
GridP2P: Resource Usage in Grids and Peer-to-Peer
Systems

Sérgio Esteves
INESC-ID/IST

Distributed Systems Group
Rua Alves Redol, 9, 1000-029 Lisboa, Portugal

sesteves@gsd.inesc-id.pt

Abstract—The last few years have witnessed huge growth in
computer technology and available resources throughout the
Internet. Despite this, common machines still do not well suit
some specific and widely used applications. These applications
are CPU-intensive, consuming long periods of time during which
one becomes bored and impatient.

Grid systems have arisen in such a way as to take advantage
of available resources lying over a network. However, these
systems are generally associated with organizations which impose
several restrictions to their usage. In order to overcome those
organizational boundaries, Peer-to-Peer systems provide open
access making the Grid available to any user.

The proposed solution consists of a platform for distributed
cycle sharing which attempts to combine Grid and Peer-to-Peer
models. Any ordinary user is then able to use remote idle cycles
in order to speedup commodity applications. On the other hand,
users can also provide spare cycles of their machines when they
are not using them.

Moreover, this solution encompasses the following activities:
application management, job creation and scheduling, resource
discovery, security policies, and overlay network management.
The simple and modular organization of this system allows that
components can be changed at minimum cost. In addition, the
use of history-based policies provides powerful usage semantics
concerning the resource management.

Many of the critical challenges that lie ahead for distributed
cycle sharing are encircled on this generic system. By exploiting
parallel execution of common applications, we believe that this
platform will start reaching communities of Internet users across
the world.

I. INTRODUCTION

Over the last decade, there has been significant growth
in terms of the technology inherent in computers. Their
capabilities have been increasing in terms of computational
power, memory, and persistent storage space. We have also
witnessed a widespread increase in Internet access by people
all over the world.

With this outlook, each time becomes more advantageous
to use computational models that can exploit the utilization of
shared resources, such as CPU and bandwidth, for applications
which demand great computational power. One of those mod-
els, achieving great success between the scientific community,
was the Grid.

A Grid system is an infrastructure for distributed computing
and data management, comprising a cluster of networked,
loosely-coupled computers with focus on large-scale resource

sharing, innovative applications, and high-performance orien-
tation [20]. Grid computing can be distinguished from typical
cluster computing systems in a way that grids tend to be less
coupled, heterogeneous, and geographically dispersed.

Moreover, a Grid system has the purpose to serve a commu-
nity of individuals and/or institutions by providing resources
that have a set of rules, well defined and highly controlled,
over the sharing. This commonly-referred virtual organization,
comprise a set of clusters where each is potentially under dif-
ferent administrative control, and access to computers between
different clusters must be negotiated in advance. A user outside
the organization has to overcome several barriers before it can
deploy its own application on the Grid. That is why the arising
of Grid systems has failed to reach the common Internet user.

At the same time, a model known as Peer-to-Peer has been
gaining a huge success across the Internet.1 Such architectures
are designed for the direct sharing of computer resources (CPU
cycles, storage, content) rather than requiring the intermedia-
tion of a centralized server or authority [3].

Peer-to-Peer systems are characterized by their ability to
function, scale, and self-organize in the presence of highly
transient population of failure-prone nodes. The great advan-
tage of this approach over other models is the no dependence
of centralized servers, which suffer from problems like bottle-
necks, single points of failure, amongst other.

More recently, it has been witnessed a convergence between
the Grid and Peer-to-Peer computing as both approaches share
several interests, such as the sharing of resources among multi-
ple machines. The model of trust and security underlying grids
has been leveraged together with peer-to-peer, thus leading to
public-resource computing infrastructures with very transient
populations. For instance, any ordinary user would have the
same power to easily provide and consume resources across
the Internet. Nonetheless, machine resources still need to be
controlled on peer-to-peer grid infrastructures. For example,
computer owners may need to decide when their resources are
available to other machines, how much resource consumption
is allowed, who cannot access their machines, and so forth.
There are many usage semantics that can be applied on these

1Workshop on technical and legal aspects of peer-to-peer television,
Amsterdam, Netherlands, March 2006. Trends and Statistics in
Peer-to-peer: http://www.gsd.inesc-id.pt/∼sesteves/p2p/CacheLogic
AmsterdamWorkshop Presentation v1.0.ppt accessed on October 2008



environments.
Currently, not only scientists, but also typical computer

users are willing to perform intensive tasks on their com-
puters. However, these tasks could be quite different, like:
compressing a movie file, generating a complex image from
a specification, compacting large files, among other. More
precisely, these tasks consume a relatively large amount of
time and memory, delaying other processes that are running
at the same time. Along the way, one becomes bored and
impatient. From another point of view, there are many Internet-
connected computers around the world whose resources are
not fully utilized. Most of the time, typical users have just
some low CPU-intensive processes running on their machines,
therefore giving a sense of waste.

Given the current context, we intend to deploy a platform
where any ordinary user may consume and provide resources,
namely idle CPU cycles, over a dynamic network that could be
local or wide (e.g. Internet), in order to speed up common, and
widely used, applications which are CPU-intensive. In other
words, we intend to exploit parallel execution in desktop appli-
cations with a fine-grained control over the shared resources.
These applications (e.g. POV-ray)2 should be kept unmodified.

Moreover, there are several issues that need to be addressed.
The platform: (i) needs do be scalable; (ii) needs to be
portable, handling the heterogeneity of machines; (iii) needs
to have a modular organization, each component should be
independent from each other; (iv) needs to provide security
mechanisms over computer resources, for the purpose of
keeping the primacy of every user machine; (v) needs to be
efficient; (vi) needs to adapt to environmental changes, like
resource availability; and (vii) needs to be user-friendly. The
greatest challenge is to achieve a speedup from applications
closest to optimal.

The proposed solution aims to integrate and adapt solutions
for: overlay network management, resource discovery, job
creation and scheduling, and resource management. Many of
the solutions that will be discussed in further sections are
just implemented in simulators, though they may need to
be adapted to real environments. Also, the interoperability
between the components of the system is taken into account.

Furthermore, it is expected at evaluation stage that the run-
ning time of the applications substantially decrease while the
number of available nodes in the overlay increase. However,
one has to take into account the overhead underlying each
component of the system, therefore considering if a certain job
is worth its computational parallelization. Also, it is expected
an efficient use of the available resources.

This paper is organized as follows. In the next section we
present the architecture of the GridP2P, describing each of its
components. Following, implementation details take place in
Section III. Next, in Section IV, we describe the evaluation
of our middleware. We then discuss current solutions related
to the GridP2P, in Section V. Finally, Section VI presents our

2A ray-tracing implementation: http://www.povray.org accessed on October
2008

Fig. 1. Usage Model

conclusions.

II. ARCHITECTURE

In this paper we propose a middleware platform, combining
Grid and Peer-to-Peer models, that seeks to exploit parallel
execution of commonly used applications. Any user is then
able to act as a resource consumer, using idle CPU cycles from
other machines, or as a resource provider, granting access to
his own idle cycles, or as both. Above all, we want to enable
the Grid in large scale where any ordinary user may access
without much burden. In addition, we rely on security policies
to control the utilization of shared resources among different
users.

Figure 1 shows a use case where a machine, acting as a re-
source consumer, distributes tasks among available machines,
resource providers, in order to perform a CPU-intensive job
demanded by a user. Resource providers receive the tasks,
compute them, and send the results back to the consumer
node (the job holder). All machines are connected through
an overlay network, which is built on top of another network
(i.e. Internet) and provides services of routing and lookup.

The proposed architecture relies on a vertical layer
approach, depicted in Figure 2. We describe the function of
each layer next.

Unmodified Applications. This level represents the
applications that will run on top of our middleware.
The application parallelism is exploited at the data-level, and
thus applications do not need to be modified.
Application Adaptation Layer. The Application Adaptation
Layer consists in a customization over a generic Job Manager.
This layer defines which applications are supported by the
local machine. Therefore, specific mechanisms for handling
each of these applications are provided. For example,
launching applications with the correct parameters and input
files. Moreover, these mechanisms are built on loading time
and are based on formal application descriptions.
Job Manager. This component is responsible for creating and
scheduling tasks in accordance with available resources at the
moment. The tasks, as divisions of input files, are distributed
among available machines. After the computation of the



Fig. 2. System Architecture

tasks is completed, this module collects the results and builds
the final output of the respective application. In the inverse
flow, the Job Manager is also responsible for receiving and
computing tasks from remote machines in accordance to the
Application Adaptation Layer.
Policy Engine. The Policy Engine component is responsible
for enforcing local policies that can recall on the history of
past events. Some of these policies may be defined, by the
main GUI, in a way that is understandable for any ordinary
user. Nonetheless, for more specific actions, policies need to
be defined in XML files whose structure relies upon the xSPL
language, thus requiring more expertise. Furthermore, the
policy engine acts as a filter between the Overlay Manager
and Job Manager layers, deciding which messages may pass.
Overlay Manager. This layer comprises four components, as
depicted in Figure 3. It is responsible for the operations of
routing and addressing on the overlay network. In addition,
mechanisms of management and discovery of resources
are included. Also, local resource utilization is monitored
by this component. Any changes in resource availability
are announced to the neighbor nodes. Furthermore, this
component contemplates a distributed archival storage used
as a cache for storing computed tasks.
Communication Service. The Overlay Manager uses this
layer to send messages to the overlay network. Also,
whenever a message coming from the network is received,
the Communication Service analysis the message in the first
instance, and then delivers it to the adequate handler routine
in the Overlay Manager.
Operating System/Virtual Machine. The whole platform is
intended to work directly upon Operating System or Virtual
Machine. For improved security a Virtual Machine may be
used as a sandbox mechanism. In this way, we can guarantee
controlled access to machine resources, as well as prevent
some malicious code from damage one’s computer, for the

Fig. 3. Overlay Manager Overview

case where input files consist of scripts, programming code,
and so forth.

Briefly, the procedure for accessing resources works as fol-
lows: First a user specifies the application, parameters and
input files through the GUI. The GUI contacts the Job Manager
(JM) in order to create and distribute tasks to available
machines. In effect, the JM first contacts the Overlay Manager
(OM) to look for available resources. The tasks are then
created according to the information retrieved from the OM.
Next, the JM contacts again the OM to distribute the tasks
among available machines. When the computation related to
each task is done the results are sent back to the machine that
holds the job. The OM receives the data and send it up to
the Policy Engine (PE) where data will be evaluated. If no
policies can be applied (i.e. no action to take), the PE lets
the data pass to the JM. The JM gathers results and, when all
tasks are completed, it builds the final output and notifies the
user through the GUI.

A. Supported Applications

Currently, the kind of applications allowed by this system
should either be parameterized through the command line or
receive a script or configuration files as input (i.e. parameter
sweep or batch file processing). It should be possible to create
independent tasks from those applications, i.e., tasks that do
not require communication between them during execution
time.

Our platform has specific mechanisms for handling each
type of application. Such application-dependent mechanisms
are built, at boot time, by the Application Adaptation Layer,
and they are driven by XML format descriptions. Therefore,
when users register a new application, they have to provide an
XML file containing the application identifier, the application
call with the correct parameters, and the rules on how to
combine task results and on how to scatter input files into
pieces to create tasks.

B. Overlay Network Management

The management of the underlying network is done through
the Pastry overlay [14]. On top of it, our platform provides a



mechanism for locating resources based on the Informed Walk,
described in Section V-B. Nodes advertise themselves by
sending update messages to their neighbors across the Pastry
overlay. These messages contain the sender node related infor-
mation, such as its identifier, supported application identifiers,
and resource availability levels (in terms of CPU, bandwidth,
and primary and secondary memory). Upon receiving this in-
formation, a neighbor node calculates, with its own judgment,
the global rate of the announcer node. This judgment consists
of associating weights with the measured availability of every
single resource. Soon after, the whole information concerning
the announcer node is stored in memory for further recall.
Moreover, update messages are sent every time changes in
resource availability are perceived by the resource manager.
Additionally, these messages are also sent periodically within
a specified time frame. This time frame should be long enough
to not cause much network traffic. The former approach is
more efficient, however, the latter cannot be discarded, since
either resource availability may change due to external process
activity, or message delivery may fail.

Whenever a node wants to perform a job, it looks on its
neighborhood cache for the best available nodes according to
their global rate. If the set of assembled nodes is not suffi-
ciently attractive, the node may pick the neighbors with best
reputation for finding more available nodes. The reputation of
a node is based on previous requests that it has successfully
forwarded to other nodes with availability.

C. Distributed Storage of Task Results

In order to reduce resource utilization, mainly bandwidth
and CPU, our system contemplates a cache for storing com-
puted tasks. This cache is a distributed networked storage
system which is maintained by the overlay nodes. As machines
may fail, there is a replication factor, k, allowing equal data
to reside in k different nodes.

For a matter of efficiency, upon task completion the result
is sent both to the cache and to the node for which the task
is intended. In the latter case the privacy of the user/node is
lost, although we gain in efficiency, whereas a node does not
have to predict the right time to retrieve a task result from the
cache.

Whenever a job is submitted and the number of tasks to be
created is assessed, we lookup in the cache if there is any task
already computed. The lookup key is obtained by computing
the digest of the task input data. Hence, the cache maps task
input data digests into task output data (i.e. results). If the task
result is cached, it is then retrieved by the Overlay Manager
and sent to the Job Manager to be stored. The Job Manager
may store that task result either in memory or in persistent
storage space (building the partial or final output). Otherwise,
if the task result is not cached, the task is then sent to an
available node (which also could be its creator node) to be
computed.

D. Task Creation

Once a job is submitted, our platform estimates the number
of available nodes so that the resource utilization within the
overlay would be maximized. This process is completely
transparent to the user.

Through its neighborhood cache, a node assembles a set
with the best available neighbor nodes (i.e. whose rate is
highest). During this assembling process, nodes are questioned
about their absolute availability, i.e., some security policies
may not allow nodes to perform tasks as they could be busy
with other tasks, or they could be out of their working time,
and so forth. Hence, the absolute availability tells us if a node
is available or not for processing tasks, disregarding the load
of resource utilization.

Concerning the distribution process, tasks are sent one by
one to the best nodes that are suitable for performing those
given tasks. Nodes that have been marked before as non
available are disregarded in this process. Besides that, a node
is suitable if its resource availability levels are equal or greater
than the cost of the task.

The cost of a task defines the minimum requirements that
a node machine has to comply with to compute the respective
task. Tasks can have different kinds of complexity, depending
on the size and type of the data to be computed. So, it may
be more appropriate to send computational heavy tasks only
to the more powerful and available machines in terms of their
resources. Furthermore, the task cost is used both to determine
the suitability of a node for computing that task, and to update
the resource availability levels when a task is about to be
computed.

E. Resource Usage Control

Across the overlay network, resources are shared among
different users. Thus, there must be some rules for controlling
the resource utilization, which led us to the security policies.
These policies should support complex usage scenarios, and
therefore they need to be specified in a sufficient expressive
language. In a distributed cycle sharing platform, as the
GridP2P, it may be useful for policies to consider events that
have occurred in the past. For instance, we may have a policy
for limiting the resource consumption, which needs to know
the resource utilization history.

In order to make policies operational, our platform provides
an engine which evaluates and enforce policies against gener-
ated security events. Additionally, new policies may be defined
and introduced at runtime.

W.r.t. evaluation time, policies are evaluated when messages
come both in and out of the GridP2P. More precisely, this
auditing process is done when messages pass from the
Overlay Manager to the Job Manager and vice versa. At
those moments, security events are generated containing
information about the sending or received message. Soon
after, the engine evaluates these events along with the policies
and decides which action to take.

Working Time Policy. In general, machines lying over



a GridP2P overlay network are not dedicated servers, instead
they are common machines, owned by typical computer
users, whose resources may not be always available for
performing outside jobs. Hence, we provide a security policy
allowing nodes to only perform outside work during a
specified period of time. In this way, users may specify a
time range for when they expect their machines will not
be in use (e.g. from 10:00 PM to 2:00 AM). In addition,
users may also specify an idle time required for nodes to
start accepting and performing tasks. This could be also
used for processing work when a user’s screensaver shows up.

Maximum Number of Concurrent Tasks Policy. In
order to assure a minimum QoS, we provide a security policy,
based on past events, allowing one to specify a maximum
limit for the number of tasks that may be processed at the
same time. For example, a machine with a quad-core CPU
may limit its usage to four tasks where each one would be
assigned to each CPU core (i.e. each task corresponds to
a new process). Therefore, tasks running on this machine
would not be delayed by other ones.

Task Complexity Policy. Disregarding its resource
capabilities, a node may want to only perform lighweighted
tasks (i.e. tasks with a low cost). Such decision could be based
on the periods of time that the node stays idle (e.g. the node
could be idle for just a few moments when the screensaver is
shown). Therefore, it is possible for a node to reject tasks if
their cost is higher than a specified bound. Although, if this
limit is much lower than the resource availability levels of the
node, then it can cause tasks to be rejected, despite the fact
that the node has been marked before (through an Availability
Message) as available. This happens because when we are
assessing the absolute availability of a node, we would not
have the tasks created, and thus we do not know the cost of
a task yet.

Consumption Policy. A task taking too long to be computed
(i.e. beyond a defined threshold) can be interrupted. Also, if a
task consumed much more resources than the ones specified
by its cost, the consuming node may be marked into a black
list. If a node is marked more than n times, then its access to
the same provider node should be denied for a certain period
of time, that could be one or several weeks, depending on
user configurations. After that period of time is over, the
offender node is cleared from the black list, and it may access
again to that node.

Ratio Policy. Within an overlay, there could be nodes
contributing more to the community, by providing more spare
CPU cycles of their machines; or contributing less by not
being connected much time to the overlay or by denying
access to their resources. Our system incorporates the concept
of resource usage fairness in which a node may specify a
minimum ratio required for accepting remote tasks. In this
way, each node has a ratio which is simply the quotient of the

performed work in it and the performed work in other nodes.
This ratio is sent along with requesting messages whenever
one needs to perform work on outside nodes. Moreover, the
performed work corresponds to the sum of the CPU cost of
every processed task.

With this mechanism, a node only has to compare the ratio
sent within a request with its minimum ratio required. The
minimum ratio required may not be higher than one, i.e., a
node performing work as much or more than what it asks to
perform remotely cannot be rejected.

Furthermore, each node’s minimum ratio reference may be
adjusted by the needs of the node. For example, if a node
needs to improve its ratio it may decrease its minimum ratio
reference in order to potentially perform more remote tasks.
Analogously, a node may also increase its minimum ratio
reference if it does not need to execute jobs in the relatively
short-term.

III. IMPLEMENTATION

A. Used Technology and Integration
In order to make our platform portable, we used the Java

programming language. In this way, we may run the GridP2P
upon a Java Virtual Machine, which is available for the most
common operating systems and computer architectures.

The integration of the PAST (distributed cache), Informed
Walk (Resource Discovery) and Heimdhall (Policy Engine)
within the platform was made in an easily and seamlessly
way. This happened due to the fact that each of the integrated
components was also developed in Java.

For the network management, the Overlay Manager and
Communication Service layers use the FreePastry tool3 which
is a Java implementation of the Pastry overlay.

B. Main Data Structures

• Node Rate: This structure is also known as the neigh-
borhood cache. It stores all the neighbor nodes and their
characteristics, namely, their resource availability levels.

• Node Reputation: The reputation of each neighbor node
is stored in this data structure.

• Resource Manifest: This structure contains a node’s re-
source description in terms of available CPU, bandwidth,
and primary and secondary memory.

• Policy Repository: Maintains all the loaded policy objects
with their specifications.

• Event History: For history-based policies, their triggered
past events are stored here.

• Job Holder: Every created job object is kept in this
structure during its lifetime. These job objects contain
information related to the job, such as the job identifier,
the number of completed tasks, and the output data of
each computed task.

• Application Repository: Contains all the supported ap-
plications: their identifiers, their calling command with
the correct parameters, rules on how to reassemble task
results and split data input into tasks, amongst other.

3http://freepastry.rice.edu accessed on October 2008



C. Message Types

• Update Message: A node sends this message to all of
its neighbors in order to announce its both presence and
resources.

• Availability Message: This message has the purpose of
checking whether a node is available or not to perform
work. It also includes a status field which says if this
message means a question or a positive or negative
answer about the availability of a node.

• Task Message: These type of messages contain the input
data and required configurations for being computed by
a node.

• Task Result Message: The output of a computed task
and the identifier of the job and task are kept in these
messages.

• ACK Message: These messages are sent for assertion
purposes. A status field is included representing a positive
or negative acknowledgment.

All these messages are sent through the TCP/IP protocols.

D. Distributed Storage of Task Results

The implementation of our distributed cache, for storing
computed tasks, relies on the PAST [15]. The integration of
PAST with our platform is easily done, since PAST is meant
to work upon FreePastry.

PAST provides two operations, insert and lookup. The insert
requires, as parameters, the output of a computed task (e.g.
an image of rendered chunks in POVray) and a key, for
identifying that computed task. To locate a computed task
through the lookup operation, only the key is needed. This
key is the generated SHA-1 hash from the task description,
which includes the input data and configuration.

E. Security Policies

Our Policy Engine Layer uses the Heimdall [9]. Never-
theless, this layer may work with multiple engines in si-
multaneous. In that case, for an operation be authorized, all
engines must authorize, otherwise, the operation is denied.
The integration of engines, with our security layer, may be
made through webservices or through included libraries in our
source code, as in the case of the Heimdall. In this way, we
use the Heimdall interfaces in order to load policies, evaluate
operation events, and enforce actions in accordance to the
policy evaluation.

The policies should be defined in XML files whose structure
is based on the xSPL language. This high level language is
sufficient expressive to support a myriad of usage scenarios.
Therefore, it allows the definition of several types of variables,
logical conditions, and logical and arithmetic operations. Ad-
ditionally, policies may be loaded at runtime, so that system
execution does not have to be interrupted each time a new
policy is added.

Operations like sending or receiving a message generate
security events in the GridP2P. These event information have
to be converted into the xSPL syntax event and then sent to
the Heimdall for evaluation.

Upon security event, the evaluation of policies usually will
only tell us if an operation was authorized or not. Although,
functions may be associated with policies, so that when a
policy fails on evaluation, it may trigger some action to happen
(i.e. by calling a function).

With Heimdall we expand our range of possibilities to
control the resource usage, instead of being bound to a
small defined set of security mechanisms, like we see in
many other peer-to-peer resource sharing systems. Hence, we
may support a myriad of use cases, within a dynamic and
complex environment, without needing to change any platform
implementation.

F. API

We provide an Application Programming Interface (API),
regarding each system component, so that implementations
can be changed without compromising the interaction between
components. Plus, the implementation details of every com-
ponent are abstracted by our API, facilitating the programmer
tasks.

Hence, a new component implementation need to cope with
the APIs, either for providing the functionality described by
the component API, or for calling other component’s functions
through its interface.

Despite our API being language-dependent, components
still may be built in different technologies (or programming
languages) and not being bound to a given process or system.
In this case, the inter-component communication would be
done through remote procedure calls (RPC) where additional
code is required to translate API calls into RPC and vice versa.

Furthermore, each component API can be extended or
modified, although one has to take into account the impact
of those modifications in all other components.

Our platform provides the following APIs: AppAdaptation-
LayerI, JobManagerI, PolicyEngineI, OverlayManagerI, and
CommunicationServiceI.

IV. EVALUATION

In this section we present the evaluation of the GridP2P
platform regarding its performance and viability when facing
real environment. Due to their importance among our goals,
we test the performance of the system in terms of application
speedup, distributed cache, and security policies.

In order to perform all the tests we rely on 3 different jobs,
listed as follows.

• The first one, job1, is a POVray image to be rendered.
Each task would compute a certain number of line chunks
with different complexity. Due to that complexity, some
tasks can be computed faster than others.

• The second one, job2, is also a POVray image to be
rendered, however, the computational cost of each task
is the same (i.e. tasks would be completed at the same
time). Additionally, this job is less computational heavy
than the previous one, i.e., the highest number of nodes
that worth the parallelization is lower.



Fig. 4. Jobs’ Speedup

• The third one, job3, consists of a Monte Carlo simulation
for a sum of several given uniform variables.4 An image
containing a linear chart would be the outcome. Each
task would generate a lot of random numbers and group
them into classes. Then, the classes are summed between
tasks, and a Monte Carlo curve is drawn. Additionally,
all the tasks take the same time to be computed.

For all of the tests we used machines with an Intel Core 2 Quad
CPU Q6600 at 2.40 GHz with 7825MB of RAM memory. The
used operating system was the GNU/Linux Ubuntu with the
kernel 2.6.28-14-generic. For the Java Runtime Environment
and FreePastry we used the 1.6.0 14 and 2.1 versions respec-
tively.

To assess application speedup we tried the three jobs listed
above: job1, job2 and job3. For each of these jobs we made 8
trials. In the first trial we used 1 node; in the second, 2 nodes;
and so on, until we have 8 nodes in total. All the nodes were
within the same LAN network and the bandwidth available
was about 100 Mbps. For each trial we obtained the execution
time of the job, and therefore we also got the speedup.5

In Figure 4 we may conclude that the best jobs to parallelize
are the ones whose tasks have the same complexity, in this
case, job3. With this job, we almost got a linear speedup.6

Nevertheless, is important to see that, in job1, the gains
were acceptable, and most part of the nodes become free
to perform other tasks a while before the job was entirely
completed. Besides that, the job3 output was very small sized
in comparison with the job1 output, i.e., we also found out that
the network overhead has a significant impact on the overall
system performance.

Regarding the second stage, a cache is important to avoid
doing duplicated work (i.e. optimizing resource usage), and
thus increase application performance.

The gains are higher for tasks whose complexity differs, in

4http://web.ist.utl.pt/∼mcasquilho/compute/qc/Fx-sum-unifs.php accessed
on July 2009

5Sp = T1/Tp, where Sp is the speedup with p nodes, T1 is the execution
time with 1 node, and Tp the execution time with p nodes.

6Linear speedup or ideal speedup is obtained when Sp = p

this case, job1 - Figure 5. It seems that the heaviest tasks in
job1 were not cached until the number of cached tasks reached
5. Therefore, the most gain we may have, for this type of jobs,
is when heaviest tasks are cached first. W.r.t. job3, it showed
that caching tasks with the same complexity does not decrease
the execution time, except if all tasks are cached (obviously).
However, in any case, n machines will remain free if n tasks
are present in cache, and that is the essential point.

Fig. 5. Improvement time when the cache is used. Reference is when no
tasks are cached.

Finally, the policy engine overhead turned out to be min-
imal. It is directly proportional to the number of deployed
policies. Now, we assess application performance against our
deployed policies. That comparison is made in percentage,
where 100% corresponds to the time with policies.

Fig. 6. Application Performance With and Without Policies

In Figure 6 we may see how fast an application become
if the policy engine is not enabled. This obtained values
are roughly equal for any job. Moreover, there is no policy
evaluation when only 1 node is available, as would be obvious.
When more nodes are available, the policy engine overhead
corresponds to approximately 0,042 seconds. In the case of
job1, where we got 221,146 and 179,077 seconds of execution
time with 2 and 3 nodes respectively, the overhead corresponds
to: 0,0189% of the time taken with policies and with 2 nodes,
0,0235% with 3 nodes, and so forth.



A. Discussion

Concerning application speedup, we have seen that our
platform may introduce significant gains on the execution time
of applications, either for equal or different task complexity.
Although, the speedup is highest for tasks with the same
complexity, as the work is better distributed among available
nodes.

We have also seen that the size of the output data can
have a significant impact on the job performance, i.e., the
time for transferring the data augments between the provider
and consumer nodes. To obtain best speedups when the data
size is bigger, the task complexity should be high enough to
compensate the network overhead. Additionally, as tasks are
independent, they do not have to block during execution time
to communicate with each other, and therefore the network
overhead is reduced.

In regard to the distributed cache, it is concluded that it may
improve application execution time for applications whose
tasks may differ in complexity. However, the heaviest task
should be cached for this to work out. In addition, the use
of this cache optimizes the resource usage, in a sense that
machines become free to perform other jobs.

The policy engine overhead turned out to be minimal.
Moreover, the time to evaluate policies against events is
always constant. In a parallel environment, we only notice
this overhead in the last task to be completed. Nevertheless,
this overhead time may be increased as policies are added into
the engine.

V. RELATED WORK

In this section we review a representative selection of rele-
vant solutions regarding the fundamental premises to achieve
our goals. That is, job scheduling is essential to achieve
efficiency in applications, security policies are important to
control resource usage, and resource discovery mechanisms
are needed to locate resources within a dynamic environment.
In addition, different models of distributed cycle sharing
systems are analyzed and compared with the GridP2P.

A. Job Scheduling

The job scheduling is the assignment of work to resources
within a specified time frame [4]. In Grid environments,
scheduling is mainly used to optimize performance (e.g.
execution time, throughput, fairness, and so on), providing the
best quality of service. Scheduling may also be used for load
balancing purposes. From the accumulated experience, it is
clear that the choice of a scheduling model can make a dra-
matic difference in the performance achieved by applications.

Nevertheless, each scheduling mechanism may aim to dif-
ferent performance goals. For example, job schedulers attempt
to maximize the number of jobs executed by a system (opti-
mizing throughput), while resource schedulers aim to coordi-
nate multiples requests on a specified resource by optimizing
fairness criteria or resource utilization. These goals, regarding
the overall system performance, may conflict with application

schedulers which promote the performance of individual ap-
plications by optimizing, for instance, the speedup or minimal
execution time.

Currently, GridP2P is more focused on scheduler mech-
anisms covering local jobs and applications, although not
disregarding at all the system performance as a whole (as
security policies may control multiple requests over resources).

B. Security

Deeds [7] is a history-based access control system whose
policies must be written in Java. The security events and
enforcement mechanisms (handlers) should be individually
implemented for every resource to be protected. This ad-hoc
manner of managing policies becomes hard and impractical,
especially in dynamic and complex environments.

Heimdall is a history-enabled policy engine targeted to Grid
environments. This system allows the definition, auditing, and
enforcement of history-based policies. Through a language
with an high level of abstraction and expressiveness, several
usage semantics and security patterns may be applied within a
complex environment. With this manner of defining policies,
the specification and implementation of security mechanisms
are separated, and thus leveraging the policy administrative
tasks. By doing so, Heimdall constitutes then a solution that
fits in the needs of the GridP2P.

C. Resource Discovery

Iamnitchi et al [10] have compared different searching meth-
ods and it turned out that a learning-based strategy achieves
more performance. Such strategy consists of forwarding a
request to the node that answered similar requests previously
(i.e. using a possibly large cache). Moreover, results have
shown that searching mechanisms which keep a history of
past events are more efficient than the ones that do not store
any information about other nodes, such as the random walk.

CCOF [17] has tried several approaches, and the one
obtaining more global performance was based on a partially
centralized peer-to-peer overlay. Within the best search ap-
proach, some nodes may acquire a special role in the network
and provide a service of lookup for nodes nearby. This way,
nodes advertise their profiles and address requests to those
supernodes. Whenever a request is made, supernodes attempt
to match the query with cached profiles and return a set of
candidate nodes. Nevertheless, the dynamic placement of these
supernodes is still an open problem.

Paredes [13] presents a solution through which queries are
forwarded to the neighbor nodes with best availability and
reputation. The best availability concerns the idleness level of
a node in terms of its resources, and the reputation consists in
the capability of a node to forward a query to other nodes with
availability (i.e. this reputation is based on previous requests).
Results have shown that this approach is efficient and scalable,
and thus matching the GridP2P requirements.

Cheema et al [5] proposed a solution for exploiting the
single keyword DHT lookup for CPU cycle sharing systems.
This solution consists in encoding resource identifiers based on



static and dynamic resource descriptions. The static ones could
be, for instance, the OS configuration, RAM, or CPU speed.
While the dynamic descriptions are related to the availability
levels of resources, such as the percentage of idle CPU. With
this encoding mechanism, it is possible to create a mapping
between resource and node identifiers in structured peer-to-
peer networks, like the Pastry, and take advantage of the
efficient routing of queries.

D. Cycle Sharing Systems

1) Institutional Grids: Globus [8] is an enabling technology
for grid deployment. It provides mechanisms for commu-
nication, authentication, network information, data access,
amongst other. The authentication and authorization models
are directed to institutions, making difficult for ordinary users
to deploy applications on top of the Grid. In contrast, the
GridP2P envisions for an open access environment whereby
the complexity of getting credentials to use the Grid is reduced.

Condor [11] allows the integration and use of remote
workstations. It maximizes the utilization of workstations and
expands the resources available to users, by functioning well in
an environment of distributed ownership. Although, Condor’s
jobs rely on executable binary code in which compatible
machines are needed in order to run them. Contrastingly,
machine heterogeneity is not a problem in GridP2P, since jobs
consist of data files that can be easily read by any computer
(i.e. the kind of architecture and operating system are not
relevant). Plus, many Condor features require some degree of
expertise (i.e. advanced configurations are needed), whereas
our platform keeps the vision of simplicity and tries to do all
the necessary work with almost no interference from users.

2) Master-Slave Model: BOINC [1] is a platform for volun-
teer distributed cycle sharing based on the client-server model.
It relies on an asymmetric relationship where users, acting
as clients, may donate their idle CPU cycles to a server, but
can not use spare cycles, from other clients, for themselves.
Besides that, setting up the required infrastructure, developing
applications, and gathering enough cycles could be difficult for
an ordinary user. On one hand, users need to have the required
skills to create BOINC projects, and on the other hand projects
should have a high profile to attract users to participate in. In
comparison, GridP2P is more flexible as users have the same
power to both provide and consume idle cycles to and from
other machines. Moreover, it is possible to use common and
widely used applications with our system.

nuBOINC [6] is a project that attempts to overcome the
drawbacks presented by BOINC. It allows one to use idle
cycles from other users, through servers, and making use of
commodity applications. However, GridP2P relies on a more
scalable model that does not require the intermediation of
servers. Also, when work units are being distributed, our plat-
form takes into account the idleness levels of user machines,
which is disregarded by the nuBOINC.

3) Peer-to-Peer: CCOF [12] is an open peer-to-peer system
seeking to harvest idle CPU cycles from its connected users. It
shares our goals of reaching the average user by not requiring

any kind of membership or negotiations in any organization
(i.e. in contrast with institutional grids). The access of joining
nodes to the CCOF is only based on trust and reputation
systems. Despite that model being a good solution for global
control, CCOF disregards security policies which allow a more
fine-grained control over local resources.

OurGrid [2] is a peer-to-peer network of sites which tries to
facilitate the inter-domain access to resources in a equitably
manner. Each of these sites comprises grid clusters possibly
belonging to different domains. The sharing of resources is
made in a way that makes those who contribute more to get
more when they need. Nonetheless, applications need to be
modified in order to run on top of this platform, and the data-
based parallelism, envisioned by the GridP2P, is not exploited.
Besides that, machines are not distinguished by their idleness
levels, whereas our platform always attempts to select the best
available nodes for a job.

Ginger [16] is a project focused on enhancing desktop ap-
plications to run faster, by conveying the Grid and Peer-to-Peer
models into a generic cycle-sharing platform. It introduces
the Gridlet concept: a semantics-aware work unit containing a
chunk of data and the operations to be performed on that data.
Home users exchange gridlets across the peer-to-peer overlay
in order to compute chunks of data. Ginger shares our goals of
deploying a scalable peer-to-peer grid infrastructure. Although,
it is not clear how Gridlet operations, consisting of application
binaries, would run on remote machines. For instance, popular
desktop applications often need to be installed (i.e. root access
is needed); and their binaries are dependent from machine
architectures/operating systems. Additionally, the control over
resource usage is not taken into account, unlike the GridP2P.

VI. CONCLUSIONS

This paper presented the GridP2P platform, a solution aim-
ing at a current reality, characterized by computers’ hardware
evolution, resource scarce utilization, and user’s computational
needs. With this platform, we apply the Grid concept into
large-scale networks, namely the Internet, where a myriad of
powerful machines may be lying idle for long periods of time.
Moreover, we take advantage of this reality in order to exploit
the parallel execution of widely used applications. Hence, we
improve application performance in a transparent manner, i.e.,
without modifying applications. Also, the virtual organization
concept, emphasized by the Grid, is thoroughly vanished by
the Peer-to-Peer model, introduced in our platform. By doing
so, highly computing power becomes available for any user.
Additionally, and in a resource sharing environment, it is
essential to maintain a fine-grained control over shared re-
sources, which is granted by the GridP2P through the security
policies.

A representative selection of relevant solutions are reviewed
and it is concluded that none of them entirely cover the
objectives of this project. In particular to the distributed cycle
sharing systems, they fail to reach the common user due to
institutional barriers, they are not portable, they require mod-
ifications in applications, they lack on security, amongst other



reasons. Therefore, the GridP2P reveals itself as a compelling
platform within the current state of the art. Furthermore,
many challenges inherent in Grid and Peer-to-Peer systems
are evidenced in this project, such as the scalability, efficiency,
heterogeneity (of machines), security, and robustness.

With respect to the evaluation, results have shown that the
GridP2P may increase the performance of applications, while
maintaining a rigorous control over used resources. Hence, all
of our objectives were achieved. However, the scalability is
always an issue difficult to evaluate in real environment due
to logistic reasons.

By introducing inexpensive computing power in the hands
of any ordinary user, we believe this platform will start reach-
ing communities of Internet users across the world. We also
hope this work may contribute to the study and deployment
of novel peer-to-peer grid infrastructures.

A. Future Work

This paper revealed some important issues that we intend
to address in the future. They are described as follows.

• Validation of Received Results: Computed tasks may con-
tain fake results. This could be mitigated by introducing
redundancy (i.e. a task being processed by more than one
node) or by sending quizzes to machines (i.e. analogous
to the CCOF approach).

• Global Scheduling: To improve the overall system per-
formance and maximize the throughput, i.e., the number
of executed jobs by the whole system.

• Fault-Tolerant: If a node B is processing a task from a
node A, there should be a way for the node A to check
if the node B is still alive. If not, that task needs to be
redistributed to another node.

• Assessment of both Task Cost and Node Available Band-
width: As we have seen in previous chapters, this is a very
hard problem that requires further attention.

• Task Partitioning: The splitting of input into tasks
is application-dependent. Therefore, semantic-aware en-
gines are required to build partitioning mechanisms
(based on XML descriptions for instance) for each sup-
ported application.

• Limit Bandwidth Usage: Like many other platforms we
should be able to impose downstream and upstream
consumption limits (e.g. No more than 15 Kbps should
be used for uploading data).

• Communities: Mechanisms for handling different com-
munities, such as requiring users to have specific appli-
cations pre-installed.

REFERENCES

[1] D. P. Anderson. Boinc: A system for public-resource computing and
storage. In GRID ’04: Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, pages 4–10, Washington, DC, USA,
2004. IEEE Computer Society.

[2] N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg. Ourgrid: An
approach to easily assemble grids with equitable resource sharing. In
Proceedings of the 9th Workshop on Job Scheduling Strategies for
Parallel Processing, Seattle, WA, USA, June 2003.

[3] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer
content distribution technologies. ACM Computing Surveys (CSUR),
36(4):335–371, December 2004.

[4] F. Berman. High-performance schedulers. In The grid: blueprint for a
new computing infrastructure, pages 279–309, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

[5] A. S. Cheema, M. Muhammad, and I. Gupta. Peer-to-peer discovery of
computational resources for grid applications. In GRID ’05: Proceedings
of the 6th IEEE/ACM International Workshop on Grid Computing, pages
179–185, Washington, DC, USA, 2005. IEEE Computer Society.

[6] J. N. de Oliveira e Silva, L. Veiga, and P. Ferreira. nuboinc: Boinc
extensions for community cycle sharing. In 2nd IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (3rd IEEE
SELFMAN workshop). IEEE, October 2008.

[7] G. Edjlali, A. Acharya, and V. Chaudhary. History-based access control
for mobile code. In CCS ’98: Proceedings of the 5th ACM conference
on Computer and communications security, pages 38–48, New York,
NY, USA, 1998. ACM.

[8] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure
toolkit. International Journal of Supercomputer Applications, 11:115–
128, 1997.

[9] P. Gama, C. Ribeiro, and P. Ferreira. Heimdhal: A history-based policy
engine for grids. In CCGRID ’06: Proceedings of the Sixth IEEE
International Symposium on Cluster Computing and the Grid, pages
481–488, Washington, DC, USA, 2006. IEEE Computer Society.

[10] A. Iamnitchi and I. Foster. A peer-to-peer approach to resource location
in grid environments. In Grid resource management: state of the art
and future trends, pages 413–429, Norwell, MA, USA, 2004. Kluwer
Academic Publishers.

[11] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle
workstations. In Proceedings of the 8th International Conference of
Distributed Computing Systems, June 1988.

[12] V. Lo, D. Zhou, Y. Liu, and S. Zhao. Cluster computingon the fly: P2p
scheduling of idle cycles in the internet. In the internet, 3rd International
Workshop on Peer-to-Peer Systmes (IPTPS 2004), pages 227–236, 2004.

[13] F. R. Paredes. Topologias de overlays peer-to-peer para descoberta de
recursos. Master’s thesis, Instituto Superior Técnico, 2008.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. Lecture Notes
in Computer Science, 2218:329–350, 2001.

[15] A. Rowstron and P. Druschel. Storage management and caching in past,
a large-scale, persistent peer-to-peer storage utility. SIGOPS Oper. Syst.
Rev., 35(5):188–201, 2001.

[16] L. Veiga, R. Rodrigues, and P. Ferreira. Gigi: An ocean of gridlets
on a ”grid-for-the-masses”. Cluster Computing and the Grid, IEEE
International Symposium on, 0:783–788, 2007.

[17] D. Zhou and V. Lo. Cluster computing on the fly: resource discovery
in a cycle sharing peer-to-peer system. In CCGRID ’04: Proceedings
of the 2004 IEEE International Symposium on Cluster Computing and
the Grid, pages 66–73, Washington, DC, USA, 2004. IEEE Computer
Society.


