VFC for Wikis and Web Caching

Carlos Roque

Instituto Superior Técnico

Abstract. In today’s caching and replicated distributed systems, there is the need to min-
imize the amount of data transmitted, because in the first case, there is an increase in the
size of web objects that can be cached, while in the second case, the continuous increase
in usage of these systems, makes that a page can be edited and viewed simultaneously by
several people. This entails that any modifications to data have to be propagated to many
people, and therefore increase the use of the network, regardless of the level of interest each
one has on those modifications.

In this paper, we describe how the current web and wiki systems perform caching and man-
age replication, and offer an alternative approach by adopting Vector-Field Consistency to
the web and wiki environment.

Additionally since users are not interested in all of wiki page content, we also describe a way
of filtering wiki pages, so that they only contain content that is useful to the user.

1 Introduction

In today’s Internet environment, there is an increasing number of users geographically dispersed
and a large amount of those users uses the web, some of them exclusively, to do their daily work
and to look for information or for recreational activities like social networking, online gaming, etc.
This poses many problems to the internet service providers that have almost unlimited requests
for providing more bandwidth to their clients, placing the providers in a difficult situation since
their network may not be ready for the increase of traffic and the redesign of that network may
have prohibitive costs.

So in order to continue satisfying the demands of the users, many ISPs use one or more layers
of cache servers in order to reduce the bandwidth required for some of the most common proto-
cols (like HTTP), but due to the dynamic nature of the requirements needed for a cache, those
caches have more and more problems to satisfy the client’s needs ((iStpicicHRIaSTECSPoHse
), mainly related to the number of unnecessary pages (frequently dynamic), cached and
updated/invalidated and to the fact that many web pages have a lot of uninteresting things to the
user, that are highly dependent on the user itself.

The first of these problems is related to the traffic from the caches to the client workstations, and
from the caches to the original web servers, since 40% of all requested objects from a client are not
cacheable without resorting to special strategies[32], which makes the traditional caching systems
more and more inefficient, given the amount of web content.

Also many objects cached are useless since even if 90% of all web accesses are made to the same
set of servers, there is a significant percentage of those pages that are accessed only once[2], which
causes unnecessary traffic when a cache is refreshing pages that are not needed anymore and also
an increase in storage use, which is problematic due to the increase in the number of clients of
these cache systems.

Osaka
Highlight

Osaka
Highlight

Osaka
Highlight

Besides the general increase in web pages, there is also an increase in the interest and in the
number of users of replicated distributed systems like wikis, being that some of the largest wikis
have a daily number of users in the order of thousands 2, 3 with an equally high number of edits
to their pages 4.

This results in a problem similar to the one present in web cache, because there is the need of
presenting the wiki users with the most updated information (ie. the most recent version of a wiki
page), while reducing the bandwidth required for transmitting those updates to the client.

This is compounded by the fact that most wikis allow their users to maintain a set of preferred or
favorite pages and that many wiki systems allow a user or set of users to be responsible for a given
set of pages, according to they knowledge about a certain topic, requiring those users to keep an
eye on the changes made their set of pages in order to keep the wiki free of spam posts and as
accurate as possible.

1.0.2 Proposed Solution

To both of these problems we propose a strategy based on Vector-Field Consistency[35], in order
to use a semantic and client oriented approach to the problems related above, that not only takes
into account commonly used semantic information such as distance between documents, ® but also
other useful information like the retrieval and extent of visualization of said document, in order
to know when caches should update their documents and the maximum staleness that a wiki user
tolerates in a given wiki page.

1.1 Objectives

In this paper we develop a system that adapts the Vector-Field Consistency model to semantically
enhance caching of web pages and to show updates to pages interesting to a wiki user.

In the subsections bellow, we provide more detail on the objectives and enumerate the collected
functional and non-functional requirements for both the web cache and wiki system.

2 http://www.alexa.com/siteinfo/wikipedia.org+wikia.com+orkut.com+live.com
3 http://www.google.com/adplanner/static/top1000/

4 http://s23.org/wikistats/index.php?sort=edits_desc

® Measured as the length of the shortest chain of links leading to them

Osaka
Highlight

Osaka
Highlight

Osaka
Highlight

1.1.1 Web Caching

The non-functional requirements our cache system should strive to provide include:

Fast Access Our cache system should provide a fast access, not only globally but also to the set
of pages frequently used by the users of our cache and to the web pages that are related to the
ones they like and spend more time in;

Robustness Our cache system should provide means to be used either alone or in a distributed
fashion in order to improve balance load and reduce the probability of a single point of failure
and by doing that being robust enough to be used in middle sized cache systems as intended;

Adaptability Our cache system, should adapt to new access patterns and not stick to a given set
of frequently used pages indefinitely, but rather change at the same rate of the access patterns
and users tastes;

Simplicity By building upon VFC, our cache system will inherit the simplicity of VFC, while
providing a powerful web cache scheme.

1.1.2 Wiki Replication

On the wiki side, our objective is similar to the web cache objective, so our functional requirements
are:

— Usage of the importance of a wiki page to a user in order to determine when the user needs to
be notified of changes to that page;

— Usage of the distance (as defined above) from the watched wiki pages to a given page, the
maximum number of updates that a page can have before the user wants to know about them
and the extent of a web page change that a user is wiling to tolerate as a measure of wiki page
importance;

— Within a page article, use information about the user behavior on that page in order to deter-
mine the article blocks that are important to a user and send update to only those blocks.

As for the non-functional requirements we keep the Adaptability and the Simplicity.

1.1.3 Browser extension

As for the browser extensions, whose use is to determine the preferences of the user in a page, our
objective is to have an extension that:

— Provide a way for the user to control the consistency zones and specifying their consistency
requirements, both for a cache and wiki;

— Control whether a filtered page is used or not, because a user may want to retrieve a faithful
full rendering of the page without removal of uninterested blocks;

— View the classification of each block in terms of user preferences and to change or specify that
the guess is wrong;

— Propagate changes of the bookmarked pages to the web cache server;

1.2 Document Road-map

We begin by enumerating our objectives in the section bellow (Section 2), then we study the
related work (Section 3) in both web caching and wikis, to try to frame under taxonomies current
existing systems and study they advantages and disadvantages, together with existing methods to
determine user preferences in web pages.

Then we briefly describe VFC and its current uses, followed by a description of our architecture
(Section 4) and finally the tests we plan to do to validate, evaluate and compare our solution to
some of the other solutions studied in the related work (Section 5). The document closes with the
conclusion.

Osaka
Highlight

Osaka
Highlight

2 Related Work

In this section we are going to analyze web caches and wiki systems, in the context of web caches
we are going to analyze some important characteristics of any web cache, on the wiki systems we
are going to analyze the types of wikis, the types of users and the architecture of wiki systems.
We also discuss about existing strategies to break web pages into semantic blocks, features that are
commonly used to determine user preferences and ways of gathering all the information in order
to determine which blocks the user likes most.

Finally we are going to discuss some concepts about Vector-Field consistency, in order to provide
the reader with information about what is Vector-Field consistency and the current uses for Vector-
Field consistency.

2.1 'Web Caching
In web caching we are to talk about:

— The structure or architecture of a web cache;

— The two different models of a web proxy;

— How caches keep the content fresh and consistent with the web server hosting them;

— How caches decide what to cache and what to replace in the lack of space for more documents;
— Classify some of the most used caches on the above matters;

2.1.1 Web Cache Architecture

The architecture of a distributed web cache can be based on four classical approaches, a hierarchical
architecture, a cooperative distributed architecture and a hybrid architecture[40][33].

Centralized architecture

This architecture (Fig. 1) is the simplest one of all four because it consists of only one cache server,
that connects to a set of clients (users) and that makes requests to a web server hosting content
whenever a client makes a request.

This architecture was the first one to be used and in spite of the big disadvantage that it is limited
in the number of requests that it can serve and that it is a single point of failure, it is still used on
very simple cases, like home web cache servers or in networks that serve an small set of clients.

9 9

Fig. 1. Diagram of an centralized cache

Hierarchical architecture

The second approach (Fig. 2) distributes the cache servers in a pyramidal tree, where the bottom
servers are contacted by the clients, and the upper or root server is the only one allowed to connect
to web servers hosting content.

In this approach, when a client makes a request to the local server, the server forwards the request
upstream in the hierarchy until it is either satisfied by some cache server, or it reaches the top of
the tree. When it does the root server, connects to the web server that can satisfy the request,
and distributes the response to the caches bellow it, so that the document is available to the lower
levels.

Osaka
Highlight

The Adaptive Web Caching or Top-10 prefetch[25] is one example of a cache system that uses the
hierarchical model.

One advantage of this distributed architecture is that it can save bandwidth, because documents
can be served more quickly since there is some probability that, the document is on some cache
along the hierarchy, so that only a few client requests have to be sent to the web servers hosting
the content.

On the downside, there are delays associated with each caching level, because for each new level,
there is another set of caches processing requests that cause delays; and since a document travels
down in the hierarchy to the web caches the same document is stored on multiple caches wasting

possible memory or disk space for some pages.

/ N\
T

@ /i?
<<

f ‘

[
Fig. 2. Diagram of an hierarchical cache

Cooperative Distributed Architecture

In the third approach (Fig. 3), there is no hierarchy, but a set of cache servers receiving connections
from clients, that are connected among them, so that when a request comes to a server, that server
checks if any other neighbor server containing the document and if it is retrieves it from there
instead of making a connection to the original web server.

The approaches based on this method, can use:

— A hash of the document URL to know which server contains or which server should contain
the document served by a given URL;

— A central server that decides which server keeps or should keep a given document;

— A cache routing table that is multicasted by a given cache server and that specifies the URL s
that the cache server is responsible for.

The Cache Array Routing Protocol[38] is a example of a protocol based on the cooperative dis-
tributed protocol.

This method has the advantage that it has very low latency compared to the second one and low
disk usage, because each document is stored only once leading to a better document distribution.
The disadvantage is that the used bandwidth is more than with the first scheme, because each
cache has to coordinate itself with other caches in order to know where a page is or where a page
should be.

Hybrid Architecture

In the fourth approach (Fig.4), there can be a tree of cache servers, just like in the second approach
but the caches in the same level are connected to each other like the second approach, and upon
receiving a request a cache server contacts first the servers at the same level as it, and only if

Fig. 3. Diagram of an cooperative distributed cache

the requested document is not in those servers, the request is sent up in the hierarchy. The same
process is repeated, until either the request is satisfied or the root cache server is contacted, and
in that case it happens the same as in the hierarchical scheme.

In a variation of this protocol, when deciding the neighbor caches to make a request, an requesting
cache can choose only the neighbors with an round trip time below a certain threshold, even if
another neighbor has the document.

The Internet Cache Protocol[41] used by Squid ¢ among others, is an example of an protocol based
on an hybrid scheme.

What makes this architecture interesting is the fact that if planned in a correct way, then the
disadvantages of the hierarchical and cooperative distributed schemes can be mostly mitigated
and the advantages combined.

/\ /\//\
0\97\0

N -0~

Fig. 4. Diagram of an hybrid cache

5 Squid is a open source proxy/cache server.

Osaka
Highlight

example.com

\ User Proxy Internet
T internal network T
Fig. 5. Diagram of the forward proxy model

Internal network

2.1.5 Cache Consistency

Since a cache server must keep its cached content as fresh as possible, while reducing the traffic
between it and the web server where the cached documents belong, it must decide when to update,
how to update, and if there is a need or an expected gain to store a given document in cache, so
that the client sees a page with the minimum staleness possible, without having to download the
page from the original server.

So, for this problem of web cache consistency two classic solutions exist, consistency by validation

Osaka
Highlight

Osaka
Highlight

and consistency by invalidation. There is also another subdivision into strong consistency and weak
consistency, where the first one implements a strong notion of consistency, where the document
is always fresh, while the second one only grants that the document is possibly unchanged in the
server and therefore valid[32][8].

Consistency by Validation

The first and most used strategy for consistency on the cached documents is consistency by valida-
tion, in that the cache servers are responsible for contacting the web servers hosting the documents
they contain, when a specified condition is reached.

The most used scheme based on this strategy is the one used by the own HTTP 1.1 protocol[16]
where there is a set of HTTP headers that can be set by either the client in the request or by the
server in the response and that control the caching process and when the cache should validate the
stored documents.

So for HTTP, a cache can send a response to a request if that response was validated with the
server, it is valid according to the parameters set by the origin server or the client, if it contains
a warning header (if it is not valid, according to the client or server parameters) or if it is a error
message.

Also according to the HTTP protocol a cache must obey to the following headers, present inside
the request:

Cache-control This is a header that a server hosting content or client can set in the request or
answer and that directly applies to the cache allowing a explicit cache control:
no-cache This option tells the cache not to store anything, and instructs the cache to simply
route the request to the server;
no-store This options tells the cache not to store the page on disk cache (if that feature is
available) and to try to remove the page from memory as soon as possible;
max-age The maximum amount of time that a document can be served from a cache without
a re-validation, it is specified in seconds, this is only available in a request;
max-stale The amount of time that a stale document may be served to a client without a
re-validation with the server hosting the document, it is specified in seconds, this is only
available in a request;
no-transform The document can not be changed by the cache;
only-with-cached The cache must answer with what has available or return a error message
if it has not anything available;
must-revalidate The cache must re-validate the document when the document becomes in-
valid, even if it is configured to ignore the staleness value and return a stale response, this
is only available in a response;
public The document may be cached by any cache server, including a shared cache;
private The document may only be cached by a non-shared cache (ie, one that is available in
the browser).
Expires Specifies the date when the document received in the response, becomes stale, and it is
specified using RFC 1123 date format;
Date Specifies the date at which the document was generated by the server;
Age The age of the response, if it comes from another cache.

In order to determine when a document becomes stale, HI'TP 1.1 uses the following formula if
either the max-age or the expires header is set:

received_age = max(max(0, received_response_time - date_value), age_value)
initial_age = received_age + (received_response_time - request_time)
current_age = initial_age + (now - received_response_time)

lifetime = max(max_age_header_value, expires_header_value - date_header_value)
stale_age = initial_age + lifetime

Osaka
Highlight

Consistency by Invalidation

The second strategy of consistency on the cached documents is consistency by invalidation[21][24].
Instead of caches contacting a web server, when a document becomes stale, the web servers take
note of the web caches that request the documents and, on the first contact, piggyback a callback
with the response. So that when a page becomes invalid because it changed, a web server can
simply transverse the list of callbacks and notify the caches where the document has become stale
and therefore is invalid.

While this approach potentially reduces the staleness of a document, it also forces the server to
maintain state, and therefore one must change the server code.

Another variation of the cache consistency based on invalidation is the use of leases[19] in that a
cache obtains a lease for each page it receives from a server, and that grants the cache a given time
where the obtained document is valid, except if it is sent a specific invalidation from the server for
that object.

This solves the fact that a client may fail, and also improves the basic invalidation protocol because
the server only needs to notify clients that hold valid leases in the case of a document change, which
reduces the amount of state in the server.

Also, if a cache is unable to contact with a server, the documents it holds from it are potentially
out of date and therefore the clients can be warned that they are receiving a copy that is out of
date, using the standard HTTP protocol.

On the other side it was later observed that there was a potential problem in the lease protocol as
described above[44], in that if a set of objects has to be used more frequently than its lease time
then advantages of leases are lost.

Therefore a solution was proposed to that problem using two types of leases.

The first type is granted to single documents and are called object leases, while the second type is
granted to a set of documents from the same server and are called volume leases.

So that the object leases can be long, and the volume caches are short enough to allow the servers

Osaka
Highlight

Osaka
Highlight

Osaka
Highlight

to write an object if they need to, for example, if a server suddenly gets down and then reboots,
so that the server only has to wait for the longest volume lease granted.

Using this modification when a client requests a document, the cache server checks both the object
lease and the volume lease of that document and if they are both valid, it returns the document
in cache to the client. But if any of them is invalid, the cache server sends a lease renewal to the
web server and if the document(s) has(have) changed, the web server piggybacks the change delta
or the current document(s) in the lease renewal response.

When a server wants to modify a document, it sends invalidations to the caches that have valid
leases, either object or cache leases, and only modifies a document when all responses are received,
or when the granted leases expire, if some cache server cannot be contacted.

In the paper by Yu[45], it is described another approach (piggyback) to cache consistency based
on invalidation, where there is a cache architecture based on a hierarchy, where each parent cache
uses multicast, to communicate with their children. There is also a connection between each web
server and the top level cache, that works in a similar way to the top level caches of the hierarchical
architecture.

So in this scheme, a parent cache (or web server) sends a periodic message (heartbeat) to all of its
children (or root caches that requested any of its documents), and piggybacks all the invalid (or
changed) documents in that message, so that the children invalidate the set of pages piggybacked
in the message. Also, if for a given time T (an T corresponding to 5 samples was used by the
authors) there is no message received from the parent cache, the pages belonging to that parent in
the children are automatically invalidated.

When a page is requested by a client, the request is sent up in the hierarchy until it reaches a
cache that has a valid version of the page, or the original server if none of the caches has a valid
version of the page.

2.1.6 Cache Replacement Strategies

Because a cache cannot hold all valid requested documents on cache (even if it uses a disk cache),
there is a need of a cache replacement strategy or algorithm, that determines when a given docu-
ment is removed from cache or when a document may be replaced by other.

Since there are many metrics by which these strategies may be classified, we shall adopt the tax-
onomies commonly used[28], that classify the strategies into:

7 Content Distribution Networks

10

Osaka
Highlight

Osaka
Highlight

Recency based strategies These strategies use the age of the document, to decide if it should
be replaced/deleted or not, one advantage of these strategies is that the document age is easy
to determine, while one disadvantage is that an an old document that is potentially replaceable
according to these strategies, can be extremely popular;

Frequency based strategies These strategies use the usage frequency of a document to decide
if it should be replaced/deleted or not, an advantage is that it considers documents regardless
of their age, and therefore avoid one disadvantage of recency based strategies, but since it does
not take into account time, it can happen that a object that was extremely popular in the past
is never removed;

Frequency-Recency based strategies These strategies use both the age and frequency of the
document to decide if it should be replaced/deleted or not, and can have the advantages of
the two methods above, without any of the disadvantages if they are well combined, because
it can determine if an old document is still popular, and whether a popular document in the
past is still a popular document;

Function based strategies These strategies use a formula that may use a certain amount of mea-
surable features of the documents in order to decide if the document should be replaced/deleted
or not, these strategies by being based on a formula instead of an data structure like the com-
mon implementations of the other three strategies above can adapt more to a usage pattern
change and are easier to implement;

Random strategies These strategies use a random approach when deciding if a certain document
should be replaced/deleted or not, and have the advantage of simplicity.

So in the following paragraphs, I describe with some detail some algorithms based on the above
strategies that are simple and widely used in existing cache systems, ordered by strategy family as
specified above.

Pyramidal Selection Scheme

This is a strategy[5] based on recency that uses some knowledge about the document size when
deciding which document to replace, in such a way that the authors describe their strategy as a
way to solve the knapsack problem.

The authors consider a measure of dynamic frequency as ﬁm where AT is the number of accesses
to other documents since the last access to a certain document ¢, so that the aim is to minimize
the sum of the dynamic frequencies for the documents that are going to be remove while removing
enough documents to insert the new one.

So the authors consider initially an approach where the documents are ordered by a non-decreasing
order of S; x AT;, and then the objects higher in the list are chosen to be removed until there is
enough space on cache.

But since that approach is expensive in terms of processing time, the authors develop an alterna-
tive that is PSS, in which the documents are classified according to their size and placed into a
structure similar to a pyramid, in that the cache space is divided into [log (M + 1)] where M is
the cache memory size, and where each group has objects sized in between 27! and 2¢ — 1 and is
managed as a Least Recently Used List.

So, that when the cache needs to remove a document or documents, the values of S; x AT from
the least used objects of each group are compared.

The authors also develop a strategy that takes into account the distance from the cache to the web
server hosting the documents and one that takes into account the document expiration time.

The result is a method based on recency that takes into account several other metrics like size (and
expiration time or cost) and creates an algorithm that is easy to implement and does not require
a lot of computational power.

11

Osaka
Highlight

Osaka
Highlight

2.1.6.1 Frequency-Recency based strategies
LRU*

LRU*[11] is a strategy that combines both frequency and recency, into a simple scheme, that keeps
all documents indexed in a LRU list, and when a document in cache is requested by a client, it is
moved to the start of the LRU list and the hit counter is incremented by one.

When there is a need for removing some document, the hit counter of the last recently used
document (ie. the one at the back of the LRU list) is checked and if it is zero, the document is
removed. If not, the counter is decreased by one and placed at the start of the LRU list. This is

8 Least Recently Used - Minimal
9 Least Frequently Used - Dynamic Aging

Osaka
Highlight

done until there is enough space for placing the new document. Also, in order to prevent documents
from having a large hit count, the authors proposed that the maximum hit count is five.

This scheme is simple to implement, even if it does not take into account the size of the document
that is removed, and the fact that a large document may be a better option for removal than a lot
of smaller documents.

Function based strategies
GD-Size

The GD-Size!?[9] strategy is a function based strategy where each document in cache contains a
value calculated using:
&
Ki=—+1L
K3 S,L
Where C; is the cost of retrieving the document from the server hosting it, .S; is the size of
the document and L is an aging factor, and is initially zero. When the values are recalculated the
value of L is the minimum value of K; for all the documents.
Then the objects with the lowest k; value are removed, until there is enough space to store the
new document in cache.

GDSF

The GDSF!![6] strategy is a function based strategy where each document in cache contains a
value calculated using the following formulas:

In that F; is the frequency count (ie. the number of hits that the document had), C; is the cost
of retrieving the document from the server hosting it, .S; is the size of the document and L is an
aging factor, and is initially zero. When the values are recalculated the value of L is the minimum
value of K; for all the documents.

This strategy is based on the GD-Size strategy, but it adds a frequency count to it, so that
documents that have a high frequency in the past can have some advantage to the documents that
have lower frequency. Then, when there is a need to remove a document, the document with the
lowest value of Kj; is removed.

This strategy, unlike the other two, does not use a specific data structure or some combination of
frequency /recency or recency /size, and therefore can better adapt to a dynamic environment. But
the cost to retrieve a document cannot be determined exactly (due to the fact that a document
may use different paths from the origin server to the cache server) and the estimated value is very
hard to compute, and requires constant adaptation.

10 GreedyDual-Size
11 GreedyDual-Size with Frequency

13

Osaka
Highlight

Osaka
Highlight

o
il
1.

7 — 4
i
gsss

Osaka
Highlight

Osaka
Highlight

2.1.7 Commercial cache servers

In this subsection we describe the available cache server software in respect with the parameters
studied above (table 1), specifically the consistency method they use, the architecture they support,
the page replacement algorithms they support, together with the supported HTTP protocol version
and some other features.

squid

Squid!® is a proxy/cache server that supports HTTP 1.0 client and server, GOPHER and FTP
server connections, it is also available for Unix and Windows, and supports the use of either IPv4
or IPv6 protocol. It supports the use of asynchronous connections for handling client requests, so
that it can support multiple clients in a scalable and efficient way.

In terms of architecture it can be used as a single proxy/cache server or using ICP protocol in a
hybrid distributed architecture, where one can configure if there is a hierarchy or not.

For a cache replacement strategy, Squid can use either a LRU or GDSF strategy, according to
the Squid version and configuration. Since it is a HTTP 1.0 based cache, it uses the consistency
method of the protocol, that is based on validation.

Squid is also able to cache Cookies and use them when validating documents, even if those cookies
are not distributed to the client because of the requirements of HI'TP protocol.

Finally and since Squid can be run as a reverse web cache (ie. an web cache that is on the server
side, and is used to load balance the connections from the server), some of its clients that use it as
a reverse web cache are wikipedia and flickr that use it to serve their multiple clients and to serve
the images (in the case of flickr).

Given that Squid only supports HTTP 1.0, that is one disadvantage of it compared to other
caches. Also since Squid has so many features it is hard for someone, to adapt it for a particular
environment or to change its code, in spite that for the first case, its rich configurations and the
availability of many books about it help to mitigate the problems.

polipo

Polipo!” is a small proxy/cache server that unlike Squid, fully supports HTTP 1.1 clients and
servers, it is available for Unix platforms, and also supports either IPv4 or IPv6 protocol. It also
supports the use of asynchronous connections for handling client requests, just like Squid.

In terms of architecture it is usable as a single and portable proxy/cache server, in the sense that
one user may copy it to several machines and put it to work, without needing to configure it,
although he can do so, if he wishes. For a cache replacement strategy it uses LRU, and also like
Squid, uses the HTTP protocol based validation consistency, except that it always uses HT'TP 1.1.
Finally, since Polipo is able to use the SOCKS protocol, it can be used together with a program

16 http://www.squid-cache.org
'7 http://www.pps. jussieu.fr/~jch/software/polipo

15

Osaka
Highlight

like Tor'® and grant anonymity to its clients on the web. Also since it is much smaller than Squid,
its code can be easily changed by a user that wants to add new features, it can also serve as a
bridge between IPv4 and IPv6 or vice versa.

nginx

Nginx!? is a proxy/cache server with reverse capabilities that supports HTTP 1.1 clients and

servers, but also acts as a email server and supports IPv6 and IPv4 and uses a asynchronous
approach to handle requests.

In terms of architecture, is it usable as a single proxy/cache server, and uses LRU for cache
replacement strategy, and the HTTP protocol based validation consistency, but it is also capable
of running CGI scripts, and therefore act as a web server that generates content, and by using
that is also capable of serving dynamic content, unlike the other two options above. It is also able
to use filters to transform the documents it serves, for purposes such as document compression,
dynamic range requests, image transformation and XSLT transformations.

It also supports the use of SSL and HTTPS in connections in order to securely connect to clients
and servers, fast reconfiguration without the need to stop the server, the use of a rewrite module
in a similar way that one does in a web server like apache.

2.2 Wiki Systems

In this subsection, we describe some categories that are used to classify the relevant aspects of a
wiki and to classify the types of editors in a wiki, and also some of the architectures used by wikis.

2.2.1 Classifying wikis
There are mainly four types of wikis:

Enterprize wikis That are used within an enterprize[29] and are subdivided in:
project or group wikis That are used to maintain information relevant to a group or project,
like project documentation or instructions to new group or project members;
single-user wikis That hold information relevant to a person within a enterprize or informa-
tion that the owner wishes to share with others;
enterprize-wide wikis or pedias That hold information about the enterprize as a whole
and are meant as internal encyclopedias.

Educational wikis These wikis[17] are used to share knowledge or information relative to a
course, and are subdivided in:
Course wikis These wikis are created within an educational institution for supporting a given
subject;

18 Tor is a secure network, that routes the packages through several anonymous servers in order to hide its
users identity and prevent them from being localized

!9 http://nginx.org/en

20 nttps://wuw.varnish-cache.org/

16

Osaka
Highlight

Knowledge wikis These wikis are meant for teachers that need to share information and
subject material between them, and may or may not be associated with a education insti-
tution;

Subject wikis These wikis are meant to contain books, materials or exercises about a given
subject?!

Public wikis This wikis are public wikis and can be accessed and/or edited by anyone, and can
be divided in two groups:

General-purpose public wikis These wikis contain information about several issues; 22

Specific-purpose public wikis These wikis are dedicated to one specific purpose or issue. 23

Personal wikis These wikis are meant to replace personal websites.

2.2.2 Classifying wiki users

On the subject of the editor types, there are two main types of wiki editors, the first type is the
occasional editor, that only edits or creates something about what he or she knows, that only
changes one section or small paragraphs at once, and that finds attractive the fact that a page is
easily editable.

The other type of editor is the professional or wiki-savy editor, that knows a wiki inside out, and
that is more interesting in the fact that the content of a wiki is accessible to others, and usually
adopt the behavior of keeping a small page of bookmarked wiki pages that they want to watch for
changes, and when a page is changed they read what was changed and revert the change if they
did not approve it, or correct the new edit, or approve the edition and do nothing [7].

Due to the needs of the professional editors, there is a need for a fast way to tell those editors if
the articles they watch have been changed or not, and where those changes have happen.

2! for example. http://en.wikiversity.org/wiki/Wikiversity:Main_Page
22 for example http://en.wikipedia.org/wiki/Main_Page
23 for example the wikis in http://www.wikia.com/Wikia

17

Osaka
Highlight

24 A JXTA pipe is a way that JXTA has to connect specific peers together so that they share some data
25 A JXTA advertisement is a way to tell peers about resources and network services available

18

Osaka
Highlight

Read/Update Control Search
Requests Requests Requests

Centralized

Special User i
Pages | |Management |:

User/IP
Blocking
Control

Database
(Control)

'i:

—_
Ne

Osaka
Highlight

In this section we discuss some features based on implicit evidence collected from the user by
indirectly observing his or her behavior when browsing a certain website, meaning that the user
website contains functions that collect information about what the user does, when he is browsing
and processes that information, in order to collect the features for a certain website block[12]. 27
So in the paper by [23], these features are classified according to two different axis, the scope (or to
what they apply) and the behavior category; the first axis (scope) is divided into Segment (some
part of the webpage), Object (the webpage) and Class. The second axis is divided into:

Examine That is the observation of some element;

Retain That is the storage of some element, like printing some text or bookmarking a page[36];
Reference That is the quotation or reference of some element in other webpage;

Annotate That is the act of commenting or classify some element;

Create That is the creation of a bookmark or a wiki entry;

So in the following paragraphs we examine the most used features, and categorize them.

Examine
The paper by Kellar and Watters[22] points the following features:

— Usage of the bookmarks, back button of the browser;
— Usage of select, copy, cut and paste browser functions;

[V

5 see for example http://www.wikia.com/Wikia that allows users to create wikis about their favorite

themes
27 See for example the Curious Browser

20

Osaka
Highlight

Osaka
Highlight

— Usage pages in history and the usage of certain toolbars like the ones from google or yahoo,
as a way of collecting information about whether the user liked of one page as a whole or not
and if that page was important to the task he was doing.

In the paper by Shapira [36] additional features are described, specifically:

— The relation of mouse movement and the reading time;

The relation of scrolling and reading time;

— The reading time normalized by the page size;

The number of links visited on a page (also refereed in the paper above);

— The number of links visited relative to the number of existing links on the page;

Whether or not the user performed some actions, like selecting or copy text or images on the

page.

Annotate

As an example of feature belonging to the annotate there is the paper by Golovchinsky et al.[18],
where it is used the annotation of documents using a pen and/or a tablet in order to extract certain
features, specifically:

— The circle of a word or paragraph;

The underline of certain phases;

— The creation of sidenote marks along the text;
— Comments made to the text;

The authors brake the text into words, and consider that the more two different words were
underlined the more weight, that word should have. The authors conclude that these annotations
were more conclusive proof to the usefulness of a certain block, than the other traditional features.

2.3.2 Machine learning strategies

In order to given a set of significant feature find if a certain page block is interesting to a user
or not, we have identified three machine learning strategies, commonly used in this problem by
the work in the existing literature[43] that are Support Vector Machine[14], C4.4[30] and Naive
Bayes[42]. Tt is shown in that paper that C4.4 has the highest precision but it has the tendency for
over-fitting, while Naive Bayes has the worst performance due to the fact that most of the features
used in the user preference extraction are somehow dependent from each other.

[\]
—_

Osaka
Highlight

Osaka
Highlight

........................

,,,,,,,,,,,

3 Architecture

After discussing some of the related work, we are going to define the architecture of the proposed
solution and the relevant algorithms.

We are going to use a centralized architecture for our web cache server, in order to comply with
the requirements discussed above of fast accessability.

In the wiki we are going to use an centralized architecture as the wiki architecture, and in the user
interests component we are going to use an wiki specific page breaking algorithm and C4.5 to join
the user collected features.

22

Osaka
Highlight

Osaka
Highlight

g]
[N}

Osaka
Highlight

8 see the description of squid above

2

24

Osaka
Highlight

cmp server_cache /

«executionEnvironments
Jawa Runtime

Web Cache Server

Client Connector

Connection Port

Server Connector

- _=
wusex RN é___‘-"«_usen
A Request Distributer
Cache Configuration
Manager
7 N S
& ausen -~
s cuses : wuser
SFEEEL HTTP Cache Processing Plugins
Consistency Consistency
= T
wuses cuses
> |
N
che Replacement f&£= — ——=—— Objects Mana
Module Manager RSN
=
wuses P
14 3
Memory Cache Disk Cache
Manager Manager

[\
t

Osaka
Highlight

cmp client_cache /

«devices
Client Browser

Client Side Plugin

Plugin Main [—==—= Request Listenar
Component wuses
1 -
~
wuses ~
i LT
~
Y Plugin Controllers 3
cusen - =7 [«uses
Plugin Views
e
wuses

Plugin Store

39 Model View Presenter

Osaka
Highlight

o

nteraction

g g

User Browser Web Server

1 18 13

| Ly T
zexecutionEnvironments 12
Java Runfime
) Y T
\ server_cache:Web Cache Server
1 LY Y
T L] \
server_cache:Connection Fort
server_cache:Client . by server_cache:Server
Connector 17 1 Connector
2 ~
dl L server_caone: | 14
SEEEl Request Distributer
Cache Configuration
Manager
3 115 16a[10
d | g
server_cache:VFC server_cache: server_cache::
Gache Consistency HTTP Cache Processing Plugins
h
4 \ 16b 9
A
B . Cachac server_cache:Cavhed |
Cache Replacement Omsds Manager \

Module Manager 5 8
A

I e

server_cache: server_cache:Disk
Memory Cache Cache Manager
Manager

(from server_cache)

Osaka
Highlight

cmp client_server_interaction

ll

User Browser

Web Server

«executionEnvironments

Java Runtime

|t
et

server_cache:Web Cache Server

A

server_cache:Client
Connector 5

server_cache:

server_cache::Server
Connector

server_cache::
Cache Configuration
Manager 3

server_cache:
* Request Distributer

‘/

server_cache:VFC
Cache Consistency

l

server_cache
HTTP Cache

server_cache.
Processing Plugins

server_cache::
Cache Replacement
Module Manager

server_cache:Cached
Objects Manager

server_cache:
Memory Cache
Manager

server_cache:Disk
Cache Manager

(from server_cache)

28

Osaka
Highlight

cmp client_server_interaction

User Browser

ll

g

Web Server

[t

cexecutionEnvironments
Java Runtime

server_cache:Web Cache Server

| —
==
L

server_cache:Client
Connector

-~

N\
» LY
R i3

| e r_cache::Server
Connector

nection Port

£

l

server_cache::
Cache Configuration
Manager

H

server_cache::

T d
Request Distributer 4
x

10

‘/

server_cache:VFC
Cache Consistency

l

server_cache
HTTP Cache

server_cache:
Processing Plugins

server_cache::
Cache Replacement
Wodule Manager

4

16a 9

|
server_cache:Cached
‘Objects Ma
PESTal

TSN

server_cache:
Memory Cache
Manager

\ g

server_cache:Disk
Cache Manager

{from server_cache)

29

Osaka
Highlight

w
o
<
=
Q
z
Z.

=
@)
)l
@)

4 Solution Assessment

As for a comparative evaluation we will use a qualitative, a quantitative, and a comparative eval-
uation of our cache and wiki architecture. In particular we will evaluate our cache replacement
algorithm, and try to perform an evaluation of user satisfaction related to the identified important
blocks.

In the qualitative evaluation we will evaluate:

— The correctness of the cache behavior, in particular if our cache presents the correct page
without unexpected errors;

— Whether or not our cache is able to fail gracefully if there are expected errors, in particular if
the connection to a web server is broken during the transmission of data;

— The correctness of the VFC protocol application, in particular the correct generation of con-
sistency zones around all pivots and under all identified cases;

— The correctness of the VFC consistency zone enforcement, in particular if pages are assigned
to the correct consistency zone and updated accordingly;

— The correctness in absence of the browser plugin, in particular, if the cache is able to fallback
to standard HTTP protocol consistency;

We will also try to evaluate the behavior of our cache in a distributed environment.
In the Quantitative evaluation we will try to evaluate:

— Compared to a solution without caching:
e The network usage, to determine if our cache is able to reduce the load between the clients
and web servers, specially if there are lots of clients (ISP scenario);

30

Osaka
Highlight

e The time it takes for a request to be satisfied, and if the VFC usage effectively gives similar
results to a solution without caching;

e The correctness of the response, if our cache server ir always able to produce the same (or
acceptable) response as a browser would do alone.

— Compared to other caches:

e The number of hit-rates, to see if our solution has a better hit-rate ratio than other cache
server, also taking into account user s interests and respective weighting;

e The number of miss-rates, particularly if not only the number of miss-rates is reduced but
also if the hit-rate is inversely proportional to the miss-rate (which gives that most requests
are correctly served from cache), also taking into account user’s interests and respective
weighting;

e The network usage, in particular if our solution wastes less bandwidth than other cache
servers;

e The time it takes for a request to be satisfied, and if the time is lower than the average of
the other cache servers;

e The used disk space, to check if our solution requires less disk space than others;

e The memory usage, the same with the memory.

— Individually using various workloads:
e The used disk space, to check if the disk space usage is always low, without abnormal
workloads;
e The number of miss-rates;
e The number of hit-rates;
e The memory usage;

In the cache replacement strategy evaluation we will measure against other cache replacement
algorithms (eg. LRU, PSS and LRU*):

— The hit-rate, to check if our solution provides a better hit-rate;

— The miss-rate;

— The used cache space, to check if our solution wastes less disk space;

The time used in cache replacement, to see if our solution requires less overhead and therefore
is able to provide more speed to transfers;

We will also try to measure savings in space, bandwidth and time from obeying to VFC criteria
defined by the clients.

In order to identify the user satisfaction and block division algorithms related to the identified
important blocks, we will try to do tests with users, and record the feature vector for each site
they visit and their classification and comments about the identified important blocks and the
identified blocks in order to check if the penalty values are always low or nonexisting.

5 Conclusion

We now conclude this report by summarizing what was done and presenting the final conclusions.
So, in this report we discussed some web cache and wiki engine architectures and explored some
advantages and disadvantages of each.

After that we analyzed in detail the consistency protocols used in web caches; the various types
of page replacement strategies and their advantages and disadvantages, including the analysis of
some of the most used page replacement algorithms and ended with the analysis of some existing
cache servers.

For the wiki systems we analyzed the types of existing wikis and the user types more common in
public wikis.

After that we analyzed the existing algorithms to divide a web page into blocks, which features
are most commonly used to extract implicit user information and techniques used to gather all the
information collected from the user in order to determine which blocks of a page he enjoys most.

31

References

N

10.

11.
12.

13.
14.

15.
16.

17.

18.

19.
20.

21.

22.
23.
24.
25.

26.
27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.
. Luis Veiga, André Negrao, Nuno Santos, and Paulo Ferreira. Unifying divergence bounding and locality awareness in

40.

Web protocols and practice: HTTP/1.1, Networking protocols, caching, and traffic measurement. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

Ghaleb Abdulla. Analysis and modeling of world wide web traffic. PhD thesis, 1998. AAI9953804.

Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Edward A. Fox, and Stephen Williams. Removal policies in
network caches for world-wide web documents. SIGCOMM Comput. Commun. Rev., 26(4):293-305, August 1996.
Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Stephen Williams, and Edward A. Fox. Caching proxies:
Limitations and potentials. Technical report, Blacksburg, VA, USA, 1995.

Charu Aggarwal, Joel L. Wolf, and Philip S. Yu. Caching on the world wide web. IEEE Trans. on Knowl. and Data
Eng., 11:94-107, January 1999.

Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich Friedrich, and Tai Jin. Evaluating content management tech-
niques for web proxy caches. ACM SIGMETRICS Performance Evaluation Review, 27(4):3-11, March 2000.

Susan L. Bryant, Andrea Forte, and Amy Bruckman. Becoming wikipedian: transformation of participation in a collab-
orative online encyclopedia. In Proceedings of the 2005 international ACM SIGGROUP conference on Supporting
group work, GROUP ’05, pages 1-10, New York, NY, USA, 2005. ACM.

LY Cao and M.T. Oezsu. Evaluation of strong consistency web caching techniques. World Wide Web, 5(2):95-123,
2002.

Pei Cao and Sandy Irani. Cost-aware www proxy caching algorithms. In Proceedings of the USENIX Symposium
on Internet Technologies and Systems on USENIX Symposium on Internet Technologies and Systems, USITS’97,
pages 18-18, Berkeley, CA, USA, 1997. USENIX Association.

Vincent Cate. Alex-a global filesystem. In Proceedings of the 1992 USENIX File System Workshop, number 7330,
pages 1-12. Citeseer, 1992.

C Chang and AJ McGregor. The LRU* WWW proxy cache document replacement algorithm. 1999.

Mark Claypool, Phong Le, Makoto Wased, and David Brown. Implicit interest indicators. In Proceedings of the 6th
international conference on Intelligent user interfaces, IUI '01, pages 33-40, New York, NY, USA, 2001. ACM.
Jake Cobb and Hala ElAarag. Web proxy cache replacement scheme based on back-propagation neural network. J.
Syst. Softw., 81(9):1539-1558, September 2008.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20:273-297, 1995.
10.1007/BF00994018.

Brian D. Davison. A web caching primer. IEEE Internet Computing, 5(4):38-45, July 2001.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. RFC 2616: Hypertext transfer
protocolHTTP /1.1, June 1999. Status: Standards Track, 1(11):1829-1841, 1999.

Andrea Forte and Amy Bruckman. Constructing text:: Wiki as a toolkit for (collaborative?) learning. In Proceedings
of the 2007 international symposium on Wikis, WikiSym ’07, pages 31-42, New York, NY, USA, 2007. ACM.

Gene Golovchinsky, Morgan N. Price, and Bill N. Schilit. From reading to retrieval: freeform ink annotations as
queries. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’99, pages 19-25, New York, NY, USA, 1999. ACM.

C. Gray and D. Cheriton. Leases: an efficient fault-tolerant mechanism for distributed file cache consistency. SIGOPS
Oper. Syst. Rev., 23:202-210, November 1989.

Saied Hosseini-Khayat. Investigation of generalized caching. PhD thesis, St. Louis, MO, USA, 1998. UMI Order No.
GAX98-07761.

John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan, Robert N. Sidebotham,
and Michael J. West. Scale and performance in a distributed file system. ACM Transactions on Computer Systems,
6:51-81, February 1988.

Melanie Kellar and Carolyn Watters. Using web browser interactions to predict task. In Proceedings of the 15th
international conference on World Wide Web, pages 843—844, Edinburgh, Scotland, 2006. ACM.

Diane Kelly and Jaime Teevan. Implicit feedback for inferring user preference: a bibliography. In ACM SIGIR Forum,
volume 37, pages 18-28. ACM, 2003.

Byoung-Hoon Lee, Sung-Hwa Lim, Jai-Hoon Kim, and Geoffrey C. Fox. Lease-based consistency schemes in the web
environment. Future Generation Computer Systems, 25(1):8 — 19, 2009.

E.P. Markatos and C.E. Chronaki. A top-10 approach to prefetching on the web. In Proceedings of INET, volume 98,
pages 276-290, 1998.

J.C. Mogul. Clarifying the fundamentals of HT'TP. Software: Practice and Ezperience, 34(2):103-134, 2004.

J.C. Morris. DistriWiki:: a distributed peer-to-peer wiki network. In Proceedings of the 2007 international symposium
on Wikis, pages 69—74. ACM, 2007.

Stefan Podlipnig and L. Boszormenyi. A survey of web cache replacement strategies. ACM Computing Surveys
(CSUR), 35(4):374-398, 2003.

Erika Shehan Poole and Jonathan Grudin. A taxonomy of wiki genres in enterprise settings. In Proceedings of the 6th
International Symposium on Wikis and Open Collaboration, WikiSym 10, pages 14:1-14:4, New York, NY, USA,
2010. ACM.

Foster Provost and Pedro Domingos. Tree induction for probability-based ranking. Machine Learning, 52:199-215,
2003. 10.1023/A:1024099825458.

Feng Qian, Kee Shen Quah, Junxian Huang, Jeffrey Erman, Alexandre Gerber, Zhuoqing Mao, Subhabrata Sen, and
Oliver Spatscheck. Web caching on smartphones: ideal vs. reality. In Proceedings of the 10th international conference
on Mobile systems, applications, and services, MobiSys ’12, pages 127-140, New York, NY, USA, 2012. ACM.
Michael Rabinovich and Oliver Spatschek. Web caching and replication. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002.

P. Rodriguez, C. Spanner, and E.W. Biersack. Analysis of web caching architectures: hierarchical and distributed
caching. Networking, IEEE/ACM Transactions on, 9(4):404-418, 2001.

Sam Romano and Hala ElAarag. A quantitative study of recency and frequency based web cache replacement strategies.
In Proceedings of the 11th communications and networking simulation symposium, CNS 08, pages 70-78, New York,
NY, USA, 2008. ACM.

Nuno Santos, L. Veiga, and Paulo Ferreira. Vector-field consistency for ad-hoc gaming. Middleware 2007, pages
80-100, 2007.

Bracha Shapira, Meirav Taieb-Maimon, and Anny Moskowitz. Study of the usefulness of known and new implicit
indicators and their optimal combination for accurate inference of users interests. Proceedings of the 2006 ACM
symposium on Applied computing - SAC ’06, page 1118, 2006.

Guido Urdaneta, Guillaume Pierre, and Maarten Van Steen. A Decentralized Wiki Engine for Collaborative Wikipedia
Hosting, page 156163. Citeseer, 2007.

V Valloppillil and K W Ross. Cache array routing protocol v1.1. 1, 1998.

replicated systems with vector-field consistency. Journal of Internet Services and Applications, 1(2):1-21, August
2010.

Jia Wang. A survey of web caching schemes for the internet. ACM SIGCOMM Computer Communication Review,
29:36—46, October 1999.

32

41.

42.

43.

44.

46.

D Wessels and K Claffy. Application of internet cache protocol (icp), version 2. RFC Editor United States, (2187),
1997.

Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques, Second Edition
(Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2005.

Xin Yang, Peifeng Xiang, and Yuanchun Shi. Finding user’s interest blocks using significant implicit evidence for web
browsing on small screen devices. World Wide Web, 12:213-234, June 2009.

J. Yin, L. Alvisi, M. Dahlin, and C. Lin. Using leases to support server-driven consistency in large-scale systems. In
Distributed Computing Systems, 1998. Proceedings. 18th International Conference on, pages 285—294. IEEE, may
1998.

. Haobo Yu, Lee Breslau, and Scott Shenker. A scalable web cache consistency architecture. SIGCOMM Comput.

Commun. Rewv., 29:163-174, August 1999.

Junbiao Zhang, Rauf Izmailov, Daniel Reininger, Maximilian Ott, and Nec U. S. A. Web caching framework: Analytical
models and beyond. In Proceedings of the 1999 IEEE Workshop on Internet Applications, WIAPP 99, pages 132—,
Washington, DC, USA, 1999. IEEE Computer Society.

33

