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Abstract. Distributed peer-to-peer architectures have long since come to existence, and
are motivated by the ultimate goal of pooling together large sets of resources, making their
availability widespread to users and deployed applications. As such, resource discovery be-
comes paramount and subject to considerable focus by researching entities. Hence, two of
the most common types of resource sharing systems are Grid and P2P, having evolved from
two different communities. Also, study in face recognition has been done for over two decades
now, and in the light of the hereby presented work, systems which perform these tasks can
make great use of the aforementioned resource discovery and content sharing architectures.
In this paper we intend to further their relationship, aiming for an architecture designed for
face recognition in videos, which comprises of a peer-to-peer cycle-sharing system.
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1 Introduction

Distributed computer peer-to-peer architectures are designed for computer resource sharing, while
ultimately preserving the need for decentralisation, promoting direct exchange between participat-
ing peers, without the need for intermediation or support of a centralised authority. While pure
content sharing accounts for most of peer-to-peer network overlay usage, resource discovery is also a
key issue for many other applications, most of which - such as in Grids - are of scientific orientation.

One such application is facial recognition, which by itself and at a large scale, can make great
use of cycle sharing. The process of analysing a video undertakes many stages, such as processing
the various images within frames, tagging and analysing these images, identifying human faces
across various poses, illumination and different attires worn, and ultimately recognising specific
individuals. All of this is a potential heavy computational effort.

While there is a lot of work done in related subjects, there is none (as far as we know) accomplished
for the specific goal of face recognition over widespread free peer-to-peer network overlays in Grid
environments. As such, and while this comes as an added difficulty, it presents itself as an exciting
and novel challenge to overcome. We hence intend to develop our solution, of a facial indexing and
recognition video processing distributed system, within the Ginger Project: a peer-to-peer grid
infrastructure that overcomes the existing barriers for widespread utilisation of Grids, allowing
cooperative work among users.

The rest of document is organised as follows: we start by stating what we plan to achieve with our
work in the Objectives section (at 2), to then make a study of the related work in the State of the
Art section (at 3), moving on to the design and assessment of the architecture of our solution (at
4 and 5). We finalise the paper with concluding remarks on our work, at the Conclusions section
(at 6).

2 Objectives

Our goal is to design an architecture for a peer-to-peer architecture which, while working in a Grid
environment, allows for a set of determinate goals to be achieved. These are the storage, process-
ing, indexing and efficient search of content and metadata relative to the detection and subsequent
identification of human faces in video files.
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As such, we intend to implement a peer-to-peer cycle-sharing system, that processes and indexes
stored videos in the aforementioned architecture, thus making use of idle CPU cycles and free
storage space on the nodes which belong to the resulting network. The architecture itself, is to
be layered in a way which allows it to overcome the difficulties of processing the large amounts of
resulting data, from the processing of videos to their iterative analysis.

In order to achieve the said goals, a thorough study of related work done is necessary, so as
to better understand both the technical and theoretical requirements of our work. We thus focus
on three main subjects: peer-to-peer, cycle sharing, and face recognition. Finally, after having re-
vised these and developed the architecture for our solution, its evaluation shall consist of a set
of qualitative, quantitative and comparative assessment criteria, which we believe to be adequate
performance measures for our work.

3 State of the Art

In this section we present the three major research topics investigated, which we believe to be
representative of the substrate of our work. As such, they are hereby presented, and they consist
on: Peer to Peer (see 3.1), Cycle Sharing (see 3.2) and finally, Facial Recognition (see 3.3).

The two former sections (Peer to Peer and Cycle Sharing) consist on the initial groundwork
on which the latter section (Facial Recognition) functions, and the understanding of this will
become clear when the architecture of the solution is explained (see 4 for further details).

3.1 Peer to Peer

Almost two decades have passed since the birth of the Internet to the public eye, and about ten
years ago a great spurt of growth was witnessed in the field of peer-to-peer (P2P) networks.
First, with the introduction of Napster in 1999 which brought upon a great change of focus [1]:
from HTML pages to file-sharing (as seen at the time in [2]). And this trend has hardly changed,
as far as its general direction is concerned, with P2P taking up a large portion of the interest of
users, of the bandwidth in most networks, and naturally, of the amount of information circulating
in the Internet.

The interest in using peer-to-peer solutions and of basing applications on them, is founded on
their ability to function, scale and self-organise in the presence of a highly transient population of
nodes, network, and computer failures, without the need of a central server and the overhead of its
administration (as seen in [3]). Naturally, the issues of scalability, resource distribution and of
resistance to censorship are of great appeal, and are some of the advantages that peer-to-peer
systems offer. Additionally, the users are the ones who make up these systems, as there is (gener-
ally) no centralised notion of ownership [3].

Summing up, peer-to-peer systems accelerate communications amidst their users, while do-
ing so at very low costs (and at very shaky legal parameters in many cases), enhancing overall
collaboration, having revolutionised both the usage of the Internet and its users. We first now
present our definition of "peer-to-peer" (in the next section, see 3.1.1), to then study unstructured
systems (at 3.1.2 and focusing on structured systems afterwards at 3.1.3). The section is concluded
with a reference to hybrid systems 3.1.4 and with a correlation of this section with our work (at
3.1.5).

3.1.1 Defining Peer-to-Peer

Ever since its existence, the definition of peer-to-peer has been subject of great debate, and there
is significant literature studying this, despite its roots reveal that at its core, these systems are
about completely distributed systems, where all participants are equivalent as far as their respon-
sibilities go.
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Most past definitions are, therefore, either "pure" or "impure". The former refers to systems
where there is absolutely no control (centralised or not) from a higher-up node or subset of nodes.
The latter contradict the former proposition, and circumscribe systems with "supernodes" (like
Kazaa), that are also widely accepted as peer-to-peer, or systems which rely on some centralised
server infrastructure for a subset of noncore tasks [3].

And so, notwithstanding the diversity of definitions encompassing the subject, we consider - in
accordance to [3] - that what is labelled as peer-to-peer should be so based on how these systems
are perceived "externally": how the nodes perceive the system based on the impression of providing
direct interaction between computers.

In the following three subtopics we shall hence cover the topic of understanding P2P systems,
the caveats behind defining it and what they truly encompass in the context of our work.

3.1.1.1 What is Peer-to-Peer

When attempting to define peer-to-peer systems, certain specific characteristics should be em-
phasised, so as to have a clear understanding of where the bedrock of our definition settles itself
in. Hereinafter, we present three main traits of these systems.

Resource Sharing

Every P2P system should make use of resource sharing by direct exchange between the partic-
ipant nodes, rather than making use of any sort of centralised control. Nevertheless, whilst these
may perform certain noncore tasks (like the addition of new nodes to the network), we consider
that the nodes should not rely on a central server coordinating the exchange of content and the
operation of the entire network [3], but will in fact perform resource sharing while depending
solely on themselves.

Node Equality

As can be drawn from what was previously said, the nodes will in fact be unilaterally, independently,
personally responsible participants that perform every task involved in whatever their activity be
in the network - even if they are not capable of acting accordingly, due to such issues as availability.
To boot, they thus perform the following independently: search and cache content, for other nodes,
connect and disconnect from neighbouring nodes, encrypt and decrypt, introduce and remove
content, among other activities. Thusly achieving the notion of node equality.

Self-Stabilisation

Finally, nodes in peer-to-peer systems should have the ability to treat instability and variable con-
nectivity as the norm, automatically adapting to failures in both network connections and computers
[3], transiently shifting freely through different populations of nodes, as they conform automatically
to different conditions.

3.1.1.2 Classifying Peer-to-Peer

With the fundamental characteristics of P2P systems understood, we now present our definition
of these systems: Peer-to-peer systems encompass a class of systems that make use of resources
in a distributed fashion, where their nodes are self-organisable in fault-tolerant and self-organising
network topologies which promote their participants equality, accommodating the connectivity and
performance of a transient population of nodes.

Furthermore, as seen in [3], we feel like a proper classification of the current peer-to-peer in-
frastructures will aid the understanding of the correlation of this section of the document with our
work (as seen in 3.1.5 below).

In an introductory fashion (since the following mentioned infrastructures shall be covered
ahead), a brief description of the routing and location infrastructures presented is now given.
Chord is a scalable peer-to-peer lookup service which given a key, it maps it to a specific node;
CAN works as a scalable content addressable network, providing hash-table functionality for the
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Table 1. Classification of Peer-to-Peer Infrastructures

Infrastructures for routing and location References
Chord Stoica,l. et al. [4]
CAN Ratnasamy, S. et al. [5]
Pastry Rowstron, A. et al.[6]
Tapestry Zhao, B. et al. [7]
Infrastructure for anonymity Reference
Tarzan Freedman, M.J. [§]
Infrastructure for reputation management Reference
PeerTrust Xiong, L. et al. [9]

mapping of file names to their locations; Pastry and Tapestry are fault-tolerant wide-area loca-
tion and routing infrastructures.

As for the anonymity infrastructures, Tarzan is a peer-to-peer decentralised anonymous net-
work layer; and as for the reputation management infrastructures, PeerTrust is a decen-
tralised, feedback-based reputation management system that uses satisfaction metrics and the
number of interaction metrics. We shall concern ourselves merely with the four firstly mentioned
architectures: Chord [4], CAN [5], Pastry [6] and Tapestry [7].

Now, at this point one might think of including Grid technologies in this discussion, but we feel
like a small contrast must be settled first, since these are disparate enough to be settled in their
own niche of definitions. So, we tackle the issue of P2P versus Grids later on in the Cycle-Sharing
section (see 3.2). As such, we now move forward into introducing structured, unstructured and
hybrid systems of peer-to-peer architectures, as these are paramount to the architecture of our
solution (in 4).

3.1.2 Unstructured Systems

There are millions of users using peer-to-peer systems, making use of massive data-sharing and
content distribution, and it has been stated, the applications that make it possible are built upon
network overlays that provide mechanisms to discover data stored by overlay nodes [10]. As such,
there are two major types of overlays: structured and unstructured.

In the unstructured overlays, the placement of content is completely unrelated to the over-
lay topology, so it needs to be searched for with searching mechanisms which have many different
approaches. These range from brute force methods such as network floods, to more sophisticated
strategies that include the use of random walks and routing indices, and have a determinant impact
on these networks, namely on what concerns availability, scalability and persistence. Examples of
such systems include Napster, Gnutella, Kazaa, FreeHaven, among others.

We now explain three main categories of unstructured architectures, specifying to what ex-
tent the network overlays are decentralised, despite the fact that peer-to-peer networks should
be completely decentralised (which is far from being true, since there are various degrees of cen-
tralisation which can be encountered [3]).

Purely Decentralised Architectures

Purely decentralised architectures such as the Gnutella network are built upon virtual overlay
networks with their own routing mechanisms, that allow users to share files with other peers. Since
there is no central coordination of the activities in the network, users connect with each other
directly through software applications, functioning as servers and clients: servents [3]. We focus
the next two subtopics with the Gnutella example, as it is representative of how these systems
function.

Resource Organisation
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Naturally, resource organisation in these networks is generally dependent of the participant nodes,
which hold the files independently. Therefore, there is no particular form of organising where
content is distributed.

Data Discovery

Locating files is done by nondeterministic searches; in the (original) Gnutella architecture a flood-
ing/broadcast mechanism distributes messages to nodes, that forward the received messages to
their neighbours, and the answers along the opposite path through the original path from where
the request came from. Just so these messages do not overflow the network, they have a fixed TTL
(time-to-live) value that makes them drop if ever with that field at zero.

Partially Centralised Architectures

Finally, some architectures are only partially centralised. In these, similar functionality to the one
in hybrid systems can be found, but they use supernodes. These nodes are assigned dynamically
with the task of servicing subsets of the peer network, indexing and caching files contained therein.
An example of such a network is Kazaa, a well-known proprietary file-sharing system.

Resource Organisation

The partially centralised systems organise their content in accordance to the dynamic assignment of
supernodes, that have several connections with other superpeers, forming an unstructured network
of superpeers. Ergo, the contents are organised amongst these, which receive requests for files from
regular client nodes.

Data Discovery

The supernodes are the ones who index the files shared by peers connected to them in these archi-
tectures, and proxy search requests on behalf of these nodes, thus all queries being initially directed
to the supernodes. Since they index subsets of the overall content, discovery time is quite reduced
in these systems, with there being no single point of failure, since the assignment of supernodes is
dynamic.

It should be pointed out that there are other methods for overcoming the basic unscalability
of unstructured peer-to-peer architectures, we give such examples hereafter.

1. Random Walks
In these, each peer chooses a random neighbour, and propagates its requests to it only. In
Gnutella 0.4 [10], each node in the overlay maintains a neighbour table with the network ad-
dresses of its neighbours in the graph, with these neighbour tables being symmetric amongst
the peers.

2. Sophisticated Broadcast Policies
These (as seen in the work by Yang et al. in [11]) select which neighbours to forward search
queries to, based on past recorded history and on the use of local indices, which maintain in-
dexes of the data stored at the nodes within a specific radius from itself.

3. Intelligent Search Mechanisms
There are some approaches like these, and in one such method (by Kalogeraki et al. in [12])
each peer forwards queries to a subset of its neighbouring peers, with the selection being based
on peer profiling (specifically, on their performance), thus creating a ranking system that allows
for the choosing of the most appropriate peers.

4. Routing Indices
The routing indices are tables of information about other nodes, stored within each node [3],
that provide a list of neighbours which are more likely to be route-friendly for message-carrying
given their content. With the information about the files being held by these neighbouring
nodes, this solution (suggested in the work of Crespo et al. in [13]) results in a great upheaval
of performance as far as scalability and searching goes.
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Hybrid Decentralised Architectures

In these, each client computer stores content shared with the rest of the network, and all clients
connect to a central directory server. A typical example of such a network is Napster: which relies
on static system-wide lists of servers. A quick and obvious caveat to these systems is their lack of
scalability.

Resource Organisation

In these systems, the central directory server maintains a table listing the files each user holds
and shares in the network, with the metadata descriptions of these contents. In these systems,
file discovery is rather quick and efficient, although they are very vulnerable to such issues as
censorship, malicious attack, surveillance and technical failure. This is because a single institution
controls the content sharing and discovery.

Data Discovery

The central directory server, besides also holding the aforementioned file table, it also stores a table
of registered user connection information. As such, when a user joins the system, it contacts the
central server that reports the files it maintains: then the user discovers files by requesting them
to the server, that in turn searches for matches in its index, returning a list of users that hold the
matching file.

There are also loosely structured network overlays, since their category is hard to pin down in
any of the other two definitions. In these, the location of content is not completely specified, but
it is affected by routing. One such example is Freenet [14], though we shift the focus of this paper
now, as we move on to analysing structured overlay networks, which are of greater relevance for
the time being.

3.1.3 Structured Systems

In this section we briefly cover the (widely accepted as) four main structured peer-to-peer imple-
mentations, as well as two other implementations: Chord, CAN, Tapestry and Pastry are the
four main structured systems, with Viceroy and Koorde being the other two implementations.
Generally, these systems, in response to scaling problems that unstructured designs usually suffer
from, support a distributed hash table (DHT) functionality [15]. Files are then usually associated
with a key, and each node in the system is responsible for storing a certain range of keys. Habit-
ually common to these systems is the lookup(key) operation, that returns the identity of the
node storing the object with the given key. The relevance of enumerating these is to clarify any
implementation choice settled further in our work.

Chord

In Chord [4], an infrastructure for peer-to-peer routing and location is accomplished, with there
being a mapping of file to node identifiers. In fact, in its core, this protocol supports just one oper-
ation: given a key, its maps the key onto the node [4]. Also, consistent hashing is used to assign
keys to Chord nodes, thusly achieving a balanced load, with nodes receiving an approximately
same number of keys. Chord’s primary keyword achievements are: load balance, decentralisa-
tion, scalability, availability and flexible naming.

Resource Organisation

Chord achieves a very important concept of load balancing, acting as a distributed hash function,
spreading the keys evenly over the nodes [4]. As so, the previously mentioned consistent hashing
function assigns each node and key an m-bit identifier using a base hash function. The node
identifier is chosen by hashing the node’s IP address, with a key identifier being produced by
hashing the resource name. Specifically, identifiers are ordered in an "identifier circle” modulo 2™
[3]. So key k is assigned to the first node whose identifier is equal to or follows k in the identifier
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space: this node shall be called the successor node of key k. In order to maintain the consistent
hashing working properly when a node joins the network, a subset of the keys previously assigned
to its successor now become his own; and when a node leaves the network, all of its assigned keys
become his successor’s.

Data Discovery

As it can be drawn from what was previously stated, data discovery in Chord is made by queries
for a given key being passed around the circle via the successor pointers until node that contains
the key is encountered: typically, since each node maintains information about only O(log N) other
nodes, resolving lookups via O(log N) messages to other nodes [4], discovering content is pretty
straightforward. Albeit, traversing all N nodes might be necessary in the worst case, and this is
why Chord maintains a "finger table", where each entry ¢ points to the successor of node n +
2i. Hence, when a node performs a lookup for a given key, it will consult the finger table, to first
check for a closer node to the required key.

CAN

The Content Addressable Network is essentially a distributed, Internet-scale hash table that
maps file names to their location in the network, by supporting the insertion, lookup and deletion of
(key,value) pairs in the table [3]. The CAN design comprises scalable, fault-tolerant, self-organising
networks [5] that provide robustness and low-latency properties. Each node in these networks holds
a part of the overall information regarding resource organisation - a "zone" - distributing the
responsibilities among these.

Resource Organisation

Through the use of a virtual d-dimensional Cartesian coordinate space, that stores (key
K,value V') pairs, each zone a node is responsible for corresponds to a segment of this coordinate
space. As such, any key K is thusly deterministically mapped onto a point P in the coordinate
space. The (K, V) pair is then stored at the node responsible for the zone within which point P
lies.

Data Discovery

Each individual node in a CAN network stores a "zone" of the hash table, together with
the information about a small number of adjacent zones in the table. So, requests to insert,
lookup, or delete a specific key are routed via intermediate zones to the node that maintains
the zone containing the key. A retrieval of an entry corresponding to a key K by a node, is made by
applying the determinist function that was used to map the corresponding (K, V') pair to retrieve
the corresponding value V from the node covering the point P. The routing of the messages, in
essence, is made by greedy forwarding messages to neighbours with (X-axis, Y-axis) coordinates
closest to the destination coordinates, along a defined coordinate space direction. As such, routing
in CAN works by following a straight line path through the Cartesian space, from a source node
to any given destination coordinate.

Tapestry

Tapestry [7] is based upon a self-organising network topology, where nodes come and go freely,
with the network latency varying as well. It supports the location of objects and the routing of
messages to them (or the closest copy of them, if more than one copy exists) in a distributed,
self-administering, and fault-tolerant manner, offering system-wide stability by bypassing failed
routes and nodes, quickly adjusting communication topologies to circumstances. Furthermore, the
routing/location information is distributed among the nodes.

Resource Organisation



8 Francisco Vasconcelos

Tapestry is based on the Plaxton Mesh [16], a distributed data structure that allows nodes
to locate objects and route messages to them across an arbitrarily-sized overlay network, using
routing maps of small and constant size. While not providing explicit resource organisation, a root
node is used for each object stored, that provides a guaranteed node from which the object can
be located. And nodes, through the process of data discovery come to know of these. Also, storage
servers (also nodes), republish location information for objects they store at regular intervals, with
the possibility of finding copies of objects also imbued in the algorithm.

Data Discovery

Every node in Tapestry maintains a multiple-level neighbour map [7] - with each level [ con-
taining pointers to nodes whose ID must be matched with [ rightmost digits - and messages are
incrementally routed to the destination node digit-by-digit. Details aside, nodes can publish ob-
jects, and when locating an object, they send messages to them, which is routed through the
network topology, finding either the object itself or the nearest replicas of the aforesaid object.

Pastry

Pastry [6] is a scalable distributed object location and routing substrate for wide-area peer-to-
peer applications [6]. Performing application-level routing and object location, it can be used to
support a variety of peer-to-peer applications, such as global data storage, data sharing, group
communication and naming. In this system, every node has a unique identifier, the nodeld, which
is used to pass messages among the nodes along with a key. It comprises a decentralised, scalable,
self-organising architecture.

Resource Organisation

Alike Tapestry, each node keeps track of its immediate neighbours in the nodeld space, notify-
ing applications of new node arrivals, node failures and recoveries. Since these IDs are randomly
assigned, the set of nodes with adjacent nodeld is diverse in geography, ownership, etc. Thus, ap-
plications such as PAST [17] (which is a self-organising, large-scale global storage application) can
leverage this, since Pastry can route to one of k¥ nodes numerically closest to the key. Again, in
PAST, as an example, which is built upon Pastry, file storage is made based on these concepts,
making file storage a more agile process.

Data Discovery

Since each node has a unique identifier, when presented with a message and a numeric key, a node
routes the message to the node with a nodeld that is numerically closest to the key, among all
currently working Pastry nodes. It is expected that the number of routing hops be O(log N), with
N being the number of Pastry nodes in the overlay network. All of this is done while taking into
account network locality, seeking to minimise the distance messages travel according to a scalar
proximity metric like the number of IP routing hops, or the round-trip time.

Having seen the four primary structured approaches, we now scoop out two equally important
systems, that are also worthy of mention. These are Viceroy and Koorde, and are covered here-
after.

Viceroy

Viceroy [18], is designed proposing constant-degree routing networks of logarithmic diameter, re-
quiring no global coordination for the addition or removal of nodes. It ensures that the con-
gestion of the network is generally within a logarithmic factor of the optimum, managing the
distribution of data among a changing set of servers, and allowing clients to contact any server in
the network to find any stored resource by name, employing consistent hashing like the Chord
protocol.



Process, Storage and Video Facial Indexing in P2P Grids 9

In Viceroy, Resource Organisation is made by a varying set of servers (called a configura-
tion). The servers are organised in levels, that indicate a server’s placement in the network [18]. As
a functioning example, we mention a JOIN operation, where a server joins the network. In these,
a server gets into the "server ring" (like Chord), and transfers all the key-value pairs with keys
between the one his predecessor has and himself [18]. Moreover, Data Discovery is accomplished
by the LOOKUP(z,y) subroutine, that starting at server y, find the server closest to the value z.
The way this functions is elaborate, so it suffices to say that it makes use of the distributed hash
functioning along with the level structure used.

Koorde

The Koorde system [19] is also based on Chord, looking up keys by contacting O(log n) nodes
with O(1) state per node. Thus, keys are mapped to nodes, with a node and keys having identifiers
that are uniformly distributed in a 2P identifier space. Keys are stored in node successors, which
are the neighbouring nodes that follow others in the identifier circle.

While Viceroy [18] does not approach issues such as fault tolerance, and it is also relatively
complex, Koorde tries a different approach. Using consistent hashing to map keys to nodes, these
are distributed in a 2P identifier space, with keys being distributed at their successors. Now, the
difference between Koorde and Chord is that the former embeds a de Bruijn graph on the identifier
circle for forwarding lookup requests. This basically makes routing a message from node m to node
k by taking the number m and shifting the bits of £ - since a de Bruijn graph has a node for each
binary number of b bits - one at a time until the number has been replaced by k, with each shift
corresponding to a routing hop to the next intermediate address.

It should be noted that we addressed only the four main implementations of structured networks
(and two other approaches briefly) whilst there are many more - either novel designs or (mostly)
based on any of the structured systems covered - that could be approached. Such examples are
PAST [17] (based on Pastry [6]), Freenet [20], or Free Haven [21]. We now move forward
into understanding how these four main structured peer-to-peer architectures are related to
the nature of our work, after a brief mention to hybrid systems, which are mixtures of both
structured and unstructured systems.

3.1.4 Hybrid Systems

Hybrid systems come to existence in order to compensate for the disadvantages found in both
structured and unstructured designs. These (also called loosely structured in other literature [3])
are characterised as being in between structured and unstructured networks, where the location
of content is not completely specified, but it is affected by routing hints. Many hybrid approaches
have been proposed to overcome these drawbacks [20,22,23]. One such approach is Kademlia [23]:
a peer-to-peer DHT where each peer is ampped to a 160 bit key through the SHA-1 hash function.

The fundamentals behind its functioning go like this: each peer subdivides the space of possi-
ble distances between any keys, defined as their XOR. Also, every node is aware of at least one
other participant, whose distance from its key is between 2¢ and 2 + 1, for 0 <= i < log(N). The
aforementioned ranges are called buckets, and each peer tries to maintain knowledge of k peers in
each bucket - also, each file key is also stored on the k peers closest to its key. Finally, routing is
performed by calculating the XOR of the requesting peer’s key with the lookup key and forwarding
the lookup request to a peer of the appropriate bucket.

3.1.5 Interrelationship with our Work

In this section, we assign which systems are of our interest, as we answer two different questions:
"which peer-to-peer system serves us best: unstructured or structured?" and "out of
the chosen systems, why were these chosen over the rest?".
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1. Unstructured or Structured?

We have already seen that in unstructured peer-to-peer network structures the placement
of content (files) is completely unrelated to the overlay topology [3]; moreover, content typ-
ically needs to be located often through flooding, and these searching mechanisms (also like
brute force) tend to have a detrimental impact on scalability. Additionally, these systems are
more appropriate for accommodating highly-transient node populations. Clearly, none of this
is advantageous for our work, and as such, structured systems are clearly our choice - even
if widely known to not do well under high churn rates, which is not a concern for our work,
since we will not deal with a highly transient population of nodes - since the aforementioned
issues are not a problem in these. As an added value, table 2 (as seen in [24]) shows that while
the robustness of structured systems is in fact lower - due to these not being adequate for
intermittent users that join, depart and rejoin the system unpredictably - the possibility of
periodic update messages and range queries, in addition to the inherent order and data
locality [24] characteristics, make structured systems a more appealing choice, despite their
caveats.

Table 2. Unstructured and Structured P2P systems

Characteristics |[Unstructured|Structured
Scalability (time) O(log n) O(log n)
Scalability (traffic)| N*avg degree | O(log n)
Robustness High Lower
Periodic update No Yes
Range Queries No Yes

2. Why Chord and CAN?
To begin to understand the choice of Chord and CAN as preferable structured systems,
we begin to highlight that performance is not the issue, as we present a comparison of
expected performance measures, as seen in [18], omitting Pastry because of its similarity with
Tapestry. On a sidenote, the n in any of the metric evaluation refer to the number of nodes,
and in CAN’s case, d is a constant that refers to a d-dimensional torus.

Table 3. Performance Comparison of Lookup Schemes

Lookup scheme|Dilation|Congestion|Linkage|Neighbours per node
Chord[4] log n (log n/n) | logn O(log n)
CANJ5] log n (log n/n) | logn O(d)

Tapestry|7] dn(l/d) dn(l/d'l) 0(1) O(long n)

One very important argument supporting Chord is an example of a possible application for which
it would provide a good foundation, as stated in [4]: multi-layered software structures for a coopera-
tive mirror work, with higher layers closer to the users (using file naming, authentication), mapping
lower levels with subsequently simpler (basic) formats of data. Since we envision a multi-layered en-
vironment as well, Chord comes off as particularly appealing, notwithstanding its "blind", simple
load balancing techniques, scattering keys regardless of the resources needed for each document.

So, while Chord may span to a multi-dimensional architecture, why use any other system? All of
these algorithms start by assuming all nodes as having the same capacity to process messages, and
then, only later, add on techniques for coping with heterogeneity. But what about other aspects?
Well, for starters, the most obvious measure of the overhead associated with keeping routing tables
is the number of neighbours [15], and as can be seen, most of the algorithms require O(log
n) neighbours, while CAN requires only O(d) neighbours. Another aspect, as can be taken from
[5,7], is that CAN is prompt by design to structure information in a manner that is useful to our
work, around various parameters; also, its simple and efficient routing is also an appealing feature.
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Having understood the different Peer-to-Peer systems and architectures - and how they cor-
relate themselves with our work - how they function and how they differ, the section on Cycle
Sharing is hence approached, as a lot of our work bases itself upon the sharing of resources as
well.

3.2 Cycle Sharing

Cycle sharing (or resource sharing, it depends on the author, though one could say "cycles"
are a subset of resources that are apportioned between peers), is a process where large sets of
computational resources are pooled together and made available to users and deployable applica-
tions alike. Of course the resources themselves need to be discovered - thusly making themselves
available - if they are to be of any use. This is why resource discovery is of sovereign importance:
systems who make use of it discover resources across multiple administrative domains, based on a
list of predefined attributes, returning lists of locations where the required resources reside.

Some of the most common types of resource sharing systems make use of the Grid and Peer-
to-peer technologies, having evolved from different communities and originally serving different
needs. Grid systems are in fact (in their origin) meant for the sharing of resources (such as CPU
time, storage, data, etc) among interconnected computer clusters (generally for research purposes,
through attribute specification queries like multi-attribute queries). Peer-to-peer systems usually
serve a more diverse multitude of purposes, such as the all-time popular file-sharing (KaZaA), real
time data transfer (Skype), cycle stealing (SETIQHOME), or collaboration (Groove) [24]. In table
4 we can see some basic differences between Grids and Peer-to-peer [24].

Table 4. Differences between Grid and Peer-to-Peer systems

In terms of Grids Peer-to-Peer
Users Scientific community Any desktop user
. kstati 1ti
Computing Workstations, multiprocessors, Any desktop user
computer clusters
Mostly high- d dedicated .
Network oSty Migh-speed deducate Internet TCP connections
networks
Administration |Centralised or hierarchical Distributed
. Complex scientific applications|File sharing, real-time data
Applications . . . .
such as large scale simulations |streaming, cycle stealing
Scale Connect a relatively small Connection is possible
number of specialised sites from any desktop
. Secure services for job .
Security .. . Protocols for file sharing
submission and execution
C . Static or slowly changing Nodes can enter or leave
Participation L. .
participation of nodes tottaly unpredictably
Trust Trusted users Untrusted, anonymous users

So by now we know the different nature of Grids and of Peer-to-peer, how do these two
intertwine constructively? Well, as the scale of Grid systems increases: centralised management will
prove inefficient and other methods will have to be considered; QoS constraints that govern most
Grid applications will loosen up; resource participation rules will have to be lax to accommodate
a more diverse range of user intentions. Also, Peer-to-peer systems will have to accept a more
complex range of QoS levels, applications and more elaborate queries. Now, we already understand
how resource discovery is made on unstructured and structured systems (as seen in the previous
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section at 3.1, under 3.1.2 and 3.1.3 respectively). So, to further understand how these correlate,
we move forward to introducing Grid systems that incorporate P2P resource location methods
(starting with 3.2.1), with an additional mention to resource discovery solely made in Grid systems
(see 3.2.4).

3.2.1 Grid Resource Discovery and Unstructured P2P systems

As we have already stated in 3.1.5 that our choice would befall structured peer-to-peer sys-
tems, our mention on unstructured grid-based resource discovery shall be a short one, with a
brief review of all the possible architectures. As so, these can be Flat Peer-to-Peer networks
[25], Tree-based Overlays [26] and Super-Peer Networks [27]. In the first [25], a fully decen-
tralised architecture for resource discovery in Grid environments is proposed. In this architecture,
every node in a VO (Virtual Organisation) publishes information on one or more local servers
(nodes or peers), that store and provide access to local resource information. It is to these servers
that nodes forward their requests. In the Tree-based Overlays such as in [26], a routing indexes
Grid resource-based searching mechanism is implemented. Here, nodes are organised in a tree-
structured overlay network, where each node maintains information about the set of resources
it manages directly, and a condensed description of the resources present in the sub-trees rooted
in each of its neighbouring nodes [24]. As such, these indexes are explored by the data location
algorithm in order to route queries towards areas where matches can be found.

A special mention goes to the third and final methodology, described in [27]. Originally, in Super-
Peer Networks such as these, the original thought was to achieve a balance between the inherent
efficiency of centralised search, and the autonomy, load balancing and fault-tolerant features offered
by distributed search [24]. As already mentioned in the Peer-to-Peer (3.1) section of the State
of the Art (3) part of our document, super-peer nodes act as centralised servers for a number of
regular peers, whilst these connect to each other to form an overlay network that exploits peer-to-
peer mechanisms at a higher level. According to studies such as [27], this model is advantageously
exploited in the Grid context: viewing a large-scale Grid as a network interconnecting small-scale
subsets of it, where each one is composed by a set of nodes within one administrative domain.
And within each of these subsets, one or more nodes act as super-peers, with the other nodes
using them to access the Grid. This ensures limited network load and reduced response time with
respect to pure-decentralised peer-to-peer systems.

3.2.2 Grid Resource Discovery and Structured Peer-to-Peer systems

Most structured approaches either (generally) adopt one DHT for all attributes [28] or they
adopt one DHT per attribute [29]. While they have both proved effective, multi-DHT approaches
are easier to implement and provide multi-attribute search capabilities in a simpler, more intelligible
manner, while requiring more memory, thus being more expensive in the case of resources with a
high number of attributes [24]. In the next two subsections (3.2.2.1 and 3.2.2.2) we cover these two
methods with an example each ([28,29]).

3.2.2.1 All Attributes in One DHT

In this system, a multi-attribute set of queries uses a single one-dimensional DHT [28]. As stated
in [24], a space filling curve is used, mapping all possible d-dimensional attribute values to a
single dimension. So, each resource with a set of attribute values is mapped to the node whose ID
is generated by interleaving the binary representations of its attribute values. As an example: a
resource with three attributes (1 (01), 2 (10), 3 (11)) shall be stored in a node with an ID 011101.
The only issue with this solution (memory-wise) is that if resources with many attributes need to
be stored, and each attribute has a wide range of possible values, it will require a DHT with IDs
of many bits.

3.2.2.2 One DHT per Attribute

The work done in [29], states that they extended the CAN system to allow range queries for a
Grid information service. All Grid resources are thus described by a set of attributes, and for
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each attribute either a standard DHT or the proposed CAN extension is used, depending on
the type. Succinctly, attributes with a limited number of values are handled by the standard
DHT, while "continuous" types of attributes use the extended CAN system. Locating resources
specified by several attributes implicates that the information infrastructure queries - for each
attribute in the query - the appropriate DHT and then concatenates the results in a database-like
operation. This solution implicates the usage of a subset of servers that act as nodes, who store the
(attribute,resource id) pairs, and each of them are responsible for a certain subset of the attribute
values: these are called the Interval Keepers (IK).

3.2.3 Grid Resource Discovery and Semantic Information

Resource discovery in Grids aims for best approzimate matches usable for the requester. These
would be better achieved by the usage of well-defined semantic information which would be added
to the resource descriptions [30]. Now, even though adding semantic information to resource
descriptions improves the precision of a resource discovery service, it raises a problem of semantic
interoperability [24]: it requires using common ontologies in service descriptions, and the usage of
semantic information for precise resource discovery in large-scale, dynamic and heterogeneous
environments is a new topic under research.

3.2.4 Resource Discovery in Grids

Having seen how resource discovery in Grids interrelates itself with peer-to-peer overlay networks,
other classical approaches to Grid resource discovery (such as the renown work done at SETT@home
[31])- which are typically centralised or hierarchical - are henceforth looked through. Specifically,
we mention to two such approaches: Hawkeye! and MDS [32].

Hawkeye is part of the Condor Project [33]. Condor is a fully operational scheduling system,
meant to maximise the utilisation of workstations, identifying idle workstations and scheduling
background jobs on them. It does this by using a centralised, static coordinator which assigns
background jobs, gathering system information in order to implement a long-term scheduling pol-
icy, thus knowing which jobs are waiting and which are already being executed, and the location
of any idle stations. In order to prevent complete system failure, a distributed approach is also
used, where each workstation keeps state information of its own jobs and has the responsibility of
scheduling them. Hawkeye is designed to automate problem detection (such as high network traf-
fic, or high CPU loads, or failure of resources) and software maintenance in a distributed system.
It works by configuring Condor to periodically execute specified programs, which produce output
in the form of attribute/value pairs (using Condor’s ClassAd to identify resources). Having this,
it can execute jobs based on attribute values of resources, identifying problems: as an example,
if it detected a CPU load greater than fifty on machine X, it would kill an ongoing job such as
Netscape, in order to lower that value.

The Monitoring and Discovery Service (MDS [32]) is an information services architecture that ad-
dresses several requirements - such as performance, security, scalability - used in the Globus Toolkit
[34]. Globus is essentially a system which intends to achieve a vertically integrated treatment of
application, middleware and network, building on metacomputers (which as the authors describe,
are networked virtual supercomputers). So, MDS uses a mechanism for publishing and discovering
resource status and configuration information, and a decentralised hierarchical structure al-
lows it to scale, and for it to handle large numbers of resources, queues, and other types of data.
Basically, three main components compose it: GIIS (Grid Index Information Service), a module
that provides an aggregate directory of lower level data; GRIS (Grid Resource Information Service),
which runs on resources and acts as content gateway for a resource; IPs (Information Providers)
that interface from data collection services and then communicate to a GRIS.

3.2.5 Interrelationship with our Work

As already stated earlier, the correlation to our work is clearly defined on the structured ap-
proaches, where Grid resource-based discovery is held. With this in mind, we refer to the work of

! Hawkeye - http://www.cs.wisc.edu/condor /hawkeye
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Schmidt, C. et al [28], where multi-attribute queries are used using a single one-dimensional DHT.
Given the simplicity, ease of use and the fact that our work will not rely on a multitude of
values large enough for the weakness of this system - too many attributes with too many values - to
prevail, it clearly is the work of most relevance, as far as Grid resource-based searching goes. Also,
the adopted solution for load balancing is to our liking as well, since it includes the exchange of
load between neighbours, which we consider optimal.

3.3 Facial Recognition

Face recognition has been object to great study and focus in the past twenty years, and computer-
based methodologies have had a particularly significant progress over the last decade. Expressly,
such were these advances, that automatic face recognition evolved from research systems to a wide
range of commercial products [35].

The driving factors for this focus can be portrayed into three different and complementary stimuli
[36]: the aforementioned wide range of commercial and law enforcement applications, the wide
availability of feasible technologies after 30 years of research, and the fact that this area attracts
researchers from disparate disciplines (like image neural networks, pattern recognition, image pro-
cessing, psychology, et al).

Although present systems offer a great deal of accuracy (i.e., verification accuracies consonant
to those of fingerprint recognisers), the conditions in which these systems operate involve (gener-
ally) frontal face images taken under controlled lighting conditions.

In order to further understand the topic of face perception we shall first define this concept (see
3.3.1), then understand the human component of this topic (in 3.3.2), to later analyse the compu-
tational methods by which this is achieved (at 3.3.3). We summarise the issue correlating it to our
work, highlighting what is most relevant, wrapping the subject. (see 3.3.4).

3.3.1 Defining and Understanding Facial Recognition

The following definition of what Facial Recognition encompasses is broadly accepted (as mentioned
in [37], and as such we define this subject as one which comprehends the following fields: the de-
tection of human faces, their tracking, recognition, subsequent ramifications of each of these
steps - such as lipreading and facial expressions, and the training of these systems, among
others.

Like other channels of human-computer interaction (but perhaps to a greater extent) which are
herein enveloped with computer face perception - such as speech and gesture language recognition
- as facial recognition thrives, so must the data bases, underlying processing infrastructures
and other underlying networks which support them thrive as well. Ergo, our work in resource
gathering and computation distribution is of ample avail, and quite justifiable, in this sense.

It should be further noted that the ultimate goal of automated face recognition systems is to
have them at a stage where they can equal, and eventually surpass human performance [38]. This
implies that the study of the human component must be broadened, as it gives great insight on
the development of these computer systems.

3.3.2 Human Components in Facial Recognition

Although, as has been mentioned before, there was significant progress in improving the perfor-
mance of face recognition systems in the past, much of the work put into this area seldom centres
its attention to the human side to the subject. Notwithstanding the obviousness of how important
the silicon component is in face recognition, the algorithms and methods used are in some way
based on the understanding of psychological and neural studies - even though it is manifestly dis-
cernible that computers can not mimic all of a person’s senses, at least presently.

So, the process of human face recognition is subsumed in a great diversity of studies, three of
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which will be given attention hereafter: the general psychological approach, how a person recog-
nises faces and the current relation of these factors with computers, and an analysis to the
relativity in human and computer performance.

3.3.2.1 Psychological and Neural Approach

There are many issues related to face recognition systems that are spun off from studies in psy-
chology and neuroscience (as seen in [39,40,36], and referenced in work such as [41,42]). We focus
only on certain key aspects (summarised in [36]), as seen below:

1. Holistic or Feature Analysis? As seen in [43], holistic (i.e., the whole image) and feature
(certain revealing features which act as determinant recognition characteristics) information
are of equal relevance for face recognition.

2. Significance of Facial Features Studies show that facial features are of definite importance,
and particularly: the eyes, mouth, face outline, hair (as stated in [43]), and nose. Another
aspect known is that the upper part of the face is of better use in facial recognition than the
lower part (i.e. face symmetry issues).

3. Lighting Effects Illumination variation continues to challenge face recognition algorithms
[41], and effects such as bottom lighting (which makes identification harder) or top lighting
(which eases the identification task) take their toll in the process of facial recognition.

4. Facial Expressions and Viewpoint-Variant or Invariant Recognition Facial expression
analysis has been proven to be done in parallel to face recognition, in accordance to studies
done in the neurophysiological field (seen in [37]). Also, one particularly important subject is
the viewpoint [36]: staring at a static 2D photo in contrast to watching a 3D image play out
in a series of images is much different.

After summarising all of these topics, one would ask:what about facial motion, does it help
or hinder the process of facial recognition? Having understood the previously mentioned areas,
we now delve into how a human being performs face recognition - starting off with the topic of
facial motion - so as to understand the comparison between a person’s performance with one of
a computer’s.

3.3.2.2 How Humans perform Face Recognition

We shall now deal with how facial motion affects human face recognition (as seen in [38]), as we
clearly define various aspects (summarising many, as there are far too many to deepen) of this
process and characterise them, with an effort to relate them to how the computer-based processes
work, when possible. We start off with spatial resolution, and how it relates to humans.

Recognition as a function of Spatial Resolution

Studies (such as [40]) show that there are two main hypotheses about the role of facial motion
in face recognition: the supplemental information hypothesis and the representation en-
hancement hypothesis.

The former posits that characteristic facial motions or gestures of individual faces are in ef-
fect represented together with static information, although people are presumptively assumed to
rely mainly on static information for recognition. This is because the invariant structure of the
face is a more reliable cue for recognition. The latter posits that motion adds to the quality of the
structural information accessible from a human face, and as such, contributes to recognition since
it eases the perception of the three-dimensional structure of a face.

And so, the most important conclusions withdrawn are that:
1. Face Familiarity
The subject of face familiarity (studied in [44]) mediates the role of dynamic information
in recognition, since these are intermittent and scarce, hence learnt in a slower fashion - ergo,

experience (i.e. familiarity) is of a chief role since dynamic information will be better gathered
and related with greater familiarity.
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2. Poor Viewing Conditions

The poorer the viewing conditions the more dynamic information contributes to face recog-
nition. This is because when viewing conditions are worsened, it becomes harder to extract
the facial structure, so an easier dynamic identity information is more adequate for extraction.
Thus, dynamic information excels in poor viewing conditions.

Holistic versus Piecemeal Processing

As we have covered before, faces can often be identified from very little information (specific
facial cues), and even one feature may suffice for identification. However, the holistic context seems
to affect how individual features are processed (as seen in [38]): if the top-half features of a face are
combined with the lower-half features of another, the holistic figure becomes unrecognisable, since
both features disrupt each other.

This comes to prove that while individual cues of a certain face may suffice for its identifica-
tion, in the context of a holistic figure (a face, in this case), the latter needs geometrical symmetry
and logical wholeness to be able to be recognised properly. Additionally, it has been concluded
that feature processing is actually interdependent with configural processing (i.e., holistic), as they
both ultimately complement themselves.

As a note, the eyebrows (as seen by Sadr et al [45]) together with the eyes are actually among
the most important facial cues for face recognition. Tests have shown that face recognition per-
formance with images lacking eyebrows is significantly worse to that with the originals, and even
with images which lack eyes. A possible explanation for this phenomena may be that eyebrows are
very important in the conveying of emotions and other nonverbal signals.

The Nature of Cues Used

While holistic and/or piecemeal processing is very determinant, two very important issues also
take their toll in face perception. These are illumination changes and how view-generalisation
appears to be mediated by temporal association (as seen in [38]).

As far as illumination changes go, while many computer-based algorithms only perform un-
der determinate lighting conditions (or under the combination of various illumination conditions)
to be able to have robust results, there is evidence that with humans the case is not quite the same.
Humans can infer different representations of a face given a determinate illumination condition.
So, while we are indeed sensible to illumination conditions (how strong it is, its direction, etc), we
are also capable of generalising novel illumination conditions based on previously known conditions.

Humans have an extraordinary capability of being able to recognise faces across many variations in
the viewing angle: and this is a very challenging computational task for computer-based systems.
And so, we are able to link the various moving correct images due to the temporal association
which serves as "perceptual glue"[38], biding different images together.

Neural Foundations

To sum up the issue of how humans perform face recognition, we bring the attention of how the
human visual system devotes specialised neural resources for face perception: it is strongly
believed that specialised face processing mechanisms in the human visual system (the visual cortex)
do exist. The theory supporting this encompasses that the fusiform gyrus (located in the ventrome-
dial surface of the temporal and occipital lobes, is thought to be critical for face recognition [36,46])
of the extra-striate visual cortex acts as the primary center for face processing, since this region
shows a pattern of selectivity for human faces.

3.3.2.3 Human and Computer Performance

Although there is little work regarding the accuracy of face recognition algorithms in humans -
notwithstanding, some work has shown that computer-based face recognition has surpassed human



Process, Storage and Video Facial Indexing in P2P Grids 17

recognition (in [47,48]) - we consider worthwhile mentioning [41], as this work clearly shows the
state of modern algorithmic solutions versus human beings.

There was some previous work done on this area, more remarkably in [49], where the FRGC (Face
Recognition Grand Challenge) is described. The work done here envisioned the encouragement of
the development of facial recognition algorithms which already excel among others (verification
rates equal or above 98%). The work in the previous paper hence served as an inspirational motto
for the evaluation procedures used in [41], which benchmarks human performance against face
recognition algorithms.

The study carried out a direct comparison between humans and seven face recognition algorithms,
under different illumination conditions - which as stated before takes a huge toll on recogni-
tion, since it changes the overall magnitude of light intensity reflected back from an object, as well
as the shading and shadows [41,38,50]. The effect of lighting changes is well-documented, and in
fact, as far as computer-based algorithms go, controlled lighting conditions offer recognition rates
much higher than those which are not: median verification rates of 0.91 versus 0.42.

The general results show that while there is an implicit assumption that human beings perform
face recognition much better than machines, the experiments show otherwise. Out of the seven
algorithms, for "difficult" face pairs, three algorithms were more accurate than humans (notably
[51,52,53]); and for "easy" face pairs, six of the seven algorithms performed more accurately than
humans. The overall conclusion is that these algorithms compete favourably with humans, which
is already a great step, despite considerations that human beings may suffer from fatigue and/or
lack of attention in these experiments (which can be lengthy and irksome).

Alas, there are many kinds of computer systems used for face recognition, but they can roughly
sectioned into static-image or video processing systems. Within these, there are a lot of significant
differences [36], which will be covered in the next section.

3.3.3 Classification of Computer-Based Systems

Along the document we have mentioned the different categories in which certain computer-based
algorithms techniques fit in: holistic matching methods, structural (feature-based) match-
ing methods, and the hybrid methods. Within these categories, different classifications can be
considered, but we just mention the most relevant studies for our work in the following table (see
5 below). Afterwards, we make a brief mention to each of the categories, so as to understand their
different benefits. To cinch the subject, we refer to the issue of face detection in particular, since
part of our work passes through using an efficient method of detecting faces and subsequently,
recognising them individually).

Table 5. Categorisation of Still Face Recognition Techniques

Approaches and Representative Work

Eigenfaces Turk, M.A. et al. [54]

Holistic Methods Fisher Weight Maps Shinohara, Y. et al. [55]
Probabilistic Eigenfaces |Moghaddam, B. et al. [56]
Pure Geometry Methods Cox, I.J. et al. [57]

Dynamic Link Architecture Wiskott et al. [58]

Hybrid Methods Modular Eigenfaces Pentland et al. [59]

Feature-based methods

As mentioned in [36], holistic approaches have the advantage of having a reduced sensitiv-
ity to noise, and they register a good performance under blurring, partial occlusion and changes
in background - mainly in eigenvector based approaches. As we shall see in the next section (see
3.3.4), the work done (using eigenvectors) [54] is of great importance to our work.

The aforementioned approach done by Turk, M.A. et al. [54] treats face recognition as a two-
dimensional recognition problem, and is motivated by information theory, basing its functionality
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on small sets of image features. These are idealised for approximating the set of known face images.
The general idea is to perform several mathematical calculus (eigenvectors) that find the princi-
pal components of the distribution of faces, to then have a basis on which future face recognition
is performed - by successively capturing, calculating, and comparing new faces to previous sets of
known faces.

The feature-based approaches are in their genesis based on the geometry of local features,
and some are very robust to illumination changes, translation, distortion, rotation and scaling,
even if not widely accepted as a proper overall solution, since holistic or hybrid approaches are
safer.

Such an example of these approaches was implemented by Cox, I.J. et al [57] where a mixture-
distance approach is used. They use a novel distance function, constructed upon local second order
statistics as estimated by modelling the training data as a mizture of normal densities. Basically,
their work based itself upon statistical pattern recognition, having higher efficiency rates with a
higher set of pictures of each individual.

Finally, hybrid approaches make use of both holistic and local approaches: the work mentioned
above in [59] makes use of global eigenfaces and local eigenfeatures, making them complementary
to each other. As stated in the work of Pentland et al, their work yielded higher recognition rates
as well as a more robust framework for face recognition. While these approaches may be more
complex, they may also defer great rewards.

The work performed above should also be moderately clarified: it uses a modular eigenspace de-
scription technique, that incorporates features like the eyes, nose, and mouth in an eigenfeature
layer, along with a typical eigenspace technique for use in face recognition (also, under variable
poses). Fundamentally, the work done scaled the classical eigenvector technique made by Turk,
M.A. et al, enhancing it to larger recognition problems. Since it is view-based, it allows for recog-
nition under varying head orientations, incorporating determinate facial features like the eyes.

Face Detection

Face detection is widely used as a preprocessor in face recognition, nonetheless being an indispens-
able part of it, for the most part of systems that are composed of biometric identification, video
conferencing, indexing of image and video databases, and intelligent human-computer interfaces, as
seen on the survey by Erik Hjelmas et al [60], on which this section bases itself upon. Mostly meant
for offline processing, there are both feature-based and image-based (i.e., holistic) approaches.

Feature-based approaches have three sequential areas of activity. A first low-level analysis
that deals with segmentation of visual features, using pixel properties such as grey-scale and colour.
Since these can be ambiguous, a second feature analysis is performed at a higher level, where
the knowledge of face geometry is applied to characterise and subsequently verify various features
from their ambiguous state. Finally, the third active shape models approach is reached: these
models depict the actual physical and hence higher-level appearance of features.

Holistic approaches can be roughly divided into three different sections. The first is linear
subspace methods, like the one done by Turk, M.A. et al [54], where an error called "distance-
from-face-space" (DFFS) results from calculus of eigenvectors, giving a good indication of face
existence through the observation of global minima in the distance map. The second approach is
neural networks, like modular architectures, committee-ensemble classification, complex learning
algorithms, autoassociative and compression networks. The third and final approach is composed
of statistical approaches, based on methods such as information theory, support vector ma-
chines, and Baye’s decision rule.

3.3.4 Interrelationship with our Work

In our work, we intend on making use of a holistic approach to the solution, using the concept of
eigenfaces (the first successful implementation of machine recognition of faces). All work previous
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to [54] implementation ignored what aspects of the face stimulus were important for identification,
and so, an information theory approach of coding and decoding face images was thought to maybe
give insight into the information content of face images.

This approach intends to emphasise certain features, not necessarily the nose or the eyes, but
the relevant information in a face image, to then encode and compare it to a database of models
which were encoded similarly. As such, the principal components of the distribution of faces, or the
eigenvectors of the covariance matrix of the set of face images are sought after. They should be
thought as a set of features which characterise the variation between face images. An eigenface
will represent the display of the eigenvector in a sort of ghostly fashion.

Naturally, there will be a training set where each face image can be represented as a linear
combination of the eigenfaces. The "best" eigenfaces (with the largest eigenvalues) are those
who account for the most variance within the set of face images, and exist due to the need for
computational efficiency - where the best M’ eigenfaces span an M-dimensional subspace - "face
space - of all possible images.

In order to summarise the proceedings followed in this methodology, we now cite and enumer-
ate the steps in [54]:

1. Acquirement of an initial set of face images (training set).

2. Calculation of the eigenfaces from the training set, keeping only the M images that correspond
to the highest eigenvalues. These M images define the face space. The eigenfaces can be updated
or recalculated as new faces are collected.

3. Calculation of the corresponding distribution in an M-dimensional weight space for each
known individual, thus projecting the face images onto the "face space".

The previous three operations can also be performed from time to time, when there is free
excess computational capacity. And with the initialisation of the system done, the following steps
are used to recognise new face images:

1. First off, is the initialisation where the training set of face images is acquired and the eigen-
faces are calculated, defining the face space.

2. When encountering a new face image, calculate a set of weights based on the input image
and the M eigenfaces by projecting the input image onto each of the eigenfaces.

3. Then determine if the image is a face at all to check if it’s sufficiently close to the face
space.

4. If it is a face, then the weight pattern is classified as a known or unknown person.

5. (Optional) If the same face is seen several times, then its characteristic weight pattern is
calculated and incorporated into the known faces, so as to learn to recognise it.

The eigenface approach is thusly free from intuitive human notions of facial parts or features,
while basing itself on the notion of a small set of features that approximate the set of known face
images. It is a fast, and relatively simple solution, that is as practical as it is capable of working
adequately in constrained environments. A small caveat should be highlighted: our work bases itself
not upon the study of these many and diverse algorithms, hence justifying the choice of working
with a holistic, simpler method.

4 Solution’s Architecture

The architecture of our solution (which we named "P2P-Visio-Grid") is depicted in 1. The afore-
mentioned variables of the figure are the following:

. M: Size of the video

n: Number of nodes

i: Number of human faces

. J: Number of identified human faces

. k: Number of face-id/identifier node pairs
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Fig. 1. Architecture design solution

Now, our work is to develop an architecture for face recognition over a series of peer-to-peer over-
lays, with Gigi [61] - an application (and programming model) designed for the trivial deployment
of widespread applications on peer-to-peer grid infrastructures - as the substrate of it all. Following
the overlay links, two main peer-to-peer overlay network protocols (see 3.1, under 3.1.3) - Chord
[4] and CAN [5] - are used to exploit the distribution of data among the various layers of op-
eration. Also, these layers are conceptually divided in stages, which we believe depict the overall
functioning of the solution.

The first two layers, that belong to Stage Omne, are about the creation of gridlets, which are
Gigi’s semantics-aware chunks of data, which run on virtual machines local to each node belonging
to Gigi, and that associate operations to be performed on the data as well. So, in Layer 0, a node
would have a video which needs partitioning, and through Gigi’s Gridlet Management - on Layer
1 - that video is split into several fragments, each of them in a separate gridlet. Subsequently, these
gridlets are exchanged with other nodes, through Gigi’s Overlay Management.

At this point, Stage One is done, and the following stage is initiated, which uses Chord as a
network overlay. With a subset of nodes having gridlets which represent the original video se-
quence, we intend on using an application code that already resides at these servicing peers. This
application code will run a Face Recognition (3.3) algorithm based on Eigen Vectors [54]. So
while Layer 2 runs preliminary face detection - being exclusively local to each node - Layer
3 identifies faces so that characterisation ran by eigen-vectors can be performed. In Layer 4 (the
final one of Stage Two), virtual clusters of nodes operate to achieve the goal of face recognition
and naming. In the two previous layers, we plan on the exchange of information between clusters,
and on user intervention to aid in the recognition process.

With Stage Two out of the way, the final Stage Three enters in motion. In it, this time through
CAN as a network overlay and firstly in Layer 5, a global directory of (face-id, name) pairs is
maintained - alternatively or additionally (face-id, node) pairs, which contain information about
where a given face is located on a specific node. A close monitoring on the correlation between
faces and names is also done, as different virtual clusters may have different results. Finally, Layer
6 handles video-recycling: if all (or most) faces are already successfully recognised, the video can
be kept in secondary storage.
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With a general idea of our architecture’s functioning already presented, we now look inwards,
moving to an in-depth analysis of how the various layers function within and with each other.
Since there is a large amount of information circulating through the various layers, a need for
metadata is obvious, so as to have a way to better look for faces in videos. Thus we reduce the
search space, using this metainformation gathered iteratively (by hashing video-related-data),
with our main focuses being: flexibility, decentralisation and load distribution. With this in
mind, we enumerate the steps taken in the architecture once more, relating them to the solution’s
layers.

Step 0: As we have many files in Layer 0, with different file names, a hash[filename] will
return a fileID.

Step 1: At Layer 1 videos are split into various internal sequential fragments, and these are
scattered over the nodes. As such, the hash][filename,fragment], returning chunkID. A
chunkID will thus reference a set of frames: (chunkID, frames). Also, for a given fileID,
information about its corresponding chunks can be attained and passed later on to the layers
upwards: (fileID, chunkID).

Step 2: As application code runs at Layer 2, searching for human face occurrences in frames (by
comparison with a predetermined training set of vectors), a set of human-face-related frames
is attained. Thus, the hash[frame] will return a frameID. And so, a node with a chunkID
can attain a set of human-face frames: (chunkID, human-face frameIDs).

Step 3: At Layer 3, the previous frames are indexed, and a faceID (an identifier for the
detected face) is collected. A set of them can be gathered, according to respective frame:
(framelD,faceIDs). By adjoining this information, using Chord, within each virtual cluster,
a set of frames can have even more facelDs, as the nodes cooperate with each other. Also, the
same information is transmitted upwards to the fifth and sixth layers.

Step 4: Afterwards, at Layer 4, faces start to be recognised and assigned identifiers (either
automatic processed ones, or specific names attributed by human interaction). We call such
an identifier as a personlID, thus a set of these identifiers is collected, and can be related to
each fileID: fileID,(personIDs). Again, using the network overlay (Chord), virtual clusters
can adjoin the values, collecting personIDs, and can relate frame information with these,
transmitting it to the following layer.

Step 5 and 6: Using CAN’s unique characteristics, each dimension (N dimensions) within the
overall CAN overlay (in contrast to the smaller CAN overlays that correspond to each
virtual cluster) will correspond to certain characteristics stored as metadata, such as: face ids,
person names, etc. Each smaller CAN overlay, as it receives information from the layers below,
transmits this data to the overall CAN overlay. At this point, data mapping can go both ways,
and from a given fileID, personIDs can be attained, and the other way around. Of course,
since this metadata was collected iteratively, correlation can stretch to faceIDs, framelIDs
and chunkIDs. As the face recognition process goes underway, metadata is propagated and
correlated. So, each virtual cluster creates or re-uses information relative to eigenfaces in a
small CAN overlay, so as to make detecting and recognising similar faces more efficient, and
it is at this point that the metadata is adjoined finalising the face recognition process. Due to
CAN’s locality characteristics in node joining and localisation, similar faces are expected to
be located in closely situated nodes.

5 Solution’s Assessment

The assessment of our solution shall consist of three types of assessment parameters, that attempt
to measure how efficient, fast, and adequate our solution is. In that sense, given the fact that the
architecture spans over various layers, qualitative, quantitative and comparative parameters
are used. We now present some parameters that fit into these kind assessment parameters.

Qualitative

1. Correct facial recognition as interpreted by user feedback.
2. False positive results as interpreted by user feedback.
3. False negative results as interpreted by user feedback.
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Quantitative

Video processing time in terms of file dimension, in the various layers.
Face detection time in terms of total data dimension.

Face recognition time in terms of total data dimension.

Metadata search time.

Identified or recognised face search time.

Average load in nodes, or load imbalance among nodes.

Data distribution averages (metadata and/or bytes stored per node).
CPU usage per node.

Size of chunks/metadata, as distributed per node.

© 0N o N

Comparative

1. Comparisons of times for search and processing with centralised and peer-to-peer based resource
discovery architectures.

2. Comparisons of times for search and processing with cluster based resource discovery architec-
tures.

6 Conclusions

We now wrap up the paper with some concluding remarks, which we intend on being a light
overview of what was studied and referenced, and also of what we hope to achieve with our work,
namely the architecture and its goals.

While resource sharing systems are used profusely in many different communities, it is peer-to-peer
which has the most widespread usage among common everyday users, particularly file sharing (e.g.,
Gnutella, KaZaA). Albeit, participation in these peer-to-peer networks is usually dynamic, as users
enter, depart and rejoin at there own free will, unpredictably. Grid systems, on the other hand,
are mainly meant for interconnecting large scientific computer centre infrastructures (computer
clusters, storage systems, etc). Also, they are generally used for scientific applications which are
complex, CPU and time intensive, and which abide to strict QoS (Quality of Service) rules.

Adjoining the two (P2P and Grid systems) can thus be quite rewarding. By making use of the dis-
tributed, fault-tolerant and decentralised characteristics of peer-to-peer, and implementing them
on Grid systems (hence making them more fault-tolerant, and lax towards their strict function-
ing), many studies in this field have shown that there are beneficial rewards to be reaped. In our
work, we intend on doing so as well, orienting ourselves towards the process of face recognition in
video, which by itself is already a complex undertaking. Naturally, processing a video, analysing
its various fragments and underlying frames, to then identify human faces and recognising them is
a complex process, which we hope to lighten with our work.

Finally, we intend on achieving a novel implementation of an architecture designed for face recog-
nition in videos, which comprises of a peer-to-peer cycle-sharing system. As such, we achieve this
goal through the iterative partitioning of data, and the design of a decentralised, flexible, load
distribution system.
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