
Distributed Clustering and Scheduling of
Object-Oriented Virtual Machines

João Lemos

Instituto Superior Técnico, Avenida Rovisco Pais, 1 - 1049-001 Lisboa, Portugal,
joao.lemos@ist.utl.pt,

WWW home page: http://cms.gsd.inesc-id.pt/Members/jlemos

Abstract. This report presents an overview of several approaches to
provide a Single System Image view of a cluster, particularly concerning
the view of a single address space. The main focus of our work is to un-
derstand the current approaches for clustering a regular multithreaded
and non-cluster-aware Java application, as well as the current techniques
and metrics for scheduling threads in a heterogeneous cluster. We will
start by addressing the Distributed Shared Memory (DSM) approach,
together with the consistency models studied in the academic world to
improve performance and reduce the communication. Software Transac-
tional Memory (STM) will also be addressed as a possible alternative to
lock-based approach for providing data synchronization between nodes.
In section 3.2 we will take a closer look to current Java approaches for
clustering and their main features (e.g. global GC, support for JIT, na-
tive code and load-balancing mechanisms). Algorithms for scheduling
threads and thread migration will also be considered in 3.3, comple-
mented by a small reference to live migration of virtual machines. Finally,
we propose a new extension to provide Terracotta with a global sched-
uler in an attempt to make it a viable platform for general-purpose mul-
tithreaded applications without having the programmer to worry about
load-balancing.

1 Introduction

The designation “Virtual Machine” has been around since the 60s, and it was
originally used to describe a software implementation that executes programs
like the “real” hardware. In those days, hardware-level virtual machines were
popular [1], and several VMMs, like IBM’s CP-40, were developed at that time.
This allowed IBM to run several single-user operating system instead of a multi-
user operating system, such as Unix. However, the VMM solution implied higher
overheads and difficult design decisions, such as what should be handled by the
VMM and what should be handled by the guest OS (e.g. swapping memory
to disk). In a system where both the VMM and the OS had mechanisms for
page swapping we could end up with conflicts or a suboptimal decision. As a
result, multi-user OSs ended up being widely adopted and the concept of “Virtual
Machines” was abandoned until the late 1990s, with Sun’s Java Virtual Machine



becoming widely used. Nowadays, the term “Virtual Machine” designates a full
taxonomy of different virtualizations, which some authors such as Smith et all
[2] try to classify. Despite the variations, we can define a virtual machine as a
target architecture for a developer or compilation system, that can have or not
correspondence to an existing physical hardware.

In recent years, computer clusters made entirely of simple desktop computers
are becoming the standard for high-performance computing, as the scalability
and cost-efficiency of such solution surpasses most high-end-mainframes. If the
workstations in a cluster can work collectively and provide the illusion of being
a single workstation with more resources, then we would have what is referred
in the literature as a Single System Image [3]. Much research has been done in
the area of SSIs, providing sophisticated systems that achieve a single view of
resources such as process space (OpenSSI) or filesystem (NFS). One of the ini-
tially most promising techniques that has been widely used is Distributed Shared
Memory (DSM). By extending the traditional virtual memory architecture we
can provide a distributed global address space that allows a cluster composed
of different machines to be used as a shared memory system. The first software-
based DSMs systems such as TreadMarks [4] simply organized the memory into
pages of fixed sized that were split across the machines in the cluster, with
a Release Consistency algorithm to provide proper synchronization. Unfortu-
nately, programming in accordance with the consistency algorithm proved to
be a difficult task and the performance was far from excellence. Modern DSM
systems such as Terracotta [5] follow an object-based approach and the memory
is organized as an abstract space for storing objects of different sizes, offering a
transparent location of objects to the applications. Those and many other sys-
tems are described in more detail in the Related Work, including the algorithms
used for guaranteeing consistency and minimizing communication among nodes.

Considering these facts, and the known popularity of programming languages
designed for running with a High Level Language VM such as Java or C#, it is
worth studying the possibility of extending a VM with clustering support in a
SSI fashion. There are three major approaches in achieving this goal:

– Extend a programming language at source or bytecode level: allows
a simple and straight-forward implementation fully compatible with current
VMs but it does not provide full transparency to the programmer and ex-
isting applications need to be modified or recompiled for using a specific
library. In either case, the application source might not be available.

– Design a cluster-aware VM: gives full transparency to the programmer
but it requires the applications to use a specific cluster-aware VM instead of
any standard VM, sacrificing the portability of the system.

– Design a cluster infrastructure capable of running several standard
VMs: gives the best compromise between portability and transparency but
it is the hardest one to develop and many implementations are incomplete
and do not provide a full SSI.

One of the essential mechanisms necessary for providing SSI systems is the
scheduling of threads for load balancing across the cluster. To the best of authors



knowledge, some work has been done in improving the scheduling of threads for
page-based DSM systems in order to avoid Page-Thrashing and improve the
locality of memory accesses but no modern DSM system can provide the full
transparency desired for running already existent applications. Terracotta, for
example, has no global thread scheduler and the programmer of a multithreaded
application needs to be concerned about manually launching multiple instances
of the applications, and manual load-balancing. This is the main motivation for
developing this work.

A global scheduler can also have thread migration support, as the load in
the cluster changes overtime and it becomes necessary to rebalance the load,
as many authors defend that otherwise the communication overhead becomes
a bottleneck in performance [6]. Also, in a heterogeneous cluster the processors
differ in speed and the computational resources available also change during run-
time, adding extra complexity for the global scheduler to deal with [7]. Despite
these difficulties, recent research in Virtual Machine technology has allowed the
concept of capsule to appear and entire systems can be migrated within a cluster
for user commodity and also for load-balancing. Recent studies by Chen el all.
[8] have showed that this approach can be just as efficient as thread migration.

The rest of this paper is organized as follows. Section 2 describes the main
goals of this work. Section 3 discusses related work. Section 4 describes the archi-
tecture of the prototype to develop. Section 5 describes the evaluation method to
measure solution adequacy and performance and section 6 concludes this paper.

2 Objectives

The goal of this project is to develop a prototype of a Java-based SSI system
with a global thread scheduler that can provide efficient load-balancing across
an entire cluster of computers. It is also worth studying the possibility of inte-
grating such a system on top of a VMM supporting Virtual Machine Migration
or extending the system with thread migration mechanisms for improving the
load balancing.

3 Related work

In this section, we are going to focus on solutions developed in the academic
world and in the industry for providing a SSI view of a cluster, particularly
for providing a global address space. In section 3.1 we describe the Distributed
Shared Memory (DSM) approach, as well as the consistency models that support
it and the adaptations necessary to make a common application work with a
specific consistency model. In section 3.2 we are going to examine systems that
integrate a global address space with a software platform that can make a regular
application written in Java to become cluster-aware and run seamlessly with
minimal programmer intervention.



3.1 Distributed Shared Memory

Distributed Shared Memory Systems have been around for quite some time, and
it was one of the first solutions adopted for clustering [9]. By extending the
traditional virtual memory architecture, the distributed memory is hidden from
the programmers and applications can be developed using the shared memory
paradigm instead of other traditional and more error-prone, albeit more perfor-
mant, parallel computing communication forms such as message-passing. Like
in traditional shared memory systems, there is a possibility that two or more
processors are working in the same data at the same time, and as soon as one
of them updates a value the others are working in an out-of-date copy. To solve
this problem, there are a significant number of possible data consistency mod-
els that were adopted by DSM implementations [9], which will be described in
section 3.1.1. In section 3.1.2 we are going to describe several practical software
DSM systems that were developed in the academic world. Finally, in section
3.1.3 we are going to focus on software transactional memory, an alternative and
promising concurrency control mechanism analogous to database transactions.

3.1.1 Consistency models The very first consistency model was Sequential
Consistency [10], which is the simplest and most restrictive consistency model.
Roughly speaking, sequential consistency requires that all writes be immediately
visible to all processors accessing each memory page. This synchronization in
every memory access is expensive and in many cases it is stronger than necessary
for a distributed application to run correctly. Therefore, a more relaxed model is
needed to minimize the number of messages exchanged and the amount of data
in each message, as a high amount of traffic in the network can have a serious
impact on the performance of the system.

Release Consistency (RC) [11] was one of the first and most important re-
laxed consistency models developed for concurrent programming. This model
has two synchronization operations: acquire and release. The former is used by
any processor before attempting to make a write to a given object belonging
to the global address space, while the latter is used after the writes are done.
Therefore, in the RC model, the writes made by a certain processor p1 only need
to be seen by all the other processors in the cluster after p1 releases the lock, so
all writes from p1 could be queued and put in a single message which is sent to
all the nodes.

Lazy Release Consistency (LRC) [12] is an algorithm similar to RC, but in-
stead of globally propagating all changes at the time of a processor release, it
postpones the propagation to the time of acquire, guaranteeing that the acquir-
ing processor will receive all changes that “precede” the acquire operation. For
example, consider a scenario where processor p1 acquires a lock over an object
A, performing a few writes and then releasing it. If a processor p2 attempts to
acquire a lock over A, both the lock and the writes will be propagated from p1
to p2 (and only to p2). Similarly, if another processor p3 tries to acquire the
lock over A it will receive from p2 all the writes done by p1 and p2 before the
p3 acquire of the lock. Therefore, for each acquire operation only one message



needs to be sent, and naturally, only the differences between each memory page
need to be sent.

Entry Consistency (EC) [13] is another memory consistency model. It was
first used in Midway, a programming system for distributed shared memory
multicomputers. The entry consistency model takes advantage of the relation-
ship between typical synchronization objects that define critical sections, like
mutexes or barriers, and the data protected by those objects. Since a critical
section defines a region where the data may have been written by another pro-
cessor, and a synchronization object controls a processor’s access to the data
and code inside it, the view of the shared memory can become consistent only
when the processor enters that same critical section. Performance measurements
were promising, as the number of messages decreased a lot comparing to RC.
However, comparing with LRC, the results were about the same and the need to
have an explicit association between every object and a synchronization variable
can be troublesome for the programmer.

Automatic Update Release Consistency (AURC) [14] is yet another release
consistency model that uses automatic update to propagate and merge shared
memory modifications. Automatic update is a communication mechanism im-
plemented in the SHRIMP multicomputer that forwards local writes to remote
memory transparently, which is accomplished by having the network snoop all
write traffic on the memory bus and checking if the page written has an auto-
matic memory mapping, that is, if the source process virtual address is mapped
with a virtual address from a remote process. If such a mapping exists, all writes
to the source page will be automatically propagated to the destination page.
Consecutive written addresses are combined into a single packet, in order to re-
duce the network traffic. This allows for zero CPU overhead in synchronization,
as the only thing a processor has to do is to store the write in the memory address
as he usually would. As a result, performance is substantially increased compar-
ing to the original LRC, but unfortunately AURC is dependent on specialized
hardware support.

Scope Consistency (ScC) [15] was designed as an improvement to the EC
model, offering most of the advantages without the explicit binding between
variables and synchronization objects. ScC introduces a new concept called con-
sistency scope to establish the relationship between data and synchronization
events implicitly from the synchronization already present in programs to im-
plement release consistency. A consistency scope consists of all critical sections
protected by the same lock.

In conclusion, all consistency models can reduce communication and give
some performance improvements, but they are very dependent on the applica-
tions synchronization mechanisms and may not work without some tinkering. In
the next subsection, we are going to describe some systems that were developed
in the academic world as proof of concepts to distributed shared memory and
consistency models. The table below summarizes the consistency models main
proprieties:



Table 1. Consistency models

Model Time of Program Hardware
propagation modifications dependent

SC page write None No

RC lock-release acquire/release Nooperations

LRC lock-acquire acquire/release Nooperations

EC critical section object/lock Noentering association

AURC page-write None Yes

ScC consistency scope None, if RC Noentering consistent

3.1.2 Software Distributed Shared Memory Systems Ivy [16] was one of
the very first distributed shared memory system prototypes to be implemented
and proven to be more simple than the traditional message-passing interface.
Read-only pages could reside in more than one node but a page marked for
writing could only reside in one node and the mapping-manager would map
the writes to the remote node, guaranteeing simple sequential consistency at all
times. The nodes were simple single processor machines, which means that no
multithreading was considered. Unfortunately, the large size of consistency unit
makes the system prone to the false sharing problem. The false sharing problem
occurs when two or more unrelated objects are written concurrently on the same
page, causing the page to “ping-pong” back and forth between the processors.

Munin [17] is a second-generation distributed shared memory system. Com-
pared to Ivy, it was also used with simple single processor machines but it uses
a release-consistent memory interface to reduce the overhead, as seen in the
previous section. Also, it supports multiple consistency protocols by having the
programmer annotate each shared variable to establish the protocol according
to the expected access pattern, and then allowing it to change at runtime. De-
spite the improvements, a more transparent model to the programmer was still
needed and Munin still uses a home-based protocol for handling memory pages
(e.g. a memory page belongs to a node and needs to be entirely fetched on a
page fault).

TreadMarks [4] is another second-generation distributed shared memory sys-
tem. It uses Lazy Release Consistency to reduce the number of messages used
in comparison to Munin and it also supports multiple-writers by creating a twin
copy of the virtual memory page and when the modifications need to be sent to
another processor the differences between the page and the twin copy are put
in a separate data structure to be sent and the twin is discarded. This way, the
overall bandwidth is reduced comparing to the Munin home-based approach.



Brazos [18] is a third-generation distributed shared memory system, support-
ing multiple multi-core processor nodes. Brazos uses a software-only implementa-
tion of Scope Consistency and a distributed page management system similar to
the one in TreadMarks. Comparing to previous generation DSMs, Brazos is mul-
tithreaded and can overlap the computation with the communication latencies
associated with many DSM systems. Also, it uses multicast instead of multiple
point-to-point messages, reducing the communication necessary and improving
the performance.

In conclusion, despite the improvements that were made to adapt the DSM
concept to new hardware, all these prototypes imply a different programming
approach that is impractical, as most programmers do not want to have that
many worries to guarantee that the multithreaded application that is perfectly
fine on one computer works correctly with a given consistency model. This prob-
lem gets even worse if the systems support multiple consistency models, and so
a more transparent system is needed if we want it to be used for general-purpose
applications. The table below summarizes the Software DSMs studied:

Table 2. Software DSMs

System Consistency Model Multithreading support

Ivy SC No

Munin multiple No

TreadMarks LRC No

Brazos ScC Yes

3.1.3 Software Transactional Memory So far, all systems and consistency
models considered are based on a pessimistic lock-based approach with the def-
inition of critical sections to protect data. A new approach called Transactional
Memory [19] was developed to try to circumvent the three main issues with
lock-based solutions:

– Priority inversion: can occur if a low-priority thread gets hold of a lock be-
fore a higher priority thread. Because there is a mutual exclusion paradigm,
the higher priority thread will have to wait until the lock if free.

– Convoying: can occur if a thread holding a lock is preempted by the sched-
uler by some kind of interrupt (e.g. a page fault) resulting in other threads
inability to progress.

– Deadlock: can occur if two threads try to get hold of the same data sets
and both wait for the other to release it, being both unable to progress.



Besides these three main issues, the lock mechanism is conservative by nature
and if there might be a conflict in a certain region, only one thread will be
allowed in that section, even if at runtime the probability of conflict is not high.
Therefore, a new concept of transaction was introduced in memory operations,
very similar to the transactions in relational databases. Instead of having locks,
all threads are allowed to execute a critical region at the same time and after
finishing the operations a conflict detection algorithm is run. If there are no
conflicts, the writes are made permanent into memory, otherwise the atomic
operation is rolled back and retried at a later time.

There are two main approaches in implementing STMs: transaction log and
locks. The former is implemented by having a transaction log local to each thread.
All writes are done in the transaction log and at the end they are written to
the memory after checking that there is no conflict, which means that the roll-
back operation is trivial but the commit operation implies much larger overhead.
The latter can be further divided into two approaches: commit-time locking and
encounter-time locking. The former is implemented by locking all memory loca-
tions during commit and marking access time with a global logical clock that
is checked in every read/write and if the memory was accessed after the be-
ginning of the transaction the transaction is aborted. Again, this makes the
rollback simple but the commit, which should be the most common operation,
expensive. The latter just gives exclusive access of the memory positions to a
thread and all other threads that try to access the same memory positions sim-
ply abort, putting the largest overhead in the rollback operation, which in the
STM paradigm should be the less common operation.

Unfortunately, STM also has some disadvantages that makes it still unprac-
tical for very large systems, as the overheads from conflict detection and commit
cannot be avoided. Also, some operations cannot be undone by nature (e.g I/O).
Some authors have proposed new instructions for the IA-32 ISA to improve per-
formance [20], but no standard processor available in the market adopted them
yet. Sun has recently attempted to develop a multi-core processor capable of sup-
porting hardware transactional memory [21], which unfortunately was canceled
in November 2009. We believe STM has a lot of potential in the future once there
is hardware support for transactions that amortizes the inherent overheads, as
STM programming is far less error prone.

3.2 Distributed Virtual Machines

In section 3.1, we saw how the DSM abstraction can provide an SSI view of a
cluster and the main concerns in implementing it. The next logical step is to
study how we can combine this virtual memory abstraction with a platform that
can make a normal application written in a high-level language cluster-aware
without modifying the source code. Due to the popularity of Java programming
language, not only for commercial applications but also for research due to its
open-source nature, most of the systems presented in this section focus clustering
of Java applications but similar approaches could be done for other high-level
languages, such as C#, etc.



The current techniques used for supporting distributed execution in a clus-
ter can be divided in three major categories. The first set can be classified as
Compiler-based DSMs and it consists of a combination of a traditional compiler
and a DSM system (see section 3.1). By compiling a normal application we
can insert special instructions or bytecodes that add clustering support without
modifying the source itself. The second set can be classified as Cluster-aware Vir-
tual Machines and it includes implementations of Virtual Machines that provide
clustering capabilities at middleware level. For instance, cJVM is a cluster-aware
Virtual Machine with a global object space. The last set can be classified as Sys-
tems using standard VMs. In this approach, the applications will run on standard
VMs that run on top of a DSM system. Some systems that rely on standard VMs
also have static compilers similar to the Compiler-based DSM approach, with the
major difference being that they transform a Java bytecode application into a
parallel Java bytecode application instead of native code. Other systems, like
Terracotta, perform bytecode enhancement at load-time.

3.2.1 Compiler-based DSMs The need to combine both performance and
cluster-aware capabilities have led some authors to develop compilers that put
special checks or instructions in the program at compile-time, adding cluster-
aware capabilities without modifying the source code. The application can then
be run as any native application would, in a virtual or real machine.

Jackal [22] incorporates a DSM system with a local and global GC that
provides full transparency relative to the location of threads and objects. Jackal
compiler generates an access check for every use of an object field or array
element and the source is directly compiled to Intel x86 assembly instructions,
giving the maximum performance of execution possible without a JIT. Jackal
has no support for thread migration or load balancing.

Hyperion [23] also has a runtime that gives the illusion of a single memory
space and it supports the remote creation of threads, which provides a better
load-balancing. To keep the objects synchronized, a “master” copy is kept and
updated in every write, resulting in a performance bottleneck.

In this approach, classes with native methods cannot be distributed as the
already compiled code is not portable. Also, the compilation to native code
indicates that these systems will only work in a homogeneous cluster, which is
a severe limitation to our Single System Image ideal.

3.2.2 Cluster-aware Virtual Machines Many Cluster-aware Virtual Ma-
chines were developed in an attempt to provide a Single System Image view of
a cluster, especially in Java as it is a very widely used platform for developing
object-oriented applications. Java/DSM [24] was one of the very first platforms
for heterogeneous computing to be able to handle both the hardware differences
and the distributed nature of the system, as the alternative of developing a
distributed application with RMI required extra effort from the programmer.
Despite the better abstraction, Java/DSM did not explore Java semantics for
performing optimizations and the load-balancing was limited since it had no



thread migration mechanisms. Also, every node needed to have a copy of every
shared object, which meant that all the extra memory added by having more
nodes in the cluster was just wasted.

cJVM [25] distributes the application’s threads and objects over the cluster
without modifying the source code or the bytecodes. Java object access an mem-
ory semantics are exploited, allowing optimization mechanisms such as caching
of individual fields and thread migration. In the original implementation, there
is no JIT support and it only works with an interpreter loop. To keep the objects
synchronized, a “master” copy is kept and updated in every write, resulting in a
performance bottleneck compared to the original Sun JVM.

Kaffemik [26] followed an approach where every object is allocated in the
same virtual memory address in every machine. The biggest advantage is that
the address can be used as a unique reference that is valid in every instance of
every Kaffemik node. The virtual machines then work together, each containing
a part of the global heap. Unfortunately, Kaffemik had no means of caching or
replication which meant that an array access for example could result in several
remote memory accesses, reducing performance.

JESSICA2 [27] also provides a global object space (GOS) that gives the il-
lusion of a single heap. Each JVM heap space is divided into two sections, one
that contributes to the global heap space and stores master copies of objects
and another for object caching for improving performance. An interesting op-
timization also referred in the article is the possibility that a cached copy of
an object can become the “master” copy if accessed many times, which allows
locality improvements at runtime by migration of ownership of the objects. To
support thread migration and be able to restore the Java thread stack in a dif-
ferent memory space, the stack is captured at bytecode boundary an translated
into a platform-independent text format to be restored by the target JVM. JES-
SICA2 also supports JIT compilation, which is a major improvement relative to
the previous systems.

In conclusion, the major advantage of this approach is not having to mod-
ify the applications, as all clustering is done at the VM level. Despite the very
promising systems described above, all of them have a major disadvantage as
they sacrifice one of the most important features of Java: cross-platform compat-
ibility. Also, the already existing JVM facilities such as local garbage collection
and JIT compiler are difficult to integrate in this type of systems. Therefore,
these special cluster-aware VMs either invest a considerable amount of effort
reimplementing such features or they do not implement them at all. It would be
interesting if the clustering capabilities could be used with a combination of dif-
ferent virtual machines and in the ideal scenario we would use the standard and
better supported Sun’s Java Virtual Machine. This approach will be described
in the next chapter.

3.2.3 Systems using standard VMs JavaParty [28] was one of the very first
platforms to support the aggregation of several standard Java Virtual Machines
and allow the execution of a multithreaded program in a clustered environment.



JavaParty [28] extends the Java language with a new “remote” keyword to in-
dicate that a certain class and its instances should be visible anywhere in the
distributed environment, avoiding explicit socket or RMI communication. This
implementation does not fulfill the ideal SSI since the programmer has to explic-
itly point the classes to be clustered and needs to distinguish which invocations
are remote and which ones are local because the argument passing conventions
are different.

JavaSymphony [29] works under a new concept of Virtual Architectures that
impose a virtual hierarchy on a distributed system, allowing the programmer to
explicitly control locality of data and load balancing. Again, this is far from our
ideal solution of having a SSI system as all objects need to be created, mapped
and freed explicitly, which defeats the important advantage of built-in garbage
collection in the JVM. The entire process can be quite cumbersome and since
JavaSymphony does not provide assistance for these steps, the semi-automatic
distribution is likely to be error-prone.

Addistant [30] works by transforming the bytecode of the Java application
at load time and the developers only have to specify the host where instances of
each class are allocated. All the instances of the same class are then allocated in
the same node, giving poor load balancing flexibility. Moreover, the population
of the cluster (number of nodes) is static and must be known in advance. System
classes with native code cannot be migrated as there is no bytecode to instrument
at load time. Also, application classes that use system classes with native code
generate dependencies that make the former non-migratable.

J-Orchestra [31] also uses bytecode transformation to replace local method
calls for remote method calls and the object references are replaced by proxy
references. J-Orchestra can partition a Java program in such a way that any ap-
plication object can be placed on any machine. Additionally, any object can be
migrated to a different node at run-time to improve load-balancing and take ad-
vantage of a better locality. J-Orchestra also offers some run-time optimizations
such as the lazy creation of distributed objects that do not suffer the overhead
of registering until they need to be used. Despite these improvements, the tools
provided by J-Orchestra to determine class dependencies and to ensure the cor-
rect partition requires non-trivial intervention from the user, still not achieving
the SSI ideal. In addition, the bytecode instrumentation technique has the same
limitation as Addistant (objects that have or depend on native code cannot be
migrated).

JavaSplit [32] is yet another runtime for executing Java applications that uses
bytecode instrumentation for adding clustering support. JavaSplit supports the
multithreaded paradigm directly, without introducing unconventional program-
ming constructs. All the bootstrap classes are rewritten with JavaSplit and the
final result is a distributed Java application that uses nothing besides its local
standard Java Virtual Machine (JVM). Each newly created thread is placed on
one of the worker nodes using a load-balancing function and thread migration is
not supported.



Terracotta [5] is a recent JVM-level clustering product, used in a high per-
centage of the companies belonging to Forbes Global 2000. Terracotta supports
full transparency in a way similar to JavaSplit except that it works within an
aspect-oriented programming (AOP) framework. To take advantage of the Terra-
cotta clustering model, an instance of the Java Application needs to be launched
in every node and the central Terracotta Server also needs to be setup. The pro-
grammer has to configure his Java application to decide which fields in each
class remain local and which ones are going to belong to the Distributed Shared
Objects space (DSO), as well as all locking and synchronization concerns. The
Terracotta (TC) libraries are loaded by each JVM running the application and
are responsible for handling the bytecode instrumentation at load-time for im-
plementing the behavior specified by the programmer. The Terracotta Server
implements the Virtual Memory Manager (VMM), which is responsible for hold-
ing the global heap and propagating the differences to the JVM clients (objects
are cached on disc before the server runs out of memory). Also, the Terracotta
Server can itself be clustered for improved scalability. Figure 1 illustrates the
architecture described. The dashed squares represent a cluster node, either cor-
responding to a real or virtual machine.

Fig. 1. Terracotta architecture

The main features of Terracotta make it an appropriate platform for cluster-
ing application servers like Apache Tomcat or JBoss, but it lacks transparency
for running multithreaded applications non-cluster aware. In section 4 we are
going to propose a Terracotta extension that attempts to make the scheduling
of threads in a cluster transparent.

To summarize, the table on the next page illustrates the main features of all
systems studied in this section. In section 3.3 we are going to study the existing
scheduling algorithms and thread migration techniques in order to have a good
theoretical background to choose the best approach for extending Terracotta.



T
ab

le
3.

D
is
tr
ib
ut
ed

V
ir
tu
al

M
ac
hi
ne

s

Sy
st
em

A
pp

lic
at
io
n

In
te
ro
pe

ra
bi
lit
y

Si
ng

le
he

ap
O
bj
ec
t

G
lo
ba

l
JI
T

Sy
st
em

cl
as
se
s

L
oa
d-
ba

la
nc
in
g

T
hr
ea
d

ch
an

ge
s

to
po

lo
gy

ca
ch
in
g

G
C

cl
us
te
ri
ng

su
pp

or
t

m
ec
ha

ni
sm

s
m
ig
ra
ti
on

Ja
ck
al

so
ur
ce

sa
m
e
IS
A

F
ix
ed

co
m
pi
le
-t
im

e
N
o

Y
es

N
.A

N
o

N
on

e
N
o

co
m
pi
la
ti
on

ob
je
ct

di
st
ri
bu

ti
on

H
yp

er
io
n

so
ur
ce

sa
m
e
IS
A

F
ix
ed

co
m
pi
le
-t
im

e
N
o

Y
es

N
.A

N
o

In
it
ia
lt

hr
ea
d

N
o

co
m
pi
la
ti
on

ob
je
ct

di
st
ri
bu

ti
on

pl
ac
em

en
t

Ja
va
/D

SM
N
on

e
sa
m
e
V
M

Sh
ar
ed

ob
je
ct
s

N
o

N
o

N
o

N
o

N
on

e
N
o

in
ev
er
y
no

de

cJ
V
M

N
on

e
sa
m
e
V
M

M
as
te
r/
pr
ox
y

N
o

N
o

N
o

N
o

In
it
ia
lt

hr
ea
d

Y
es

pl
ac
em

en
t

K
aff

em
ik

N
on

e
sa
m
e
V
M

M
as
te
r/
pr
ox
y

N
o

N
o

N
o

N
o

In
it
ia
lt

hr
ea
d

Y
es

pl
ac
em

en
t

JE
SS

IC
A
2

N
on

e
sa
m
e
V
M

M
as
te
r/
pr
ox
y
+

Y
es

Y
es

Y
es

Y
es

O
bj
ec
t
ow

ne
rs
hi
p

Y
es

fle
xi
bl
e
ho

m
e

m
ig
ra
ti
on

Ja
va
P
ar
ty

so
ur
ce
/

an
y
st
an

da
rd

JV
M

C
lu
st
er
ed

cl
as
se
s

N
o

Y
es

Y
es

N
o

N
on

e
N
o

ne
w

ke
yw

or
d

in
ev
er
y
no

de

Ja
va
Sy

m
ph

on
y

N
on

e
an

y
st
an

da
rd

JV
M

E
xp

lic
it

ob
je
ct

Y
es

N
o

Y
es

N
o

E
xp

lic
it

ob
je
ct

N
o

m
ap

pi
ng

m
ap

pi
ng

A
dd

is
ta
nt

by
te
co
de

an
y
st
an

da
rd

JV
M

M
as
te
r/
pr
ox
y

N
o

P
ar
ti
al
,n

o
cy
cl
ic

Y
es

N
o

N
on

e
N
o

le
ve
l

cl
as
s-
ba

se
d

ga
rb
ag
e
su
pp

or
t

J-
O
rc
he

st
ra

by
te
co
de

an
y
st
an

da
rd

JV
M

M
as
te
r/
pr
ox
y

N
o

P
ar
ti
al
,n

o
cy
cl
ic

Y
es

N
o

O
bj
ec
t
m
ig
ra
ti
on

N
o

le
ve
l

ga
rb
ag
e
su
pp

or
t

Ja
va
Sp

lit
by

te
co
de

an
y
st
an

da
rd

JV
M

M
as
te
r/
pr
ox
y
+

Y
es

Y
es

Y
es

N
o

In
it
ia
lt

hr
ea
d

N
o

le
ve
l

L
R
C

pl
ac
em

en
t

T
er
ra
co
tt
a

by
te
co
de

an
y
st
an

da
rd

JV
M

C
en
tr
al

T
er
ra
co
tt
a

Y
es

Y
es

Y
es

Y
es

N
on

e
N
o

le
ve
l

se
rv
er
+
pr
ox

ys



3.3 Clustering and thread scheduling

One of the problems considering clustering in distributed systems and software
DSMs in particular is the scheduling of threads for maintaining a balanced sys-
tem with a fair share load that minimizes communication and can make good
enough decisions that give an acceptable performance in the long run. In this
section, we will discuss a few algorithms and techniques to attempt to reach an
ideal scenario where no nodes will be heavily loaded while other nodes are idle
or only lightly loaded.

Load-distribution algorithms [33] can be classified in the following categories:
static, dynamic and adaptive. Static algorithms are the most straight-forward
approach, a new task is simply assigned to a node known a priori via a round-
robin policy. An heterogeneous cluster might have an adapted weighted policy,
assigning more tasks to the most powerful nodes and less tasks to the less power-
ful nodes, but no information about the current state of the system is used. Both
these approaches have been tested in web clustering architectures [34]. Therefore,
static algorithms can potentially make poor assignment decisions. For example,
a new thread might be initiated in a node A, which is heavily loaded, while the
local node B was idle, simply because node A was next in our fixed scheduling
algorithm.

Dynamic algorithms attempt to improve the performance of their static coun-
terparts by exploiting system-state information in runtime before making the
decision. Because they must collect, store, and analyse state information they
have more overheads and are harder to implement, but this extra overhead is
usually compensated. In our idle node example, a dynamic algorithm could check
that the node B where the new thread was initiated was idle and decide not to
create the task at node A. The algorithm could even consider the state of the
receiving node, possibly only assigning the new thread if the node was idle.

Adaptive algorithms are a special case of dynamic algorithms. Besides consid-
ering the system load, the system state itself can change the scheduling policies.
For example, if a given policy performs better under a heavy-loaded system and
another one performs better in a lightly-loaded system, an adaptive algorithm
can use the former after a certain threshold of CPU load and the latter when
the system reaches a lighter state, adapting itself to different workloads or ap-
plication suites.

Both dynamic and adaptive algorithms raise an important issue: what is
a “heavily-loaded node” and how can we define a metric that will allow us to
determine if node A will be a good option for executing the next thread? Some
authors like Kuntz [35] have defined the best metric as being the CPU queue
length, and no significant performance was gained by using or combining other
metrics such as the system call rate and the CPU utilization. In addition to
the queue length metric, many authors proposed that a dynamic load-balancing
system should have a priori knowledge of the resources needed by of the task
in order to choose the best node. Since the node is chosen before the task is
executed, the resource usage of a task must be predicted, either based on the
past behavior of the task or by providing the load-balancing system with a user



estimation. Both approaches are error-prone and can have a very negative impact
if used with a wrong estimation.

Choi et all. [36] have proposed a novel metric to minimize the impact of
inaccurate predictions. It is known that overlapping CPU bound and I/O bound
jobs results in better resource utilization, so the number of tasks considered in
the CPU queue length should consider its nature. For example, a node with three
CPU bound and two I/O bound should be considered as having five tasks in its
queue but only three effective tasks, since the CPU bound overlap with the I/O
bound. However, there is still a need to classify a task as “CPU bound” or “I/O
bound”, which is not trivial to do, and the performance improvements proved to
be marginal compared to the historical-based approach.

Considering this, we can now take a deeper look to some scheduling algo-
rithms and define what major considerations should they have to be time and
space efficient. Two major requirements have been identified: good locality and
low space [37]. The former means that threads that access the same memory
pages should be scheduled to the same processor, as long as it is not overloaded,
minimizing the overhead of page fetching, while the latter indicates that the
memory requirements for the scheduling algorithm should be kept small to scale
with the number of threads or processors, as in a cluster both numbers tend to
grow overtime.

Work stealing schedulers [38] is a dynamic scheduling solution that provides
a good compromise between the above requirements. Each processor keeps its
own queue and when it runs out of threads it steals and runs a thread from
another processor queue. This way, threads relatively close to each other in the
computation graph are often scheduled to the same processor, providing good
locality. The space required is at most S1P , where S1 is the minimum serial
space required. This space bound can still be improved, as we will see in the
next paragraph.

Depth-first search schedulers [39] is another dynamic scheduling approach.
It works by computing a task graph as the computation goes by. A thread is
broken into a new task by detecting certain breakpoints that indicate a new series
of actions that can be performed in parallel by another processor (e.g. a fork).
The tasks are then scheduled to a set of worker processors that hold two queues,
one for receiving tasks (Qin) and the other to put tasks created (Qout), while
the remaining processors are responsible to take tasks from the Qout queues
and schedule it to the Qin queue of another processor. It was proven than the
asymptotic space bound for this algorithm is S1 + O(p.D) for nested parallel
computations of depth D, which is an improvement over the previous work-
stealing approach. However, as the created tasks have a relative high probability
of being related with the previous computation, the locality is not as good.

DFDeques [37] is a dynamic scheduling approach that seeks the best of both
worlds. Threads are assigned to multiple ready queues that are depth-first or-
dered, similarly to the depth-first search schedulers seen in the previous para-
graph. The ready queues are treated as LIFO stacks similar to the work-stealing
schedulers. When a processor runs out of threads to run, it can steal from a ready



queue chosen randomly from a set of high-priority queues. The asymptotic space
bound is S1 +O(K.p.D), with K being a runtime parameter which specifies the
amount of memory a processor may allocate between consecutive steals. As K
is usually small, the space bound is about the same as in pure depth-first sched-
ulers and at the same time we can take advantage of thread locality as threads
close to each other in the computation graph will be scheduler to the same ready
queue.

These algorithms have been widely studied and were used to introduce schedul-
ing in many parallel programming libraries and applications. Satin [40] is a Java-
based grid computing programming library that implements a work stealing ap-
proach by allowing a worker node to steal a method invocation from another
node. Athapascan-1 [41] is a C++ library for multithreaded parallel program-
ming that implements a data-flow graph where both computation and data grains
are explicit, allowing a depth-first scheduler algorithm to take advantage of the
existing structure to schedule new threads. When considering applying one of
these algorithms to a DSM system for general-purpose computations there are
a few extra considerations that should be taken. We have to deal with heteroge-
neous nodes with different clocks and resources that may or may not be available
at a certain time. This implies that a system should be dynamic and support
some kind of migration of tasks to rebalance the load [7]. Also, DSMs have a
much higher communication requirements than message-passing and, unlike par-
allel programming, we cannot predict easily the kind of applications that will run
and what could be the best parallelism possible. In the subsection 3.3.1 we are
going to cover implementation issues of thread migration mechanisms and how
much we can benefit from them and in subsection 3.3.2 we are going to cover
another approach that takes advantage of system Virtual Machines to provide a
more coarse-grained but easier to implement migration mechanism.

3.3.1 Thread Migration In the previous section we studied thread schedul-
ing in distributed shared memory systems in the perspective of initial placement
of tasks, and the metrics that can be used for measuring the least loaded node.
Besides the initial placement, transparent thread migration has long been used
as a load-balancing mechanism to optimize resource usage in distributed envi-
ronments [42]. Such systems typically use the raw thread context (RTC) itself as
the interface between two nodes. The RTC consists of the thread virtual memory
space, thread execution stack and hardware memory registers. This is the typi-
cal platform-dependent format used to represent a thread context and cannot be
migrated directly without a few extra considerations. For example, the pointers
or references used for data objects can be meaningless in another machine or
the thread might be executing a system call that does not have any meaning
in another node (e.g I/O calls). Some authors [43] have solved this issues by
reserving all stacks in the beginning of the execution and guaranteeing that all
of them use the same virtual addresses, and at the same time kernel threads are
used to handle all system calls. This way, all threads are portable, considering



an homogeneous system, but the number of threads in each node has a fixed
limit.

In the particular case of software DSMs there are a few extra considera-
tions that should be taken into account, as increased communication can exceed
the benefits of better load-balancing. For example, the original pages that were
cached by a thread before migration may not be needed anymore by the source
node. In contrast, the destination node will definitely need those pages and
the amount of communication needed to keep consistency among the proces-
sors implies a considerable overhead. Therefore, threads for migration need to
be carefully chosen in such a way that the communication overhead does not
exceed the benefit given by the better load-balancing.

One of the simplest solutions is to consider the number of shared pages
between pairs of threads and assume that more shared pages implies a bigger
communication cost if one of the threads migrates. However, not all data-sharing
results in data consistency communication as two threads can simply read the
same pages without any of them changing any data. Therefore, data-sharing
policies should also consider the type of memory access.

In addition, an efficient thread selection policy needs to consider global shar-
ing (i.e. the communication necessary with all processors). Although such a pol-
icy will result in a much more informed decision the cost of computing the thread
migration cost for each thread increases linearly with the number of processors.
Other solutions involve a partial sharing policy, which only considers commu-
nication cost between the source and the destination node, without regard to
global relations, increasing the risk of making a wrong decision. Liang et al. [44]
propose a novel thread selection policy called reduction inter-node sharing cost
(RISC) for page-based DSMs that support release-consistency, which combines
the type of memory access with a global sharing policy.

Concerning thread migration in Java systems, Java has a serialization mech-
anism that can capture an object state and restore it in other node running
another virtual machine. However, the Thread class is not serializable and the
standard JVM does not provide a mechanism to access a thread stack directly.
Therefore, most existing Java solutions rely on the bytecode-oriented thread con-
text (BTC) as interface. The BTC is organized in a sequence of blocks called
frames, each one associated with a Java method being executed by that thread.
Each frame contains the class name, the method signature, and the activation
record of the method. The activation record consists of a bytecode program
counter (PC), which points to the Java instruction currently being interpreted,
a JVM operand stack pointer for the stack that holds the partial results of the
method execution, and the local variables of the associated method, encoded in
a JVM-independent format. Considering this, and the fact that we still have to
deal with threads executing native code in an RTC fashion due to system classes
and JITs that compile bytecode at runtime, the following basic approaches were
found in the literature [45]:

– Static byte code instrumentation: thread migration support is added by
pre-processing the already compiled bytecode source and adding statements



which backup the thread state in a special backup object. When an applica-
tion requires a snapshot of a thread state, it just has to use the backup object
produced by the code inserted by the pre-processor. The main advantage of
this approach is that this way the thread migration can be implemented as
a simple extension that manipulates bytecode, without the need to modify
the JVM. Unfortunately, the fact that there are more bytecode instructions
in the code introduces significant overhead and the thread state restoration
requires a partial re-execution of the application. Some implementations of
this approach for mobile agents such as AMO [46] also do not consider sys-
tem classes or classes with native code and cannot migrate code that uses
reflection.

– Extending the JVM and its interpreter: thread migration support is
simply added as an extension to a normal JVM interpreter, as done in sys-
tems such as JESSICA [47]. This is accomplished by having a global thread
space that spans the entire cluster and a mechanism that can separate the
hardware-dependent contexts in native code and the hardware-independent
contexts at bytecode level. This way, a thread can migrate with relatively
good granularity between each bytecode instruction that is interpreted. How-
ever, modifying the JVM interpreter do deal with thread migration adds to
the overhead of the already slow interpreter. This approach has been proven
to have better performance than the previous static byte code instrumen-
tation [48] but it is still much slower than the creation of a normal thread,
which gives the impression that support for JITed code is needed.

– Using the JVM Debugger Interface (JVMDI): thread migration sup-
port is added by compiling Java applications with extra debugging infor-
mation that allows access to the thread stack as well as the introduction of
thread migration points. Modern debugger interfaces also support JIT com-
pilers, as previous approaches only considered bytecode. However, JVMDI
needs huge data structures and incurs large overhead to include the extra
general debugging features and the limited optimizations that can be done
in a debugging environment.

CEJVM [49] is a master-worker approach that relies on a master node that
runs the Java application and delegates threads to worker nodes. It uses the
JVMDI to implement thread migration transparently and compatible with any
JVM that supports the debugger interface. Performance-wise, the master-worker
paradigm only works well with a specific niche of applications and it would be
desirable that all nodes be provided with thread migration capabilities in a
point-to-point way.

Cho-Li et all [50] define a new approach that consists of integrating the RTC
to BTC conversion and the implicit stack capturing and restoration directly
inside the JIT. Stack capturing involves using the JIT to instrument native codes
and transform them back into the platform-independent bytecode format. This
way, the thread scheduler itself can perform on-stack scanning and to derive the
BTC format instead of using a stand-alone process like in the JVMDI approach.
For stack restoring, the authors introduce a mechanism called Dynamic Register



Patching that rebuilds the state of the hardware registers before returning the
control to the thread instanced in the new node.

Another issue that we need to address is at which code points should migra-
tion be considered as a good option. The simplest approach is to allow migration
in any bytecode boundary. However, with all the JVMs running sophisticated
JITs there is a high probability that the execution is running native code at the
time of migration and it may be very hard and inefficient to simulate the native
instructions from the stopped point until the next bytecode boundary for migra-
tion. Cho-Li et all [50] define two basic points: the beginning of a Java method
invocation and the beginning of a code block pointed by a back edge in the com-
putational graph. The former indicates a new operation that can most likely be
done in another node (very small methods that do not typically compensate will
be inlined by the compiler and not considered for migration), while the latter
represents the beginning of a loop, which is also a good option as it needs a
more or less prolonged computation until it finishes. Intra-bytecode migration
semantics would be very ambiguous and difficult to implement, so we are not
considering it in this report. It is preferable, for example, to turn off the JIT
compiler before migration and only enable it after scheduling on another node.

Finally, we have to deal with the type resolution of the operands. As operands
in a thread context are pushed in and popped out of the stack at runtime,
their types cannot be determined in advance. The simplest solution is to have
a separate stack for operand types synchronized with the normal Java stack.
This doubles the time in accessing the operand stack, which can be more or less
significant depending on the number of possible migration points that we are
considering. Also, this approach can be optimized as most types can be verified
statically by the Java bytecode verifier [51]

3.3.2 Virtual Machine Migration The need to provide a cluster to support
multiple operating systems, applications, and heterogeneous hardware has led to
the development of Virtual Machine Monitors (VMM) or hypervisors that run
right on top of the hardware and schedule one or more operating systems across
the physical CPUs. The live migration mechanism is less granular than thread
migration, as a system VM might have a large number of threads running simul-
taneously and the migration of an entire system VM to another node requires
that the recipient node has indeed more resources to run the system VM. How-
ever, a recent performance study made by Chen et all. [8] using a page-based
DSM system shows that the virtual machine migration approach can compete
with thread migration and it has the advantage of providing a cleaner separa-
tion between hardware and software, as well as facilitating fault-tolerance and
load-balancing.

IBM have developed the z/VM solution [52], an hypervisor software capable
of supporting several thousands of Linux servers running on a single mainframe.
z/VM supports full scheduling of user virtual machines according to each user
needs by monitoring resource usage and giving a user class from 0 to 3. Higher
class users get longer time-slices but lower classes tasks are given a higher priority



if the mainframe resources get constrained. Despite the good transparency and
scheduling solution, the system only runs on the mainframe zSeries IBM servers,
which are not available to the majority of programmers.

Xen [53] is another hypervisor that runs on standard x86 machines, developed
in the University of Cambridge. Xen supports many popular operating systems
such as Solaris, Linux and Windows. System administrators can migrate Xen
Virtual Machines between physical hosts across a LAN without loss of availability

4 Architecture

In section 3.2.3 we studied several systems for clustering Java applications that
use standard JVMs, including Terracotta. We recap here the three main issues
that make this system impractical for non-cluster aware multithreaded applica-
tions:

– Non-transparent configuration: the programmer of the application needs
to configure the classes to be instrumented for sharing fields among JVM
instances (objects shared in this way are called shared roots). Methods that
manipulate shared roots also need to be configured in order to ensure mutual
exclusion between the nodes.

– No scalability for multithreading applications: Terracotta has no means
of running a multithreaded application in a transparent way that takes direct
advantage of the clustering interface. When a thread is created in Terracotta,
either by extending the Thread class or implementing the Runnable interface,
we are limited to have the same thread in each local node, as it is considered
a JVM-specific non-portable resource by the Terracotta developers.

– No load-balancer: The Terracotta programmer needs to be concerned
about how much data each JVM should have, as Terracotta Virtual Memory
Manager (VMM) needs to be tuned for dealing with large object graphs.

Considering the limitations, we intend to design and implement a prototype
that extends the Terracotta shared memory object space with a global scheduler.
The following functionalities are desired:

– Phase 1: when a new thread is launched in Terracotta, it should be created
in the least loaded node. The metric for deciding which node is the “least
loaded” could be the CPU queue length, as seen in section 3.3.

– Phase 2: run multiple instances of Terracotta on top of multiple system
VMs instances and attempt load-balancing through live migration.

– Phase 3: when too many threads are created in one node, there should
be a mechanism to rebalance the load across the cluster by migrating some
threads.

First, we need to define a “proxy” class for the Java Thread that can be clus-
tered in Terracotta (ClusterThread). The Java application will be instrumented
at bytecode level to use our custom class instead of the native Thread class. This



way, when a JVM node starts the execution of the ClassThread, it will inform a
special coordinator component of the current CPU queue length asynchronously
and continue its execution. The coordinator will then determine the less loaded
node and notify it, in which it will create a new native Thread and execute the
code. With this approach, we can solve the first main requirement of our work.

For phase 2, we will test Terracotta over instances of system VMs on an
hypervisor software such as Xen and implement a monitor daemon in each node
to keep track of the number of threads. After it reaches a certain threshold,
the monitor daemon triggers the Xen VM migration mechanism to migrate the
VM instance to another node. This can be done by communicating with the
coordinator to check which node is less loaded or simply choose a neighbour
node for migration. The main idea is to help balance the load in a simple way,
thus preventing imbalance in load from getting unbounded, which is already a
major improvement.

For phase 3, we will need to extend the monitor with the capability to serialize
a thread’s state, using the bytecode boundary approach described in 3.3.1. This
phase is the most tricky part to implement and the possible performance gains
compared to the system VM approach still remain an open issue.

Finally, figure 2 shows the final architecture of the Terracotta extension we
propose, followed by a summary of all components. The dashed squares represent
a cluster node, either corresponding to a real or virtual machine.

Fig. 2. Terracotta global scheduler architecture

– Java Application: Multithreaded Java application to be executed.
– JVM+Modified TC libraries: Standard Sun’s Java Virtual Machine run-

ning Terracotta libraries for instrumenting classes at load-time, modified to
use the special ClusterThread class.



– Monitor:Monitors the load in the local JVM and initializes migration mech-
anisms, if needed.

– Terracotta Server: Holds the global heap and propagates the differences
to the JVM clients.

– Coordinator: Knows the current load of each node and sends messages to
initiate threads, when needed.

5 Methodology and Evaluation

In this section, we are going to describe the metrics and benchmarks to use
in order to measure the improvements we intend to achieve with the Terra-
cotta Global Scheduler described in the previous section. Since we are interested
in measuring the performance in the context of High Performance Computing,
we need to measure the performance of execution of a computational intensive
Java application (e.g. ray tracing calculations), and some low-level mechanisms
such as the creation or joining of threads. Java Grande provides multithreading
benchmarks that could be used in our prototype [54]. Java Grande multithread-
ing benchmarks focus on the following aspects:

– Low level operations: thread creation and joining, barrier synchroniza-
tion, etc. The main objective of these micro-benchmarks is to measure the
number of low-level operations in a fixed period of time to have an idea of
the additional overhead impact made by our prototype.

– Kernels: Fourier coefficients calculation, LU factorization, matrix multi-
plication, etc. These benchmarks focus on measuring the performance of
scientific and numeric computing. For each benchmark, the time taken and
a performance in operations per second (where the units are benchmark-
specific) are reported.

– Large Scale applications: 3D ray-tracing applications and Monte Carlo
simulations. Ray-tracing applications are a very interesting scenario due to
the computational independence of each ray that makes it highly paralleliz-
able. Monte Carlo simulations is also a good scenario as Monte Carlo meth-
ods are very important in todays physical and mathematical simulators and
the random sampling techniques they use are completely parallelizable.

With this benchmark, we test our prototype in a large number of scenarios
and we believe that the extra overhead of thread creation and synchronization
will not be significant compared to the performance gain of parallelizing com-
putation. Besides benchmarking specific scenarios, it is also desirable to test
with real-world applications and verify that our prototype allows them to take
advantage of the extra computational power and memory available in the cluster.

The DaCapo benchmark suite [55] uses several open source Java applications
such as Antlr, HSQLDB, Jython, Xalan, etc. All this applications have non-
trivial memory loads and provide very different scenarios between themselves.
Antlr is a language recognition tool to generate parser and lexical analysers while
Xalan is a parser for transforming XML into HTML documents. We expect, for



example, to be able to parse a larger number of grammar files or XML documents
with our prototype, as well as a performance increase due to the ability to have
more data in memory distributed across the cluster. HSQLDB is a relational
database engine written in Java, on which we expect to increase the number of
possible transactions.

6 Conclusion

In this report we presented several systems that focus on providing a SSI view
of a Java cluster. We believe that approaches that use standard JVMs are the
most likely to succeed due to the Sun JVM being present in the most common
architectures and operating systems. The techniques for thread scheduling in
distributed environments covered here can be integrated with a system that al-
ready provides a shared object space, giving common programmers the ability to
run a regular multithreaded application in a cluster seamlessly, without worrying
about load-balancing. The description of our prototype, based on Terracotta, is
generic as it still in development but the final result has the potential to improve
the cluster programming paradigm by exploring a new usage for Terracotta, be-
yond the clustering of application servers like Apache Tomcat or JBoss.

References
1. Mendel Rosenblum. The reincarnation of virtual machines. Queue, 2(5):34–40, 2004.
2. James E. Smith and Ravi Nair. The architecture of virtual machines. Computer, 38(5):32–38,

2005.
3. Rajkumar Buyya, Toni Cortes, and Hai Jin. Single system image. Int. J. High Perform.

Comput. Appl., 15(2):124–135, 2001.
4. Christiana Amza, Alan L. Cox, Sandhya Dwarkadas, Hya Dwarkadas, Pete Keleher, Honghui

Lu, Ramakrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. Treadmarks: Shared memory
computing on networks of workstations. IEEE Computer, 29:18–28, 1996.

5. Terracotta. A technical introduction to terracotta. 2008.
6. Kritchalach Thitikamol and Pete Keleher. Thread migration and communication minimization

in dsm systems. In Proc. of the IEEE, Special Issue on Distributed Shared Memory, pages
487–497, 1999.

7. Kritchalach Thitikamol and Peter Keleher. Thread migration and load balancing in non-
dedicated environments. Parallel and Distributed Processing Symposium, International, 0:583,
2000.

8. Po-Cheng Chen, Cheng-I Lin, Sheng-Wei Huang, Jyh-Biau Chang, Ce-Kuen Shieh, and Tyng-
Yeu Liang. A performance study of virtual machine migration vs. thread migration for grid
systems. Advanced Information Networking and Applications Workshops, International Con-
ference on, 0:86–91, 2008.

9. J Protić, M Tomašević, and V Milutinović. Distributed Shared Memory: Concepts and Systems.
John Wiley & Sons, 1998.

10. L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
progranm. IEEE Trans. Comput., 28(9):690–691, 1979.

11. Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta, and
John Hennessy. Memory consistency and event ordering in scalable shared-memory multi-
processors. In In Proceedings of the 17th Annual International Symposium on Computer
Architecture, pages 15–26, 1990.

12. Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy release consistency for software dis-
tributed shared memory. In In Proceedings of the 19th Annual International Symposium on
Computer Architecture, pages 13–21, 1992.

13. B.N. Bershad, M.J. Zekauskas, and W.A. Sawdon. The midway distributed shared memory
system. In Compcon Spring ’93, Digest of Papers., pages 528–537, Feb 1993.

14. Liviu Iftode, Cezary Dubnicki, Edward W. Felten, and Kai Li. Improving release-consistent
shared virtual memory using automatic update. In In The 2nd IEEE Symposium on High-
Performance Computer Architecture, pages 14–25, 1996.



15. Liviu Iftode, Jaswinder Pal Singh, and Kai Li. Scope consistency: A bridge between release
consistency and entry consistency. In In Proceedings of the 8th Annual ACM Symposium on
Parallel Algorithms and Architectures, pages 277–287, 1996.

16. Kai Li. Ivy: a shared virtual memory system for parallel computing. pages 94–101, August
1988.

17. John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and performance of
munin. SIGOPS Oper. Syst. Rev., 25(5):152–164, 1991.

18. Evan Speight and John K. Bennett. Brazos: A third generation dsm system. In IN PROCEED-
INGS OF THE 1ST USENIX WINDOWS NT SYMPOSIUM, pages 95–106, 1997.

19. Maurice Herlihy, J. Eliot B. Moss, J. Eliot, and B. Moss. Transactional memory: Architectural
support for lock-free data structures. In in Proceedings of the 20th Annual International
Symposium on Computer Architecture, pages 289–300, 1993.

20. Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Architectural support for software
transactional memory. In MICRO 39: Proceedings of the 39th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 185–196, Washington, DC, USA, 2006. IEEE
Computer Society.

21. Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson, Anders Landin, Sher-
man Yip, Håkan Zeffer, and Marc Tremblay. Rock: A high-performance sparc cmt processor.
IEEE Micro, 29(2):6–16, 2009.

22. R. Veldema, R.A.F. Bhoedjang, and H.E. Bal. Distributed shared memory management for
java. In In Proc. sixth annual conference of the Advanced School for Computing and Imaging
(ASCI 2000, pages 256–264, 1999.

23. Gabriel Antoniu, Luc Boug, Philip Hatcher, Mark MacBeth, Keith Mcguigan, and Raymond
Namyst. The hyperion system: Compiling multithreaded java bytecode for distributed execu-
tion, 2001.

24. WEIMIN YU and ALAN COX. Java/dsm: A platform for heterogeneous computing. 1997.
25. Yariv Aridor, Michael Factor, and Avi Teperman. cjvm: a single system image of a jvm on a

cluster. In In Proceedings of the International Conference on Parallel Processing, pages 4–11,
1999.

26. J. Andersson, S. Weber, E. Cecchet, C. Jensen, V. Cahill, J. Andersson Ý, S. Weber Ý, E. Cec-
chet Þ, C. Jensen Ý, V. Cahill Ý, and Trinity College. Kaffemik - a distributed jvm on a single
address space architecture, 2001.

27. Wenzhang Zhu, Cho-Li Wang, and Francis C. M. Lau. Jessica2: A distributed java virtual
machine with transparent thread migration support. Cluster Computing, IEEE International
Conference on, 0:381, 2002.

28. Matthias Zenger. Javaparty - transparent remote objects in java, 1997.
29. Thomas Fahringer. Javasymphony: A system for development of locality-oriented distributed

and parallel java applications. In In Proceedings of the IEEE International Conference on
Cluster Computing (CLUSTER 2000. IEEE Computer Society, 2000.

30. Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano. A bytecode translator
for distributed execution of "legacy" java software. pages 236–255. Springer-Verlag, 2001.

31. Eli Tilevich and Yannis Smaragdakis. J-orchestra: Automatic java application partitioning.
pages 178–204. Springer-Verlag, 2002.

32. Michael Factor, Assaf Schuster, and Konstantin Shagin. Javasplit: A runtime for execution
of monolithic java programs on heterogeneous collections of commodity workstations. Cluster
Computing, IEEE International Conference on, 0:110, 2003.

33. Niranjan G. Shivaratri, Phillip Krueger, and Mukesh Singhal. Load distributing for locally
distributed systems. Computer, 25(12):33–44, 1992.

34. Valeria Cardellini, Michele Colajanni, and Philip S. Yu. Dynamic load balancing on web-server
systems. IEEE Internet Computing, 3(3):28–39, 1999.

35. Fachbereich Informatik, Technische Hochschule Darmstadt, Thomas Kunz, and Thomas Kunz.
The influence of different workload descriptions on a heuristic load balancing scheme. IEEE
Transactions on Software Engineering, 17(17):725–730, 1991.

36. Min Choi, Jung-Lok Yu, Ho-Joong Kim, and Seung-Ryoul Maeng. Improving performance of a
dynamic load balancing system by using number of effective tasks. Cluster Computing, IEEE
International Conference on, 0:436, 2003.

37. Girija J. Narlikar. Scheduling threads for low space requirement and good locality. In SPAA ’99:
Proceedings of the eleventh annual ACM symposium on Parallel algorithms and architectures,
pages 83–95, New York, NY, USA, 1999. ACM.

38. Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work
stealing. J. ACM, 46(5):720–748, 1999.

39. Guy E. Blelloch, Phillip B. Gibbons, Girija J. Narlikar, and Yossi Matias. Space-efficient
scheduling of parallelism with synchronization variables. In SPAA ’97: Proceedings of the
ninth annual ACM symposium on Parallel algorithms and architectures, pages 12–23, New
York, NY, USA, 1997. ACM.

40. Rob Van Nieuwpoort, Jason Maassen, Thilo Kielmann, and Henri E. Bal. Satin: Simple and
efficient java-based grid programming. In In AGridM 2003 Workshop on Adaptive Grid Mid-
dleware, 2005.



41. Gerson G. H. Cavalheiro, François Galilée, and Jean louis Roch. Athapascan-1: Parallel pro-
gramming with asynchronous tasks. In Yale University, page 98, 1998.

42. Bozhidar Dimitrov and Vernon Rego. Arachne: A portable threads system supporting migrant
threads on heterogeneous network farms. IEEE Transactions on Parallel and Distributed
Systems, 9:459–469, 1998.

43. Ayal Itzkovitz, Assaf Schuster, and Lea Shalev. Thread migration and its applications in dis-
tributed shared memory systems. Journal of Systems and Software, 42:71–87, 1997.

44. Tyng-Yeu Liang, Ce-Kuen Shieh, and Jun-Qi Li. Selecting threads for workload migration in
software distributed shared memory systems. Parallel Comput., 28(6):893–913, 2002.

45. Bouchenak Hagimont Sirac, S. Bouchenak, and D. Hagimont. Approaches to capturing java
threads state. In In Middleware 2000, 2000.

46. Takahiro Sakamoto, Tatsurou Sekiguchi, and Akinori Yonezawa. Bytecode transformation for
portable thread migration in java. In ASA/MA 2000: Proceedings of the Second International
Symposium on Agent Systems and Applications and Fourth International Symposium on
Mobile Agents, pages 16–28, London, UK, 2000. Springer-Verlag.

47. Matchy J. M. Ma, Cho-Li Wang, and Francis C. M. Lau. Jessica: Java-enabled single-system-
image computing architecture. J. Parallel Distrib. Comput., 60(10):1194–1222, 2000.

48. Sara Bouchenak and S. Bouchenak. Pickling threads state in the java system. In Third European
Research Seminar on Advances in Distributed Systems (ERSADS’99, 1999.

49. M.U. Janjua, M. Yasin, F. Sher, K. Awan, and I. Hassan. Cejvm: "cluster enabled java virtual
machine". Cluster Computing, IEEE International Conference on, 0:389, 2002.

50. Wenzhang Zhu Cho-Li, Cho li Wang, and Francis C. M. Lau. Lightweight transparent java
thread migration for distributed jvm. In In International Conference on Parallel Processing,
pages 465–472, 2003.

51. James Gosling and Henry McGilton. The java language environment: A white paper, May 1996.
urlhttp://java.sun.com/.

52. Lydia Parziale, Eli M. Dow, Klaus Egeler, Jason J. Herne, Clive Jordan, Edi Lopes Alves,
Eravimangalath P. Naveen, Manoj S Pattabhiraman, and Kyle Smith. Introduction to the new
mainframe: z/vm basics. IBM Corp., Riverton, NJ, USA, 2007.

53. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,
Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In SOSP ’03: Proceedings of
the nineteenth ACM symposium on Operating systems principles, pages 164–177, New York,
NY, USA, 2003. ACM.

54. L. A. Smith and J. M. Bull. A multithreaded java grande benchmark suite. In In Proceedings
of the Third Workshop on Java for High Performance Computing, pages 97–105, 2001.

55. Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKin-
ley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The da-
capo benchmarks: java benchmarking development and analysis. In OOPSLA ’06: Proceedings
of the 21st annual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, pages 169–190, New York, NY, USA, 2006. ACM.


