to compare them to the pre-existing hashes in the system, in order to identify
duplicates.

Current solutions calculate the content-based boundaries using Rabin Fingerprints[29]. A �ngerprint
consists in a polynomial representation of the data modulo. When the low-order 13 bits of a region's �nger-
print is equal to a chosen value, that region constitutes a boundary. Rabin Fingerprints is normally used
because it is e�cient to compute it on a �le sliding window.

Comparing VBH with FBH, we may say that VBH is a more e�cient algorithm to �nd redundant
chunks of data. Nevertheless, it is a more complex and computational expensive algorithm than FBH. When
choosing between VBH and FBH, one has to take into account whether the system requires an algorithm
more e�cient in terms of redundancy detection or in terms of computational consumption. Furthermore, in
systems where the problem of sliding boundaries does not often occur, the FBH is able to �nd redundancy
close to levels obtained by VBH.

2.1.3 Version-Based Deduplication

As described before, compare-by-hash algorithms are very powerful to detect either cross-�le or cross-version
redundancy. Nevertheless, and concerning data transmission, it adds a signi�cant overhead to the data trans-
fer protocol. It adds to it more round-trips and a substantial volume of exchanged meta-data. When in
presence of a low redundancy situation that overhead may not compensate the gains.

The Version-Based Deduplication[4, 7, 39, 24] appears to reduce this overhead introduced by compare-
by-hash algorithms. Version-Based Deduplication is a technique used by systems such as dedupFS[4],
ShiftBack[39] and BackupChunk[24], that combines versioning information with local similarity detection
algorithms. It consists in the knowledge that each site has about the data that is stored in another site.
Having that knowledge into account, one can avoid to send redundant data across the network. That knowl-
edge is based in a space-e�cient representation, such as version vectors[22]. The algorithm works in 4 steps:

• A receiver site, R, informs the sender, S, of the version set that R currently stores.

• The sender site compares R's version set with its own, determining the intersection of versions that
both contain in common.

• Using some local similarity detection algorithm (e.g. compare-by-hash), S determines which chunks to
send to R are redundant with relation to the previous intersection.

• The sender S transfers the contents of the remaining literal chunks to R.

In order to achieve this, Version-Based deduplication imposes the unique identi�cation of each write
through the use of monotonically increasing local counters at each site. Thus, each write constitutes a ver-
sion that is identi�ed by the site's unique identi�er and the the local write counter.

Each site maintains two version vectors to identify the knowledge that they have about the state of the
other sites. Any site S holds a Knowledge Vector, denoted KVS , and a Pruned Knowledge Vector, denoted
PrVS . The KVS is a vector with an entry per known site and contains the last known state of each site,
represented by the unique identi�cation of the most recent version written by the other site and obtained by
S. The PrVS is a vector with an entry per known site and contains the last known versions that were pruned
and no longer available at the site S. When S receives new data, it updates the KVS to the value of the
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most recent version obtained by each site. Thus, S is able to represent the most recent version that it has
ever seen from each site. When S removes some �les, it updates the PrVS , updating it to the most recent
version that has been deleted. The interval between the KVS and the PrVS , ]PrVS ,KVS ] , represents the
set of data that is found at the site S. Nevertheless, S has to guarantee that for every version v for each site
i it can respect the clause PrVS [i] < v ≤ KVS [i]. In other words, S must guarantee that the set between the
PrVS and the KVS has no gaps. To accomplish this, S must receive only consecutive updates and discard
non-consecutive updates.

This technique achieves two fundamental properties: i) as the process of similarity detection is performed
locally, it can employ more data-intensive techniques; ii) on contrary to compare-by-hash it does not intro-
duce a substantial overhead w.r.t data transmission.

Yet, as it only takes into account the knowledge of shared data, it does not detect locally untrackable
redundancy. Depending on the situation, that issue may or may not be important. In most cases the
redundancy comes mainly from cross-version redundancy. Thus, the gains may overcome this limitation.

2.1.4 Deduplication Techniques Summary

The following table (Table 2.1.4) presents a summary of the above mentioned deduplication techniques.

Deduplication
Technique

Description Detects re-
dundancy
within a set
of �les

Detects lo-
cally un-
trackable
redundancy

Notes

Delta-
Encoding[18,
13]

Compares 2 �les byte
by byte and creates a
delta between them

No No Di�cult to have an
heuristic to detect
good reference �les

Compare-by-
hash[23, 38, 12,
5]

Compares the hashes
of �le chunks

Yes Yes High exchange of
meta-data may not
compensate the gains

Version-Based
Deduplication[4,
7, 39, 24]

Combines versioning
info. with local re-
dundancy detection
techniques

Depends of the
local redun-
dancy detection
technique

No Reduced exchange of
meta-data improves
the usage of network
resources

Table 2.1: Comparison between deduplication techniques.

2.1.5 Deduplication Timing

Data Deduplication Timing varies according to the time in which it is employed. It can be performed as
Synchronous/In-Band, Asynchronous/Out-of-Band, or as Semi-Synchronous operation.

Synchronous/In-Band :

Synchronous deduplication[21] consists in performing deduplication operations when data is being con-
sumed by the system. Furthermore, this means that for each write operation there is a deduplication
operation associated, before the e�ective write occurrence.

This type of deduplication timing allows a search for redundancy before the actually occurrence of each
write. As it never writes data into the system before compacting it, it allows a better space usage reduction.
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Nevertheless, this type of deduplication timing needs to process data as it is being written. Thus, a
continuous overhead in the usage of computational resources is introduced. This causes some latency on
writing operations, reducing by this the throughput of the system.

Asynchronous/Out-of-Band :

On contrary to synchronous deduplication operation, asynchronous deduplication [21] consists in per-
forming deduplication operations only periodically. From time to time, it executes a deduplication operation
over the new written data, searching for redundancy and compacting the necessary data. By this, the sys-
tem can perform its activities without being constraint by deduplication operations. Thus, increasing the
consumption of system's data and its throughput. However, as data is written immediately, there is no
processing before, allowing the writing of redundant data into the system. This requires a higher storage
capacity, since it needs to stage data while uncompressed.

Normally, this type of deduplication is not a good solution when perform together with a client-based
placement approach. This is �rstly explained by the lack of up-to-date deduplicated meta-data at runtime,
unabling to do queries immediately. Secondly, it causes a loss in the network bandwidth reduction achieved
by the client-based placement.

Semi-Synchronous:

Semi-Synchronous deduplication[21] consists in a combination between synchronous and asynchronous
deduplication, performing each technique when more adequate. It chooses the type of deduplication dynam-
ically according to resource availability.

2.1.6 Deduplication Placement

Data Deduplication may be performed on the client side or on the server side according to the intended.

On the client side:

When data deduplication is performed on the client side, the client has the duty of performing dedu-
plication operations. Thus, data is only transfered between sites after redundancy removal. As data is
already sent in a compact form, this can achieve higher performances w.r.t. data transmission. Typically,
this approach involves a deduplication client that communicates with a server. Thus, the client processes
data before synchronizing it with the server, sending to the server only the respective meta-data. With the
received meta-data the server can search for identical chunks of data. Then, it informs back the client about
the missing chunks. Therefore, the client only sends to the server the literal data, decreasing costs in the
usage of network bandwidth.

Despite the gains achieved in data transmission, this type of deduplication implies a higher resource usage
on the client side, regarding CPU and IO operations. Taking this into account, the client could be a�ected
in terms of performance of other applications.

On the server side:

Data deduplication performed on the server side consists in having a server appliance that executes
deduplication operations on its received data. Venti[28] and Quantum1 are examples of solutions these
appliances. Normally, it is chosen having into account the bene�ts in the server's storage. On contrary
to client-based deduplication, it does not overhead the client with the responsibility of processing data.
Nevertheless, as redundant data is sent to the server, it is not so e�cient in terms of data transmission.

1Quantum: Data de-duplication overview.
http://www.quantum.com/Solutions/datadeduplication/Index.aspx.
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2.2 Consistency in Distributed Systems

Replication is a fundamental technique in �le sharing systems to improve availability, scalability, performance
and to support disconnected operations. However, these systems have a di�cult task ensuring replica
consistency across several users. There is a lack of adaptability and e�ciency on these systems regarding
replica consistency. Most of them are not capable of scale to large networks, due to the huge bottleneck in data
transmission. This section presents some replication models, comparing its advantages and disadvantages.

2.2.1 Limitations of Pessimistic Replication

Pessimistic Replication[32] is a model to ensure strong data consistency guarantees. It tries to guarantee
that all the replicas are identical to a single copy. Further, for any sequence of read and write operations on
a replicated object, it guarantees that the sequence of values associated are the same for any other replica.
Thus, a sequence of reads and writes on a replicated object will produce the same e�ect as if the object
were not replicated. To ensure data consistency at the level of a non replicated schema, this model has to
block access to data whenever a replica is not up-to-date or disconnected from network. Before performing
any operation request over a replica, the pessimistic replication runs a synchronous coordination protocol to
ensure that the requested operation will not violate any consistency guarantee. So, it preserves consistency
of data preventing con�icts, even at the cost of denying access to replicas.

This model of replication specially �ts to systems where stale data cannot be read or data con�icts cannot
occur. However, it comes with the cost of reducing data availability, which is a big constraint to �le sharing
systems. Also, it is di�cult to scale systems that use pessimistic replication to larger networks. Its natural
frequency of updates causes system's throughput and availability to su�er as the number of sites increases.

2.2.2 Introduction to Optimistic Replication

Optimistic replication[32] is a replication model for sharing data e�ciently in wide-area or mobile environ-
ments. In opposition to pessimistically replicated systems, its approach is based on the improvement of
concurrency.

It consists on the guarantee that object replicas will converge to the same value, within a certain period
of time. This convergence is called eventual consistency[32, 42], and assumes that for a long period of time,
all updates will eventually propagate through all the replicas. On contrary to Pessimistic Replication, this
model does not block access to data even at the cost of su�ering some divergence between replicas. Op-
timistic Replication does not have to run any type of coordination protocol before accepting an operation
request. Thus, it overcomes Pessimistic Replication regarding access performance, as the replicated system
no longer waits for a synchronization before accepting a request. Concerning scalability, Optimistic solutions
are also preferred due to less coordination requirements and due to the possibility of running synchronization
protocols in background. Thereby, it trades data consistency for availability and scalability.

With this temporarily relaxed consistency, stale reads and con�icting writes are inherent risks. A
classic approach to this problem is to ignore the stale reads and to detect and resolve con�icting writes.
Unison[27](�le synchronizer) describes 4 types of existing con�icts:

• change the name of the same �le to di�erent names on di�erent replicas;

• delete a �le on one replica and change its name on another;

• create a �le with the same name and di�erent contents on di�erent replicas;

• make di�erent modi�cations to the same content of a �le on di�erent replicas.
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The option that Unison makes to resolving con�icts is to detect them and then request users to solve the
con�icts. Most of �le synchronizers, such as Dropbox2 and SugarSync3 take this option to solve con�icts.
Others, such as CVS[10] and SVN[15] try to merge di�erent modi�cations to the content of a �le, asking the
help of the user only when this attempt failures.

Optimistic replication normally �ts to systems that can tolerate some divergence between replicas and
where con�icts are very rare. To these type of systems, optimistic replication can bring several advantages
such as availability, scalability and the support of disconnected operations. Many, also indicated this model
as the appropriate to some human activities, as it is better to allow collaborators (system users) to update
data independently and repair occasional con�icts than to lock data while someone is editing it [10].

Distributed �le systems are an example of systems that usually �t to an optimistic replication model,
where usually con�icts are very unlikely to happen cite[43].

The goal of any optimistic replication system is to provide consistency while improving availability and
scalability. However, there are some design choices according to the requirements of each system. On the
following we describe some of those design choices, namely update submission, update propagation, update
transfer, Operations Scheduling and Con�ict Resolution.

Update Submission: Single-Master vs. Multi-Master [32]

Update submission regards where an update can be submitted to and how it is propagated. This can
be divided in two main submission forms, Single-Master and Multi-Master. Single-Master consists on the
submission of updates exclusively to one replica (master), and its propagation from that replica to the others
(slaves). Since updates are all submitted to one replica, this type of systems can detect and solve con�icts in
a centralized way. Besides its simplicity, they may have some limited availability caused by the bottleneck
in the master replica when experiencing frequent updates.

Multi-Master consists on submitting updates to multiple replicas independently and its propagation in
the background. Updates can be submitted to any replica, existing by this a decentralized way of detecting
and solving con�icts. In comparison to single-master systems, these improve availability with the cost of
a signi�cantly more complex system. Nevertheless, and w.r.t. scalability it can be a problem due to the
increased con�ict rate.

Update Propagation: Push vs. Pull Model [32]

Update propagation regards the model that is used when there is an update to be propagated. There
are two main models, namely push and pull model. On the push model used by systems such as Bayou[26]
and Roam[30], a replica holding an update is responsible for pushing it to other replicas. On the pull model
there is the concept of polling replicas in order to request the new updates. This polling process can be
manually triggered or automatically using a periodical signal.

This design choice can have an important impact on systems regarding scalability, due to the overhead
associated to periodic polling (pull model) or due to the high frequency of update propagation. Systems like
Coda[34] use hybrid solutions to take both advantages of each model.

Update Transfer: State vs. Operation Transfer [32]

State and Operation Transfer are variants of update transfer and refer to what is transfered between
replicas when there is an update to be propagated. On state-transfer systems, replicas are required to read
or to overwrite a entire object. When reading/writing an update, a replica has to read/write the whole object

2Dropbox: Secure backup, sync and sharing made easy. https://www.dropbox.com.
3Sugarsync: Backup and �le synchronizer. https://www.sugarsync.com/.
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to which the update concern. It is a simple model of propagating updates that can easily and transparently
be adapted to any solution, since maintaining consistency only involves sending the newest replica contents
to other replicas.

On operation-transfer systems, replicas are required to propagate only the operations/modi�cations re-
lated to an update. In comparison to state-transfer systems, they can be more e�cient since they do not
need to send entire objects. Additionally, this model also improves concurrency and a lower con�ict rate,
since operations may be commutative. Yet, these systems are more complex as they need to reconstruct an
history of operations.

Some systems like LBFS[23], Semantic-chunks[40] and Haddock-FS[6] make use of an e�cient represen-
tation of updates to achieve a mixing of the two solutions (State and Operation Transfer). They use chunks
as a representation for updates. As already mentioned on this document, chunks are portions of data within
a �le. With this notion, both advantages of the state transfer and operation transfer may be achieved.
When a chunk is modi�ed, its update involves the transfer of the whole chunk, making the transfer process
easier as achieved by the state-transfer model. Yet, when a �le is modi�ed, the whole �le does not have to
be transferred, since only the a�ected chunks have to be transferred. Thus, it improves concurrency and
decreases the con�ict rate as achieved by the operation-transfer model.

Operations Scheduling: Syntactic vs. Semantic [32]

Operations Scheduling regards to the ordering of operations in a way that produces equivalent and ex-
pected states across users. There are two policies to produce the ordering of operations, namely Syntactic
and Semantic scheduling. Syntactic scheduling is based on the time in which operations happened, preserving
an operation ordering according to the relationship happens-before de�ned by Lamport[19]. This scheduling
method is simpler than the semantic scheduling due to unnecessary knowledge about the semantic of oper-
ations. Nevertheless, as it does not examine the semantics of operations, it is not able to order operations
in a way that can cause less con�icts. Semantic scheduling is based on the ordering of operations according
to the operation's semantics. Thus, this method is able to reduce the con�ict occurrence and increase the
merging process of di�erent operations. This policy is more complex than syntactic and is only applicable to
operation-transfer systems, since state-transfer systems do not take into account the semantics of operations.

Con�ict Resolution: Manual vs. Automatic [32]

A con�ict occurs when a precondition of the system's scheduling is violated. The detection of con�icts
may be based on a syntactic approach, when the happens-before[19] relationship is violated (e.g. when two or
more operations are concurrently applied). On the other hand, con�ict detection may be based on a semantic
approach, which identi�es con�icts according to the violation of precondition related with the semantics of
the application.

W.r.t. con�ict resolution/reconciliation[9], it may be performed manually or automatically. When per-
formed manually, the con�ict is detected and then delegated to the user to resolve. When performed
automatically such as in Bayou[26], the con�ict is resolved according to a set of rules de�ned by the appli-
cation. These techniques try to reconcile and merge updates that respect to the same object. Systems like
rcsmerge[37] try to merge updates through techniques based on plain text �les. Systems like Semantic di�[17]
try to merge updates based on the particular context of the application. In certain situations, this attempt
of reconciliation may failure for example due to non-commutative actions and on this case the reconciliation
has to be delegated to the user.
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2.3 Adaptive Data Consistency

Many times, designers of replicated services are forced to choose either to use strong consistency guarantees
or none at all, in order to cope with system's requirements. In this section we introduce the topic of adaptive
consistency. In systems such as Haddock-FS[6] and IDEA[20], instead of having a static model of ensuring
consistency guarantees, they use a model where the system adapts to the environment ensuring strong and
weaken consistency guarantees as it is appropriate. With this model, systems may preserve strong consis-
tency guarantees while improving scalability and e�ciency.

On the following we present TACT, a middleware layer that enforces arbitrary consistency bounds
amongst replicas. Further we introduce locality-awareness, a notion that has been widely researched and
that can be used to achieve adaptive consistency systems. Finally, we present Vector-Field Consistency, an
optimistic replication model that adapts consistency through locality-awareness techniques.

2.3.1 TACT - A Consistency Model for Replicated Services

TACT[45, 46] is an e�cient and adaptable consistency model based on optimistic replication. Instead of
having a model where either strong or weak consistency guarantees are enforced, TACT allows a consistency
enforcement over multiple levels of consistency guarantees. With this concept of multiple consistency levels, it
is possible to adapt consistency guarantees according to requirements (availability, performance, probability
of inconsistent access). To achieve this consistency multiple level, TACT allows a bounded divergence between
object replicas in accordance to a maximum level of inconsistency. This model proposes three metrics to
bound consistency:

• Numerical Error: limits the total weight of writes that can be applied across all replicas before being
propagated to a given replica.

• Order Error: limits the number of tentative writes that can be outstanding at any one replica.

• Staleness: limits the time delay of write propagation amongst replicas.

In order to specify consistency levels, applications specify their application-speci�c consistency semantics
using conits. A conit is a physical or logical unit of consistency where applications quantify consistency
continuously along a three-dimensional vector:

Consistency = (Numerical Error, Order Error, Staleness)

According to consistency semantics, TACT is able to e�ciently manage the propagation of updates,
delaying updates that do not violate consistency bounds. Thus, TACT reduces the use of network resources
and masquerades latency, while adjusting consistency guarantees in accordance to the application semantics.

2.3.2 Locality-awareness in Large-scale Systems

To achieve system's scalability over large networks such as the Internet, there is a need to reduce the amount
of exchanged data between multiple entities. The notion of Locality-awareness is associated with Interest
Management[16, 35, 36] that is a �ltering mechanism that aims to solve the scalability problem through tech-
niques that take into account the users' interest. Systems such as MANET(Mobile Ad-hoc Networks)[36]
use techniques to detect the users shared interest in some topics in order to �lter messages of low interest to
them. Therefore, a higher scalability may be achieve by �ltering massive volumes of data and thus reducing
the volume of exchanged data that would be found as no interesting.

Locality-awareness is also a form of interest management, detecting users interest based on their local-
ity. For instance, in massively multiplayer games, middlewares such as Matrix(Adaptive Middleware for
Distributed Multiplayer Games)[2], VFC for Ad-hoc Gaming[33] and Unifying Divergence Bounding and
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Locality Awareness in Replicated Systems with VFC[41] can track players position. According to it, they
can strengthen consistency guarantees around the player position and weaken it as the distance to the player
position increases. This model can achieve a higher scalability since it can adapt consistency levels according
to the need and to the associated interest.

Current solutions such as Semantic-chunks[40] also use the notion of locality-awareness to e�ciently share
�les between multiple users, taking into account information provided by the user, regarding their interests
over each data set. This can improve these type of systems not only by reducing the overload of the network
but also by reducing the latency, helping users to get important data in advance.

2.3.3 Vector-Field Consistency (VFC)

Vector-Field Consistency[41, 33] is an e�cient and adaptable consistency model based on optimistic replica-
tion. It allows a bounded divergence between object replicas. For this, it takes into account several forms of
consistency enforcement and a multi-dimensional criteria (time, sequence and value) to limit replica diver-
gence. These forms of consistency are determined through techniques based on locality-awareness. Thereby,
it uses locality-awareness techniques to identify di�erent zones (consider a zone as a subset of a sharing set of
data), in which the VFC dynamically strengthens/weakens replica consistency. Di�erent multi-dimensional
criterias are then applied to di�erent zones, creating di�erent divergence bounds to each zone.

To identify di�erent zones, VFC uses the concept of Pivots. Pivots are based in locality-awareness
techniques and they identify points in which consistency around is required to be strong, and weaker as
the distance from the pivot increases. Figure 2.4 illustrates an example with 3 consistency zones, where a
concentric circle was chosen as the space delimiter. The object O3 was chosen as pivot. Therefore, VFC
would enforce stronger consistency within Z1, following with Z2 and by last Z3. Each object covered in each
zone, would then have applied di�erent divergence constraints, and thereby di�erent consistency guarantees.

Figure 2.4: Consistency zones centered on a pivot.

To ensure di�erent forms of consistency, VFC provides a 3-dimensional vector, κ = [θ, σ, ν], to specify the
consistency degrees. Each dimension of the vector bounds the maximum objects divergence in a particular
view.

Each dimension is a numerical scalar de�ning the maximum divergence of the constraints time (θ),
sequence (σ), and value (ν), respectively.

• Time: Speci�es the maximum time a replica can be without being refreshed with its latest value.
Consider that θ(o) provides the time passed from the last replica update, relatively to object o. The
time constraint κθ enforces that, at any time, θ(o) < κθ. This scalar (not necessarily integer) quantity
measures time in seconds.
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• Sequence: Speci�es the maximum number of lost replica updates. Similarly, consider that σ(o)
indicates the number of lost updates. The sequence constraint κσ enforces that, at any time, σ(o) <
κσ. The unit is the number of lost updates.

• Value: Speci�es the maximum relative di�erence between replica contents or against a constant.
Consider that ν(o) provides this di�erence. The value constraint κν enforces that, at any time, ν(o) <
κν . The unit of variation is a percentage.

For example, consider a consistency vector κ = [0.1, 6, 20], that describes the divergence bounds of each
constraint (time, sequence, value). It represents that replicas can only be outdated for 0.1 seconds or 6 lost
updates or with a 20% variation in the replica content.

Through a selective form of increasing and decreasing consistency enforcement, VFC is able to ensure
critical updates to be immediately sent and less critical to be postponed. Thereby, it makes an e�cient
resource usage, reducing the network bandwidth usage and masquerading latency.

2.4 Cloud Computing

Cloud computing[1] is a modern concept of using software and hardware infrastructures as a service over
the Internet. It pretends to provide high performance computing as a cloud, where users may run their
programs or store their data without having to concern about the management of the background sys-
tem/infrastructure. As such, instead of having to manage large infrastructures and develop systems to pro-
vide high availability and scalability, cloud users can use the cloud as a service, paying only for what they use.

On contrary to client-server architectures, cloud computing provides an abstraction over the details of
individual servers. Instead of performing requests to a server, cloud users may perform requests as a service,
without the need of being concerned about the physical location of servers or cloud computing infrastructure.
As such, users do not require any knowledge regarding the control and management of the remote services,
as they are handled by cloud providers.

The most attractive features of cloud computing are: i) Cost Reductions: fewer IT skills, fewer imple-
mentation requirements and no waste of power and computing resources; ii) Scalability : mechanisms may
auto-scale functionality according to users requirements. Developers do not need to concern about peak
loads, as the cloud system scale resources; iii) Availability : improved if multiple redundant sites are used.
Possibility of using multiple cloud providers; and iv) Reliability : improved if multiple redundant sites are
used Possibility of using multiple cloud providers.

2.4.1 Cloud Storage

There are several types of services that may be provided by cloud computing. Nevertheless, for this par-
ticular document we focus on cloud computing as a system to provide large-scale storage (Cloud Storage).
Many systems such as Dropbox4, SkyDrive5, SpiderOak6, Box.net7, SOS Online Backup8 and SugarSync9

use cloud systems in order to provide high available and reliable storage.

4Dropbox: Backup and �le synchronizer. https://www.dropbox.com.
5Microsoft Windows Live Skydrive: Backup and �le synchronizer. http://skydrive.live.com/
6SpiderOak: Backup and �le synchronizer. https://spideroak.com/
7Box.net: Backup and �le synchronizer. http://box.net
8SOS Online Backup: Backup solution. http://www.sosonlinebackup.com
9Sugarsync: Backup and �le synchronizer. https://www.sugarsync.com/.
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Such a service is o�ered by software running on a collection of servers, with data from client machines
stored at the hard disks of multiple server nodes.

Typically, a cloud storage process on a client node transfers (part of) the data available in local storage
back and forth to an entry point of the cloud storage service. This entry point makes sure that the data from
the client is distributed over other server nodes. The cloud storage process keeps local data synchronized
with data stored at the cloud storage service: new data generated locally by the user is uploaded to the
cloud, data is retrieved from the cloud when local data was lost.

One advantage of cloud storage backup, contrary to a local backup to a medium like optical disk, is that
the data is automatically geographically dispersed, which reduces the risk of losing data.

Another advantage is that cloud storage often o�ers additional features such as synchronization of the
data between multiple computers or the sharing of data with others.

2.5 Relevant Systems

2.5.1 VFC for Cooperative Work

VFC for Cooperative Work[11] is a synchronization tool to e�ciently synchronize Latex documents amongst
collaborators. It uses the concept of locality-awareness to intelligently manage the transfer of updates.
Through techniques that track the editing position of a user within a document, the system is able to rea-
son about the importance of sections of a Latex document. With this information it performs a selective
scheduling of update propagation, enforcing strong consistency guarantees to most important updates and
weaker consistency guarantees to less important updates. This system divides Latex documents into chunks,
which can be considered as sections or paragraphs of a document. Multiple consistency guarantees are then
applied to multiple chunks according to clients locality.

To accomplish the dynamically adaptation of consistency guarantees, VFC for Cooperative Work uses
the Vector-Field Consistency model. With this model, the system is able to assign multiple consistency
guarantees (creating bounds of inconsistency) to multiple sections of a Latex document.

In comparison to systems that ensure total consistency, VFC for Cooperative Work is able to achieve
higher performances w.r.t. bandwidth usage. Additionally, this system is able to improve concurrency
and reduce the con�ict rate, since modi�cations to di�erent chunks of a document (di�erent sections for
example) are not considered as con�icts as they can be merged and constitute a single version. Nevertheless,
this system does not perform a compression of transfered data, being unable to reduce even more the use of
network resources. It also does not contemplate a compression of stored data.

2.5.2 Amazon S3 (Simple Storage Service)

Amazon S310 (Simple Storage Service)[25] is an Amazon's system based on cloud computing to provide
storage for the Internet. It provides a simple web services interface that can be used to store and retrieve
any amount of data, at any time, from anywhere on the web. Through Amazon S3, developers may achieve
highly scalable, reliable, secure, fast and inexpensive infrastructures to store data, without having to be
concerned about any internal issues.
Amazon S3 is supported by a large number of data centers in the United States and Europe and is expected
to o�er low data access latency, in�nite data durability and 99.99% of availability[25].

Data stored in Amazon S3 is organized in a two level namespace: buckets and object names. Buckets are
similar to folders and allow users to organize their data. Object names correspond to objects that are stored

10Amazon s3. http://aws.amazon.com/s3/.
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into buckets.

Regarding the data access protocols, Amazon S3 supports 3 main protocols: SOAP11, REST12 and
BitTorrent13.

2.5.3 Dropbox

Dropbox14 is a commercial backup and �le synchronizer[3] system that enables users to share data with oth-
ers across the Internet. It is designed to achieve a high performance regarding the transfer of data between
clients and servers. To provide and support storage to large-scale networks, Dropbox uses Amazon S3 to
store �les.

Each Dropbox client has in his computer a �Dropbox Folder� where he can modify and upload new
�les/folders. This folder is managed by a background process that is responsible for the correct synchro-
nization of the folder between clients and servers. This application can also be used by several users as a
collaboration tool as a user can allow others to access speci�c folders inside his �Dropbox folder�.

To accomplish the high performance w.r.t. data transfer, Dropbox uses delta-enconding techniques to
produce a �binary di�� between new and previous versions of a �le. As such, it enables an e�cient syncing,
only uploading changes made to a �le. It also enables a �le versioning allowing clients to fetch previous
versions. To detect the existence of modi�ed data, Dropbox also uses Compare-by-Hash techniques over
folders to �nd out which folders have been modi�ed. For this, the system exchanges folder hashes in order
to �nd if the contents of a given folder have been modi�ed.

With delta-encoding Dropbox is able to reduce the use of bandwidth, by only uploading the changes
performed over a �le. However, it does not perform deduplication to reduce the amount of stored data.
Also, it does not use any kind of technology to specify multiple consistency levels, which could improve
even more the e�ciency in data transfer. Moreover, Dropbox does not provide any kind of tools to resolve
updating con�icts, delegating to clients this task when any concurrent operations to the same �les have been
performed.

2.5.4 Microsoft Live SkyDrive

SkyDrive15 is a File hosting service that allows users to upload �les to a cloud storage and then access them
from a Web browser. It is based on cloud storage services that allow users to store and share data. It does
not provide synchronization functionality between devices, and the primary interface is web browser based.
A number of tools exist, however, that make uploading and syncing of local data more convenient. SkyDrive
does not support versioning of objects. Individual items can be shared with others through the web.

2.5.5 Haddock-FS

Haddock-FS[6] is a peer-to-peer replicated �le system. It is designed for mobile ad-hoc environments where
constraints of reduced memory and low bandwidth are usual. Haddock-FS allows collaborative operations,
detecting and solving con�icts by comparing multiple versions. To accomplish this, it uses a consistency
protocol that relies on dynamic version vectors[30]. Haddock-FS is based on an update log system that
organizes operations as tentative or as stable, according to the state of updates. Tentative updates are
reversible on contrary to the stable updates. Stable updates are selected by a single replica called primary

11http://www.w3.org/TR/soap/
12http://www.ics.uci.edu/ �elding/pubs/dissertation/rest_arch_style.htm
13http://www.bittorrent.com
14Dropbox: Secure backup, sync and sharing made easy. https://www.dropbox.com.
15Microsoft Windows Live Skydrive. http://skydrive.live.com/
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replica.

W.r.t. data redundancy, Haddock-FS makes use of compare-by-hash techniques in order to improve the
bandwidth usage and to reduce the memory used by peers. To deal with the problem of shifting �le o�sets
and overlapping chunks, this system uses Variable-size Block Hashing, basing chunk boundaries on �le con-
tents.

Haddock-FS is based on an adaptable optimistic consistency protocol, providing a highly available access
to a weakly consistent view of �les, while delivering a strongly consistent view to more demanding applica-
tions.

Brie�y, Haddock-FS is able to reduce resources consumption regarding network bandwidth and memory.
It makes use of deduplication techniques to either explore cross-�le or cross-version redundancy. Additionally,
it is also able to detect locally untrackable redundancy. Regarding the consistency protocol, it makes an
e�cient use of resources by enforcing either weak or strong consistency guarantees according to the required.
Nevertheless, this system is not able to enforce multiple levels of consistency guarantees. By enforcing
multiple levels of consistency guarantees, this system could balance resources and requirements, instead of
forcing applications to choose between weak or strong consistency guarantees. Further, as Haddock-FS makes
use of compare-by-hash techniques, it introduces an overhead regarding the meta-data exchange, which may
not compensate the gains over low redundancy situations.

2.5.6 LBFS

LBFS[23] is a network �le system designed to perform in low-bandwidth networks. The main goal of this
system is to avoid the transmission of data that may already be found at the receiver's site. To accomplish
this, this system makes use of compare-by-hash techniques in order to improve the bandwidth usage. To
deal with the problem of shifting �le o�sets and overlapping chunks, this system uses Variable-size Block
Hashing, basing chunk boundaries on �le contents.

To make the chunk comparison possible both client and server store chunks in a database indexed by
chunks hashes. When reading a �le from the server, the client makes a request to the server in order to re-
trieve the hashes of the chunks to be read. Further, the client compares the received hashes with the already
detained, labeling the chunks that were not found as missing. After this, the client requests the missing
chunks to the server, receiving by this the missing data. As these operations are all pipelined, downloading
a �le only incurs in two network round-trips plus the cost of downloading the data.

When writing back a modi�ed �le, the opposite of the reading process is done. Firstly, the client sends
the hashes and only after the missing data. To avoid dealing with the reordering of writes, LBFS implements
atomic updates and a Close-To-Open consistency model. Thus, the commitment of updates is only applied
when a �le is closed. Additionally, when a �le is closed by a client and another client reads it, it always
receives its last content.

To achieve atomic updates, LBFS makes use of temporary �les, in which updates are incrementally writ-
ten. When the �le is closed, the temporary �le is then committed, overwriting the previous version of the
�le. First the client sends a �create temporary �le� request to the server, to which the client will write the
updates. Then, it sends the hashes of the chunks that compose the new version of the �le. The server will
return with a �missing chunk response� or with an �Ok response�, which indicates that the server already
detains that chunk. Missing data is pipelined from the client to the server, and at close time the client
requests a commitment of the �le.

Summing up, LBFS is a system that e�ciently synchronize data, saving resources regarding the use
of network bandwidth. Although it is clear the improvement in the transfer protocol, this system has to
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exchange sets of hash values between client and server, which in case of low redundancy may not compensate
the gains and introduce a substantial overhead. Moreover, it does not explore data redundancy to e�ciently
store data. This system could use the same deduplication techniques to explore this last issue, making this
a system that could e�ciently transfer and store data. Additionally, LBFS also does not have into account
multiple consistency guarantees, which could guarantee a multi-level consistency according to the bandwidth
constraints and user needs. This could even improve more the e�ciency w.r.t. data transmission.

2.5.7 redFS

redFS[7] is a distributed �le system that performs locally trackable deduplication in order to achieve an ef-
�cient synchronization. The synchronization process of redFS is composed by two main steps: I) version
tracking - responsible for detecting the set of versions that two synchronizing sites share in common; II) local
redundancy detection - responsible for detecting local redundancy.

To perform the local redundancy detection, redFS makes use of Variable-size Hashing in addition with
a byte-by-byte comparison technique. redFS uses simple hash functions over data chunks in order to detect
similar chunks. After detecting the similarity it uses a byte-by-byte comparison technique to con�rm the
chunks similarity, preventing hash collisions. With this techniques, redFS is able to detect the common ver-
sions (common data chunks) between two sites and reduce redundancy with local deduplication techniques,
avoiding the transfer of local redundant data and data that is already found at the receiver's site. Thus,
when transferring data between two sites, redundant data is substituted by references to the actual chunks.
Thus, only the non-redundant data (literal data) is sent over the network.

Summing up, redFS may be able to achieve better data transfer performance than systems based on
Compare-By-Hash and Delta-Encoding, while maintaining the integrity of data during this operation.

2.5.8 Semantic-chunks

Semantic-chunks[40] is a middleware that aims to e�ciently enforce data consistency for cooperative work
systems. It uses Compare-by-Hash techniques with Variable-size Block Hashing to exploit data redundancy
either locally or between multiple sites. Thus, it is able to detect either locally trackable or locally untrackable
redundancy, being able to improve the e�ciency of storing and syncing data.

Additionally, Semantic-chunks have presented a model in which documents are partitioned into chunks,
and each chunk is annotated with semantic consistency information. These chunks are called semantic-chunks
and consist in semantically-annotated document regions with relevance to applications and users, further
annotated with consistency information and enforcement. The consistency information is in part provided by
users. With this semantical structure a user is capable of know the structure of a given document, without
the need of having to download the whole document content. As such, a user can work over parts of a
document without the need of having the whole content of it. Thus, Semantic-chunks can ensure consistency
over semantic-chunks of important relevance to a user, and relax consistency over less important chunks.
With this concept, this system is able to improve concurrency and reduce update con�icts. Moreover, it
reduces bandwidth usage, not only by exploiting data redundancy, but also by reducing and postponing
the transmission of semantic-chunks with low relevance to a user. As Semantic-chunks uses Compare-by-
Hash techniques, sometimes the introduced overhead for hash exchange between multiple sites, may not
compensate the gains achieved by deduplication due to low redundancy. To overwhelm this situation, this
system could use more e�cient ways of representing the chunks knowledge.

2.5.9 ShiftBack

ShiftBack[39] is a backup system based in a client-server architecture, designed to support an e�cient stor-
age and network bandwidth use. Additionally, this system also supports a task-oriented backup with a
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time-shifting interface which enables the browsing and retrieval of versions from any point in time. To cope
with the requirements it uses Version-Based Deduplication techniques to explore locally trackable redundancy.

Figure 2.5: Example of deduplication process.

ShiftBack supports 3 main operations: Data Backup, Data Index and Data Recovery. Data Backup
is the most frequent operation and consists in backing up data from the client to the server, storing and
transferring only one occurrence of each chunk. This operation starts at the client side, that requests to
the server its current state (knowledge vector). After this, it increments the knowledge vector and uses a
Variable-size Block Hashing technique to �nd redundant chunks of data. Finally it returns to the server the
literal data and its meta-data.
The local redundancy detection, illustrated in Figure 2.5, is accomplished within 3 main steps:

• Data partitioning using a rolling hash (variable-size blocks);

• Hash Calculation over the variable-sized blocks;

• Chunk repository lookup.

The chunk location table lookup is the process that involves �nding a chunk with the same hash value
(similar content). ShiftBack performs a search operation in which it tries to �nd a hash value. If the process
succeeds, the chunk is substituted by a reference link to the single instance chunk. Otherwise, The new hash
value is inserted in the chunk location table for further searches.

Data Index is a server-side only operation that consists in indexing the data stored at the server during
backup, creating mappings between each backed up chunk's hash value and its location.

Data Recovery consists in the operation that retrieves the backed up data to the client. To do this, the
server makes use of the mappings created by the data index operation, in order to �nd the chunks to be
retrieved.

A special feature of ShiftBack is its high level of pipelining, being able to perform deduplication op-
erations over sets of data while others are already being sent. Moreover, ShiftBack uses a pipe and �lter
architecture which allows each �lter to run on a di�erent thread enabling a better use of the CPU at the client.

ShiftBack provides a high e�cient protocol to backup data through low-bandwidth networks, reducing
data transfer and achieving better performances than other solutions based in Delta-Encoding and Compare-
by-Hash techniques. This is due to the use of lightweight structures (knowledge vectors) to represent the
whole state of a site, reducing the amount of exchanged meta-data. However, this system does not provide
any form to reduce/postpone the exchange of data having into account the importance of the backed up
data. This system could use a model to somehow ensure that important data is immediately backed up, and
less important data is postponed to moments of high-bandwidth connection.
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2.5.10 Subversion (SVN)

Subversion (SVN)[15] is a revision control system typically used to synchronize and store multiple versions
of source code �les. SVN is based on a client-server architecture. It supports disconnected operations and
provides to clients tools for handling con�icting updates, since normally there are multiple clients making
concurrent changes to the same �les.

In order to achieve higher performances w.r.t. data transfer protocol, SVN tries to reduce the use of
network resources through the use of delta-encoding techniques. Through this technique it compares �le ver-
sions with their previous versions, detecting cross-version redundancy. This redundancy exploitation is not
only used to reduce the use of network bandwidth, but also to achieve better performance w.r.t. data storage.
As speci�ed, the delta-encoding technique needs one new version and one old version to encode data, which
forces the client to use extra space to store old versions. Furthermore, this method also imposes the limitation
that each �le is encoded only against one other �le, which makes SVN unable to exploit cross-�le redundancy.

In short, SVN is able to perform e�cient data transfer, improving concurrency and providing tools to
reconcile con�icting updates.

2.6 Summary

The following table5.2.4 presents a summary of the above mentioned systems w.r.t. deduplication techniques
and data synchronization models.

System Description Deduplication Algo-
rithms

Adaptive Data Consis-
tency Mechanisms

Dropbox File sharing system Delta-Encoding None
Haddock-FS[6] Distributed �le system Compare-by-hash (Variable-

Size Hashing)
Hybrid consistency: weak
or strong consistency
guarantees according to
the resource constraints

LBFS[23] Distributed �le system Compare-by-hash (Variable-
Size Hashing)

None

redFS[7] Distributed �le system Version-Based deduplication
+ Variable-Size Hashing +
byte-by-byte comparison

None

Semantic-
chunks[40]

Middleware for ubiqui-
tous cooperative work

Compare-by-hash (Variable-
Size Hashing)

Several consistency levels
according to user provided
information

ShiftBack[39] Backup system Version-Based deduplication
+ Variable-Size Hashing

None

SVN[15] Revision control sys-
tem

Delta-Encoding None

VFC for C.
W.[11]

Synchronization tool None Several consistency levels
according to user locality

Table 2.2: Comparison between the studied systems.

Many systems do not have any mechanisms to adapt consistency guarantees according to the needs/resources.
Although some systems provide mechanisms to adapt data consistency, they do not provide multiple levels
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of consistency. These, either enforce weak or strong consistency guarantees, becoming unable to provide
intermediate consistency guarantees.

Further, most systems are not capable of taking into account the interests of users in order to propagate
updates of the shared data. Nevertheless, there are some few systems that provide these features. Yet, they
lack of e�cient mechanisms to explore redundant data in order to either reduce storage space or network
bandwidth.
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Chapter 3

Architecture

This chapter presents the architecture of the proposed �le sharing system, named VFCbox. This system is
capable of synchronizing �les between multiple users. It makes use of deduplication techniques to reduce
data redundancy between synchronizing sites. Additionally, VFCbox uses a relaxed consistency model that
takes into account the interests of users over certain �les or certain parts of the sharing �les, in order to
create multiple consistency levels.

3.1 Baseline Architecture

VFCbox is based on a client-server architecture. Figure 3.1 illustrates the process where clients submit their
updates and data's interests to the server (for simplicity of the presentation, with no lack of generality, we
consider just one server, that could reside inside a data center, or cloud infrastructure). These interests
represent �les or parts of �les (e.g. chapters/sections of a document) in which clients have special interests.
Taking these interests into account, the server is then able to enforce multiple consistency guarantees over
multiple data subsets.

Figure 3.1: VFCbox's main overview.

Thus, the process is based on the exchange of updates between clients and server, and on the submission
of client's interests to the server. These interests are then used to make decisions of which updates have to
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be immediately propagated and which can be stored for a while and only later be sent.

To reduce the use of network resources, VFCbox employs deduplication techniques to the uploading (from
client to server) and downloading (from server to client) process of �les and �le updates.

Additionally, users may upload interests to certain �les or �le parts, in order to guarantee a higher con-
sistency level to high relevance data. In particular, it does not propagate useless or unneeded updates (i.e.
those regarding data which is not relevant for a user, or that can be subsumed by a later update sent).
Thus, �les or �les parts with low relevance to users have applied lower consistency guarantees, which also
reduces the use of network resources. Although we are reducing the consistency between users, this may
not really represent an inferior usability feature. Since users have the control of consistency guarantees, the
lower consistency may only represent the discard of updates with no relevance to the user.

Users may manifest their interests through an interface. In this interface users may mark which zones of
a �le, or which �les of the total set of �les, are of special relevance to them.

Figure 3.2: A �le divided in zones de�ning multiple consistency zones. This example illustrates an interface
in which users may specify their interests overs parts of a �le.

Figure 3.2 illustrates an example of how users can mark a special interest over a certain zone (which
we call semantic zone) of a �le. For exempli�cation proposes, we present a Latex document composed
by several chapters and sections. We may observe that the user marked a section (Architectural Decisions)
as the pivot zone. This means that this client is particularly interested in this section of the document.
The colors of the background of each chapter/section show the importance levels that have been assigned to
them. Thus, each semantic zone of the current �le will have applied a set of consistency guarantees according
to the assigned importance level. Additionally, users can mark several pivots over several zones of a �le in
order to obtain manifest multiple interests.
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Additionally, we also provide to users a way of specifying interests over �les. In this case, instead of
specifying interests over zones of a document, users may specify di�erent interests over speci�c �les.

Figure 3.3 illustrates an example of the above mentioned. In this example the user marked 2 �les as very
important �les, 3 �les as important �les and 5 �les as not important �les.

Figure 3.3: VFCbox interface in which users may specify special interests over �les of a shared folder.

3.2 Architectural Decisions

In this section we describe the main architectural decisions regarding data deduplication and replication
model. These decisions were the drivers to design the VFCbox architecture.

On the following we describe the data deduplication decisions w.r.t. deduplication algorithm, dedupli-
cation timing and deduplication placement. Further we describe the replication model decisions w.r.t. the
consistency model, update submission, update propagation and con�ict resolution.

3.2.1 Data Deduplication

To achieve a high performance in terms of bandwidth reduction, we selected a Variable-size Block Hashing
(VBH) technique to perform compare-by-hash techniques locally.

The advantages of VBH are related to the possibility of exploiting cross-version and cross-�le redun-
dancy, and the use of content-based chunking which avoids the problem of overlapping chunks. Contrary
to the compare-by-hash protocol used by systems like LBFS[23], we opted to make the comparison of hash
values only locally.

Thus, we avoid to add an extra round-trip to the transfer protocol to send the hash values and compare
them between the synchronizing sites. Instead, we mark each hash value that have already been sent to the
synchronizing site. As such, when re-sending an object and as the hash value is marked as synchronized,
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only the hash value is transfered.
For example, when a site is synchronizing a �le with another site, it partitions the �le in several chunks

(of variable size), computes their hash values and marks the chunks as synchronized with the concerning
site. In further synchronizations, the sender site already knows that the other site contains a copy of those
chunks, and thus do not have to re-send them or search for its existence.

With these techniques, bandwidth usage may have several gains. Variable-size Block Hashing allows a
�ne-grained redundancy exploitation, which can reduce space used to store data and bandwidth usage since
redundant data are no more sent over the network.

Regarding deduplication timing, the system is designed to perform deduplication operations on ingestion
time (synchronously) at the client side. This avoids the storage of redundant data and avoids the transfer
of redundant data to the server.

3.2.2 Replication Model

In order to prevail the features of availability, scalability, improved concurrency and to support
disconnected operations, we decided to choose an optimistic replication model. The occurrence of
writing con�icts is then an inherent property.

To deal with the problem of detecting and resolving con�icts, we decided to select a Single-Master
model, where all updates are submitted, in order to have a centralized way of detecting con�icts. This
decision was based on the additional complexity and scalability problems associated to the Multi-Master
model, which can increase the con�icting rate.

W.r.t. con�ict resolution we decided to delegate the reconciliation to the user. Nevertheless, we decided
to contemplate auxiliary tools in order to facilitate the con�ict's resolution.

To propagate replica updates we aimed to a push propagation model on the client side. This dele-
gates to clients the duty of propagating to the server their existing updates. The opposite way was to have a
pulling operation on the server side that periodically could request new updates. Yet, this would introduce an
overhead to the server and to the network protocol, which makes the push propagation model a better option.

On the server side we also decided to have a push propagation model, which gives the responsibility
to the server of propagating new updates. In comparison to the push propagation model, this model avoids
the overhead of having peaks of client requests and frequent requests.

W.r.t. �le sharing systems, patterns have identi�ed that many times most of the elements of a collabo-
rative team are only interested in parts of the sharing data.

For instance, a team of co-workers writing a document may have elements that are only working in a
speci�c part of the document, not being really interested on the rest of the document. Nevertheless, if two
co-workers are working in the same part, they may want to ensure a strong consistency of that data through
time.

This led us to the topic of locality-awareness (or interest-awareness), where the knowledge of user's
interests can be taken into account to specify multiple consistency guarantees. As such, we decided to
use an optimistic replication model that uses the interest of users over the shared data to enforce di�erent
consistency guarantees. The advantages are several:

• reduced latency on the transmission of data considered as more relevant to the user;

• bandwidth usage reduction, since less updates messages are sent due to the lower consistency
guarantees enforcement;
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• improved scalability.

Figure 3.4: A �le divided in zones de�ning multiple consistency zones (semantic zones). This example
illustrates how VFC was adapted to documents.

We identi�ed the VFC model [41, 33] as a natural �tting model to this environment, where its locality-
awareness techniques can be applied from the most to the less important user's data. By this, VFC can
impose strong consistency guarantees to parts of data that are of extreme interest to users. Or relax some
consistency guarantees to parts of data of less interest to users.

Figure 3.4 illustrates a document �le partitioned into several zones, de�ning multiple consistency zones,
which we call semantic zones. In this �gure and for exempli�cation proposes we present a Latex �le
composed by several sections, which naturally de�nes multiple zones. Each semantic zone may then have
applied di�erent consistency guarantees according to user's interests. Users may assign one semantic zone
as the more interesting zone (pivot zone). According to this interest, each semantic zone will have assigned
a certain consistency level in accordance with the distance to the pivot zone.

3.2.3 VFCbox Main Components

In this section we describe an overview of the VFCbox main architecture, namely the client and server nodes.
Client nodes correspond to a user-level application and environment that enables clients to asynchronously

edit �les while guaranteeing their e�cient synchronization. To accomplish this, the VFCbox client node is
continuously monitoring the �le system in order to detect �le modi�cations that were performed by other
applications. Once detected, the modi�cation is considered as a new update and has to be propagated to
the server node. Before transferring the update to the server, the client node performs deduplication and
data compression operations in order to reduce the transferred data.

Additionally, the client node has also the duty of informing the server about the current interests that
users have over parts of shared data.

The Server node corresponds to the central node of the system. All updates are either received or sent
by the server, being this node responsible to ensure data consistency through client nodes. This component
is thus responsible for receiving updates and propagate them according to users interests. Additionally, this
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component also performs deduplication operations in order to remove redundancy from data to be transferred
from the server to clients.

Figure 3.5: Client Architecture. Figure 3.6: Server Architecture.

The client node architecture (Figure 3.5) is composed by 9 main modules: User Interests Uploader, File
System Monitor, Intermediate Format (IF) Translator, SyncFromServer, SyncToServer, File Downloader,
File Uploader, Deduplication and Data Compression. On the following we describe each module in more
detail:

• User Interests Uploader: This module is responsible for uploading the user's interests to the server.

• File System Monitor: This module is responsible for keeping track of any document update per-
formed by the application.

• Intermediate Format (IF) Translator: This module is responsible for translating �les to an inter-
mediate format in XML that is used to de�ne the multiple semantic zones.

• SyncFromServer: This module is in charge of the synchronization process from the client side to the
server side. It is responsible for updating each object that is being updated.

• SyncToServer: This module is in charge of the synchronization process from the client side to the
server side. It manages the versioning information about each update.

• File Downloader: This module is responsible for receiving the data that is being sent from the
server to the client side. It is responsible for controlling the data �ow through the deduplication and
compression process.

• File Uploader: This module performs the data transfer from the client to the server side. It is
responsible for controlling the data �ow through the deduplication and compression process.

• Deduplication: This module performs deduplication operations for transfer proposes. It is responsible
for detecting redundant data between the client and the server, and for substituting it for references.

• Data Compression: This module performs compression operations, either for compressing outgoing
data or decompressing incoming data.

The Server node (Figure 3.6) corresponds to the central node of the system. Every updates are either
received or sent by the server, being this node responsible to ensure data consistency through client nodes.
This component is thus responsible for receiving updates and propagate them according to users interests.
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Additionally, this component also performs deduplication operations in order to remove redundancy from
data to be transferred.

We propose an architecture where server nodes are composed by 7 main modules: File Downloader,
File Uploader, Deduplication, SyncToClient, SyncFromClient, VFC Synchronizer, and VFC (Consistency
Manager). On the following we describe each module in more detail:

• Deduplication: This module performs deduplication operations for transfer proposes. It is responsible
for detecting redundant data between the server and the clients, and for substituting it for references.

• File Downloader: This module is responsible for transferring data to clients. It is responsible for
controlling the data �ow through the deduplication process.

• File Uploader: This module is responsible for receiving data from clients. It is responsible for
controlling the data �ow through the deduplication process.

• SyncToClient: This module is in charge of the synchronization process from the server side to the
client side. It is responsible for updating clients with new updates and detecting the occurrence of
con�icts.

• SyncFromClient: This module is in charge of the synchronization process from the client side to
the server side. It is responsible for updating the server with the incoming updates and detecting the
occurrence of con�icts.

• VFC Synchronizer: This module is responsible to synchronize incoming updates with all the clients.
It also has the responsibility of forwarding new updates to the VFC (Consistency Manager).

• VFC (Consistency Manager): This module is responsible to enforce the VFC model over the
synchronization process. Thus, it stores and manages all user's interests in order to perform the
propagation of updates in a selectively way.

3.2.4 Upload Pipeline

Figure 3.7: VFCbox's data upload pipeline: modules of the baseline architecture that are involved in the
data upload.

This section describes how the upload pipeline supports the upload of new �le updates. Its duty is to
monitor and detect new updates (�le creation, �le's contents update, etc.) and to upload them to the server.
Additionally, this pipeline is responsible of performing deduplication and compression operations in
order to reduce the use of bandwidth resources in the synchronization process (from client to server).

Figure 3.7 illustrates the pipeline used to perform the whole process of synchronizing a new update to the
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server. The process starts on the client side when a user performs an update to an existing �le (or creates a
new �le). The process then ends when all new updates are synchronized with the server.

The upload process is composed by 7 main steps, namely 1)File System Monitoring, 2)File Translation
to the Intermediate Format, 3)Client Synchronization, 4)Client Deduplication, 5)Data Compression, 6)Data
Transfer, 7)Server Deduplication and 8)Server Synchronization. On the following we describe each step and
each involved module of the process:

• 1) File System Monitoring
The process of uploading a �le update starts with an update event, triggered by the �le system monitor.
It happens when a user performs a �le modi�cation, triggering an event on the client node to which
information about the update is passed.
Further details about the File System Monitor are explained in Section 4.1.2.

• 2) File Translation to the Intermediate Format
After detecting a new update, the update is translated to an Intermediate Format (IF). This allows
the usage of the same format and same semantic zone de�nition for any type of �les, since all �les are
translated to the IF.
Further details about the used Intermediate Format are explained in Section 3.3.

• 3) Client Synchronization
In this phase the new update is synchronized with the server. This synchronization step is responsible
for managing all the versioning information of updates and for keeping the knowledge of the version
that the server is aware of. Multiple semantic zones of a certain �le are considered as di�erent and
independent objects and therefore are independently synchronized. Thus, when a certain semantic
zone of a �le is updated, only the concerning semantic zone is updated.
Section 3.6 describes more details about the synchronization process.

• 4) Client Deduplication
Before transferring the new update's data to the server, the process of deduplicating redundant data
is triggered. Brie�y, the deduplication process is composed by 3 main steps, namely data partitioning
(chunking), chunk hashing and chunk lookup (actual deduplication). The �rst step consists in the
partitioning of data in chunks, using a contents based method. Then, an hash value is calculated for
each created chunk. By last, the hash value is searched in the client's chunk repository and in the
client's references table in order to detect if the concerning chunk as already been sent to the server
in previous uploads. The chunks repository is responsible for storing each data chunk. The references
table is responsible for maintaining information about the data chunks that have already been sent to
the server. If the concerning chunk has already been sent to the server, the chunk is replaced by a
single reference containing the chunk's hash value. Additionally, the client adds to the references table
a reference to each chunk that is sent to the server, in order to �nd in the future if that chunk has
already been synchronized.
Further details about the deduplication process are explained in Section 3.4.1.

• 5) Data Compression
After the deduplication, the remaining literal chunks are compressed using the BZip21 compression
algorithm.
Further details about the compression process are described in Section 3.5.

• 6) Data Transfer
The upload process then continues with the data transfer of the new update. As already mentioned,
VFCbox uses an Intermediate Format to represent the multiple semantic zones of a document �le.
Nevertheless, when uploading to the server a �le update, only the a�ected semantic zones are transferred

1http://www.bzip.org
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avoiding to send large sets of chunks references. Thus, when uploading a �le update, only the updated
semantic zones are transferred. Additionally, and for each semantic zone, only the content of the literal
chunks is sent plus the references to the non literal chunks.

• 7) Server Deduplication
On the server side and for each chunk that the server receives, the server adds to the references
table a reference to the received chunk, indicating that the uploading client contains a copy of it. This
information may be used later, in order to detect redundant data between the server and the concerning
client.
Section 3.4.1 describes more details about the deduplication process.

• 8) Server Synchronization
By last, the server updates the versioning information of the incoming update, determining if there
were any con�ict occurrence. For each received semantic zone and for each client, a consistency level
is assigned in accordance to client's interests. This consistency level is calculated taking into account
the distance to the selected pivot zone of the concerning �le and user. This phase performed by the
VFC model, allows the further synchronization of incoming updates with the rest of the clients. The
following section (Section 3.2.5) describes this synchronization: File Download.
Section 3.6 describes the consistency model and the VFC enforcement in more detail.

3.2.5 Download Pipeline

Figure 3.8: VFCbox's data download pipeline. The �gure illustrates the modules of the baseline architecture
that are involved in the data download.

This section brie�y describes how the download pipeline supports the download (i.e. from server to
client) of new �le updates. The download of a �le update is initiated on the server side (push propagation
model). The duty of this pipeline is to periodically check if there are updates to be sent from the server to
clients. This synchronization process is controlled by the VFC model, which determines if an update will be
delayed or immediately synchronized with a certain client. The VFC model is able to perform this selective
selection and propagation of updates according to each user's interests. Thus, the process of downloading a
�le update starts on the server side once the divergence bounds of a shared object (�le or �le semantic zone)
are exceeded. Additionally, the server performs deduplication in order to avoid to send data chunks that are
already contained by clients.

Figure 3.8 illustrates the pipeline used to perform the whole process of synchronizing a new update with
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a client. The process starts on the server side when the divergence limits of a certain object are exceeded.
The process ends when the concerning object is synchronized with the client.

The download process is composed by 8 main steps, namely 1)VFC Limits Checking, 2)Server Synchro-
nization, 3)Server Deduplication, 4)Data Transfer, 5)Client Deduplication, 6)Data Decompression, 7)Client
Synchronization and 8)File Translation to the File Format.

We now describe each step and each involved module of the process:

• 1) VFC Limits Checking
The download of a �le update starts when the VFC Manager of the system triggers a synchronization
event to a certain client. As already mentioned, a �le is composed by a list of semantic zones, to which
di�erent consistency levels are assigned in accordance to each user's interest. Each consistency level
has a set of divergence bounds associated, namely sequence and time bounds. The sequence bound
limits the number of updates that the concerning client may miss. The time bound limits the time
that the concerning client may be without being refreshed with the latest update. Therefore, when a
semantic zone exceeds its divergence bounds with a certain client, the semantic zone is elected to be
synchronized, and the process of downloading a �le update is initiated.
Section 3.7 describes how the VFC model is enforced in a more detailed way.

• 2) Server Synchronization
The set of updates that are found to be synchronized with a client are passed to the synchronization
module. This module is responsible of updating the versioning information of each synchronizing
object.
Section 3.6 describes more details about the synchronization process.

• 3) Server Deduplication
Before transferring the contents of each update to the concerning client, the server performs the dedu-
plication process. To accomplish this, the server searches its references table in order to �nd if the
current client already contains a chunk of data. For each chunk to be transmitted, the server performs
this action. If a reference of a chunk is found in the references table, the chunk is replaced by a reference
containing the chunk's hash value. If not, the actual data chunk is fetch from the chunks repository
and the process proceeds to the data transfer step.

• 4) Data Transfer
The download process then continues with the data transfer of the current update.

• 5) Client Deduplication
When the client receives a literal chunk, it stores the chunk in the chunk repository and adds a reference
to it in the references table. When the client receives a non literal chunk, it adds a reference to it in
its references table and searches for the chunk's content in the chunk repository.
Section 3.4.1 describes the deduplication process in more detail.

• 6) Data Decompression
After the deduplication process, the compressed data chunks are decompressed in order to get the
actual content of the update.
Further details about the decompression process are described in Section 3.5.

• 7) Client Synchronization
The new update is synchronized with the client. This synchronization step is responsible for updating
the versioning information.
Section 3.6 describes more details about the synchronization process.

• 8) File Translation to the File Format
The client translates the synchronized update to the actual �le format which enables the actual write
of the update to the client �le. A noti�cation to the client is also shown presenting the a�ected �le
and semantic zones.
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3.3 Data File Representation (Intermediate Format)

To represent the data �les and describe the multiple semantic zones of a document �le, VFCbox makes use
of an intermediate format (IF) to represent the data and meta-data associated with each �le. As such, every
�le that is consumed by the system is translated to the IF. This allows the addition of any type of �les to
the system only by adding a plugin to translate the concerning type to the IF. The duty of each plugin is
then to determine the multiple semantic zones of a �le and represent these zones in the IF. For instance, in
the case of Latex documents, we could split documents in chapters and sections, considering each of them
as a semantic zone. Another example could be the partitioning of a spreadsheet in multiple sheets or the
partitioning of a sliding show in multiple slides.

Figure 3.9: Example of a Latex document translated to the intermediate format.

Already existing formats could have been used to express the multiple consistency zones. Nevertheless,
we opted to create a simpler format, avoiding to incur in unnecessary overloads.

The VFCbox IF makes use of XML to de�ne the �le format. On the following we describe in more detail
the structure nodes (composed by lists) of the IF:

• doc: parent node of any �le. It is constituted by a docStructure node and multiple zone nodes.

• docStructure : node that describes the list of semantic zones that constitute the �le. It is composed
by a list of zoneId nodes.

• zoneId : node that describes the identi�cation and depth level of a semantic zone.

• zone : node that contains the content data of a semantic zone.

Figure 3.9 represents an example of a Latex document translated to the IF. In this example, we may see
that the Latex document was composed by 5 chapters (Tex Headers, Introduction, Related Work, Architec-
ture and Conclusion), now transformed in 5 semantic zones.
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3.4 Deduplication Architecture

In this section we describe the architecture of the deduplication used to reduce the redundant data trans-
ferred over the network. The deduplication process is capable to explore the redundant data either from the
client to the server side or from the server to the client side. Through comparison of variable-size hashes we
are capable to explore both cross-�le and cross-version redundancy.

This section describes all the steps of the deduplication process, presents the main modules of the dedu-
plication architecture and describes the data transfer protocol.

3.4.1 Deduplication Process

In short, the deduplication process is composed by three main steps: I) Data partitioning; II) Hash
Calculation; III) Chunk Lookup in chunk repository and references table.

Figure 3.10: Example of deduplication process.

The process of deduplication, illustrated in Figure 3.10, is composed by three main steps. The �rst step
regards the process of partitioning data that is found to be written. This partitioning is accomplished by
using Rabin Fingerprints to calculate the chunk boundaries according to data's contents. It is based on the
examination of every 48-byte regions of the �le and respective calculation of a rolling hash. The rolling hash
is then compared with a pre-de�ned value. The probability of having a match between the rolling hash and
the pre-de�ned value is of 2−13, and when it occurs, the current region is marked as a chunk boundary.

The second step of the process constitutes the hash calculation (using SHA-1) of each chunk provided by
step 1.

The third and last step regards the process of writing data in a compact form. The compact form is
constituted by a list of references to chunks. For this, it is required a lookup over the chunks repository and
over the references table in order to detect redundant chunks. If the chunk already exists, only a reference is
added to the chunk contained by the repository. Otherwise, the new chunk has to be added to the repository,
creating for it a new entry that is identi�ed by its hash-value.

The duty of the chunk repository is thus to store chunks and provide the possibility of performing lookups,
in order to detect already existing chunks. Each entry of the repository contains a unique hash-value of a
chunk and a reference to the actual chunk.

The references tables consists on the set of hash values that each site knows to be found at a given
site. The duty of the references table is to store references to chunks that have been sent to a certain site.
These references are associated with the synchronizing site identi�cation. This provides the possibility of
performing lookups, in order to detect if a certain chunk has already been sent to a certain site.
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3.4.2 Deduplication Modules

This section describes and illustrates the main modules of the deduplication architecture. The client node
of the system has always the duty of performing the whole deduplication process, namely data partitioning,
hash calculation and chunk lookup. The server node only performs the last step of the deduplication process,
namely chunk lookup.

Figure 3.11: Deduplication Client Architecture.

Figure 3.11 represents the deduplication architecture on the client side. It is composed by 3 main modules:

• Chunk Generator: This module performs the chunking operations. It is responsible for calculating
a rolling hash using Rabin Fingerprints and to identify the bounds of each data chunk.

• Chunk Hasher: This module is responsible for calculating the hash value (with SHA-1) of each data
chunk.

• Chunk Deduplicator: This module performs the actual deduplication. It makes use of a chunk
repository to store the literal data that is indexed by their hash values. It also makes use of a references
table in order to �nd if a certain chunk has or has not been already sent to the server.

Figure 3.12: Deduplication Server Architecture.

Figure 3.12 represents the deduplication architecture on the server side. It is composed by 1 main module:

• Chunk Deduplicator: This module performs the actual deduplication. It makes use of a chunk
repository to store the literal data that is indexed by their hash values. It also makes use of a references
table in order to �nd if a certain chunk has or has not been already sent to a certain site/client.
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3.4.3 Data Transfer Protocol

Figure 3.13: Example of the compact format of a �le after deduplication.

VFCbox data transfer protocol contemplates the deduplication process on both sides. I.e., if the server
receives a certain data chunk from a certain client, the current chunk will not be transferred to the con-
cerning client in future synchronizations. From the other perspective the same happens, i.e., if the client
receives a certain data chunk form the server, the current chunk will not be transferred to the server in
future synchronizations. This may be accomplished since both server and clients keep references to the sent
chunks in the references table.

Figure3.13 illustrates the compact form used to represent the multiple data chunks. This compact form
is constituted by a list of references to the actual chunks stored in the chunk repository. These references
are composed by the hash values of the data chunks.

Figure 3.14 represents the data transfer protocol. Before sending any chunk of data, the transferring site
searches the references table in order to �nd if the concerning chunk has or has not been already sent to
the receiving site. If the chunk has not been sent, the actual content of the chunk is sent over the network.
If not, only a reference (composed by the chunk's hash value) to the chunk is sent over the network. In
this example we may observe that the synchronizing �le is composed by 3 redundant chunks containing the
content string "`Hello"' and a single chunk containing the content string "`Bye"' (Figure 3.13). When the
�rst chunk is sent over the network, the sending chunk is not found in the chunk repository and thus the
whole content of the chunk has to be transferred (literal chunk). Nevertheless, and when the second chunk
is going to be transferred, the current chunk is already found in the chunks repository and in the references
table. As such, the chunk is considered redundant and therefore substituted by a single reference. The same
action happens with the 3rd data chunk. By last, and since the 4th chunk has not been earlier sent to the
synchronizing site, it considered as a literal chunk.

Figure 3.14: Example of the transfer of a �le. This example illustrates the transfer of the compact format
of the �le exempli�ed in Figure 3.13. The black boxes represent literal data. The gray arrows represent
references to the actual chunks of data.

As mentioned above, the transfer protocol relies on a references table. This references table consists on
the set of hash values that each site knows to be found at a given site. As such, each time a client sends a
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chunk to the server, it adds a reference in the references table. Thus, this client will know that the server
also holds an identical chunk of data. The server will guarantee that it will not delete that chunk of data
until the client deletes it. The same happens in the server perspective. Each time the server sends a chunk
to a certain client, it adds a chunk reference in the references chunk with the concerning client identi�cation.
Thus, the server can infer if a certain chunk has been sent to a certain client by searching the references
table.

3.4.4 Chunks Repository

In this section we describe in more detail the responsibility and architecture of the chunks repository. The
chunks repository is responsible for storing each data chunk both at client and server side. Each chunk that
is going to be transferred over the network is searched in the chunk repository. If the chunk is not found in
the chunk repository, a new entry is created with the hash value and the content of the chunk. In this case,
we know that we are in presence of a literal chunk, and therefore the whole content of the chunk has to be
transmitted over the network to the synchronizing site.

If the chunk is found in the chunk repository, we have to search the references table (described in Section
3.4.5) in order to �nd if the current chunk has already been sent to the synchronizing site.

Figure 3.15 illustrates a set of �les constituted by lists of references to the chunk's hash values. These
chunks are stored in the chunks repository and are indexed by their correspondent hash values. Thus, the
chunk repository is composed by a hash map, which uses chunk's hash values to index chunk's contents.

Figure 3.15: Example of the contents of multiple �les. The internal representation of each �le is constituted
by a linked-list of references to the chunk's hashes.

3.4.5 References Table

In this section we describe in more detail the responsibility and architecture of the references table.
The references table is responsible for maintaining information about the data chunks that have already

been sent to each known site. As such, when a data chunk is being transferred to a certain site, a reference
to it is added in the references table. This allows to perform lookup operations in future in order to detect
if a certain data chunk has already been sent to a certain site. Therefore, the references table is the actual
component that allows the deduplication between synchronizing sites.

Each client contains a set of references to chunks that have already been sent to the server. This allows
the client to know which data chunks have already been transferred to the server, avoiding by this the future
transfer of redundant chunks.
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The server contains a set of references to chunks that have already been sent to clients. Each reference
contains the identi�cation of the synchronizing site. This allows the server to know if a certain chunk has
already been synchronized with a certain client.

Both, clients and server have thus to guarantee that they will not delete any data chunk from the chunks
repository until no references of that chunk are found in any synchronizing site. Each client does not delete
any data chunk from the chunks repository if the server is still containing a reference expressing the existence
of that chunk in that client. The same happens with the server. The server does not delete any data chunk
without being sure that for each client there are no references to the concerning chunk.

Figure 3.16 illustrates an example of the references table on the server side. This examples illustrates
the existence of references to multiple chunks in 3 di�erent clients. This means that the data chunks with
the hash values H1, H2 and H3 have already been sent to Client 1. The same happens with Client 2 w.r.t.
the hash values H5 and H3.

Figure 3.16: Example of the references table on the server side. The example represents that the Client 1
has references to the hash values H1, H2 and H3, which means that the data chunks with those hash values
have already been sent to the concerning client.

Therefore, the references table is composed by lists of hash values of the correspondent chunks that have
already been transferred to a certain site. Each hash value list is thus assigned with the identi�cation of the
correspondent synchronizing site.

3.5 Data Compression

In this section we describe the used method to compress and decompress each transferring data chunk.
The compression process is only performed in the client side. Thus, the server only deals with compressed

data chunks. The server only receives chunks that have already been compressed by the client side. Then,
the server stores those compressed chunks for further synchronization processes. When the server transfers
a chunk to a certain client, the client is responsible for decompressing the literal data. The duty of the data
compression module (only present in the client side) is thus to compress the contents of each literal chunk
that is being transferred and to decompress each literal chunk that is being received.

To perform the compression we opted to use the BZip2 algorithm 2 due to the high compression rates that
may be achieved. Additionally, and in contrary to other algorithms (e.g. de�ate algorithm), this compression

2http://www.bzip.org
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algorithm is capable of achieving high compression rates even when in presence of random data or binary
data.

3.6 Consistency Model Architecture

In this section we describe the details of the implemented consistency model. First we describe how we
manage the consistency meta-data and how we identify di�erent versions of the same objects. Further, we
describe how the used consistency model improved the �le sharing system w.r.t. the reduction of con�icts.

Figure 3.17: VFCbox interface, in which users may specify special interests over certain �les of a shared
folder.

As already mentioned, to accomplish the multiple consistency requirements we use the VFC model to
apply a relaxed consistency over the sharing �les. In order to apply the VFC model, the system takes into
account 2 levels of users interests:

• i) �le interests;

• ii) content �le parts interests.

The �rst type of interests is related to the interests that a user may have over certain �les. With this
interest speci�cation, a user may specify which are the �les he wants to guarantee stronger or weaker con-
sistency guarantees. The consistency guarantees are thus applied over the whole �le.

Figure 3.17 illustrates an example where users may indicate these interests. In this example, a book
with several �les is illustrated. The user identi�ed two �les, in which he has a stronger interest (Files chap-
ter_1.tex and chapter_2.tex). Three other �les were also marked as important �les (Files chapter_3.tex,
chapter_4.tex and chapter_5.tex) and �ve �les as not important �les. Therefore, and in accordance with
this interests speci�cation, this user will have stronger consistency guarantees applied over the two �rst �les
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(Files chapter_1.tex and chapter_2.tex). Weaker consistency guarantees will then be applied over the other
�les according to each consistency level.

The second type of interests is related with the interests that a user may have over parts of a certain �le.
With this type of interests, a user may indicate a special interest over a part, which we call a semantic zone,
of a document �le. Consistency guarantees would then be stronger as close to the indicated semantic zone,
i.e., as close to the selected pivot zone.

Figure 3.18: A Latex �le divided in chapters and sections de�ning multiple consistency zones. This example
illustrates an interface in which users specify their interests overs parts of a Latex �le.

Figure 3.18 illustrates an example where users indicate these interests. In this example, the user de�ned a
section that is considered as important in the document, in which is required stronger consistency guarantees.
The rest of the sections are then considered as less important, and therefore have applied weaker consistency
guarantees. In this example, 3 consistency zones are identi�ed. These zones are classi�ed as follows and
have applied an according consistency guarantee level:

• i) very important zones;

• ii) important zones;

• iii) not important zones.

As just mentioned, we de�ned three levels of interest. Less then three levels would force users to decide
either to have strong or weak consistency guarantees, which is not our intention. By the other hand, we
could have de�ned more then three levels of importance, nevertheless, it would be much di�cult to the user
to decide which level to assign. Further studies could be made in order to �nd out which is the best number
of interest levels. However that is not the intent of this speci�c work.
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Similarly to the previous example (Figure 3.17), in this example the user will have stronger consistency
guarantees applied over the most important zones and weaker consistency guarantees as the importance of
the semantic zones decreases. However, and contrary to the previous example, in this case, the multiple
consistency levels are enforced over parts/zones of a �le and not to the whole content of the �le.

To accomplish the above mentioned, it was required some method to represent document �les divided
in parts (semantic zones). Figure 3.19 represents a �le divided in semantic zones. These semantic zones
may be seen as natural parts of a document, for instance, chapters and sections of a Latex document. As
such, for VFCbox, a �le is viewed as a list of semantic zones to which di�erent consistency guarantees may
be applied. According to each user interest, each semantic zone is associated with a consistency level and
assigned with some VFC limits, namely sequence (σ) and time (θ) limits.

Figure 3.19: Example of a �le format to VFCbox. A �le is composed by a list of zones and each zone is
composed by a list of references to chunks.

Each semantic zone (e.g. chapter/section of a �le) is composed by data that is deduplicated. As such, for
our system a �le is viewed as a list of semantic zones in which each zone is composed by a list of references
(chunks pointers) to data chunks. As represented in Figure 3.19 the data chunks are stored in the chunk
repository.

In order to apply di�erent consistency guarantees over multiple consistency zones of a �le and consider
them as independent objects, we mark each object with a version vector containing one version stamp per
each know site. The version stamps are integer counters that are incremented by one unit for each new update.

Each �le has one version vector for the structure of the �le and one for each semantic zone. This allows
the detection of modi�cations on the �le structure (e.g. insertion of one zone) or on the content of each
semantic zone.

Client nodes contain version vectors with two entries, one entry to the own version and one entry to the
server version. Server nodes contain version vectors with N+1 entries, one entry to the own version and N
entries to N clients (only the clients that share the �le are included).
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Figure 3.20: Example of two clients trying to update to the server two di�erent zones of the same �le. The
underlined version stamps represent the new updates. The version vector at the top of each �le represents
the version of the document structure.

Figure 3.20 represents an example of two clients updating the same �le to the server. Both clients share
the same structure of the document, which can be seen by the version vectors (VV=[1,1]). Client1 is up-
dating the 3rd semantic zone, in which his version vector is VV=[1,2] / VV=[Server, Client1]. This means
that the server is with one update in delay (version stamp = 1 in comparison to version stamp = 2). Client2
is updating the 2nd semantic zone, in which his version vector is VV=[1,2] / VV=[Server, Client2]. Both
semantic zones at the server are marked with the version vector VV=[1,1,1] / VV=[Server, Client1, Client2].

Figure 3.21: Example of two clients after updating to the server two di�erent zones of the same �le. This
exempli�es the result obtained by example represented in Figure 3.20. The underlined version stamps
represent the new updates (already synchronized to the server). The version vector at the top of each �le
represents the version of the document structure.

Figure 3.21 represents the result of the submission of both updates (from Client1 and Client2) to the
server. By representing parts of a �le as independent objects, we are not only capable of enforcing multiple
consistency levels but also of avoiding con�icts. This is accomplished since we assign a version stamp per
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each semantic zone. As such, modi�cations to di�erent zones of a �le are viewed as updates to di�erent
objects and thus not considered as a con�ict. This situation may also be seen in this �gure, where two clients
updated the same �le without creating a con�ict.

3.7 VFC Enforcement

In this section of the document, we describe how the VFC model is enforced over the multiple updates.
Information about how the system assigns di�erent consistency levels to di�erent zones of a document is also
presented in this section. Additionally, details about the checking of VFC limits and used limits to bound
the divergence between replicas are presented in this section.

After receiving an update, the server is responsible for enforcing the VFC model. The VFC model Man-
ager is in charge of determining the consistency level of the current update, according to each user interest.
Each semantic zone update is then assigned with a consistency level, a set of divergence bounds/limits and
a set of clients to whom this update may concern.

After having assigned a consistency level, each semantic zone is inserted in a list of semantic zones.
There are three semantic zone lists, one for each consistency level. Nevertheless, the system is prepared to
be con�gured to have more consistency levels. Periodically, each list is iterated in order to update the time
parameter and verify if any semantic zone has already exceeded the time limit to be propagated to a certain
client. For instance, from x to x seconds, we update the time parameter of each semantic zone by x seconds.
When the time parameter of any object exceeds the speci�ed time limit to that consistency level zone, the
object is elected to be propagated.

Identically, when a new update is received, the sequence parameter of the a�ected semantic zone is
incremented by one unit. Then, this sequence parameter is compared to the sequence limit speci�ed to that
zone. If the sequence parameter exceeds the this limit, the object is elected to be propagated.

3.7.1 Consistency Level Assignment

After receiving an update to a certain semantic zone, the server has to assign a consistency level to it. As
already mentioned, there are 3 di�erent consistency levels, namely very important zones level, important
zones level and not important zones level. To assign a certain level to a certain semantic zone update, we
have to calculate the distance of the concerning zone to the pivot zone.

distance(Semantic_Zone;Pivot_Semantic_Zone(Client_X)

The distance calculation is made by calculating the number of zones that are between the semantic zone
and the pivot semantic zone. Therefore, a distance of 3 units means that there are 3 semantic zones between
the semantic zone and the pivot semantic zone.

3.7.2 VFC Limits

To bound the divergence between clients, a set of limits of the VFC model are imposed.
From the three main divergence criterias of the VFC original work, we decided to use two of them, namely

Sequence (σ) and Time (θ). The Sequence criteria indicates the number of updates that have already been
performed over a certain �le. Each �le save is considered to be as an update.

We decided not to use the Value (ν) divergence criteria since this criteria could have no meaning to
users. For instance, a modi�cation to the �le formatting could indicate a high percentage of modi�cation,
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nevertheless the content of the sharing document is maintained.

The following table (Table 3.7.2) describes the default limits of divergence imposed by the VFC model.
These limits may be con�gured.

Semantic Zone Level Sequence (σ) Time (θ)
Very Important 1 update 0 min.
Important 5 updates 5 min.
Not Important 10 updates 10 min.

Table 3.1: VFC model: semantic zone limits.

These limits are enforced over each semantic zone. According to the certain level, each zone has assigned
some divergence bounds. For instance, a semantic zone that is considered as very important, has associated
a sequence bound of 1 update and a time bound of 0 min. which means that an update to that semantic
zone would be immediately propagated to the concerning client. On contrary, a semantic zone considered as
an important zone, has associated a sequence bound of 5 updates and a time bound of 5 min.. This means
that only after 5 updates or only after a delay of 5 min., the semantic zone would be transferred to the
concerning client.

3.7.3 Checking VFC Limits

Time

The Time limit of a VFC consistency vector de�nes the maximum time without seeing any updates from a
zone at a certain distance form the pivot zone. To enforce the time limits, we set a mechanism that signals
timeouts for each consistency zone with a period de�ned by the consistency vector time limit.

To create these timeout events, we connected a function to a clock signal in the server, with a period
equal to the minimum unit of measurement, i.e. one second. This function counts the elapsed time and
checks, for every consistency zone, if the time limit has been exceeded.

Elapsed_Time[Semantic_Zone] > Time[distance(Semantic_Zone;Pivot_Semantic_Zone(Client_X))]

Sequence

The Sequence limit is de�ned as the maximum number of unseen updates from a certain semantic zone. The
Sequence limits are checked in consequence of either the arrival of a new operation, or a change in the user
pivot. This limit is checked simply by comparing the number of undelivered operations in a certain semantic
zone with the maximum sequence limit de�ned by the according sequence divergence limit.

#Updates[Semantic_Zone] > Sequence[distance(Semantic_Zone;Pivot_Semantic_Zone(Client_X))]
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Chapter 4

Implementation

In this chapter we describe the most relevant details of the implementation of our solution.

In this work we implemented a �le sharing system capable of synchronizing the creation/modi�cation/deletion
of Latex �le documents. Although our prototype only implemented the sharing of Latex �les, other types
of �les could be implemented by adding plugins to the �le system monitor in order to detect their multiple
data parts and make the translation of those �les to the intermediate format.

VFCbox creates a shared folder that is automatically uploaded to the server node. The client node, is
responsible for monitoring the shared folder. Any �les dropped into this folder are indexed, hashed and then
compared to other data chunks already sent to the VFCbox's server.

Additionally, the system contemplates a noti�cation process that alerts the client to new arriving �les or
new updates to speci�c zones of a �le.

The client of this �le sharing system was implemented in C# .Net. The advantages of using C# .Net
are:

• Building the �le system monitor easily using the FileSystemMonitor from the .Net framework.

• Building the transfer protocol easily using .Net Remoting.

• Building the GUI using the Microsoft Forms from the .Net framework.

• Building the right click menu on windows explorer using the .Net framework.

• Wide set of cryptographic tools (e.g. SHA-1 implementation).

• Wide set of tools to deal with XML.

4.1 Client

In this section we overview the client node implementation and describe some of its most interesting details.

4.1.1 Content-based (variable-size) Chunking

The content-based chunking algorithm is based in Rabin Fingerprints. It consists in the hash calculation of
a sliding window of 48 bytes and in the comparison of the hash value with a certain value. If the hash value
matches with the predetermined value, a chunk bound has been found. To limit the chunk boundaries, we
have con�gured a lower and upper size limit. The lower limit is of 16Kb and the upper limit is of 32Kb.
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These values were chosen after a set of tests to infer which limit boundaries would bring a higher performance
and bandwidth reduction results.

4.1.2 Interception of Updates

To intercept client's �le updates we implemented a �le system monitor. This monitor is responsible for
detecting changes in the �le system and report these modi�cations to the VFCbox system. In order to
implement the �le system monitor, we used the FileSystemWatcher from the .NET framework. The FileSys-
temWatcher is capable of monitoring several modi�cations of a certain folder of the �le system, providing
information about the type modi�cation (�le creation, �le modi�cation, �le deletion, �le name modi�cation,
etc.), about the modi�cation time and others.

The implemented �le system monitor also had the duty of detecting fake or duplicate updates. The
FileSystemWatcher from the .Net framework normally duplicates the modi�cation events. This situation
happens due to the modi�cation of the contents of a �le and of its attributes, which represent 2 modi�cations
on the �le system. Thus, our implementation had to detect and ignore these duplicates.

4.1.3 Shell Extension Menu Handler

To create the right click menu on windows explorer we implemented a shell extension menu handler. This
was accomplished by implementing the Windows interfaces IShellExtInit and IContextMenu. Additionally,
we also had to implement the registration of the multiple created handlers in the Windows Registry. Figure
4.1 illustrates one of the created menus in which users may decide to share a folder or to upload a certain
interest over a certain �le of the concerning folder.

Figure 4.1: Right click menu on windows explorer exposing the VFCbox menu. In this case users may decide
to share the current folder with a certain user or to upload some interests over certain �les of the current
folder.
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4.1.4 Interests Uploading Interfaces

To upload the multiple user's interests, we implemented two interfaces. One interface is used to upload
interests over whole �les, i.e. users may indicate which �les are more or less relevant to them. This interface
is depicted in Figure 4.2.

Figure 4.2: VFCbox interface, in which users may specify special interests over certain �les of a shared folder.

To indicate more �ne-grained interests, we implemented another interface to upload interests over speci�c
parts of Latex documents. Since the distance between multiple parts of a Latex document depends of the
document depth of each semantic zone, we implemented a special method to calculate that distance.

For instance, in Latex documents sections are deeper than chapters, since a Latex document is made of
chapters and a chapter is made of sections.

As such, the distance is calculated according to the document depth of the semantic zone and the number
of zones that are between the semantic zone and the pivot zone. We created the following distance calculation
method:

If the pivot zone is a chapter zone, all the sections of that chapter will have assigned the very important
zone level. The rest of the chapters will have the important zone level assigned. The rest of the sections will
have the not important zone level assigned.

Figure 4.3 illustrates the above mentioned.
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Figure 4.3: Example of the assigned consistency levels when a section of a Latex document is chosen as pivot
zone.

If the pivot zone is a section or subsection zone, only the proximate sections will be considered as very
important zones. The rest sections of the same chapter will be considered as important zones. The rest of
the chapters will have assigned the important zone level. By last, the rest of the sections (contained by the
other chapters) will have assigned the not important zone level.

Figure 4.4 illustrates the above mentioned.

Figure 4.4: Example of the assigned consistency levels when a section of a Latex document is chosen as pivot
zone.

4.2 Server

In this section we overview the server node implementation and describe some of its most interesting details.

68



The server runs as a daemon on the server machine. It can receive updates from several clients simulta-
neously. We support this by establishing a separate pipeline, for each connection.

In order to perform deduplication between di�erent clients, the server uses the same Chunk Repository
for every client. Thus, we can check which chunks are already stored and avoid storing them more than
once. The references table cannot be shared between clients, thus we keep one for each client. The server
serializes its structures at the end of an operation.

In order to check the vfc limits of each object to be propagated, we use a timer to periodically �re a
signal. This signal creates an event that updates all time parameters of each semantic zone to be propagated.
In order to detect if a certain semantic zone has to be propagated, each semantic zone time parameter is
also compared to the limit imposed by the consistency level of the semantic zone.
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Chapter 5

Evaluation

In this chapter we present an analysis of our prototype, comparing it to Dropbox, SVN and LBFS, both
qualitatively and quantitatively.

First, we describe some of the main advantages of the VFCbox system in qualitative terms.
Then, we present the results of the quantitative analysis regarding the bandwith usage gains with the

deduplication and the relaxed consistency model.

5.1 Qualitative Evaluation

VFCbox system may be used in similar a way to the Dropbox system. It is viewed as a synchronized folder
where users may drop �les/folders and may update them without having to explicitly synchronize them.
When a new update is received, a noti�cation in the icon bar is presented, identifying which �le and zone
was updated.

Since the system may be used similarly to Dropbox, we decided to qualitatively compare our prototype
to this system.

In comparison to Dropbox, we improved the �le sharing system w.r.t. application usability and �le con-
�icts occurrence/resolution.

The main objective of this evaluation is to provide an analysis over the user's experience regarding �le
con�icts occurrence and respective resolution. Additionally, we also present another qualitative improvement:
Data Latency Control.

5.1.1 Evaluation of File Con�icts Occurrence/Resolution

Comparing to Dropbox, the VFCbox prototype was improved to reduce the con�ict rate of Latex �les.

The VFCbox prototype is able to achieve this since it treats chapters and sections as independent objects
of a Latex �le, considering them as multiple consistency zones of the VFC model. As such, the version
system assigns multiple versions to multiple chapters/sections of a Latex document.

This enables the modi�cation by users of di�erent chapters/sections to not be seen as a con�ict. There-
fore, a concurrent modi�cation over di�erent chapters/sections of a �le are viewed as updates to di�erent
objects and thus, the updates are merged in the same �le.
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Figure 5.1 illustrates an example of the described situation, where two users are modifying the same
document, and still no con�ict occurs. Since the modi�cations are done in di�erent sections of the Latex
document, these are naturally merged and propagated to both users. Systems like Dropbox consider multiple
modi�cations by di�erent users to a �le as a con�ict, requiring users to solve the con�icts. This improvement
of the VFCbox enables users to concurrently modify and change �les, reducing the con�ict rate.

Figure 5.1: Two users modify the same document, but since they are modifying di�erent sections of the
document, it is not considered a con�ict and the modi�cations are naturally merged.

However, when multiple users modify the same section of a �le, this is treated as a con�ict. As such, the
system behaves like the Dropbox system, creating a con�ict and requesting users to solve it. Nevertheless,
and in contrary to systems like Dropbox, we provide an interface to help users in the resolution of con�icts.
Figure 5.2, 5.3 and 5.4 illustrate the three steps of that interface. The interface uses an external application
(WinMerge 1) to identify the di�erences between the two versions and help the user to resolve the multiple
di�erences.

On the following we present the multiple steps of the interface used to resolve a �le con�ict:

Resolve a File Con�ict - Step 1

Figure 5.2: Resolve con�ict - step 1: select the �le to resolve the con�ict.

1http://winmerge.org
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Resolve a File Con�ict - Step 2

Figure 5.3: Resolve con�ict - step 2: chose to open WinMerge to resolve the con�ict or mark the current
version as the resolved version.

Resolve a File Con�ict - Step 3

Figure 5.4: Resolve con�ict - step 3: use WinMerge to resolve the con�ict.

5.1.2 Data Latency Control

Another qualitative feature that is present in our prototype is related with the possibility of managing
the latency in the synchronization of certain �les. As already mentioned, the VFCbox solution allows the
speci�cation of interests over certain �les or parts of a certain �le, through an interface adapted to perform
these speci�cations. Through this interests speci�cation, the system is able of assigning di�erent consistency
guarantees over multiple �les or �le parts. Therefore, updates with higher importance levels are forwarded
to users in advance of updates with lower importance levels.

5.1.3 Summary

In this section we present and discuss the qualitative advantages (in comparison to Dropbox) of VFCbox.
After the analysis of these advantages, the following conclusions can me made:

• VFCbox is capable of reducing the con�ict rate and foster the concurrent work. In our
prototype a �le is viewed as a set of independent objects. As such, users may modify and change
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some of these objects without a�ecting the others. This enables the concurrent work and reduces the
possibility of occurring a �le con�ict.

• VFCbox provides a more user-friendly interface to resolve con�icts. Our prototype provides
to users an interface in which users may see the disparities between the con�icting versions and resolve
the di�erences in an ease manner.

• VFCbox provides to users the possibility of controlling multiple consistency levels and
thus to control the latency of certain �les. In our prototype, users may specify interests over
certain �les or parts of a certain �le. With this interests speci�cation, users may control the latency
seen in the synchronization of certain �les. This may be achieved since updates with higher importance
levels are forwarded to users in advance of the other updates.

5.2 Quantitative Evaluation

In this section we present the results of some conducted tests. These tests had the objective of determining
the savings in the use of network resources.

5.2.1 Experimental Setting

To evaluate the system quantitatively, we simulate a user performing modi�cations to shared data. These
modi�cations are then propagated to the server, which is then in charge of synchronizing the new updates
with the other users. Three dedicated machines were required. Two of these machines were used to simulate
two di�erent VFCbox users that wanted to synchronize several data �les. One of these machines was also
used to intercept and measure the network tra�c. The network measures were always performed on the
machine that is receiving/downloading new updates. Another machine was used for the VFCbox server,
which performed synchronization operations and con�ict detection between clients. All the three machines
were running Windows 7 Professional (32-bit) on a AMD Turion 64 Mobile Technology ML-37 2.00GHz with
1Gb of RAM. Finally, a 100mbps full-duplex Ethernet LAN was used for the tests.

5.2.2 Compared Solutions

For comparison with VFCbox's results we chose three widely di�erent �le sharing systems, namely the
Dropbox2, the LBFS[23] and the SVN[15].

• Dropbox - Delta-encoding Techniques.

• LBFS - Compare-by-Hash (Variable-size Block Hashing).

• SVN - Delta-encoding Techniques.

We chose this three systems due to the fact of being signi�cantly representative of the state of the art
techniques used by most �le sharing systems. The comparison of the implemented prototype with these
systems permitted to compare 2 main issues:

• Deduplication - compare the deduplication results with the results of widely used systems.

• Total Consistency versus VFC - compare the results of the VFC model against the traditional
total consistency model (used by most �le sharing systems).

2Dropbox: Secure backup, sync and sharing made easy. https://www.dropbox.com.
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5.2.3 Workload Description

To exercise the system, several tests were performed using two di�erent kinds of workloads, namely synthetic
samples and master's thesis samples.

The synthetic samples were composed by a workload of 5 di�erent Latex �le samples, representing �les
of di�erent sizes. Each �le sample was composed by 20 chapters and 100 sections (5 sections per chapter).
The content of each section was �lled with random data. On the following we describe the proximate size of
each �le sample: 1.tex: 1 MB (1.024KB); 2.tex: 5 MB (5.120KB); 3.tex: 10 MB (10.240KB); 4.tex: 50
MB (51.200KB); 5.tex: 100 MB (102.400KB).

The master's thesis samples were composed by 10 di�erent Latex �les, representing the content of some
MSc dissertations of students from Instituto Superior Técnico. These samples were composed by the regular
chapters of a dissertation, namely Introduction, Related Work, Architecture, Implementation, Evaluation
and Conclusion, and several sections. The medium size of each Latex �le was of about 200KB. Thus, this
workload has a total proximate size of 2000KB.

5.2.4 VFC Limits

To evaluate the system, the following con�guration values of the VFC model were selected:

Zone Sequence (σ) Time (θ)
Very Important 1 update 0 min.
Important 5 updates 5 min.
Not Important 10 updates 10 min.

Table 5.1: VFC model: zone limits settings.

5.2.5 Bandwidth Usage Analysis: File Download Stress Test

Figure 5.5: Bandwidth usage (in KB) of downloading 5 di�erent �le samples.

We start by discussing the results obtained for the basic test of downloading an entire �le. These results
are illustrated in Figure 5.5 (the results table is presented in Appendix). This workload is comprised of 5
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Latex document �les that have already been described in Section 5.2.3. The results present the comparison
between the bandwidth used by VFCbox and three other solutions to download 5 �le samples in the client
side.

The presented graph shows that for all the solutions, the bandwith used to download each �le sample
is always inferior to the total �le size. This is explained with the usage of compression techniques and not
to any type of deduplication, since for this speci�c test, these samples do not contain any type of redundancy.

The results of this test show that the VFCbox has almost the same performance as the other solutions,
having a overload (between 27% and 2% of overload) that becomes more dissipated with the increase of the
�le size. This overload of the VFCbox system is explained by an increased meta-data transmission, since
unlike Dropbox and SVN it has to transmit some extra meta-data related with the chunk's hash values.
Comparing to LBFS, the results are very similar, which was expected, since both use the same deduplication
techniques and have to transmit extra meta-data w.r.t. Dropbox and SVN.

5.2.6 Bandwidth Usage Analysis: File Update Stress Test

This stress test presents an analysis to the bandwidth used to download a �le update. This represents
the ability of the system to perform deduplication between multiple versions of the same �le. As such, we
performed some minor changes (insertion of 1 byte) to �les that have already been synchronized and then
measured the amount of bandwidth that was used to propagate the modi�cations/updates. The workload
was comprised of 5 Latex document �les that have already been described in Section 5.2.3.

Figure 5.6: Bandwidth usage (in KB) of downloading 5 di�erent �le updates. The updates consisted in the
insertion of 1 byte in the beginning of each �le.

Figure 5.6, 5.7 and 5.8 present the used bandwidth to download multiple �le updates (the results tables
are presented in Appendix). These �le updates consist in the insertion of 1 byte on the beginning of each
�le (5.6), on the middle of each �le (5.7) and on the end of each �le (5.8).

Since Dropbox and SVN makes use of Delta-encoding techniques, this test obviously favors them due to

76



Figure 5.7: Bandwidth usage (in KB) of downloading 5 di�erent �le updates. The updates consisted in the
insertion of 1 byte in the middle of each �le.

the updates being composed by minor changes (single insertion of 1 byte). In the case of VFCbox and LBFS,
the insertion of 1-byte modi�es at least one entire chunk, which results in the transmission of an entire chunk
plus the rest of the hash values of the remaining chunks. Nevertheless, VFCbox and LBFS are still capable
of using less bandwidth for some cases, more speci�cally for �les of bigger sizes. Once more, we may see the
similarity between the obtained results by VFCbox and LBFS.

Figure 5.8: Bandwidth usage (in KB) of downloading 5 di�erent �le updates. The updates consisted in the
insertion of 1 byte in the end of each �le.

Although there is a high overload percentage of VFCbox in comparison to the Dropbox and the SVN
system, this stress test contemplates the worst case to VFCbox and the best one to the other two solutions.
Additionally, in absolute terms the overload is not so signi�cantly since it only occurs for small changes and
small amounts of exchanged data (in this test in the order of dozens of kilobytes).
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5.2.7 Bandwidth Usage Analysis: Deduplication Stress Test

This stress test is composed by the download of multiple iterations of redundant �le samples. The sizes of the
�le samples are described in Section 5.2.3. These �le samples were increasingly �lled with redundant data.
To reproduce the redundant data, random sections were repeated through the Latex documents according to
the redundancy percentage. Figure 5.10, 5.11, 5.12 and 5.13 illustrate the bandwidth used by the compared
solutions, to download each iteration of the 5 �le samples (the results tables are presented in Appendix). On
each iteration the redundancy percentage is increased by 10%.

Figure 5.9: Dropbox's bandwidth usage (in KB) of
downloading several iterations of 5 di�erent �le sam-
ples. Each iteration was composed by �les with di�er-
ent percentages of redundancy.

Figure 5.10: VFCbox's bandwidth usage (in KB) of
downloading several iterations of 5 di�erent �le sam-
ples. Each iteration was composed by �les with di�er-
ent percentages of redundancy.

Figure 5.11: SVN's bandwidth usage (in KB) of
downloading several iterations of 5 di�erent �le sam-
ples. Each iteration was composed by �les with di�er-
ent percentages of redundancy.

Figure 5.12: LBFS's bandwidth usage (in KB) of
downloading several iterations of 5 di�erent �le sam-
ples. Each iteration was composed by �les with di�er-
ent percentages of redundancy.

These results show that the Dropbox and the SVN systems use always the same bandwidth to download
each �le (Figure 5.9 and 5.11), i.e., either for �les with 10% of redundancy or 90% of redundancy, the same
bandwidth is used. For VFCbox and LBFS, the same does not happen. As the redundancy percentage
increases, the used bandwidth decreases (Figure 5.10 and 5.12).
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With this analysis we may conclude that the Dropbox and the SVN system are unable to detect any
redundancy in these �les since they are only capable of detecting redundancy between multiple versions
of the same �le. VFCbox and LBFS in turn, are capable of detecting this redundancy having bandwidth
savings proximate to the redundancy percentage.

Figure 5.13: Average gain percentage of bandwidth usage to download sets of samples with di�erent redun-
dancy percentages.

Figure 5.13 illustrates the above mentioned results in a percentage gain perspective.
Once more, these results illustrate that Dropbox and the SVN have almost 0% of bandwidth reduction

in all iterations.
VFCbox and LBFS in turn are capable of making savings of more than 55%.

5.2.8 Bandwidth Usage Analysis: Consistency Model Stress Test

The objective of this test is to stress the consistency model and measure the reduction on bandwidth re-
sources by using the VFC model.

To accomplish this, the VFCbox client that is downloading new updates, assigned to each �le sample an
interest over a certain section of the document.

With this explicit interest of the client, 3 sections of each document were considered as very important
sections, 22 sections were considered as important sections and 75 sections were considered as not important
sections.

This test is composed of 10 �le updates of 5 �le samples described in Section 5.2.3. These �le samples
do not contain any redundancy. The �le updates consist in a total replacement of the content of each �le.
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Figure 5.14: Dropbox's bandwidth usage (in KB) of
downloading 10 �le updates of 5 di�erent �le samples.
The �le updates were composed by a total replacement
of the content of each �le.

Figure 5.15: VFCbox's bandwidth usage (in KB) of
downloading 10 �le updates of 5 di�erent �le samples.
The �le updates were composed by a total replacement
of the content of each �le.

Figure 5.14, 5.15, 5.16 and 5.17 illustrate the results of this analysis of the consistency model (the results
tables are presented in Appendix).

Figure 5.16: SVN's bandwidth usage (in KB) of
downloading 10 �le updates of 5 di�erent �le samples.
The �le updates were composed by a total replacement
of the content of each �le.

Figure 5.17: LBFS's bandwidth usage (in KB) of
downloading 10 �le updates of 5 di�erent �le samples.
The �le updates were composed by a total replacement
of the content of each �le.

Given these results, we may conclude that the Dropbox, the SVN and the LBFS system, make use of the
same bandwidth to download each �le update (Figure 5.14, 5.16 and 5.17). This was an expected result since
it means that for each update the whole content of the �le was transmitted. Analyzing the results of VFCbox
(Figure 5.15), we may �nd that there are 3 distinct steps on the bandwidth usage results. These steps rep-
resent the multiple consistency levels of the VFC model. The lowest step (1st to 4th update and 6th to 9th
update) represents the downloading of the sections considered as very important. Thus, a reduced amount
of bandwidth is used. The median step (5th update) represents the downloading of the sections considered
as very important and important. This is explained with the fact that on the 5th update the vfc sequence
limit, of the important sections region, is exceeded. The biggest step (10th update) represents the download-
ing of all the sections (very important, important and not important sections). This is explained with the
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fact that on the 10th update the VFC sequence limits of all regions are exceeded. At this point, the client
that is downloading the new �le updates, downloads the whole �le making it consistent with the other clients.

Comparing the three other systems to the VFCbox system, we may conclude that the VFCbox may
achieve a higher performance in terms of the consistency model and w.r.t. bandwidth resources reduction.
Our prototype is capable of delaying some speci�c updates that clients pointed as updates of lower interest.
By delaying the updates, they eventually are replaced by other updates making it unnecessary to transmit
them.

Figure 5.18: Total used bandwidth (in MB) to download 10 �le updates of 5 di�erent �le samples. It
represents the sum of the used bandwidth of the stress test illustrated in Figures 5.14, 5.15, 5.16 and 5.17.

Figure 5.18 illustrates the total sum of the used bandwidth of the above mentioned results (Figures 5.14,
5.15, 5.16 and 5.17, the results tables are presented in Appendix).

By these results of the sum of the total used bandwidth we may compare the total used resources be-
tween VFCbox and the other solutions. The VFCbox savings after 10 �le updates are proximate to 85%.
Since all the other three solutions use a total consistency model, they all have more-less the same performance.

5.2.9 Bandwidth Usage Analysis: Global System Stress Test

The objective of this test is to stress the consistency model and the deduplication at the same time, and
measure the reduction on bandwidth resources by using both techniques.

This test was composed by 10 �le updates to 20 �le samples. Each �le sample had a total size of 10MB
and all the �le samples had always in common a section of the document, which produces a total of 33% of
redundancy. Each �le update consist in a total replacement of the content of the �le.

To accomplish this, the VFCbox client that is downloading new updates, assigned di�erent interests over
di�erent �les.
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Contrary to the test described in Section 5.2.8, in this test the VFCbox client's interests were assigned at
a di�erent granularity. Instead of selecting a chapter/section of a Latex document as an important object,
in this test the VFCbox client selected the �les that were considered as more important. As such, 5 �les
were selected as very important, 5 �les as important and 10 �les as not important.

Figure 5.19: Bandwidth usage (in MB) of downloading 10 �le updates of a set of 20 di�erent �le samples
(10MB each �le). The �le updates were composed by a total replacement of the content of each �le. These
set of �les have in common the same introduction, which produces a total of 33% of redundancy.

Figure 5.19 illustrates the results of the used bandwidth (in MB) to download each �le update.
Given these results, we may determine that the Dropbox, the SVN and the LBFS system, make use of

the same bandwidth to download each �le update. This was an expected result since it means that for each
update the whole content of the �le was transmitted.

Analyzing the results of VFCbox, we may �nd that there are 3 distinct steps on the bandwidth usage
results. These steps represent the multiple consistency levels of the VFC model.

The lowest step (1st to 4th update and 6th to 9th update) represents the downloading of the �les con-
sidered as very important. Thus, a reduced amount of bandwidth is used.

The median step (5th update) represents the downloading of the �les considered as very important and
important. This is explained with the fact that on the 5th update the vfc sequence limit, of the important
�les region, is exceeded.

The biggest step (10th update) represents the downloading of all the �les (very important, important
and not important �les). This is explained with the fact that on the 10th update the vfc sequence limits of
all regions are exceeded. By this point, the client that is downloading the new �les updates, downloads the
whole �les making them consistent with the other clients.

In this stress test we may observe that the Dropbox, the SVN and the LBFS use always the same amount
of bandwidth to download each update. Nevertheless, the LBFS system still overcomes the Dropbox and
the SVN system in terms of used bandwidth. This is explained due to the existence of 33% of redundancy
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in each �le. Since Dropbox and SVN use delta-encoding techniques, they are not able to detect this type of
redundancy (intra-�le redundancy) and thus have a lower performance in this test.

Analyzing the VFCbox gain percentage line, we may reinforce the above mentioned. As we may see, the
lowest step of VFCbox bandwidth usage (1st to 4th update and 6th to 9th update) is the one that has the
highest percentage of bandwidth reduction in comparison to the other systems, following by the median step
and the highest step.

In comparison to Dropbox and SVN, VFCbox is capable of reducing the total amount of used bandwidth
from 17% up to 80%.

In comparison to LBFS, VFCbox is capable of reducing the total amount of used bandwidth from 0% to
75%.

Figure 5.20 illustrates the sum of the used bandwidth of the above mentioned results (Figure 5.19).

In comparison to Dropbox and SVN, the VFCbox results show a total saving of 71% in bandwidth re-
sources after 10 updates to 20 �les.

In comparison to LBFS, the VFCbox results show a total saving of 65% in bandwidth resources after 10
updates to 20 �les.

Figure 5.20: Bandwidth usage (in MB) sum of the stress test illustrated in Figure 5.19.

5.2.10 Bandwidth Usage Analysis: Real Workload Stress Test

The objective of this test is to stress the consistency model and the deduplication at the same time, and
measure the reduction on bandwidth resources by using both techniques.

This test is similar to the previous test, however, in this one we opted to take a more realistic approach
using thesis samples (described in Section 5.2.3) and requesting real users to perform some minor changes
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to these �le samples.

To accomplish this, each user shared his MSc thesis with a single VFCbox user that was downloading
new updates. This user assigned a special interest over the Architecture chapter of each �le sample. Then,
each user performed small changes (insertion of 1 byte) on each chapter of the sharing �le. This step was
repeated 10 times.

Figure 5.21: Bandwidth usage (in KB) of downloading 10 �le updates of a set of 10 di�erent thesis �les. The
�le updates were composed by small changes on each chapter of each �le.

Figure 5.21 illustrates the results of the used bandwidth (in KB) to download each �le update.
By these results, we may determine that the Dropbox, the SVN and the LBFS systems, make use of more

or less the same bandwidth to download each �le update. This was an expected result since it means that
for each update the multiple modi�cations to the content of the �le were transmitted.

Analyzing the results of VFCbox, we may �nd that the same does not happen. We may see a huge
di�erence between the 10th update and the others. This happens since the current VFCbox user has as-
signed a special interest over the Architecture chapter of each �le. Thus, only this chapter and its sections
are considered as important zones to the VFC model. Therefore, on each update only the modi�cations to
this speci�c chapter are transferred, avoiding to transfer updates over the rest of the chapters. In the 10th
update, the consistency limits (sequence limits) of all chapters/sections are exceeded and all modi�cations
are transferred to the concerning client.

Analyzing the VFCbox gain percentage line, we may reinforce the above mentioned. As we may see,
VFCbox has a high percentage gain in terms of bandwidth usage in comparison to the other solutions from
the 1st to the 9th update.

In comparison to the other three solutions, VFCbox is capable of reducing the total amount of used
bandwidth up to 82% on each update. The exception is in the 10th update, where all solutions propagate all
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the modi�cations, and thus there are no bandwidth savings by VFCbox in comparison to the other systems.

Figure 5.22 illustrates the sum of the used bandwidth of the above mentioned results (Figure 5.21). In
comparison to the three systems, the VFCbox results show a total saving from 70% to 74% in bandwidth
resources after 10 updates to 10 �les.

Figure 5.22: Bandwidth usage (in KB) sum of the stress test illustrated in Figure 5.21.

5.2.11 Summary

In this section we present and discuss the amount of data transferred per �le download and �le update.

In comparison to Dropbox, SVN and LBFS, VFCbox has almost the same performance in terms of ca-
pability to explore data redundancy.

Since Dropbox and SVN use delta-encoding techniques to explore cross-version redundancy, they are able
to obtain better results in cases where small changes are performed to already existing �les. VFCbox needs
to transfer more meta-data (chunks hashes) than these systems, thus it spends more bandwidth to propagate
the modi�cations. Nevertheless, we may refer that in absolute terms this overhead is not so substantial, since
it only occurs for small changes and small amounts of exchanged data. W.r.t. bigger modi�cations, this
VFCbox overhead becomes more dissipated. Additionally, VFCbox is capable of detecting cross-�le redun-
dancy and intra-�le redundancy (redundancy between parts of the same �le). Dropbox and SVN are only
capable to explore cross-version redundancy, thus VFCbox overcomes these two systems when in presence
of large amounts of these types of redundancy.

Comparing to LBFS, the results are very similar, which was already expected. Since both systems use
compare-by-hash techniques, both incur in extra overheads to transfer the extra meta-data. However, and
as already mentioned, they are capable to explore di�erent types of redundancy which brings huge bene�ts
when in presence of large amounts of data redundancy.

Summarizing, VFCbox may be seen as a system with equivalent deduplication techniques w.r.t. the
compared solutions.
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In the overall and in comparison to Dropbox, SVN and LBFS, VFCbox overcomes the capability of
reducing bandwidth resources. Through an e�cient and usable consistency model, VFCbox is capable to
heavily reduce the use of network resources.

After the analysis of the obtained values, the following conclusions can me made:

• Deduplication based on hash values comparison can greatly reduce the amount of re-
dundant data between sets of �les in comparison to delta-encoding techniques. Although
delta-encoding may have a higher performance when making small changes to a single �le, it is not
able to detect other types of redundancy. Our analysis shows that the bene�ts that are taken from the
reduction of redundant data between sets of �les is much gainful in comparison to the overhead that
the deduplication based on hash values has when deduplicating 2 versions of the same �le.

• VFCbox is capable of reducing up to 80% of the used bandwidth in comparison to the
compared solutions by using a consistency model based on user's interests. Using the
VFC model, our prototype is capable of postponing updates, which eventually are replaced by newer
updates. Thus, it prevents the transfer of updates that are explicitly marked by users as updates of
low interest. As such, users do not real su�er with delayed updates, since they have already marked
those updates as non interesting. Further, it can also be an advantage to users due to the fact that
they can receive important data in advance, reducing the latency seen by users.
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Chapter 6

Conclusion

The need for �le sharing systems motivated the design and implementation of systems capable of e�ciently
sharing and storing �les. Furthermore, the interest of collaborators over parts of the shared information
improve the ability of systems to perform data synchronization while reducing the use of network resources
and shrinking the latency of data seen by users. This document presented a �le sharing system capable of a
performing a more e�cient synchronization: VFCbox.

The system achieves a better transfer e�ciency through the use of deduplication techniques and the use of
the VFC model. Through deduplication, the VFCbox is able of detecting redundant data between multiple
versions of the same �le or even between multiple �les. With this redundant data detection, network band-
width may be saved since the redundant data has no longer to be transferred. This system is also capable of
performing a selective scheduling of updates based on its importance, determined through user speci�cation.
Therefore, multiple consistency levels are applied over multiple data sets (�les or �le parts), which gives the
system the ability of postponing certain updates. These postponed updates end to be overlapped by new
updates, avoiding the need of synchronizing them which saves network resources.

A prototype was built for running in Windows platforms. The prototype consists in a multi-user client-
server application that allows to perform synchronization operations. Additionally, the client side application
is equipped with an interface in which users may specify their interests over the shared �les or even over
parts of the shared �les.

The VFCbox prototype was evaluated using several samples with di�erent sizes and contents. The re-
sults of the evaluation were then compared with three di�erent solution, which are representative of the
state-of-the-art techniques used by most �le sharing systems (deduplication execution and total consistency
enforcement). From this evaluation, we concluded that VFCbox achieves equivalent results regarding the
deduplication execution. Nevertheless, VFCbox provides an additional consistency model in comparison to
the total consistency model: the VFC model. This model proved to bring huge bene�ts w.r.t. the total
used network bandwidth. In our evaluation, and only with a small experiment we proved that using the
VFC model against the total consistency model, the system could save up to 80% of the used bandwidth.
Therefore, the system proved to use very low bandwidth compared to other solutions, which makes it a
suitable �le sharing system.

In conclusion, VFCbox is an e�cient �le sharing system that uses low bandwidth to synchronize �le
updates by using several techniques such as data deduplication, data compression and a relaxed consistency
model that makes an intelligent schedule of updates according to its importance to each user.
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6.1 Future Work

In this section, we present modi�cations or improvements that may be done in the future:

• Expand the concept of interest management to the data uploading perspective. The
current management of user's interest is only used to perform a selective scheduling of updates from
the downloading perspective. I.e., user's interests are only related with the consistency level that a user
wants to guarantee over certain incoming updates. Nevertheless, this concept could be expanded to
outgoing updates. By this, users could decrease the upload frequency of �les that are being frequently
updated and have no interest of uploading the �le at each modi�cation. Further, this could also be
used in order to specify an uploading order. Users could then specify for example that a certain �le
should be uploaded in advance of others. Therefore, users could control the uploading rate of each �le
or �le zone decreasing the latency of data considered as more important.

• Specify special interests over certain �le types. Instead of specifying user's interests for each �le,
the system could enable the possibility of specifying interests over �le types. For instance, a certain
user could want to specify a special interest over all the Latex �les. Another user could want to specify
that he has no interest of receiving updates of temporary �les.

• Automatic extraction of user's interests. The system could have an automatic mechanism to
extract user's interests without having to ask the user to specify them. For instance, higher frequently
opened �les could have higher consistency guarantees applied and lower frequently opened �les could
have lower consistency guarantees applied.
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Appendix

Figure 6.1: Table results of the evaluation test illustrated in Figure 5.5.

Figure 6.2: Table results of the evaluation test illustrated in Figure 5.6.
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Figure 6.3: Table results of the evaluation test illustrated in Figure 5.7.

Figure 6.4: Table results of the evaluation test illustrated in Figure 5.8.
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Figure 6.5: Table results of the evaluation test illustrated in Figure 5.9.

Figure 6.6: Table results of the evaluation test illustrated in Figure 5.10.
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Figure 6.7: Table results of the evaluation test illustrated in Figure 5.11.

Figure 6.8: Table results of the evaluation test illustrated in Figure 5.12.
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Figure 6.9: Table results of the evaluation test illustrated in Figure 5.14.

Figure 6.10: Table results of the evaluation test illustrated in Figure 5.15.
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Figure 6.11: Table results of the evaluation test illustrated in Figure 5.16.

Figure 6.12: Table results of the evaluation test illustrated in Figure 5.17.
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Figure 6.13: Table results of the evaluation test illustrated in Figure 5.19.

Figure 6.14: Table results of the evaluation test illustrated in Figure 5.20.
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Figure 6.15: Table results of the evaluation test illustrated in Figure 5.21.

Figure 6.16: Table results of the evaluation test illustrated in Figure 5.22.
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