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ABSTRACT
Grid systems have gained tremendous importance in past
years since application requirements increased drastically.
The heterogeneity and geographic dispersion of grid resources
and applications place some difficult challenges such as job
scheduling. A scheduling algorithm tries to find a resource
for a job that fulfills the job’s requirements while optimiz-
ing a given objective function. Utility is a measure of a
user’s satisfaction that can be seen as an objective func-
tion that a scheduler tries to maximize. Many utility func-
tions have been proposed as an objective for scheduling al-
gorithms. However, the proposed algorithms do not con-
sider partial requirement satisfaction by awarding an utility
based on the total fulfillment of the requirement. Most of
them follow centralized or hierarchical approaches, suffer-
ing from scalability and fault tolerance problems. Our so-
lution proposes a decentralized scheduling architecture with
utility based scheduling algorithm that considers partial re-
quirements satisfaction to overcome the shortcomings of ac-
tual solutions. Performance results show that user utility,
submission and execution times are improved and a slightly
more balanced system is achieved.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Operating Systems—schedul-
ing
O; D.2.8 [Software Engineering]: Metrics—performance
measures

General Terms
Simulation
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The computational power required nowadays is huge. Ge-
netic studies, large macroeconomic simulations and physi-
cists trying to find the origin of the universe are examples
of investigation areas that need access to a lot of computa-
tional power, i.e. computational resources. Due to the con-
tinuous growing need of science for computational resources
it is important to have mechanisms that assure that shared
resources are used in an efficient and fair way. For this rea-
son, grid scheduling is a very important problem that has
been widely studied by the computer science community.
The purpose of grid scheduling is to allocate a job to a re-
source, fulfilling the job’s requirements while optimizing an
objective function.

Many solutions to the grid scheduling problem have been
proposed. However, most of them use a centralized or hierar-
chical approach, lacking for scalability and reliability. Sev-
eral decentralized approaches have also been proposed [5],
but they do not consider partial requirement fulfillment,
which might have a major impact on the user satisfaction.
To address this shortcomings we propose a grid schedul-
ing algorithm that considers partial requirement fulfillment
based on information provided by the users. With this new
scheduling approach, named as Partial Utility (PU) schedul-
ing, we intend o maximize user’s success rate, utility and
system load balancing.

The rest of the paper is organized as follows: in section
2 we present the related work; the scheduler architecture is
described in section 3; in 4 we present our simulation results;
finally, in section 5 we present some concluding remarks and
our plans for future work.

2. RELATED WORK
This section surveys the most relevant classical and utility-

based scheduling algorithms.

2.1 Classic Scheduling Algorithms
In this section we present some of the classical scheduling

algorithms in Grids and distributed systems.
In First Come First Served (FCFS) algorithm jobs are

executed according to the arriving time order [11]. This
algorithm has major disadvantage the fact that when a large
job is on the waiting queue, the jobs behind it must wait a
long time for the large job to finish.

Round Robin (RR) algorithm solves this issue by assigning
to each job a time interval, called quantum, during which it
is allowed to run. If a job cannot be completed in a quantum
it will return to the queue and wait for the next round [11].
The only challenging issue with this algorithm is to find a



suitable length for the quantum.
The Minimum Execution Time (MET) algorithm assigns

each task to the resource that performs it with the minimum
execution time [12]. MET does not consider whether the
resource is available or not at the time (ready time) and can
cause severe imbalance in load across resources [7, 12, 14].
The main advantage of the algorithm is that it gives to a
task the resource that performs it in the smallest amount of
time.

The Minimum Completion Time (MCT) algorithm assigns
a task to the resource that obtains the earliest completion
time for that task [7, 12, 14]. MCT has the following disad-
vantage: the selected resource may not be one that has the
minimum execution time for that task.

To deal with the completion time problem several algo-
rithms divides the scheduling process in two phases. This is
the case of Min-min algorithm [7], the Min-Max algorithms
[8, 14] and the Max-min [7]. During the first phase they
calculate the minimum completion time and in the second
one they use the information from the first phase and select
the best resource using different heuristics.

The sufferage of a task is the difference between its second
minimum completion time and its first minimum completion
time [8, 14]. These completion times are calculated consid-
ering different resources [11]. In the Sufferage algorithm the
criteria to assign a task to a resource is the following: as-
sign a resource to a task that would suffer the most if that
resource was not assigned to it [11, 12]. The sufferage value
of a task is the difference between its second earliest com-
pletion time and its earliest completion time

Different classical scheduling algorithms have been pre-
sented. Apart from the most simple (FCFS and RR), all
the others take into account job completion time in their
heuristics. However they do not consider Quality of Service
(QoS) or utility demands restraining the user satisfaction
regarding the way their jobs are treated.

2.2 Utility-based Scheduling Algorithms
Next, we present some QoS and utility scheduling algo-

rithms for grid environments that aim to solve the open
issues of classical approaches.

In [1] Amuda et al. propose a QoS priority-based schedul-
ing algorithm. The algorithm assumes that all the neces-
sary information about resources, jobs and priority values is
available and is designed for batch mode independent tasks.
The task partition divides the tasks into two groups (high
and low) using the priority value as a QoS parameter. Tasks
with higher priority are scheduled first on all the machines.

In [3] Chauhan et al. propose two algorithms for QoS-
based task scheduling: QoS Guided Weighted Mean Time-
min (QGWMT) and QoS Guided Weighted Mean Time Min-
Min Max-Min Selective (QGWMTMMS).

The QGWMT is a modification of the Weighted Mean
Time-min [9] algorithm that considers network bandwidth
as a QoS parameter. First, the algorithm divides the tasks
in two groups: high and low QoS. Tasks from the high QoS
group are scheduled first. Next, for each task on a group, the
algorithm calculates the task’s weighted mean time (WMT).
The task with the higher WMT is selected. Then, the algo-
rithm choses the resource that gives the earliest completion
time to the selected task and maps the task to it.

The QGWMTMMS is a modification of the Weighted
Mean Time Min-Min Max-Min Selective [2] algorithm us-

ing network bandwidth as a QoS parameter. First, the al-
gorithm creates n priority groups and assign tasks to them
according based on their QoS demands. Tasks from higher
priority groups are scheduled first.

In [4] Chen proposes an economic grid resource scheduling
based on utility optimization that uses a universal flexible
utility function that addresses QoS requirements of deadline
and budget. The paper assumes that a grid is hierarchical
and that the user submits the assignment to a Grid Resource
Manager (GRM). The GRM is at the top of the hierarchy,
on the second level there are the Domain Resource Managers
(DRM) that are responsible for Computing Nodes (CN) or
other DRM. The algorithm starts by the GRM getting util-
ity information from all DRM and by calculating the rate
of throughput and average response delay. Then, the al-
gorithm finds out which of DRM has the maximum utility
value (MUV) and selects it to be the scheduling node. If
MUV is not unique, them the DRM which has the great-
est variance is chosen. If the nodes on the next level of the
chosen DRM are not CN them the process is repeated. Oth-
erwise, the algorithm finds the node which has the maximum
utility value and give it the user assignment.

In [5] Chunlin et al. propose an optimization approach
for decentralized QoS-based scheduling based on utility and
pricing. Grid resources can be divided into computational
resources (CPU speed, memory size, storage capacity) and
network resources (bandwidth, loss rate, delay and jitter).
Task agents specify their resource requirements using a sim-
ple and declarative utility model. The Grid is seen as a
market where task agents act as consumers and resources as
providers that compete with each other to maximize their
profit. Due to the fact that the its not realistic that the Grid
knows all the utility functions of the task agents, although
it is mathematical tractable, and it requires global coordi-
nation of all users, the authors propose a decomposition of
the problem in two problems (task agent optimization and
resource agent optimization) by adopting a computational
economy framework. The proposed solution allows multi-
dimensional QoS requirements that can be formulated as a
utility function that is weighted sum of each dimension’s
QoS utility function.

Utility based scheduling algorithms have been proposed
to solve the lack of QoS support and utility demand of the
classical approaches. Although all of them use different ap-
proaches and provide support to several requirements, none
of them support partial utility mechanisms. Hence, if the
resource that matches the user’s requirements is not avail-
able, the job will be delayed or rejected. Our proposal solve
this by providing partial utility.

3. PROPOSED SOLUTION

3.1 Architectural design options
The scheduling responsibility can be delegated on one

centralized scheduler or be shared by multiple distributed
schedulers. In this section we present the main reasons that
lead us to the use of a decentralized solution.

The centralized approach is very simple, as there is only
one scheduler for the Grid. However, it has several impor-
tant drawbacks that overcomes its use, such as having a
single point of failure [15], lack of scalability and lack of
fault-tolerance [6, 10].

Hierarchical solutions minimize the aforementioned prob-



lems by organizing the schedulers hierarchically. Keeping
track of the hierarchy introduces additional complexity with-
out completely solving the problems of centralized approach:
it is more scalable and more reliable but in case of failure of
a scheduler all the associated resources become unavailable.

In decentralized scheduling algorithms there is no central
scheduler to control the resources [5]. Instead, there are
local schedulers to which the scheduling requests are sent
to. They take into consideration important issues such as
fault-tolerance, scalability and multi-policy scheduling and
so we used a decentralized scheduling architecture.

The grid network is divided into Virtual Organizations
(VOs), as depicted in Figure 1. Each one of the VOs com-
prise three different types of entities: local resources that are
used for job’s submission; Grid Information Service (GIS)
that is used to maintain the information of the VO resources
and of the other existing VOs; and Local Scheduler (LS) that
participates in local and remote scheduling.

Figure 1: Grid organization

3.2 Local scheduler
This sections describes the LS architecture and its com-

ponents: the Resource Manager and the Job Scheduler. It
also contains a detailed description of our utility function.

3.2.1 Local scheduler architecture
Figure 2 represents the high level architecture of a LS,

comprising two different entities: a Resource Manager and
a Job Scheduler.

Figure 2: High Level Architecture

The Resource Manager is responsible for maintaining a
global view of the network, by periodically transferring re-
source state with remote VOs so that each one of them main-
tains a snapshot of others LS resources. The Job Scheduler
is responsible for processing both local and remote jobs ac-
cording to the scheduling algorithm in use, either by assign-

ing them to a local resource or by forwarding it to a remote
LS.

3.2.2 Resource Manager Entity
Resources’ information can be classified in two categories:

static and dynamic. Static information has a low rate of
change, as nodes may be added to, or removed from, clus-
ters. Some examples of static information are: operating
system, processor, number of cores, disk memory, RAM, etc.
Dynamic information is likely to change over time. Some ex-
amples of dynamic information are: CPU occupation (per
core), number of allocated jobs, free disk memory, free RAM,
etc.

Resources send information about their current state to
their LS when a new job is submitted or completed. In or-
der to have a snapshot of the entire set of the grid resources,
VOs maintain up-to-date resources status information by
sending information of their resources’ status to the others
VOs and updating the information of the remote resources
status. The exchanged information is a resume of the VO’s
resources state that includes average resource utilization, re-
source with the less CPU occupation and resource that has
more memory (disk and RAM) available.

The update of the remote resource status is performed in
three ways: periodically, when the updated load of the snap-
shot exceeds a limit or when the number of jobs that have
been submitted to the resource exceeds a limit. Using these
three mechanisms a more accurate view of the remote re-
sources status is achieved although inconsistent views might
still happened between two consecutive updates.

The entity responsible for performing such tasks is the Re-
source Manager. The pseudo-code is depicted in Algorithm
1.

Algorithm 1 Resource Manager algorithm

WaitFor(evt)
if evt==(Submit(job, res) || Complete( job, res)) then

UpdateResTable (resTable[Local, res])
end if
if evt==(timeout || load>lMax || nJobs>nMax) then

SendResStatusMsg(resTable[Local, All])
end if
if evt == RcvResStatusMsg(resTable[remoteVO, All]) then

UpdateResTable (resTable[remoteVO, All])
end if

3.2.3 Job Scheduler Entity
Every incoming job is submitted to the LS either from a

local or a remote user. In case of local jobs, the LS finds the
resource that best matches the user requirements by calcu-
lating the utility function of all available resources. If the
chosen resource is local then the job is submitted otherwise
it is forwarded to the remote LS.

As the LS remote resources’ status might be inconsistent
and the required resource might not be really available. In
case of reception of a remote job, the LS must checks if
the required local resources are available before realizing
the submission. If this is not the case, a new utility cal-
culation is performed; if no local resource is found the job
is forwarded again to a remote LS, unless the Time-To-Live
(TTL) expires.

The entity responsible for performing such tasks is the Job
Scheduler. The pseudo-code for the described procedure is
presented in Algorithm 2.



Algorithm 2 Job Scheduler algorithm
while TRUE do

jobProcessed=FALSE
TTL=MAX TTL
WaitForJobSubmission(job)
GetJobInfo(job,user,TTL,jobReq,reqRes)
if user ∈ remoteVO then

TTL − −
if AvailableRes(reqRes) then

AssignJob(job,reqRes)
jobProcessed=TRUE

end if
end if
if NOT jobProcessed then

bestRes = CalcUtility(job,jobReq)
if bestRes ∈ res[Local] then

AssignJob(job,bestRes)
else

if TTL == 0 then
SubmissionFail(user,job)

else
PutJobInfo(job,user,TTL,bestRes)
ForwardJob(job)

end if
end if

end if
end while

3.2.4 Utility function
Next, we will describe how we calculate our utility func-

tion. Unlike other schedulers that select a resource that
is able to satisfy all the user requirements (Matchmaking
mechanism [13]) we propose a more flexible approach on re-
quirement fulfillment by introducing the notion of partial
utility or partial requirement fulfillment.

Jobs have different requirements such as operating sys-
tem (Linux, MacOs, Solaris, Windows), architecture (Intel,
Motorola...), number of cores, memory (RAM and disk),
as well as a maximum time for job completion. Each of
those requirements has an utility value associated, ranging
between [0,1]. However, unlike other solutions, the user can
specify more than one option per requirement with the cor-
responding utility value. The different utility values that
are assigned to each requirement’s option defines the par-
tial utility. The fact that each requirement can have more
than one option will allow a more flexible resource selec-
tion. For example, a MacOS operating system requirement
option has utility value 1 and another option (Linux) has
utility value 0.5. Although Linux is not the user’s preferred
operating system our solution allows the user to determine
the penalty, in terms of utility, whilst other solutions simply
set utility to zero.

The global utility value weights the different requirements
equally and the final result is a combined aggregation of the
combined satisfaction of requirements. For each resource, ei-
ther local or remote, its utility is calculated according to the
resource status information and the job’s requirements. The
best resource is the one that maximizes the utility function.

Algorithm 3 depicts the pseudo-code of this procedure.

Algorithm 3 Job Scheduler Utility algorithm
for all v ∈ numberVO do

for all r ∈ maxRes(resTable[v, All]) do
globalUtil[v,r]=Utility([resTable[v,r], jobReq)

end for
end for
return (resMatchMaxUtil(globalUtil))

Let us now define how the globalUtil of each resource is

calculated. Considering:

• A list of job requirements: jobReq = {req1, ...reqN};
• For a given requirement, reqi, the list of possible op-

tions: opti = {opt(i,1), ..., opt(i,K)};
• The set of utility values of a requirement’s (reqi) op-

tions (opti): α(i)
• The weight β(i) ∈ [0, 1] assigned to each requirement
reqi.

The globalUtlity[v, r] of resource r belonging to cluster v
is given by Eq. 1:

globalUtility[v, r] =

N∑
i=1

max(α(i) ∗ β(i))

N
(1)

If all the requirements have a similar importance β must
be set to one. However, if one wants to prioritize them, a
different value of β must be assigned to each one of them.

4. SIMULATION STUDIES

4.1 Performance metrics
The following metrics will be used to validate the perfor-

mance of our scheduling algorithm.

• User success ratio – is the ratio between the number
of successfully completed jobs and the number of sub-
mitted jobs of each user. It is calculated as follows:

user suc ratio(u) =

n jobs(u)∑
j=1

complete[j]

n jobs(u)∑
j=1

submit[j]

(2)

• User utility – average utility value of the resources used
by the user’s jobs. It is given by:

user util(u) = 1−

√√√√n jobs(u)∑
j=1

utility value[j]

n jobs(u)

(3)

• Submission time – average time since the user’s jobs
are submitted till they are assigned. The User submis-
sion time is given by:

user submit time(u) =

n jobs(u)∑
j=1

(t assign[j]− t submit[j])

n jobs(u)

(4)

The system submission time (system submit time) is
given by the average value of all users.
• Execution time – average time since the user’s jobs are

submitted till they are completely executed. It is given
by:

user exec time(u) =

n jobs(u)∑
j=1

(t executed[j]− t assign[j])

n jobs(u)

(5)

The system execution time (system exec time) is given
by the average value of all users.



• System load balancing level– The load variation of the
system’s resources. It is measured as follows:

system load balance = 1−
std dev load

avg load
(6)

Where avg load represents the mean resource utiliza-
tion and std dev load the respective mean square de-
viation.

4.2 Simulation environment
The validation of our proposal was done by simulation,

using the GridSim toolkit. In order to assess its performance
the following scheduling algorithms have been tested:

• Partial Utility (PU) - Our scheduling algorithm with-
out any priority assigned to the requirements, having
β set to one for each one of the requirements.
• Binary Utility (BU) - The generic scheduling mech-

anism that defines the utility of a resource based on
a binary decision that just states wether or not a re-
source is able to fulfill the user requirement. In this
algorithm each requirement has only one possible op-
tion.
• MM - the Matchmaking algorithm defined in [13]. In

this scheduling approach, the utility of a resource is
based on its ability to satisfy all the user requirements.
For each resource the user has to define a single re-
quirement.

We simulate four cluster with 20 resources each and 70
users randomly distributed among them. Each user submits
20 jobs that were generated using a Poisson distribution with
mean 2. This makes a total of 1400 jobs for 80 grid resources.
There are four types of requirements: operating system, ar-
chitecture, job execution time and processor speed. Apart
from architecture, whose options are 32 and 64 bits, all the
others have a maximum of four options. Each option is se-
lected in a random way. It is important to mention that all
the options have the same probability of being selected. The
utility value assigned to each option is also randomly gener-
ated. There are four utility intervals: [0;0.25[, [0.25; 0.50[,
[0.50; 0.75[, [0.75,1]. First, one interval is randomly selected.
After the interval is selected, a random number, bounded by
the interval, is generated. This number corresponds to the
utility value of the requirement’s option. Resource’s charac-
teristics such as operating system, architecture, number of
processing elements (cores) and their capacity are generated
using the job’s requirements method.

For each experiment 10 simulation runs have been exe-
cuted and statistically processed with a confidence level of
90%.

4.3 Results and analyis
Figure 3 depicts the user success ratio of the different

schedulers, which are identified as defined in the previous
section. Apart from the MM scheduler, all the others were
able to serve all the submit jobs. The particular case of the
MM scheduler is caused by the rejection of jobs that do not
fulfill all the user requirements. In all the other cases, a
job is accepted whenever, at least, one of its requirement is
satisfied.

When comparing the average user utility, depicted in fig-
ure 4, we can conclude that our scheduler (PU) outperforms

Figure 3: Users success ratio

the others, followed by the BU scheduler. The higher util-
ity value achieved by PU schedule is caused by the partial
utility police that allows for the selection of resources that
partially satisfy the user requirements and the possibility of
job forwarding between different clusters.

Figure 4: User utility

Figure 5 depicts the user submission time of the three
scheduling algorithms and Figure 6 the execution time. Our
solution has a higher submission time due to the fact that
jobs may be forwarded between clusters. However, this ad-
ditional delay does not decreases user’s satisfaction as figure
4 presents.

Figure 5: User submission time

Regarding the execution time, our solution performance is
way better than Matchmaking and slightly better than the
Binary Utility solution.

The results achieved showed that PU scheduling algorithm



Figure 6: User execution time

outperforms all the others in terms of user’s satisfaction,
job’s success and execution time. It is important to mention
that although there was an additional delay is introduced
by the mechanism of job forwarding between clusters our
solution’s performance was the best.

5. CONCLUSIONS
We proposed a solution to maximize user’s satisfaction

and system load balancing. To do so, we proposed a de-
centralized scheduling architecture were each VO maintain
the information of resources through the use of a GIS. Our
architecture also comprises a LS that is responsible for all
scheduling mechanisms. We use a method to calculate utility
that considers partial requirement fulfillment/ partial utility.
The simulations studies performed in GridSim have shown
that our solution achieves better results than the Binary
utility or Matchmaking algorithms in all the metrics stud-
ied. Hence, using partial utility enables better user satis-
faction, smaller job submission and execution times and a
more well-balanced grid. We plan to expand our proposal
to allow the user to prioritize the requirements and to test
it in a real grid scenario.
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