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Abstract

Cloud computing gained immense importance in the past decade, emerging as a new computing paradigm
and aiming to provide reliable, scalable and customisable dynamic computing environments for end-users.
The cloud relies on efficient algorithms to find resources for jobs by fulfilling the job’s requirements and at
the same time optimise an objective function. Utility is a measure of the client satisfaction that can be
seen as an objective function maximised by schedulers based on the agreed service level agreement (SLA).
Our EcoScheduler aims at saving energy by using dynamic voltage frequency scaling (DVFS) and applying
reductions of utility, different for classes of users and across different ranges of resource allocations. Using
efficient data structures and a hierarchical architecture, we created a scalable solution for the fast growing
heterogeneous cloud. EcoScheduler proved that we can delegate work in a hierarchy, and make decisions based
on partial data and still be efficient.
Keywords: Cloud, Utility Scheduling, DVFS, Energy Efficiency, Partial Utility

1 Introduction
The cloud computing paradigm changed the way

we perceive and use information technology services.
These services aim to provide reliable, scalable and cus-
tomisable dynamic computing environments for end-
users. With the dynamic provision of resources, the
cloud can provide better management of resources by
optimising their usage with a pay-as-you-go pricing
model.

1.1 Motivation

The cloud is built over datacenters spread all over
the world usually containing large groups of servers
connected to the Internet. To achieve better energy
efficiency results, the providers rely on scheduling al-
gorithms to manage the datacenters.

Scheduling algorithms try to find resources for a job
by fulfilling its requirements and at the same time op-
timising an objective function, that takes into consid-
eration the user satisfaction and the provider profits.
Utility is a measure of a user’s satisfaction that can be
seen as an objective function that a scheduler tries to
maximise based on the Service Level Agreement (SLA).

The performance issues of the scheduling algorithm
include, not only execution times, but also resource
utilisation. A better scheduler can use fewer resources
and run jobs faster.

1.2 Goals

The goal in this work is to develop a scheduling al-
gorithm for cloud scenarios that takes into account
resource-awareness (CPU cores and computing avail-
ability, available memory, and available network band-
width) and declarative policies that express resource
requirements and perceived satisfaction, with differ-
ent resource allocation profiles awarded to users and/or
classes of users.

We propose EcoScheduler, a scheduling algorithm for
allocating jobs in the cloud with resource-awareness
and user satisfaction, using different resource alloca-
tion profiles chosen by the clients. We enrich our model
with the notions of partial utility and by incorporat-
ing Dynamic Voltage Frequency Scaling (DVFS) for
improved energy efficiency. Our scheduling algorithm
proposes to efficiently assign proper resources to jobs
according to their requirements.

2 Related Work

Cloud computing and energy are closely related. The
energy efficiency in the cloud became an issue and a
large number researchers has been working on it in re-
cent years.
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2.1 Scheduling Aspects

Hardware keeps evolving [13] and with new technolo-
gies, such as low–power CPUs, solid state drives and
other energy efficient components, the energy footprint
got smaller. All these improvements were not enough
and, for that reason, there has also been a high amount
of research done trying new software approaches, such
as energy efficient scheduling and resource allocation
to reduce this problem.

Green Scheduling

Green scheduling is new paradigm for cloud com-
puting infrastructures that is concerned about energy
waste and environment awareness. Energy-aware ap-
proaches can be split into two categories [17], charac-
terised by how they want to reduce energy. Power-
aware [14, 17, 2, 15] and Thermal-aware [9] focus on
computer and cooling system power reduction, respec-
tively.

In Power-aware solutions, the target is the physi-
cal machine, and the algorithms usually aim for aspects
such as resource usage and try to maximise the perfor-
mance without maximising power.

Thermal-aware solutions target reducing the emis-
sions of heat from the computer components and, in-
directly, it reduce the wasted energy in cooling the
machines. Although the thermal maintenance of the
datacenters does not seem to be directly related to en-
ergy efficiency, the cooling in these computing facilities
consumes large amounts of energy.

Power-Aware Scheduling

Power-aware scheduling is the focus of our work and
also a very broad research area. From the power of
the CPU, to the ventilation of the machines, there are
several ways to approach the study of energy waste in
a physical machine.

2.2 Energy Aspects

The way machines consume energy can be classified
into two categories, based on the fact of the energy
consumption changing over time or being constant all
the time [14].

Static energy consumption is the part of the en-
ergy used by a machine without load. This is the en-
ergy used by the components when they are in idle
mode, not performing any kind of work.

Dynamic energy consumption, in contrast, is
calculated in terms of the proportion of resources being
utilised by the machine. In this case, we are measuring
the energy used by the components while doing some
work.

2.3 Efficiency Aspects

Multiple approaches have been developed and de-
scribed in the literature concerning energy waste and
environmental footprint. Next, we characterise several
relevant solutions with interest for our work.

Dynamic Voltage Frequency Scaling

Some of these approaches’ primary target is dynamic
voltage frequency scaling (DVFS)[14, 7, 9, 16]. DVFS
dynamically scales the processor frequency according
to the global CPU load and regardless of the Virtual
machine (VM) local loads, and hence, it helps reducing
power consumption.

This kind of approach has several problems, since it
targets a very sensitive part of the machines, the CPU.

To solve this, some solutions try to distribute work-
loads by their profile and are able to have CPU similar
VMs in the same physical machine, while others will
still reduce the power but will give more execution time
to the VMs being underloaded.

Energy Efficiency Algorithms

Efficiency is a major goal in scheduling, especially
when even a minimal improvement can lead to major
effects in the whole system. The typical factors that
are targeted in terms of efficiency are resources and
energy.

Younge et al. [17] try to achieve maximum energy
efficiency by combining a greedy algorithm with live
migration. It minimises power consumption within the
datacenter by allocating in each node as many VMs as
possible. It runs through each VM in the queue waiting
to be scheduled and the first node in the priority pool
is selected if it has enough virtual cores and capacity
available for the new VM.

Beloglazov et al. [1] present a decentralised architec-
ture of a resource management system for cloud data-
centers that aims to use continuous optimisation poli-
cies of VM placement. They look at factors such as
CPU, RAM, network bandwidth utilisation, and phys-
ical machines temperature, to better reallocate ma-
chines and improve overall efficiency.

Beloglazov et al. [2] detect overutilisation and un-
derutilisation peaks to migrate VMs between hosts and
minimise the power consumption in the datacenter.

Von et al. [14] use a batch scheduling approach that
is based on DVFS. VMs are allocated starting with the
ones with more CPU requirements and in each round
it tries to reduce frequencies to reduce power consump-
tion.

EQVMP (Energy-efficient and QoS-aware Virtual
Machine Placement) [15] is a solution with three ob-
jectives, inter-machine communication and energy re-
duction with load balancing. They group the machines
to reduce communication and the allocation is done
by finding the machine with the resource availability
closer to the request. By controlling the information
flow, they manage to migrate VMs and keep improving
the disposition of the VMs.

All these approaches have tried to reduce energy
consumption and improve resource usage, but none
used the concept of DVFS in conjunction with par-
tial utility in a hierarchical architecture. EcoScheduler

2



does DVFS DVFS scheduling with resource awareness
(mainly CPU performance) and tries to achieve maxi-
mum request satisfaction.

3 Solution
The algorithms presented in Section 2 have several

problems that prevent them from being scalable, en-
ergy efficient and more performant. The following list
describes those problems and proposes how they were
solved in our solution.

• Centralised allocation Most studied solutions
approach the allocation problem with a centralised
entity, that is responsible for all the work of pro-
cessing the request until it is assigned in a host. In
a large size datacenter (e.g. tens of thousands of
hosts) with very active client base (e.g., hundreds
of thousands requests per minute) having only one
entity handling requests is going to be a signifi-
cant bottleneck. One type of solution to work this
problem is to create a fully distributed architec-
ture with multiple nodes working as entry points.
A different approach is to create a hierarchical dat-
acenter which is less complex to maintain and only
losing some fault-tolerance if we compare it with
a more complex fully distributed a architecture.

• Aggressive CPU scaling There are several dif-
ferent ways to use DVFS to control energy effi-
ciency on the host. Some algorithms try to keep
the frequency lower to consume less energy, but
this leads to slower executions; others try to take
it to the maximum spending more energy but with
faster execution. A good balance between the two
is OnDemand, as seen in [5], which increases the
frequency to the maximum when work arrives, and
then reduces it if for an established amount of time
is being under used. Our approach uses a similar
idea but we do not scale to the maximum, instead
we scale to the step that can handle the work.
This allows for less jumps and a more consistent
execution.

• Live allocation When allocating, we can consider
a several different metrics, from the CPU, to the
storage, or even outside values such as the price of
electricity in the at a specific moment. Most al-
gorithms collect and process this data when they
are doing the allocation; this is a good idea if one
requires live data and wants the values to be pre-
cise, but also do not mind to be slower. Our so-
lution aims for performance and scalability and,
for that reason, we process the information when
it changes and try to keep up to date values that
allow faster decisions.

In our solution, we organise the system as a struc-
tured hierarchical network headed by the Global Sched-

uler (GS)1 and where the datacenter is partitioned into
sectors that aggregate several physical machines.

At the datacenter level, we have the main sector
containing the GS that carries out a first level arbi-
tration among the sub-sectors. In each sector, there
is a Local Scheduler (LS) that is responsible for all
scheduling operations regarding the comprised physical
machines. Each LS will implement our energy-utility-
based scheduling algorithm.

3.1 Use case

The architecture can be divided into three layers:
client layer, hierarchical layer, and physical layer, as
depicted in Figure 1.

Figure 1: Use case scenario

Figure 1 describes all the steps in the high-level pro-
cess for reserving VMs. The client layer, which includes
all the clients willing to reserve VMs in our system,
communicates with the hierarchical layer via the GS.
In the second layer, the request will be processed and a
LS assigned having in consideration of the established
SLAs and also the energy and resource usage objec-
tives of the system. This is accomplished by passing
the request to the selected LS, which will then allocate
a VM in the infrastructure layer. After this workflow
is completed, the LSs will keep monitoring the physical
machines to assure Quality of Service (QoS).

3.2 Distributed Architecture

Figure 2: High-level architecture

A high-level description of the proposed solution’s
architecture for EcoScheduler is depicted in Figure 2.

1The Global Scheduler could be replicated for availability pur-
poses, but we left that out of the design for simplicity.
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The architecture is composed by two main entities, the
GS and the LS. For moderate size clusters (e.g., 1000 to
5000 hosts), the architecture can be composed of only
two levels of hierarchy. The first one is composed by
the GS followed by the LSs that manage their sectors
of physical machines. If the system needs more parti-
tioning, we can achieve it simply by creating sub-levels
of GS that delegate scheduling to the next level of the
hierarchy.

Each level in the architecture communicates with the
upper level to provide information about their state
changes. This information can be classified in two cat-
egories: static and dynamic.

Static information does not change over time. There
are several examples of static information such as op-
erating system, processor (range of frequencies and re-
spective voltages), number of cores, disk space, and
RAM.

Dynamic information is all the remaining data that
changes over time. Some examples of dynamic infor-
mation are: current CPU frequency (per core), CPU
occupation (per core), number of allocated VMs, free
disk space, free RAM.

The information about the machines is requested by
the LS after a change in the machine, either an alloca-
tion or a deallocation. Then, LSs send an information
update about their state (a summary of the machines
state) to the GS. The GS processes all the information
and creates a summary. With summaries of the met-
rics necessary to decide on the allocation, we can do
faster decisions, scale our allocation and achieve faster
allocation times, as opposed to real time metrics. The
summary includes average energy efficiency of the sec-
tor, maximum CPU available, and maximum available
memory (disk and RAM).

The power consumed by computing nodes in a dat-
acenter consists of the consumption by the CPU,
storage, and network communication. In comparison
to other system resources, CPU consumes the larger
amount of energy [3, 8, 10]. Hence, in this work we
focus on managing its power consumption and efficient
usage. Recent studies, such as [7, 16, 10], show that an
idle server consumes approximately 70% of the power
consumed by a server when running at full CPU speed,
justifying that servers should be turned off to reduce
total power consumption as soon as possible.

As mentioned before, our system has two types of
scheduling: global scheduling and local scheduling. Lo-
cal scheduling happens in all the nodes that are leaves
in the hierarchy. At this level the algorithm will allo-
cate the VM in a host. The upper nodes in the hierar-
chy (global schedulers) are considered global schedulers
since they work over summaries of the information.

3.3 Data Structures

The scheduling is based on the information collected
by the schedulers, about the sectors in the GSs, or the

hosts in the LSs. In our solution, we take into con-
sideration several characteristics of the hosts, such as
CPU usage, number of CPU cores, RAM, and available
bandwidth.

Our main data structure is a linked list of the sec-
tors (or hosts) sorted by the average energy efficiency
metric, as depicted in Figure 3. This structure is eas-
ier to maintain, as opposed to a list, and helps finding
the most efficient sector, with the minimum resources
needed to fulfil the SLAs, faster than other data struc-
tures used in works such as [5].

Figure 3: Ordered linked list insert

We use the linked list to find the best sector (or host)
where to allocate a VM. The lookup needs to be fast
and we also want the maintainability of that list to be
minimal. Since the list is ordered by efficiency we have
a higher chance of finding possible sector (or host) of
the beginning.

Considering a list with N elements, on average, our
algorithm tends to find a possible sector (or host)
in N/2 operations; this may be improved by using a
tree with sorted elements, approaching O(log2(N)).
Compared to solutions such as PowerVmAllocation-
PolicySimpleWattPerMipsMetric and PowerVmAllo-
cationPolicyDVFSMinimumUsedHost described in [5]
which need to search all the N elements to make a de-
cision.

Only searching a subset of the elements, using sum-
marised information, will lead to less accurate deci-
sions. Our work aims to compensate the accuracy, by
distributing the tasks to the servers in a round robin
similar way. When other algorithms try to fill a ma-
chine before going to the other, we try to spread the
work on the machines we have.

3.4 Metrics

Our algorithm uses two main metric types: efficiency
and allocation metrics.

Efficiency metrics, more precisely, energy efficiency
metrics are expressed by the best ratio Watt/MIP
weighted by the theoretical CPU capacity of the host
to allocate a new VM.

CPUPower = HostPower ∗ CurrentCPUMIPS

HostTotalMIPS
(1)

Since we cannot measure the used power in each pro-
cessing unit (CPU), we have to approximate it from the
power used by the host. In Equation (3), we obtain the
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percentage of the power used by the Host, HostPower
corresponding to the mips being used the CPU we are
calculating.

EEL =

∑
CPUPower ∗ VMsTotalMaxMIPS

HostTotalMaxMIPS

CPUsNumber
(2)

Then, in Equation (2), we retrieve the average
CPUPower used in the Host. We are measuring effi-
ciency, so we use this metric inverted, to have higher
values for more efficient Hosts, this final value is what
we call EEL, the energy efficiency level.

Metrics such as total and maximum CPU capacity,
RAM, storage, and available bandwidth are used to
decide on the best sector (or host) to allocate.

Regarding allocation metrics, we mostly focused our
policy on the CPU, because that is the piece whose
efficiency we are trying to increase. When deciding
where to perform an allocation, we start by checking
the CPU percentage available, and only then we check
RAM, storage and available bandwidth.

3.5 Algorithms

Our scheduling algorithm takes two main properties
into consideration, the Energy Efficiency Level (EEL)
and the CPU Available (measured in MIPS) (CPUA).
The EEL is calculated based on the power consumed
by each processing unit (CPU) of the host and the
available MIPS. Algorithm 1 presents the pseudocode
for the global scheduling. This scheduling phase acts
upon sectors in the datacenter.

Algorithm 1 Global scheduling: Approximate Best-
Fit

Require: sectors available sectors . sorted by EEL
Require: vm VM to be allocated

1: function GlobalScheduling(sectors, vm)
2: selectedSector ← sectors.first
3: sector ← sectors
4: do
5: if FitsCriteria(sector, vm) then
6: selectedSector ← sector
7: break
8: end if
9: sector ← sector.next()

10: while (sector.hasNext())
11: if selectedSector = null then
12: selectedSector ← sectors.first()
13: end if
14: UpdateSectorsState(selectedSector, vm)
15: Allocate(selectedSector, vm)
16: end function

Algorithm 1 does the first level of arbitration be-
tween the sectors based on sectors (list of sectors sorted
by EEL). Since the sectors are already sorted, it picks

the first possible sector with available resources and
better efficiency level.

If all the sectors fail this check, we will try to allocate
on the first sector since is the most efficient at the time.

As mentioned in Section 3.4, we check several met-
rics before selecting the sector where to process the
allocation. In FitsCriteria, we compare the available
resources in host with the resources requested by the
vm. First, we check CPU availability and then we per-
form checks on the rest of the resources, such as RAM,
bandwidth, and storage.

The generic algorithm for the local scheduling phase,
is very similar to Algorithm 1, in fact the only differ-
ence it that it acts upon hosts instead of sectors.

When an allocation is performed successfully,
method UpdateHostsState is invoked. This method
is responsible for triggering updates in the parent sec-
tors, that will then re-calculate all the data summaries
and re-order the lists.

To reduce the amount of data stored in each sector
and make the updates faster, we keep the sum of the
EELs: each time one sub-sector is updated, we just
need to subtract the past value of that sector, add the
new and average the value.

For a sector EEL change, we need to remove one
element from a list and insert it ordered. Since both
removal and insertion can be done in the same iteration
of the list, the operation has O(N) complexity, with N
being the size of the sector.

If we can find a suitable vm, Allocate will perform a
direct request to the hypervisor that will then allocate
the VM with the defined resources.

Algorithm 2 is the additional algorithm used when
no host can fulfil the VM’s requirements. This al-
gorithm finds the host which will have the better
EEL, when increased the CPU frequency, and that can
then allocate the VM. FitsIncrease is very similar
to FitsCriteria, but instead of comparing CPUA it
checks if the host can still increase CPU frequency and
if, after the increase, it will be able to host the vm.
IncreaseDVFS sends a request to the hypervisor for
increasing the DVFS level of a host.

If after CPU frequency increase, we still cannot allo-
cate the vm in the host, we apply a CPU decrease in all
the VMs of the most efficient host. The method de-
creaseVMMipsToHostNewVm will return a host
prepared for allocation after applying the partial util-
ity [11, 12] algorithm on the other VMs.

Our solution is divided into the three phases ex-
plained previously, each of them has a very well defined
objective to fulfil. The first, intends to allocate all the
first VMs, just by looking up a host, while the sec-
ond starts the increase in frequency, trying to level the
power, taking into consideration the requests. The last
phase is intended to balance the system, and reduce the
effects of the fragmentation created by the hierarchy,
by decreasing VM MIPS and allocate in new requests.
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Algorithm 2 Local scheduling: Efficiency-Driven In-
creasing Best-Fit

Require: hosts available hosts . sorted by EEL
Require: vm VM to be allocated

1: function IncreasingLocalSchedul-
ing(hosts, vm)

2: if GenericLocalScheduling(hosts, vm) = true
then

3: return true
4: end if
5: selectedHost ← null
6: host ← hosts
7: do
8: if FitsIncrease(host, vm) then
9: IncreaseDVFS(selectedSector, vm)

10: selectedHost ← host
11: break
12: end if
13: host ← hosts.next()
14: while (host.hasNext())
15: if selectedHost == null then
16: selectedHost ← decreaseVMMips(vm)
17: end if
18: UpdateSectorsState(selectedSector, vm)
19: Allocate(selectedSector, vm)
20: return true
21: end function

While the first two phases will be happening all the
time, we expect the last phase to occur only in approx-
imately 10% of the requests.

4 Implementation

Our solution was implemented in a state of the art
cloud simulator, Cloudsim [4]. We chose this simulator
because it is widely used by many authors, has several
of the needed functions, is easily extensible and made
distributed by Cloud2Sim [6].

As of the time this work was done, Cloudsim did not
support DVFS natively in the main code base. To be
able to test our algorithm we used the research done
by [5], creators of Cloudsim, which implements all the
necessary features to simulate DVFS in the cloud. All
the results of the simulation compare our hierarchical
algorithm with two of the algorithms from Guerout
et al. [5], PowerVmAllocationPolicySimpleWattPer-
MipsMetric and PowerVmAllocationPolicyDVFSMin-
imumUsedHost.

4.1 Overall implementation approach

4.1.1 Cloudsim architecture

We have chosen CloudSim for its wide usage and ma-
turity in Infrastructure as a Service (IaaS) simulations.
It allowed us to create the hierarchical architecture of
the datacenter and implement our scheduling policy for

the allocation of virtual machines.

Figure 4: Cloudsim organization layers

Figure 4 depicts Cloudsim layered organisation. The
first layer, User level, represents the configuration that
the user of CloudSim has to perform in order to prepare
the simulation. At this level, the user must specify the
relation between Cloudlets (tasks on Cloudsim) and
VMs.

The representation of cloudlets is defined by the
number of processing elements (PEs), memory, stor-
age requested, and number of millions of instructions
(MI) they represent.

The CloudSim core is divided into four layers. The
first, User Interface Structures, contains the artefacts
composed by the user to interact with the simulation,
namely, virtual machines and cloudlets. Next, the VM
Services layer, determines how progress is made on the
Cloudlets, based on the available resources. Allocation
and all the resource management is done in the Cloud
Services layer. In the final layer of the core, Cloud Re-
sources, we can find the datacenters. To connect the
core, an event engine, which keeps track of simulation
time and is used for the communication between sim-
ulation entities, such as the datacenter and the broker
between the clients and the datacenter. These are the
main entities that receive and create events and dele-
gate the work to other entities such as the Hosts.

Scheduling decisions are done at two main points:
a) when selecting the hosts to allocate VMs, b) when
determining the cores assigned to each VM. In both
points, there are default policies that can be cus-
tomised by the user, in order to achieve different ob-
jectives.

Our algorithm is only concerned with the VM-Host
level of the allocation. For that reason, we customised
the scheduling decision at the level of the allocation
policy in Cloudsim.

4.2 Cloudsim extensions

Our work extends Cloudsim in two aspects: archi-
tecture of the datacenter and allocation policy.
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4.2.1 Hierarchy

Figure 5 highlights the main component changes:
DatacenterBroker, VM, Host, AllocationPolicy, and
Governor.

Figure 5: Highlighted extensions to the CloudSim sim-
ulation environment

Datacenter broker To capture revenue metrics, we
created the EcoBroker which extends the PowerData-
centerBroker. By extending the broker we were able
to register the allocations being performed, calculate
infrastructure expenses, the revenue, and were to find
the profits of the system in the simulation.

To model revenue, we defined several categories of
virtual machines: micro, small, regular, and extra, from
the less to the more powerful. With each category, we
associated an utility class, representing the allowance
of the client for reductions on his VMs.

The result was a price matrix used to estimate rev-
enue and the infrastructure cost of the datacenter as
seen in [12].

Host and Vm In order to collect revenue data, VMs
were extended with classification regarding their type
and utility. Each VM was assigned a type regarding its
size and an utility, to account for how much the client
is willing to reduce the initial requirements, in return
for a discount in the final price.

Hosts were extended, to collect information about
types of failures in the allocations, mostly so we could
focus our concerns in the CPU. When a VM failed to
allocate we registered what was the cause and this al-
lowed us to see when the datacenter was getting full,
and what was the average number of VMs to Host ratio
in the allocations.

Allocation policy Cloudsim’s architecture is flat,
meaning that each datacenter contains a collection of
hosts that are indirectly managed through the alloca-
tion policy. Our algorithm targets a hierarchical ar-
rangement of the hosts, partitioned in smaller sectors.

Hierarchisation of the hosts was achieved by ab-
stracting the current concept of allocation policy and
creating two types of policies: sector policies and host
policies. Sector policies abstract the allocation on the
sectors while host policies, similar to the existing flat
policies, allocate VMs directly in the hosts.

In Figure 6, we present a summary of the algorithm
class hierarchy and the main methods implemented.
When performing an allocation, each sector finds the
best sub-sector, based on the energy efficiency, and del-
egates the allocation until it reaches the host. As soon
as the VM is allocated, the update of the metrics is
triggered and all the chain re-calculates the values to
match the changes done in the allocation.

Figure 6: Allocation policy hierarchical extension to
CloudSim

4.2.2 Algorithm routines

The two allocation policies used to compare our
algorithm, found in Cloudsim, PowerVmAllocation-
PolicySimpleWattPerMipsMetric and PowerVmAllo-
cationPolicyDVFSMinimumUsedHost, use an exten-
sive search for the perfect Host based on a specific met-
ric. In the first, case it uses a Watt per MIPS metric
while on the second it looks for the host with lower
CPU load. This type of search does not scale, since
it needs to check the whole list every time it needs to
perform an allocation.

Our policy introduces a partial search algorithm with
pre-calculated metrics to achieve faster decisions. The
solution is composed of two parts: data structure, the
ordered list of sectors (or hosts), and the decision rou-
tine which finds the first suitable match in the list for
the tasks.

The data structure described in Section 3.3, is imple-
mented by class OrderedList, which extends the Java
implementation of LinkedList with two methods named
orderedAdd, one for elements other for collections of
elements. In this particular implementation, we were
not concerned with insert performance details, since
Cloudsim only measures virtual time for the tasks and
does not have any metrics on the allocation itself. Ad-
ditionally, in a real deployment, this is to be carried
out asynchronously.

The algorithms were implemented in two classes:
EcoSectorPowerVmAllocationPolicy implements Algo-
rithm 1 while EcoHostPowerVmAllocationPolicy im-
plements Algorithm 2.

5 Evaluation
The evaluated metrics, relevant to the provider, are

the VMs requested but not allocated, resource utilisa-
tion, and revenue, while for the owner, they are the
total execution time of workloads and the price. After
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Table 1: Datacenter sizes

DC-Size Hosts Depth Fan-out
Size-1 1000 2 2

Size-2 5000
2 2
2 3

Size-3 10000
2 4
2 3
4 2

Table 2: VM Types

VM Type MIPS CPUs RAM (MB)
Micro 500 1 870
Small 1000 1 1740
Regular 2000 1 1740
Extra 2500 1 2613

the implementation and validation of our DVFS algo-
rithm model in CloudSim, this section presents all the
relevant metrics comparing our agains the two other
implementations.

5.1 Methodology and Configurations

To evaluate our energy-efficient proposal we used
a configuration composed of different datacenter ar-
rangements, two types of host machines and four dif-
ferent VM types that were available to the client from
request.

First we will describe the datacenters, which are
characterised by: the number of hosts available in the
datacenter; the depth of the hierarchy: number of in-
termediate sectors levels; hierarchy fan-out: number of
children of each node in the hierarchy. All the tested
combinations are listed in Table 1, and go from a small
datacenter of 1000 hosts to higher sizes with 10000
hosts.

Due to the increasing memory requirements for the
tests we stopped at 10000 hosts. Our algorithm targets
datacenters with sectors of size around 1000 hosts or
more, and with the tests done we can extrapolate the
scalability of the algorithm.

In order to simulate heterogenous client requests, we
defined four types of VMs, as listed in Table 2. With a
limited number of types, covering tasks from small to
large requirements, we were able to obtain more precise
results regarding the distribution of the MIPS.

To create a more diverse allocation scenario, we
chose two different types of host, catalogued in Ta-
ble 3. With the first type, we offered less CPU power
with higher memory, while in the second case we had
more CPU with a little bit less memory than the pre-
vious. This setup was projected to handle easily two

Table 3: Host sizes

Host-Size MHz Memory (MB) Storage (TB)
Size-1 3720 10000 1
Size-2 5320 8192 1

Table 4: CPU Frequencies

CPU-Freqs Percentage (%)
Freq-1 100.00
Freq-2 89.89
Freq-3 79.89
Freq-4 69.93
Freq-5 59.925

VMs in the Size-2 host and not always two VMs in
Size-1 host.

The energy simulation, described previously, offered
five levels of CPU consumption, present in Table 4 the
frequencies range from 59% to full CPU usage. Using
Cloudsim the values take into consideration whether
the CPU is being used or idle, considering then ten
levels of power usage (five idle and five when being
used).

Simulating the requests was done using heteroge-
neous virtual hardware, from the options listed in Ta-
ble 2, since it is becoming a common practice in the
literature [1].

From now on, for simplicity purposes, when we
refer to the algorithms, we will use shorter ver-
sions of their names: PowerVmAllocationPolicySim-
pleWattPerMipsMetric will be WattPerMip, Pow-
erVmAllocationPolicyDVFSMinimumUsedHost will be
MinUsed, and our EcoPowerVmAllocationPolicy will
be EcoWattPerMip. In the cases where we simulated
different configurations of the datacenter, our algo-
rithm will be suffixed with the depth and fan-out of the
hierarchy: EcoWattPerMip, for depth two and fan-out;
EcoWattPerMip32, for depth three and two of fan-out.

For the example EcoWattPerMip32 we will have
32 = 9 sectors as leaves of the hierarchy.

5.2 Allocation success rate

The provider-side metrics measured considering the
allocation success, i.e., number of failed VMs and
MIPS, show that our strategy was able to, at least,
match the non-hierarchical strategies described in
Guerout et al. [5].

Figure 7 and Figure 8 show that all the algorithms
start rejecting VMs at about 86% of the capacity. Since
our algorithm uses a hierarchical distribution, and par-
tial data to make decisions, the failure rates should be
higher than the other optimal algorithms. The rea-
son why it can handle the allocations better, is re-
lated to how the search for the host is done: the non-
hierarchical alternatives optimise the search for their
objectives, not taking into account the capacity of the
machine, and in case the perfect machine they selected
cannot handle the VM they will immediately reject it.
In our case, we search the ordered list, that already
considers our objective in its ordering, but then we
choose a host that is capable of handling our VM (if
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available).

Figure 7: Size 1 - Failed allocations

Figure 8: Size 2 - Failed allocations

In the largest test case, depicted in Figure 9, we can
see that our algorithm still behaves well, but already
looses the best allocation ratio to the WattPerMip pol-
icy. This is still a good result, since we increased the
size of the datacenter ten times, and we still can com-
pete with the flat algorithms regarding failed alloca-
tions. Flat algorithms do not loose any performance in
Cloudsim, since it does not measure the allocation cal-
culations or any other values not concerning the tasks
runtime, but our algorithm requires significantly fewer
calculations due to its hierarchical approach and list
ordering.

Figure 9: Size 3 - Failed allocations

This kind of algorithms are doing extensive searches
of all the hosts to find their match, and this is a serious
scalability problem if we are talking about a large size
datacenter (e.g. thousands of hosts).

5.3 Energy efficiency

Figure 10: Energy Efficiency

While aiming for energy efficiency, we intended to
execute more MIPS using the same Watts. To measure
this, we used Equation (3), the relation between the
real allocated MIPS in each algorithm, divided by the
sum of the used power.

Efficiency =
RequestedMips− FailedMIPS

PowerSum
(3)

Depicted in Figure 10, we have the full results for all
the algorithms in each Size: higher values mean more
efficient algorithms.

For all sizes, our efficiency is considerably higher
than the other two, except for Size-3 with depth 4,
where our values are closer, but this is due to the fact
that the times of the other algorithms are consider-
ing the amount of time needed to search ten thousand
hosts in each VM request.

5.4 Effects on workloads

Regarding user-related metrics we analysed the ef-
fects of our algorithm on task execution time. As
stated before, the simulation relied on tasks generated
by VMs provisioned at PlanetLab [2]. Each of the gen-
erated workloads was assigned to a VM in our simula-
tion, to be used as work being required by the VM.

As we can see in Figure 11, our policy has an average
execution time that matches the execution time of the

9



Figure 11: Size 1 - Execution times

other policies. Still, if we cross-reference this data with
the failures in allocation, we will see that the lower
execution times of policy MinUsed are directly related
to that fact it executed less VMs. In Figure 11, we
depict the percentage of the differences between our
algorithm and the minimum, maximum, and average
of the other algorithms.

6 Conclusion
In this paper, we propose a solution that extends

some of the models being worked by the academic re-
searchers and try to help in solving big problems such
as energy efficiency, while addressing the critical issue
of scaling the scheduling of the computational power
in the datacenters.

6.1 Concluding remarks

Once the shortcomings were identified, we proposed
a solution that considers the datacenter as a structured
hierarchical network divided into sectors, with local
schedulers that interact with the upper levels, by ex-
changing information about the state of their machines.
The solution was implemented in Cloudsim and tested
against multiple heterogenous situations.

The obtained results show that our solution effi-
ciently assigns resources to jobs, according to their re-
quirements and helps to maintain an energy-efficient
infrastructure.

Our algorithm demonstrated efficiency for setups
with at least one thousand hosts per sector, when this
value decreases, we start failing more VMs and the
fragmentation creates a less efficient environment.
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