
Garbage Collection Optimization for JVM running
Big Data Workloads

Duarte Patrı́cio
Computer Science and Engineering Department

Instituto Superior Técnico
Avenida Rovisco Pais, 1

Email: duarte.carvalho@tecnico.ulisboa.pt

Abstract—Java Big Data applications have increased popularity
in the past decade. The increase of Web-based services, and of the
computing power, started an era of reducing large and complex
data sets into useful data. The computing of large data sets has
strict demands for the scalability of a system in order to increase
performance.

Java has been the programmer’s choice when implementing
Big Data applications due to its cross-platform capabilities and
managed runtime. However, it incurs memory overhead required
by a managed runtime. This overhead is negligible for small server
applications but not for large scale data processing. The JVM is the
main bottleneck for all Java programs. If a program misbehaves,
the JVM should take appropriate action. Large scale data analysis
programs misbehave in terms of the memory bloat they cause. The
problem is in the huge amount of objects and collections of objects
that these programs allocate.

This thesis’s work presents a solution to deal with the memory
bloat that large objects cause on the Java heap, for the HotSpot
Java Virtual Machine. The solution consists on seperating the Java
heap space to give room to large objects that can be considered
part of the memory bloat problem. Since the Java heap requires
a garbage collector to collect unused object references and return
the freed memory, this work also presents an extension to the
default garbage collector in the HotSpot virtual machine, the
Parallel Scavenge, to collect on such heap and promote old objects
accordingly.

It is shown that this solution can provide better application
throughput when the spaces for the large objects contain long lived
references, that managed to maintain dependent object references
close together.

I. INTRODUCTION

Many of the Big Data applications in use today are written
in the Java language. The Java language facilitates application
development because it relies on the Java Virtual Machine
(JVM) for its memory-management, it has a flexible object-
oriented design, quick release cycle, portability and worldwide
support. However, the JVM can be a bottleneck for programs
that rely on huge memory usage, such as Big Data Applications.
This is due to the allocation and collection mechanisms, which
are still not fully aware of the large memory footprint under
Big Data.

The two culprits for the limited performance in some Big
Data installations for memory restrained systems is the ap-
plication itself and the JVM. Tuning the application code is
impractical given the increasing number of applications. This
leaves the JVM as the principal driver.

On the JVM, all objects go into the Java heap, a runtime
structure closely managed by the GC module. Management of
the heap consists on interpreting allocation calls and triggering
a garbage collection when the spaces are exhausted. Therefore,
the GC module has great impact on the throughput of the
application requiring adaptation to become bloat-aware.

From the works of [1], [2] it was shown that bloat-awareness
can be achieved optimizing locality for the objects in the
heap. In fact, Moon’s work [1] deals with a Large LISP
system with Mark&Sweep and Copying algorithms, which is
still the norm. There is a similarity when translating his work
to a Big Data system. And, Wilson et. al. demonstrated
reorganization techniques to improve locality showing that there
is improvement on the traversal algorithm when objects of a
certain type are given special treatment.

This work consists on optimizing the Parallel Scavenge
garbage collector of the HotSpot VM by adapting the Java heap
to give special treatment to certain objects, considered to be
possible candidates for causing memory bloat, and to garbage
collect such heap.

Duarte Patrı́cio
October 16, 2015

A. Contributions

The main contributions of this paper are:
• An extension for the Java heap which handles potential

large objects.
• A garbage collector extension to operate on a heap divided

into segments, promoting objects to these segments based
on a configurable decision criteria.

• Two approaches to save object’s special status information.

II. RELATED WORK

This section presents the most relevant work regarding this
work’s goals. There are two main subjects to cover: the
currently available open-source Big Data platforms written
in Java and, at the lower level, the mechanisms of garbage
collection, allocation and object placement in the virtual ma-
chine. Section II-A describes the relevant Big Data platforms
that could improve under this work’s solution, Section II-B
describes relevant GC algorithms available in the literature, and
in Section II-C some lower level details for various optimization
levels are shown.

A. Big Data Platforms

To make sense of the unstructured data flowing across the
Web, more specific platforms were developed. Conventional,
general purpose database stores, like RDBMS, DBMS or
ORDBMS, did not quite fit for the storage of data, due to
their lack of scalability, throughput and dynamism. These kind
of databases are commonly referred to as NoSQL (from “Not
Only SQL”).

Databases and file systems are the integral part for storage
technologies. Big Data requires that the databases and file
systems powering the cluster to be high-throughput oriented.
But, the throughput must also be scalable. Many Big Data tech-
nologies are designed for commodity hardware machines, thus
trusting in the distributed computing design of the applications
for performance.

Key-Value store databases have, as their fundamental data
model, a map of their contents structured as key-value pairs.
The key is often unique and is used as an identifier for the
value, although its usage may differ. This kind of storage offers
the advantage of quick lookups and fast loading onto memory.
Voldemort [3] is a Key-Value storage in use by LinkedIn, based
on Amazon’s DynamoDB, which offers high availability and
quick lookups, since it is, essentially, a huge distributed hash
table (DHT).

On the other hand, column-oriented databases are contrary
to the conventional RDBMS, and store their data in columns
rather than in rows. This provides faster lookups in disk when
reading an large set of blocks. It is a popular data orientation
in NoSQL data-stores. Examples of implementations include
HBase [4], Cassandra [5] and Druid [6].

Big data and real-time web technologies process huge
amounts of data at a time. That huge amount of data can
be translated into a batch of data. Batch processing in Big
Data involves the scheduling a “job” as its workload, such
as the Hadoop Map-Reduce framework [7]. However, some
applications require real-time guarantees for service. These
are stream-processing applications, such as the S4 [8] and
Storm [9].

B. Garbage collection

The garbage collection research field has seen several years
of study and its importance is increasing, on par with the
evolution of high-level languages like Java and C#. This has
spanned a vast collection of algorithms where those used today
are combinations of older algorithms, which can be stacked
with application-specific profiles [10].

Classic algorithms, such as the Mark&Sweep [11], the Copy-
ing GC [12], the Incremental GC [13] and the Generational
GC [14] set the ground for the more modern algorithms such
as the parallel (several GC threads executing at the same time)
and the concurrent (GC threads execute at the same time of the
mutator — the application thread). Examples of relevant par-
allel collectors include the Immix [15], a mark-region GC with
contiguous allocation and opportunistic evacuation; the Parallel
Scavenge and NAPS (NUMA-Aware Parallel Scavenge) [16],
a generational mark-sweep-compact GC implemented in the

HotSpot JVM where NAPS is an adaptation in order to make
it NUMA-Aware; and NUMA-Aware Dominant-thread-based
copying [17], a copying GC that uses the thread that most
accesses the object on a NUMA architecture. Concurrent col-
lectors try to mitigate the Stop-The-World (STW) pauses caused
by the parallel collectors. In this category are included the Real-
Time Concurrent GC [18], which uses page virtual protection
to raise traps and keep up with the mutator; the Mostly-Parallel
GC [19], which is essentially a concurrent Mark&Sweep using
virtual dirty bits to track the mutator’s touched pages; the
Pauseless GC [20], also a concurrent Mark&Sweep but with
the mutator doing GC work; and the C4 [21], a generational
extension of the Pauseless GC.

C. Object Layout and Locality

The JVM keeps some “behind-the-scenes” structures in or-
der to fulfill its manager responsibility. These include object
metadata, indispensable for the garbage collector, whose size
depends on the VM implementation [22].

Object ordering schemes can provide performance for the
application, by leveraging their placement in order to increase
locality in system-level memory structures. Ilham et. al. studied
and evaluated Depth-First, Breath-First and Hot-Depth First
ordering schemes, while prior works, such as those by Moon [1]
and Wilson [2], showed that optimization can be achieved
by separating long-lived objects of ephemeral ones or by
categorizing objects depending on their type. On the other hand,
Chen et. al. [23] instrumented object code in Microsoft’s CLR 1

to create profiles of object usage.

III. ARCHITECTURE

This section describes the main architecture for the proposed
solution, taking into account the design goals of the HotSpot
virtual machine.

The following sections are organized following an approach
of increasing detail. First, in Section III-A an overview of
the HotSpot virtual machine runtime is presented, and then in
Section III-B the target GC module is described, at high-level.
The last Section III-C will describe, this time with more detail,
the decisions and the approach taken.

A. HotSpot Architecture Overview

The HotSpot virtual machine is composed of several com-
ponents. For this work, the Parallel Scavenge GC module (one
of the three currently implemented garbage collectors) is the
most direct intervenient. The Parallel Scavenge code includes
classes for GC tasks, garbage collection managers, allocation
buffers and the heap itself. Since each component depends on
the other, many of those require extensive modification or need
their current implementation extended. As for the rest of the
classes, like Klass and oopDesc, who are determinant for the
correct functioning of the VM, also need their implementation
extended.

1https://msdn.microsoft.com/en-us/library/8bs2ecf4(v=vs.110).aspx

In the HotSpot VM a Klass is the internal representation of
a Java class object. It contains pointers to its super-classes, sub-
classes and information about its size. An oopDesc describes
an oop (from “ordinary object pointer”) which is the reference
type used throughout the VM, implemented as a native machine
address.

B. Garbage collection — Parallel Scavenge

The Parallel Scavenge garbage collector is the default server-
mode collector used by the HotSpot virtual machine, as of
OpenJDK 8. It is the only currently implemented collector that
has no official information available. However, Lokesh Gidra et.
al. studied the scalability of the Parallel Scavenge collector and
described its internals [16].

The GC in use is what defines the heap layout. This
is due to the GC’s implementation definition of how the
heap should be structured in order to maximize its through-
put when collecting. The efforts in this work are set
to the ParallelScavengeHeap. Parallel Scavenge is a
throughput-oriented garbage collector, more specifically it is
a Stop-The-World, generational parallel collector. The Parallel
Scavenge heap is separated into two generations, the young
generation and the old generation. The young generation
contains the eden-space and two survivor spaces, the from-
space and the to-space. On the other hand, the old generation
contains mature objects, i. e., those that survived a certain
number of collections. This layout is illustrated in Figure 1.
Class definitions, are contained in the native heap (a subset of
the heap allocated in the C-heap space of the JVM) and the class
static variables and strings are in the Java heap. Its allocation
scheme uses a bump-pointer technique, a pointer called the top-
pointer. Allocation spaces, such as those belonging to the young
and old generations, base their allocation on a MutableSpace
object, which handles the atomic update of the top-pointer and
sets the allocation boundaries. A MutableSpace layout is
illustrated in Figure 2, with its limits represented — the bottom
and end pointers.

The allocation of objects takes place on the eden-space,
directly or, preferably, through TLABs. If there’s no space
left at all then a young collection must take place. A young
collection only collects the young generation whereas a full
collection takes place in both the young generation and the old
generation.

1) Young collection: A young collection operates only on
the young generation. It uses a parallel copying algorithm to
promote surviving objects from both the eden-space and the
from-space to the to-space (the to-space is initially empty).
The copying algorithm is, hereafter, referred to as a scavenge.
A scavenge of the young generation promotes live objects
allocating from Promotion-Local Allocation Buffers (PLAB).

To mark the objects, the VM thread sets steal tasks and
marking tasks. Marking tasks follow the root-set, composed of
the threads’ stack frames, registers, global and static variables,
and the Old-To-Young root objects, i. e., objects in the old
generation that reference young generation objects. The Old-To-
Young root-set is composed by objects contained in dirty cards,

in the write-barrier card table. The write-barrier set is a division
of the space into fixed-sized cards of 29 words. The cards are
dirtied in a similar fashion as Urs Hölzle’s method [24]. On
the contrary, the steal tasks are to prevent idle GC threads.
These make the idle thread to search for, and dequeue, tasks
in overloaded queues belonging to other GC threads. If it is
unsuccessful in stealing then it enters a termination protocol.

All GC threads have a promotion manager object assigned,
which they use to drain the queue of claimed tasks and to
maintain the current allocated PLABs. During scavenging on a
young collection, the live objects are, preferably, allocated in
the young PLAB. If the PLAB has no space left for that object
then it is flushed and a new one is allocated. If an object is old
enough, according to the tenuring threshold, i. e., it survived
a certain number of collections, then it is promoted to the old
generation.

At the end of a young collection, both the eden-space and
the from-space are empty. The to-space and the from-space are
then swapped, so that from-space now contains the surviving
objects and the to-space is empty for the next collection. The
GC threads also flush their current PLAB and terminate.

2) Full collection: If a young collection was unsuccessful
in promoting all its objects, or a System.gc() is issued, then a
full collection takes place. The algorithm that collects all of
the generations is a Parallel Mark-Sweep-Compact, hereafter
simply referred to as Parallel Compact, and is part of the
Parallel Scavenge and the default for any multi-core machine.
Its work is divided in four phases: marking phase (Sec-
tion III-B2a), summary phase (Section III-B2b), compacting
phase (Section III-B2c) and clean up phase (Section III-B2d).
The marking phase and the compacting phase are executed in
parallel, whereas the summary phase and clean up phase are
executed by the VM thread.

A collection using the Parallel Compact collector goes
through dividing the heap in fixed-sized regions of 64K words
(a total of 512kB in the 64-bit VM and 256kB in the 32-bit
VM), hereafter referred to as region. A region is essentially a
wrapper around an interval of addresses. This window is its
base unit of work.

a) Marking phase: The first phase, as the name suggests,
comprehends marking the live objects in parallel. Whereas in
the young collection the scavenging tasks promote objects, in
the full collection the marking tasks mark the root objects’ start
and ending, add its live data amount to the compacting regions
and push the reference onto the marking stack. After scanning
the root-set, the GC threads pop references from the marking
stack and begin to follow their contents (fields and the class
holder). Each reference found is subjected to the same operation
of the root references.

b) Summary phase: When marking is finished, the VM
thread can regain control and start the summary phase. The
summary phase concept is to calculate the destination of the
compacting regions. Every region contains a destination address
and a source region. The destination address defines the exact
place in the heap to where the live data will be copied to.
On the contrary, the source region value indicates which region

Old Generation Young Generation

commited region

reserved region

Eden FromTo

Fig. 1. Parallel Scavenge heap layout

bottom top end

committed region

Fig. 2. A space’s layout

will copy data to its location. At the end of the summary phase,
every region with live data should have its destination field set.
For each region, the destination field should correspond to the
bottom address of the target space plus the sum of the live
object size of all previous regions targeted for the same space.

The summary phase is divided into three parts: quick com-
pacting summary of each space into itself, summary of the
old generation and summary of the young generation. Quick
compacting is to calculate the amount of live data by calculating
the new top-pointer for each space. Here, the dense-prefix-end,
which marks the start of the first compacted region, i. e., all
space to the left is full, is calculated. The dense-prefix-end
address is always on a region boundary, such as illustrated in
Figure 3. The second part is to summarize all the regions in the
old space past the dense-prefix-end. The last summary step is
to summarize all young generation spaces. It tries to move the
young spaces regions to the old space. Summarizing a space
consists on iterating over all its regions. Each iteration checks
if there is live data, sets the destination address if it contains
data, by sliding into the next top-pointer of the target-space,
and increment the destination-count. The destination-count is a
value that indicates the number of regions that the region under
processing will span when copied (a maximum of 2).

(1) (2) (3) (4)

dense-prefix-end top

Fig. 3. Summary phase — Dense-prefix-end and current top pointer

c) Compact phase: Compaction is done in parallel such as
marking. It consists on the filling of regions with source words
targeted for them. A region that contains work to do is one that
can be claimed, i. e., it has no destination (destination-count is
zero). The filling of a region consists on a series of steps: get
the source’s first word targeted for the region; iterate from first

word to the end of the source region, copying objects while
they fit in the target; if the source region was fully processed
(it contains no more words to copy), and there’s still room
in the target region, then fetch a new source region (adjacent
to the former), switching source spaces if necessary. Every
time a source region is fully processed, its destination-count
is decremented and, if it can be claimed by a GC thread (the
destination-count is zero), it is added to the queue to be filled.
After compaction, the effective result looks like as shown in
Figure 4.

(1) (2) (3) (4)

new-top

(5) (6)

new-top

Old Generation From Space

Fig. 4. Final view of the summary phase and final effective result after
compaction

d) Cleanup phase: The last phase for the Parallel Com-
pact collector is to set the new top pointers, delegating the
call to the spaces themselves, clean the summary and marking
bitmap data, and clean or invalidate (set to dirty) the card table
barrier set depending whether the young generation is empty
or not, respectively.

C. From Parallel Scavenge to Bloat-Aware PS

This Section introduces a new design for the Java heap, aware
of the bloat that collections cause. This new design is targeted
for the ParallelScavengeHeap, thus it is hereafter termed
as bloat-aware PS. Since a heap must have knowledge of
its internals to assert correct functioning, this section also
proposes a bloat-aware Parallel Scavenge garbage collection al-
gorithm. The collections chosen to be handled differently were
the java.util.HashMap and java.util.Hashtable
packages, however the following procedures can be applied to
all kinds of object classes.

Making the Parallel Scavenge’s heap bloat-aware requires
knowing which space do target-objects live most of their
lifetime and then making room for them. Target-objects are
defined to be those that have tendency to cause memory bloat or
disperse throughout the heap, on the long term. Target-objects
include two characteristics: are long-lived and large enough.
The old generation spaces are the ones that contain long-lived
objects, thus making the young generation irrelevant for target-
objects. Therefore, the old generation is the most relevant space

to track target-objects, and can be split such as illustrated in
Figure 5.

MutableSpace

BDCMutableSpace

top1 top2 top3

Fig. 5. The partitioned bloat-aware old generation

The BDCMutableSpace (named from “Big Data Collections
Mutable Space”) is a subclass of the MutableSpace class
in order to maintain transparency to the VM. This new space
contains an inner class that represents each BDA-region, which
is a fragment of the old-space.

1) Fast klass information: It is inefficient to frequently check
the object size to check if it can be considered a large object.
It would require comparison with other objects, computation of
the values to consider and the computation of the sizes for each
object and its references. Inferring through the object type is
faster and allows grouping objects of the same type.

Each application has a number of favorite Java collections
it uses for processing their main jobs. These collections tend
to disperse their references throughout the heap at some point
in time and, for the cases when they must increase their
capacity, it can generate memory bloat. Objects of those types
should be identified, preferably using a fast mechanism to
reduce latency during promotion. Objects identified as non-
critical should be identified as “other”, i. e., an ordinary object,
while objects of the some relevant types should be identified
using the package that implements them. Since this work’s
special-objects are HashMap-based and Hashtable-based,
they are identified as “hashmap” and “hashtable”, respectively.
For saving this information, this work implements two methods
of type-addressing: a new header word and hashing of the klass
pointer.

Header region mark: An added word gives great flexi-
bility for object type-addressing. On a 64-bit VM (the standard
to run Big-Data applications), it allows up to 264 different
types, which is more than sufficient. The lookup can be made
by masking the bits or direct comparison of the region-space
identifiers. However, Figure 6 shows that this methodology has
a larger footprint on the memory, which can be significant for
applications that run for a long time. As an advantage, the
information about the object is always precise.

Hashing Klass pointer: Hashing the klass pointer allows
indexing type information over an array of entries. Contrary
to the additional header word, hashing the klass pointer does
not add additional memory overhead but gives less flexibility
and requires more computational effort. Depending on the entry
array size, the accuracy can be reduced due to hash collisions.
Since latency must be reduced to a minimum, there can be no
collision mechanism. Figure 7 shows three objects with their
type in plain text, accessing the array of entries to get their
target BDA-regions.

Mark
Klass
Pointer

Length

Mark Region Klass
Pointer

Length

0 32 64 96 128 160 192 224 256

bits

Fig. 6. Layout of an array object header with an added word for region-space
indexing

region
hashtable

region
hashtable

region
hashmap

· · ·
no
region

region
hashmap

region
other

no
region

region
hashtable

· · ·

(a) (b) (c)

Fig. 7. An array of entries with region-space identifiers

2) Adjusting the space: When the old space is initialized
there is no information on how to divide the region-spaces, and
thus are divided evenly. However, allocation on specific BDA-
regions can be uneven, unbalancing the space quite signifi-
cantly. Hence, the segmented space must adjust its BDA-regions
according to their occupation and free ratios. Algorithm 1 shows
how the adjustment is computed. The values for multiplier
and difference correspond to predefined values. As for the
MinRegionSize it is the size of a compacting region and, since
all BDA-regions must be region-aligned, it is also the minimum
size for a BDA-region, i. e., 64K words (512kB). The algorithm
executes the following sequence of steps:

1) Find the BDA-region that needs expansion based on the
occupation ratio (the value of 80% is predefined);

2) Compute the expected expand size;
3) Find a forwarding neighbor (the spaces never expand

below the bottom pointer) based on:
• If the free space of the neighbor is much larger than

the free space of the expanding space and it fits more
than the double of the expected expand size (line: 9–
11), then give up half of the space and break;

• If it is only larger than expand size, then only let the
expansion go forward if there is enough free space
to give to the other BDA-regions in between (line:
14–15) — if it is the next neighbor there are no BDA-
regions in the middle.

4) If a neighbor has been found then expand onto it.
This algorithm can not run during Old-To-Young root tasks

because it moves the boundary pointers (bottom and end).

D. Bloat-aware young collection

Most allocation in the old space happens with promotion
during a collection; an exception to this rule is direct allocation
for objects that still do not fit in the eden space after a young
collection. So far, a design for a split heap by object type
has been given (Section III-C), but the allocation of objects

Algorithm 1 Adjusting of BDA-regions
1: Find max occupying BDA-region such that

occupy ratio > 80%
2: o0 ← occupy ratio of max
3: f0 ← free ratio of max
4: e ← o0 × multiplier × MinRegionSize {Amount to

expand}
5: for n← max + 1 do
6: f1 ← free ratio of n
7: s1 ← free size of n
8: if f1 − f0 > difference then
9: if s1/2 > e ≥MinRegionSize then

10: e← s1/2 {Give-up half the space}
11: break
12: end if
13: else
14: if s1 > e & s1−e > (j− i)×MinRegionSize then
15: break
16: end if
17: end if
18: end for
19: if no neighbor was found then
20: return false {No one has enough space}
21: end if
22: resize(max, e)
23: return true

is still missing. This section fills in that hole. As explained in
Section III-B1, the young collection operates on the eden and
from spaces and, if possible, it tries to promote objects into the
old-space. For the BDA-heap, this can raise some problems in
the decision mechanisms and in the scanning of the Old-To-
Young roots. The next paragraphs explain how to cope with
this difference.

Old to Young Root tasks: The Old-To-Young root tasks
have a stripe number assigned, from 0 to the number of active
workers minus 1. Each stripe is part of a slice of the whole
occupied space in the old generation and its size is fixed.
The process of finding the Old-To-Young root-set consists on
iterating the assigned stripe for all slices. Each iteration consists
on: adjusting the first and the last card for a given stripe
according to the first object that starts in the range and the
last word for the last object in the range (objects cannot cross
the start nor the end boundary points); find a range of dirty
cards; clean those cards; and push those references into the
promotion manager queue. To adjust the card range, an object-
start-array is used. It is a byte array divided by 29 byte blocks,
were each byte is an offset for the last object in that block.
Every object allocated in the old generation must have its offset,
from the start of the block, set in the object-start-array. Figure 8
illustrates the finding of an object start using the object-start-
array when on a split heap. The dashed lines represent cards. It
does so by traversing backwards the object-start-array blocks.

With the BDA-heap, the old space is now split into BDA-
regions, each with its own top-pointer and bottom-pointer.

(d) (a) (b) (c)

size jumps
bottom

low byte

Fig. 8. Object-start-array fetch of invalid addresses

Thus, the space below a region’s bottom-pointer contains the
unallocated space that belongs to the previous BDA-region.
The object-start-array is only aware of the bottom of the old
generation (the low byte in Figure 8) to limit its searches.
Therefore, when doing a backwards search it may cross the
BDA-region boundary and start fetching invalid addresses. To
solve this, each space must be scavenged separately and each
BDA-region’s bottom-pointer must be passed to the methods
that find the objects start address. It is also important to save
the top-pointers of all the BDA-regions, in order to prevent the
scavenging threads to transverse onto the currently allocated
PLAB.

Promoting by type: The bloat-aware heap expects that
objects belonging to a certain type are allocated in the correct
BDA-regions. Promoted objects are allocated from the PLAB
(Section III-B1) and each GC thread allocates its own, as many
times it needs. Therefore, each GC thread must have a number
of old generation PLAB equal to the number of BDA-regions.
On the other hand, each PLAB is allocated through a virtual call
shared by all the threads in the VM. This gives no flexibility
when allocating the PLAB, because the old-space does not
know in which BDA-region is to allocate the requested PLAB.
The approach taken was to use the thread to proxy the BDA-
region information retrieved in an earlier step using one of the
devised mechanisms presented in III-C1.

E. Bloat-aware full collection

A full collection no longer relies on the old-space virtual calls
(thread type proxying) and promotion is done on a compacting
region basis. The following paragraphs give an explanation on
how to extend the existing Parallel Scavenge collector to cope
with type-aware BDA-heap. The order of the paragraphs follow
the same order that the collection steps take.

Marking — decision information: As said earlier, com-
paction is done on a region basis. After marking (when all live
size is computed), there would be no efficient way to scan the
region, object by object, and get each object’s type with one
of the fast-klass mechanism (Section III-C1). It is possible to
execute a fast klass-query when objects are marked and decide
based on the result. Therefore, each region has two additional
fields for each BDA-region, where one indicates the number of
objects of type X in the region and another the sum of all type
X sizes. This information will then be used at the summary
phase, when deciding the destination of the regions. This work
gave focus to the HashMap and Hashtable collections,

thus following this example a compacting region contains the
following fields:

• Count of HashMap based objects
• Total size of HashMap based objects
• Count of Hashtable based objects
• Total size of Hashtable based objects

Summary — targeting regions: At the summary phase,
each BDA-region first compute their new top-pointer values
(the quick compaction step). Then, each BDA-region computes
its dense-prefix-end and summarizes its regions for compaction
onto themselves. Then, on the third step, the summary of
young spaces must target all the BDA-regions. Objects are not
promoted individually, being instead bundled on a region. Some
decision mechanism is needed in order to compute the target
BDA-region for each region in the young space. On the marking
phase, the information about the special objects was already
computed. Hence, in each iteration of the young space’s regions
(Section III-B2b), Algorithm 2 decides which BDA-region will
set the region’s destination field. This algorithm decides based
on a given threshold (set at the VM startup) which weights the
ratio of the number of objects in each BDA-region in order to
choose a decision metric. The decision metric is one of two:
the count of objects for each space (line: 9–13), or the average
size for each special object (line: 15–19).

Algorithm 2 Decision algorithm for target BDA-region
1: avg hashmap ← hashmap totalsize/hashmap count
{Average size of hashmap elements}

2: avg hashtable← hashtable totalsize/hashtable count
{Average size of hashtable elements}

3: if hashmap count > hashtable count then
4: ratio← hashtable count/hashmap count
5: else
6: ratio← hashmap count/hashtable count
7: end if
8: if ratio ≤ threshold then
9: if hashmap count > hashtable count then

10: target← region hashmap
11: else
12: target← region hashtable
13: end if
14: else
15: if avg hashmap element > avg hashtable element

then
16: target← region hashmap
17: else
18: target← region hashtable
19: end if
20: end if

Compacting — dealing with region stealing: During
compaction, Parallel Scavenge compaction tasks use summary
data to fill regions. If a new source region needs to be fetched it
is done by iterating through the next adjacent source regions and
find the first that is not empty. However, now there are several

old-space partitions and, as illustrated in Figure 9, regions are
targeted to other spaces. A “stealing” of a region can occur if a
thread that did not fill a region completely fetches an adjacent
source region that was targeted for another BDA-region. This
can cause wrong word placement and a negative destination-
count. To avoid the iteration of source regions in an intrusive
way, the algorithm must check if a destination of a region
corresponds to the expected destination space.

Region A Region BSpace 1 Space 2

GC Thread 1 fetch sourcecopy

GC Thread 2 fetch sourcecopy

Dest(A)=Space 1
Dest(B)=Space 2

Fig. 9. Compaction — fetching and filling of regions

Cleanup — the top-pointer: On the cleanup phase, the
new top-pointers are finally committed to the spaces. The top-
pointer reflects the amount of data for each space and anything
above is dead-space. As referred in Section III-C, the BDA-
heap tries to be as transparent as possible to the rest of the
VM. Therefore, the top-pointer of the old-space must reflect
the whole occupied space below. As a consequence, it must be
set equal to the top-pointer of the last region-space, i. e., the
higher address of them all.

IV. IMPLEMENTATION

One important aspect when implementing was transparency
to the VM and try to modify critical sections, such as fast-
paths and hot-methods, as little as possible. In such methods,
the code that had to be modified in order to implement different
strategies, such as fast fast-klass queries with the two devised
mechanism, was guarded by C pre-processor directives. This
significantly reduced the amount of if-like conditions.

A. Partitioning the old-space

The partition of the old-space went by sub-classing
the MutableSpace into a BDCMutableSpace. A
BDCMutableSpace acts as a container for the CGRPSpace
class, which represents a BDA-region.

Allocation in the segmented old-space requires, by the
space’s command, a target BDA-region and the updating of the
whole space top-pointer (to reflect that all space below contains
live data).

B. Fast Klass information

Section III-C1 introduced two mechanisms to retrieve Klass
information in a fast-path. However, the Klass information must
first be retrieved from the object before it is saved on the data
structures. Both of these mechanisms use the same procedure
for retrieval: parsing the name field of the Klass object. The
name field is of type Symbol, a canonicalized string which for
instanced Java objects it represents its Klass name. Therefore,
for a HashMap Java object its Symbol representation would
return a java/util/HashMap string.

1) Header region mark: One way for retrieving previously
stored Klass information is adding a new header word. This
approach gives each object reference the possibility of car-
rying, for all its lifetime, the needed information for stor-
age in the bloat-aware heap. It was implemented using the
regionMarkDesc class, which describes a word that is
added to the header of every object reference.

2) Hashing Klass pointer: Contrary to the Header region
mark, the hashing of the Klass pointer does not save the
returned value in any field. There is no collision resolution to
reduce the computation to a minimum, therefore a correct result
depends on the number of array slots. The region identifiers are
encoded as char to occupy only one byte.

C. Bloat-aware young collection

With split spaces for keeping target-objects separated by
type, the object promotion code requires some changes to
cope with this demand. This is specially true for methods that
allocate on the PLAB, which now they must first read the
object’s information (whether on the header or by consulting
the hash array) and then allocate on the appropriate PLAB
for that object. On the other hand, Old-To-Young root tasks
must keep more top-pointers to avoid scanning the PLAB
area. This was achieved by implementing a new class, the
BDACardTableHelper class (“Big-Data Aware Card Table
Helper”). This class not only saves the top-pointers but also the
bottom-pointers, to prevent the traversing of the object-start-
array to invalid addresses.

D. Bloat-aware full collection

Just as the young collection, the full collection algorithms
needed their implementation extended, specially because they
deal with the whole old-space which is now split. For example,
for the marking stage, it was stated that each region needed
certain statistical information about the target-objects it wraps.
This included adding methods and fields to the RegionData,
a class that implements each region. This statistical infor-
mation is then important for the summary stage, which in
its summarize methods — a new method was added, called
summarize_parse_regions — it decided the target space
for each region it iterated on. After the summary phase, it was
found that the fetching of adjacent source regions was unaware
that some regions were targeted to other old-space partitions.
This required the addition of one more condition during the
iteration of new source regions, which checks if the destination
space is the one it is expecting to be. And, in the last stage, the
delegation of new top-pointers to the respective BDA-regions
was simply implemented by packing every space identifier in
a cycle.

V. EVALUATION

This section shows the results obtained in achieving better
locality using the split spaces approach. The results were
obtained using the DaCapo benchmark suite [25] on a 8-core
machine with 12GB of memory. All runs were executed on 12
iterations with a minimum heap size of 1.5GB and a maximum

of 8.5GB. The hash array size used was of 1200 entries, which
is enough to cover all classes created in each run, and the
threshold value was of 30%, i. e., precedence is given to larger
objects. This section is organized as follows: In V-A a study of
how the H2 benchmark behaves when facing a split space using
the two devised mechanisms (Header word and Hash array),
and in V-B how much locality was achieved and how this is
affecting overall performance.

A. Evaluating Object Locality

The header region word specifies BDA-region targets for
each object in a precise manner, by saving the bits that
correspond to the BDA-region identifier. Figure 10 shows the
tendency for the H2 benchmark to allocate the two special
objects and derived types. The y-axis shows the amount of
words in the heap that each BDA-region is occupying at
the time of the snapshot (x-axis). The reasoning for this is
that showing the percentage of occupation for each space can
result in low values, which would be difficult to analyze and
compare. This method also has the advantage of providing
direct comparison with the Region other space which is where
most of the objects end up.

Fig. 10. Header Region word with threshold of 30% — H2 — Object locality
(in heap words) in each region-space

In Figure 10 it can be observed that H2 allocates several
HashMap and Hashtable objects and uses them for a short
time. This is due to the DaCapo’s benchmarks short runs, which
give more impact on the garbage collection times and less on
the execution itself. The sudden drops for the Region hashtable
are not caused by the adjusting of spaces, because it can be
seen in Snapshot 8 of the threshold 50% (b) that both Region
hashmap and Region hashtable have their used space reduced
after that collection.

Contrary to the header region word, the hashing of the Klass
pointer as a fast-type query mechanism is not always precise.
However, it greatly reduces the memory footprint which reduces
the number of triggered full collections, as seen in Figure 11.

In Figure 11, due to collisions and the fact that a threshold
of 30% is giving precedence to the larger objects, the Region
hashmap gets most of the objects and Region hashtable fails

Fig. 11. Hash of the Klass pointer with threshold of 30% — H2 — Object
locality (in heap words) in each region-space

to allocate until the last Snapshots. H2, as a database, has
tendency to allocate many objects, unrelated to Hashtable
and HashMap, part of its data structures. These general-
purpose objects quickly fill the “other” BDA-region, triggering
collisions, making the occupation rates of the BDA-regions
more stable.

B. Performance benchmark suite

Although execution performance may not return direct results
by using short-run applications, it is important to assert that the
BDA-heap’s instrumentation does not increase the execution
time of the applications. Figure 12 shows the execution times,
after 12 iterations, for each of the indicated benchmarks. It can
be seen that this solution’s conditionals and query mechanisms
do not incur latency, when compared with the unmodified
HotSpot VM. In fact, the execution times are equivalent, i. e.,
within −2.30% and +3.20%.

Tabela 1

Hash Klass
Pointer

Header Region
word

Unmodified
HotSpot

H2 5969 6051 6311

Tradebeans 7738 7615 7529

Tradesoap 4892 5002 4817

Ex
ec

ut
io

n
tim

e
(m

s)

0

2000

4000

6000

8000

Benchmarks
H2 Tradebeans Tradesoap

Hash Klass Pointer Header Region word Unmodified HotSpot

�1

Fig. 12. Execution times over three benchmarks — H2, Tradebeans and
Tradesoap — in respect to the BDA-heap

However, the execution times are still not low enough to
consider the BDA-heap as a possible solution for the problem
introduced. As stated earlier, this is because of the DaCapo
benchmarks way of allocating the objects and accessing them
at most one time. If they allocated long-lived objects more

often, performance would be visible due to increased locality,
as observed in Figures 13, 14 and 15.

Tabela 1

Header Word Hash Array Vanilla Header Hash Array Vanilla Header Word Hash Array Vanilla

H2 536,026294 716,449098 783,904115 33,005496 56,616406 53,134720 33,670 31,531 42,663

Tradebeans 1205,930120 1492,490493 1719,324565 146,557911 173,236082 194,635590 75,482 78,894 79,941

Tradesoap 2956,300462 2543,025628 2505,356990 347,399686 304,594360 306,142412 108,924 91,693 85,146

L1-dcache-load-
misses

dTLB-load-misses Page faults

L1
D

 C
ac

he
 M

is
se

s
(M

illi
on

s)

0

500

1 000

1 500

2 000

2 500

3 000

H2 Tradebeans Tradesoap

Header Word Hash Array Vanilla

dT
LB

 M
is

se
s

(M
illi

on
s)

0

100

200

300

400

H2 Tradebeans Tradesoap

Header Hash Array Vanilla

Pa
ge

 F
au

lts
 (T

ho
us

an
ds

)

0

27,5

55

82,5

110

H2 Tradebeans Tradesoap

Header Word Hash Array Vanilla

Fig. 13. L1 Data (L1D) Cache Misses

Tabela 1

Header Word Hash Array Vanilla Header Hash Array Vanilla Header Word Hash Array Vanilla

H2 536,026294 716,449098 783,904115 33,005496 56,616406 53,134720 33,670 31,531 42,663

Tradebeans 1205,930120 1492,490493 1719,324565 146,557911 173,236082 194,635590 75,482 78,894 79,941

Tradesoap 2956,300462 2543,025628 2505,356990 347,399686 304,594360 306,142412 108,924 91,693 85,146

L1-dcache-load-
misses

dTLB-load-misses Page faults

L1
D

 C
ac

he
 M

is
se

s
(M

illi
on

s)

0

500

1 000

1 500

2 000

2 500

3 000

H2 Tradebeans Tradesoap

Header Word Hash Array Vanilla

dT
LB

 M
is

se
s

(M
illi

on
s)

0

100

200

300

400

H2 Tradebeans Tradesoap

Header Hash Array Vanilla

Pa
ge

 F
au

lts
 (T

ho
us

an
ds

)

0

27,5

55

82,5

110

H2 Tradebeans Tradesoap

Header Word Hash Array VanillaFig. 14. Data TLB (DTLB) Misses

Tabela 1

Header Word Hash Array Vanilla Header Hash Array Vanilla Header Word Hash Array Vanilla

H2 536,026294 716,449098 783,904115 33,005496 56,616406 53,134720 33,670 31,531 42,663

Tradebeans 1205,930120 1492,490493 1719,324565 146,557911 173,236082 194,635590 75,482 78,894 79,941

Tradesoap 2956,300462 2543,025628 2505,356990 347,399686 304,594360 306,142412 108,924 91,693 85,146

L1-dcache-load-
misses

dTLB-load-misses Page faults

L1
D

 C
ac

he
 M

is
se

s
(M

illi
on

s)

0

500

1 000

1 500

2 000

2 500

3 000

H2 Tradebeans Tradesoap

Header Word Hash Array Vanilla

dT
LB

 M
is

se
s

(M
illi

on
s)

0

100

200

300

400

H2 Tradebeans Tradesoap

Header Hash Array Vanilla

Pa
ge

 F
au

lts
 (T

ho
us

an
ds

)

0

27,5

55

82,5

110

H2 Tradebeans Tradesoap

Header Word Hash Array Vanilla

Fig. 15. Page Table faults

From analysis of the graphs, it can be observed the tendency
for increased locality in respect to the type of benchmark in
which it ran. H2 is a database benchmark, therefore it allocates
more objects part of its data structures. When these dependent
objects are kept together, locality over the same cache line
can increase by 40% for precise object information (header
word method) and by 10% on less precise object information
(hash array method), as illustrated in Figure 13. This in turn
reduces accesses to the DTLB and to the Page Table as shown in
Figures 14 and 15. The spike in misses for the header word for
BDA-region indexing on the Tradesoap benchmark is a result
of the usage of SOAP envelopes and an additional 8 bytes
per object. Since objects such as SOAP envelope wrappers

are generally large in size, with additional bytes per object
it stretches the range of addresses they span, occupying large
amounts of cache lines and virtual pages.

VI. CONCLUSION

One of the most important factors in this work was to
not increase the application pause times, and consequently
the application execution times, under the Parallel Scavenge
garbage collector, and increase the locality of objects for faster
accessing by the CPU. This, in turn, reduces bloat in the old
generation, because objects that do not need to be collected
as often are not mixed with objects that after promotion, only
survive for a small number of full collections.

It was believed that, although some instrumentation code
had to be added in order promote objects accordingly, some
performance can be visible. This is seen on the balance between
the increased locality effects and the instrumentation code,
which slightly adds more CPU instructions during collection. It
is believed that for an application that runs for a long period of
time and that accesses a great amount of collection objects that
previously allocated, can execute its workloads faster due to the
increased load times, result of increased locality on system-level
memory structures.

This work contributes with an architectural design for starting
to develop bloat-aware heaps. It also contributes with tech-
niques on how to promote on such heaps, decision mechanisms
and algorithms for adjustment of the heap, resultant of uneven
allocation.

VII. FUTURE WORK

There are two downsides with this approach. The garbage
collection (Parallel Scavenge in this case) collects all the BDA-
regions at one time. There are times when the GC is not
needed for a specific BDA-region (for example, one BDA-
region contains a huge number of collection objects that are to
stay alive and do not need scanning). It would be a good idea to
adapt the Parallel Compact, i. e., the old generation collector to
collect BDA-regions separately depending on the need of each.
This would greatly reduce the number of triggered GC. On the
other hand, the object types that are available are still statically
defined. A good approach would be to profile the application
during run-time, or prior to the effective execution, to find
which group of objects have the most tendency to stay in the
heap and that increasing the locality between their dependencies
would return improvements. Also, an easier approach would
be to create VM global variables for the klass types to treat
differently, that could be set at launch.

REFERENCES

[1] D. A. Moon, “Garbage collection in a large lisp system,” in Proceedings
of the 1984 ACM Symposium on LISP and Functional Programming, ser.
LFP ’84. New York, NY, USA: ACM, 1984, pp. 235–246. [Online].
Available: http://doi.acm.org/10.1145/800055.802040

[2] P. R. Wilson, M. S. Lam, and T. G. Moher, “Effective “static-
graph” reorganization to improve locality in garbage-collected
systems,” SIGPLAN Not., vol. 26, no. 6, pp. 177–191, May 1991.
[Online]. Available: http://doi.acm.org/10.1145/113446.113461

[3] R. Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah,
“Serving large-scale batch computed data with project voldemort,” in
Proceedings of the 10th USENIX conference on File and Storage Tech-
nologies. USENIX Association, 2012, pp. 18–18.

[4] T. White, Hadoop: the definitive guide: the definitive guide. ” O’Reilly
Media, Inc.”, 2009.

[5] A. Lakshman and P. Malik, “Cassandra: a decentralized structured storage
system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2, pp. 35–
40, 2010.

[6] F. Yang, E. Tschetter, X. Léauté, N. Ray, G. Merlino, and D. Ganguli,
“Druid: a real-time analytical data store,” in Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. ACM, 2014,
pp. 157–168.

[7] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[8] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed stream
computing platform,” in Data Mining Workshops (ICDMW), 2010 IEEE
International Conference on. IEEE, 2010, pp. 170–177.

[9] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulka-
rni, J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@ twitter,”
in Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 2014, pp. 147–156.

[10] J. Singer, G. Brown, I. Watson, and J. Cavazos, “Intelligent selection
of application-specific garbage collectors,” in Proceedings of the 6th
international symposium on Memory management. ACM, 2007, pp.
91–102.

[11] J. McCarthy, “Recursive functions of symbolic expressions and their
computation by machine, part i,” Communications of the ACM, vol. 3,
no. 4, pp. 184–195, 1960.

[12] H. G. Baker Jr, “List processing in real time on a serial computer,”
Communications of the ACM, vol. 21, no. 4, pp. 280–294, 1978.

[13] H. C. Baker Jr and C. Hewitt, “The incremental garbage collection of
processes,” ACM SIGART Bulletin, vol. 12, no. 64, pp. 55–59, 1977.

[14] D. Ungar, “Generation scavenging: A non-disruptive high performance
storage reclamation algorithm,” ACM Sigplan Notices, vol. 19, no. 5, pp.
157–167, 1984.

[15] S. M. Blackburn and K. S. McKinley, “Immix: A mark-region garbage
collector with space efficiency, fast collection, and mutator performance,”
SIGPLAN Not., vol. 43, no. 6, pp. 22–32, Jun. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1379022.1375586

[16] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro, “A study of
the scalability of stop-the-world garbage collectors on multicores,”
SIGARCH Comput. Archit. News, vol. 41, no. 1, pp. 229–240, Mar.
2013. [Online]. Available: http://doi.acm.org/10.1145/2490301.2451142

[17] T. Ogasawara, “Numa-aware memory manager with dominant-thread-
based copying gc,” in ACM SIGPLAN Notices, vol. 44, no. 10. ACM,
2009, pp. 377–390.

[18] A. W. Appel, J. R. Ellis, and K. Li, “Real-time concurrent collection on
stock multiprocessors,” in ACM SIGPLAN Notices, vol. 23, no. 7. ACM,
1988, pp. 11–20.

[19] H.-J. Boehm, A. J. Demers, and S. Shenker, “Mostly parallel garbage
collection,” in ACM SIGPLAN Notices, vol. 26, no. 6. ACM, 1991, pp.
157–164.

[20] C. Click, G. Tene, and M. Wolf, “The pauseless gc algorithm,” in
Proceedings of the 1st ACM/USENIX international conference on Virtual
execution environments. ACM, 2005, pp. 46–56.

[21] G. Tene, B. Iyengar, and M. Wolf, “C4: the continuously concurrent
compacting collector,” ACM SIGPLAN Notices, vol. 46, no. 11, pp. 79–88,
2011.

[22] C. Bailey, “From java code to java heap,” http://www.ibm.com/
developerworks/library/j-codetoheap/j-codetoheap-pdf.pdf, Feb. 2012.

[23] W.-k. Chen, S. Bhansali, T. Chilimbi, X. Gao, and W. Chuang,
“Profile-guided proactive garbage collection for locality optimization,”
SIGPLAN Not., vol. 41, no. 6, pp. 332–340, Jun. 2006. [Online].
Available: http://doi.acm.org/10.1145/1133255.1134021

[24] U. Hölzle, “A fast write barrier for generational garbage collectors,” in
OOPSLA/ECOOP, vol. 93, 1993.

[25] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley,
R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer et al., “The
dacapo benchmarks: Java benchmarking development and analysis,” in
ACM Sigplan Notices, vol. 41, no. 10. ACM, 2006, pp. 169–190.

