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Abstract. Peer-to-peer overlays and applications are very important in current day-to-day appli-
cations. In the future this seems to be even more relevant. Peer-to-peer technologies bring benefits
regarding decentralized control, resource optimization and resilience. Simulation is an indispensable
tool to help create peer-to-peer application protocols. Unfortunately current peer-to-peer simulators
are flawed and unable to serve their purpose beyond the limitations in memory and performance of a
single machine. We proposed DIPS, a distributed implementation of the Peersim simulator to over-
come these limitations. By utilizing technologies from parallel systems simulation, distributed agent
simulation and peer-to-peer overlays themselves we hope to produce a tool that not only overcomes
those limitations, but also outperforms existing technology.

1 Introduction

Peer-to-peer overlays and applications have had historical importance in the development of current net-
work aware applications. In the future, the number of network connected devices is expected to grow
exponentially, making peer-to-peer applications ever-more relevant. We will show the state of the art of
peer-to-peer simulation, point out its shortcomings and propose a distributed peer-to-peer simulator, DIPS,
to help developers overcome the challenges in creating peer-to-peer applications and protocols.

Peer-to-peer

Peer-to-peer (P2P) systems are distributed computer systems where network communication is done di-
rectly between endpoints, not requiring a central server as an intermediary. They oppose common client-
server architecture that composes the large majority of network communicating systems today.

P2P systems are characterized by decentralized control, large scale and great dynamism of their pop-
ulation and operating environment. Decentralized control is the key aspect of a P2P system, although
variations on the level of decentralization exist between different system types, control over interaction
between peers is never centralized.

Historically P2P systems have existed since the beginning of network communication. The rise of the
World Wide Web brought the need for specific endpoints, more powerful than regular endpoints, capable
of high throughput and with well-known names. These endpoints were then called servers as the WWW
model required them to serve pages, and later, requests in general. This was the rebirth of the client
server model (created with remote procedure calls), which proved to be a simple, efficient and secure
model, servers were assumed to always work, clients could rely on them for every need.

Another shift occurred in the network communication paradigm when hardware became powerful
enough to store and reproduce compressed music files. Huge collections previously only present in ma-
terialized media (such as in CDs) could then be dematerialized, stored in a computer hard drive and
shared. Sharing proved to be difficult, using client-server paradigm, sharing music files would clog net-
work links to the server and/or fill the servers storage space very quickly. The solution came in the form of
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a service called Napster 1. Users would download a program that would register itself, along with the files
to be shared, in a server. The program would also browse that server for the files other users had registered.
The ground breaking feature was that actual transfer of the files would occur between the endpoints, or
peers, and communication with the server was required only for registering, browsing and querying.

Network communication architectures defined as peer-to-peer are the basis of a number of systems
regarding sharing of computer resources (cycles, storage, content), directly between endpoints without an
intermediary.

Applications base themselves on a peer-to-peer architecture primarily due to its capacity to cope
with, an ever changing composition of the network and network failure. Such architectures are usually
characterized by their scalability, no single point of failure and huge amount of resources. True decentralized
peer-to-peer systems do not have an owner or responsible entity, responsibility is instead shared by all peers.
Peer-to-peer architectures also have the potential to improve and accelerate transactions through their low
deployment cost and high resilience.

Peer-to-peer simulation

When a developer creates a peer-to-peer protocol, even if analytically deemed as correct, efficient and
scalable, a test environment must be setup to evaluate the protocol’s characteristics. Peer-to-peer protocols
are usually designed to connect a very large number of nodes. In order to convincingly test the protocol,
a simulation environment is necessary. Furthermore, a reduced scale deployment on real network settings
is also required.

Current limitations and possible solutions

Current peer-to-peer simulation suffers from a peer-count limitation due to memory usage. When running
a simulation on a single computer this limitation cannot be overcome. Other approaches, such as a vir-
tualized deployment environment, have proven to be inefficient and unable to surpass the memory limit
using reasonable amounts of resources. Hence the need for a custom made solution aware of peer-to-peer
simulation implementation characteristics, to remove the memory limit and still execute the simulation
with acceptable performance.

Simulation environments such as Peersim [37] have a limit of nodes they can simulate. This limit could
be overcome with a distributed Peersim. Maintaining API compatibility at the cost of a performance
penalty, a distributed Peersim would allow the developer to simulate more nodes in his protocol with no
extra development.

A distributed Peersim would allowed developers to reach a much larger network size.

Parallelized simulation

In a very large simulated network, even a small performance penalty could have a damaging effect on the
development cycle. Peer-to-peer simulation is by definition full of parallelizable tasks. By taking advan-
tage of the inherent parallelism the developer could use Peersim communication APIs to parallelize the
simulation. Parallelism could be achieved at the cost of no central control and small changes to the code.

A simulation using a distributed Peersim with distributed control could result in a significant speedup.

1 http://www.napster.com
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Event-driven simulation

Cycle driven simulation is mostly suited for early development as it may hide problems with the protocol,
due to its serialized nature. A developer looking for a more realistic simulation using event-driven simulation
would be able to take full advantage of a distributed Peersim. The encapsulation necessary to handle
events in the simulation is in itself parallel, therefore suitable to a distributed simulation environment.
The amount of parallelism could be configured from globally synchronized to fully parallelized message
delivery, allowing a very flexible simulation code.

Simulation using a distributed Peersim event engine would allow great flexibility without limiting the
amount of simulated nodes.

2 Objectives

Current peer-to-peer simulators are incomplete tools. They bound developers by limiting the type and
broadness of simulations that are possible to be performed. Memory limitations, lack of simplicity in APIs,
poor performance, are some of the problems that plague the peer-to-peer simulator domain.

We will address some of these problems by creating a distributed peer-to-peer simulator.
In particular, this thesis aims to fullfil the following objectives:

1. Overcome memory limitations of current peer-to-peer simulators by distributing the simulation, in a
parallelized fashion, over a number of nodes.

2. Reach one order of magnitude higher peer-count than common max peer-count (one million).
3. Maintain maximum compatibility with the chosen implementation platform.
4. Minimize overhead on simulation processing time per peer.
5. Implement, maintain and document distributed realistic simulation (event driven) with similar metrics

to simple (cycle driven) simulation, regarding performance and memory footprint.

3 State of the Art

3.1 Peer-to-peer

We will look at the historical and established peer-to-peer protocols and their underlying architectures, we
will also look at current peer-to-peer systems implementations, both commercial and academic. We will
also look at peer-to-peer systems built or adapted to provide resource discovery mechanisms.

Throughout literature peer-to-peer varies in its definition particularly when considering the broadness
of the term. The strictest definitions only count as peer-to-peer systems, truly decentralized systems where
each node has exactly the same responsibility as any other node. This definition leaves out some systems
commonly accepted as peer-to-peer, such as Napster or even the Kazaa, which are responsible for a great
share of the popularity and wide-spread use of peer-to-peer technologies.

A more broad definition and widely accepted is “peer-to-peer is a class of applications that take
advantage of resources, storage, cycles, content, human presence—available at the edges of the Internet”.
This definition encompasses all applications that promote communication between independent nodes, i.e.
nodes that have a “will” not dependent on the well being of the network in our interpretation of “the edges
of the Internet”.

There are two defining characteristics of peer-to-peer architectures:

Decentralized core functionality peers engage in direct communication without the intermediation of
a central server. Centralized servers are sometimes used to accomplish or help accomplish certain tasks
(bootstrapping, indexing and others). Nodes must take action regarding organization as well as other
application specific functionality.
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Resilience to churn high churn (peers leaving and joining the network) must be the normal network
state, stability must be maintained after and during peers joins and leaves, be it voluntary or due to
failure.

3.1.1 Protocols

Napster

Napster was a file sharing utility that is commonly seen as the birth of peer-to-peer applications. Although
it was not itself peer-to-peer network overlay, it did not have a notion of network organization, it introduced
the idea of peers communicating with each other without the mediation of a server. It was also the demise
of Napster in court, brought down because of its single point of failure, that inspired the distributed routing
mechanisms that we associate today with peer-to-peer protocols.

Napster allowed users to share their own files and search other users’ shared files. It used a central
server to:

– Index users.
– Index files.
– Perform filename searches.
– Map filenames to the users sharing them.

Actual transfer of files between users was done in a peer-to-peer fashion.

3.1.1.1 Unstructured Protocols

Unstructured peer-to-peer protocols organize the network overlay in a random graph. The purpose of the
network overlay is to provide an indirect link between all nodes so that access to all data in the network
is theoretically possible, from any point in the network without the need for centralized servers. The
position of a node in the network overlay is generally determined by the bootstrap node, either explicitly
or implicitly. Queries are not guaranteed to return all or even any results, however this best effort approach
allows a minimal reorganization of both the network overlay and the underlying data, under high churn.
Unstructured peer-to-peer protocols are generally tied to their applications, this is the case of Gnutella
[46] and FastTrack [28] which we will look in more detail. Freenet [14] will be studied as well.

Freenet

Freenet is a peer-to-peer key-value storage system built for anonymity. Keys are generated by a combination
of the SHA-1 hashes of both a short data descriptive text and the users unique namespace.

Peers in the Freenet’s underlying network overlay only know their immediate neighbors. Requests are
issued for a given key, each node chooses one of its neighbors and forwards the request to that neighbor.
Requests are assigned a pseudo unique identifier, guaranteeing that a request does not loop over the same
subset of nodes. Nodes must reject requests already forwarded. A request is forwarded until either it is
satisfied or it exceeds its Hops-to-Live limit, the maximum number of times a request may be forward
between nodes. The routing algorithm improves over time by keeping track of previously queries. Thus,
the algorithm performs best for popular content.

Gnutella

Gnutella is a decentralized protocol that provides distributed search. Unlike Freenet searches in Gnutella
may return multiple results, therefore requests are forwarded using a flooding mechanism. This design is
very resilient even under high churn, however it is not scalable [30]. Like in Freenet, request and response
messages are uniquely identified as to prevent nodes to forward the same message more than once. Messages
must also respect a predefined Hops-to-Live count.
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FastTrack

FastTrack is the protocol behind the filesharing application Kazaa. It provides a decentralized search service
able to perform queries on file meta-data. FastTrack utilizes the concept of super-peers, unlike Gnutella
(the original version) and Freenet, not all peers have the same responsability. Nodes with high bandwidth,
processing power and storage space may volunteer to be super-peers. These special nodes cache metadata
from their neighbor peers improving the query process by centralizing all their information. The network
still works without super-peers and if one fails, another one is elected. The FastTrack network is therefore
a hierarchical network where most of the queries are preformed at the high performance super-peers level,
and the communication between low level peers serves only to maintain the network status, i.e. handle
churn, handle content modification and transfer file contents.

Unstructured peer-to-peer protocols organize nodes in a network in order to guarantee communication.
A request originating anywhere in the network, given enough time and resources, will arrive at its desti-
nation(s). However, in practical situations requests are limited to a level of locality by their Hops-to-Live
limit.

3.1.1.2 Structured Protocols

Structured peer-to-peer protocols offer two major guarantees:

– A request will reach its destination. And as a corollary, if an object is present in the network, it can
be found.

– The number of hops a request must perform to reach its destination is bounded.

Chord

Chord [52] is a peer-to-peer lookup protocol that builds on the concept of a distributed hash table (DHT)
to provide a scalable, decentralized key-value pair lookup system over peer-to-peer networks. It uses query
routing to satisfy the lookup and is bounded to 𝑂(𝑙𝑜𝑔(𝑛)) hops for any query. Simplicity is a key feature,
Chord supports only one operation: given a key, it maps that key onto a node.

Chord also proposes to overcome limitations of semi-centralized peer-to-peer applications and unstruc-
tured peer-to-peer protocols. Such as:

– A central server as a single point of failure (Napster).
– The number of messages to satisfy a query increases linearly with the number of nodes in the system

(Gnutella).
– Even though minimized, availability problems are not solved by the use of super-peers.

Chord has five fundamental properties:

Decentralization All nodes have the same role, no node is more important or has greater responsibility
than other nodes.

Availability Nodes responsible for a key can always be found even during massive leaves or joins.
Scalability Lookup is bounded to 𝑂(𝑙𝑜𝑔(𝑛)), therefore network size has little effect on query speed.
Load balance Chord uses a consistent hash function that guarantees a key responsibility to be evenly

spread across the network.
Flexible naming Chord does not impose constraints on key structure.
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Chord uses a consistent hash function (SHA-1) to guarantee that the key space is spread evenly across
the network. The network is defined as circular linear identifier namespace called the Chord ring. The
identifier is a 𝑚-bit number, where 𝑚 is chosen before the setup of the network. Both key names and node
names are translated into to this name space using the SHA-1 hash function.

Nodes have positions on the ring directly defined by the numerical ordering of their identifiers. Nodes
only know the location of their direct successors, a node’s successor is:

– the node whose identifier is the smallest number, larger than the current nodes identifier.

– or, if the previous condition is not possible, the node whose identifier is the smallest number of all
nodes.

𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 is the lookup function that uses successor information on the current node to get closer
to the key location; a key location is the node whose identifier is smallest number, larger than the keys
identifier (same process than the nodes successor).

In order to accelerate lookup, Chord proposes an optimization, the Finger Table. Each nodes stores
the location of 𝑚 (as defined before) nodes according to the following formula:

𝑓𝑖𝑛𝑔𝑒𝑟[𝑖] = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟((𝑛 + 2𝑖 − 1)%2𝑚)

To ensure that correct execution of lookups as the nodes leave/join the network, Chord must ensure that
each node’s pointer is up to date. The 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑒 function is called periodically on each node to accomplish
this. The function asks for the current node’s successor predecessor, which should be the current node
unless a new node as joined; if a new node has joined, the pointer is updated and new successor notified.

Pastry

Pastry [47] is a scalable distributed object location and routing middleware for wide-area peer-to-peer
applications. It provides application level routing based on a self-organizing network of nodes connected
to the Internet.

The Pastry network is composed of nodes, each one with a unique identifier 𝑛𝑜𝑑𝑒𝐼𝑑. When provided
with a message and a 𝑘𝑒𝑦, Pastry routes the message to the node with the 𝑛𝑜𝑑𝑒𝐼𝑑 numerically closer to
that key. A Pastry node routes messages to the node with the 𝑛𝑜𝑑𝑒𝐼𝑑 numerically closer to its own. 𝑛𝑜𝑑𝑒𝐼𝑑
and 𝑘𝑒𝑦 are numbers abstracted as a sequence of digits in base 2𝑏.

When routing of messages to nodes, based on a 𝑘𝑒𝑦, the expected number of routing steps is 𝑂(𝑙𝑜𝑔(𝑛)),
where 𝑛 is the number of nodes in the network. It also provides callbacks to the application during routing.
Pastry accommodates network locality, it seeks to minimize the messages travel distance according to some
metric such as the number of IP routing hops or the latency in connections. Each node keeps track of its
immediate neighbors in the 𝑛𝑜𝑑𝑒𝐼𝑑 space, callbacks for the application are provided for node arrivals,
failures and recoveries.

In order to route a message, a given node chooses one of its neighbors, which should have a prefix (or
𝑏 bits) closer to the message key, that is if the current 𝑛𝑜𝑑𝑒𝐼𝑑 has a prefix with 𝑚 digits in common with
the key, the chosen node should have a prefix with, at least, 𝑚 + 1 nodes in common with the key. If no
such node exists, then the message is forward to a node with a 𝑛𝑜𝑑𝑒𝐼𝑑 that has a prefix with 𝑚 digits in
common with the key, as long as that 𝑛𝑜𝑑𝑒𝐼𝑑 is numericaly closer to that key.

Applications have been built using Pastry, such as a persistent storage utility called PAST [48] and a
scalable publish subscribe system called SCRIBE [10] .
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Content Addressable Network

Content Addressable Network [44] (CAN) is a distributed Internet-scale, hash table. Large-scale distributed
systems, most particularly peer-to-peer file sharing systems such as Napster and Gnutella, could be im-
proved by the use of a CAN.

Semi-centralized peer-to-peer applications such as Napster have problems scaling and are vulnerable
(single point of failure).

Decentralized unstructured peer-to-peer protocols are only complete (all objects in the network can be
found) in very small networks. As networks get bigger some objects become unreachable, so we can say
unstructured peer-to-peer protocols cannot scale with respect to completeness.

CAN’s first objective was to create a scalable peer-to-peer system. An indexing system used to map
names to locations is central to the peer-to-peer system. The process of peer-to-peer communication is
inherently scalable, the process of peer location is not. Hence the need for a scalable peer-to-peer protocol.

CAN resembles a hash table; insertion, lookup and deletion of (key, value) pairs are fundamental
operations. It is composed of many individual nodes. Each node stores a chunk of the hash table (called a
zone), as well as information about a small number of adjacent zones. Requests are routed towards the node
whose zone contains the key. The algorithm is completely distributed (no central control or configuration),
scalable (node state is independent of the systems size), it is not hierarchical and it is only dependent of
the application level (no need for transport OS operating system layer integration).

Large-scale distributed systems are one possible application of the CAN protocol. These systems require
that all data be permanently available and therefore an unstructured protocol would be unsuitable as
basis for such systems (see section 3.1.2). Efficient insertion and removal in a large distributed storage
infrastructure and a scalable indexing mechanism are essential components that can be fulfilled with
CAN.

A wide-area name resolution service (a distributed non hierarchical version of DNS) would also benefit
from this CAN.

Tapestry

Like Pastry, Tapestry [58] shares similarities with the work of Plaxton, Rajamaran and Richa [43].
Tapestry supports a Decentralized Object Location API [15]. The interface routes messages to end-

points. Resources are virtualized since the endpoint identifier is opaque and does not translate any of the
endpoint characteristics, such as physical location.

Tapestry focus on high performance, scalability, and location-independence. It tries to maximize mes-
sage throughput and minimize latency. Tapestry exploits locality in routing messages to mobile endpoints,
such as object replicas. The author claims that simulation shows that operation succeed nearly 100% of
the time, even under high churn. This, however, has been disputed [45].

The routing algorithm is similar to Pastry, messages are routed to a node that shares a larger prefix
with the key for that message.

Like Pastry, Tapestry builds locally optimal routing tables at initialization and maintains them. Using
a metric of choice, such has network hops, the relative delay penalty, i.e. the ratio between the distance
traveled by a message to an endpoint and the minimal distance is two or less in a wide-area.

Tapestry uses multiple roots for each data object to avoid single point of failure.
Examples of applications built with Tapestry are Ocean Store [27] and Bayeux [59].

Kademlia

Kademlia [35] is a peer-to-peer distributed hash table. It differs from other structured peer-to-peer pro-
tocols as it tries to minimize the number of configuration messages. Configuration is organic, it spreads
automatically with key lookups. Routing is done through low latency paths. Opaque keys of 160-bit are
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used, key/value pairs are stored on nodes with 𝑖𝑑 closest to the key. It utilizes a XOR metric to measure
distance between points in a key space, the distance between 𝑥 and 𝑦 is 𝑥⊕ 𝑦. Symmetry in XOR allows
queries to be forward through the same nodes already present in the destinations routing table. Kademlia
treats nodes as leaves in a binary tree with the node’s position determined by the shortest unique prefix
of its id. The protocol guarantees that each node knows of a node belonging to each of the sub-trees not
containing this node.

Viceroy

Viceroy [32] is another DHT system that employs consistent hashing. Its structure is an approximation
of a butterfly network. The number of hops required to reach a node is bounded with high probability to
𝑂(𝑙𝑜𝑔(𝑛)) and the number of nodes each node must maintain contact is seven. This constant link number
makes churn less burdensome as the number of nodes affected by the arrival and departure of any given
node is lowered.

Koorde

”Koorde is a simple DHT that exploits the Bruijn graphs[5]” [25]. Koorde combines the approach of Chord
with the Bruijn graphs, embedding the graph on the identifier circle. As a result Koorde maintains Chords
𝑂(𝑙𝑜𝑔(𝑛)) max hop bound, but, like Viceroy, requires only a constant degree, the number of neighbors a
node must maintain contact with. Unlike Viceroy the number of hops is bounded to 𝑂(𝑙𝑜𝑔(𝑛))

Symphony

Symphony [33] is yet another example of a DHT. It is inspired by Kleinbergs’s Small World [26]. Like
both Koorde and Viceroy it requires only a 𝑂(1) degree. The max hop bound is 𝑂( 1

𝑘 𝑙𝑜𝑔
2(𝑛)). However,

Symphony allows a trade off between the degree of the network and the max hop bound at runtime.

3.1.2 Systems

OceanStore

OceanStore [27] is a distributed storage system. Data is stored, replicated, versioned and cached over a
peer-to-peer network. It was designed with two differentiating goals:

1. Support for nomadic data. Data flows through the network freely, due to the need for data locality
relative to its owner. Data may cached anywhere, at anytime.

2. The ability to be deployed over an untrusted infrastructure. OceanStore assumes the infrastructure
is untrusted. All data in the infrastructure is encrypted. However, it participates in the protocols
regarding consistency management, so servers are expected to function correctly.

Object location through routing is done using a two tier approach. First a distributed algorithm based
on a modified version of a Bloom filter, will try locate the object. Since this is a probabilistic solution it
may fail. In case of failure the object will be located using a version of the Plaxton algorithm [43]. Replica
placement is published on the object’s root, i.e. the server with 𝑛𝑜𝑑𝑒𝐼𝑑 responsible for the object’s id.
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Simulation parameters Network width Network degree Locality properties

Chord 𝑛: number of peers 𝑂(𝑙𝑜𝑔(𝑛)) 𝑙𝑜𝑔(𝑛) None

Pastry 𝑛: number of peers; 𝑏:
base of the chosen iden-
tifier

𝑂(𝑙𝑜𝑔𝑏(𝑛)) 2𝑏 * 𝑙𝑜𝑔𝑏(𝑛) Accounts for locality in
routing

CAN 𝑛: number of peers; 𝑑:
number of dimensions

𝑂(𝑑.𝑛
1
𝑑 ) 2𝑑 None

Tapestry 𝑛: number of peers; 𝑏:
base of the chosen iden-
tifier

𝑂(𝑙𝑜𝑔𝑏(𝑛)) 𝑙𝑜𝑔𝑏(𝑛) Accounts for locality in
routing

Kademilia 𝑛: number of peers; 𝑏:
base of the chosen iden-
tifier; c: small constant

𝑂(𝑙𝑜𝑔𝑏(𝑛)) + 𝑐 𝑏 * 𝑙𝑜𝑔𝑏(𝑛) + 𝑏 Accounts for latency
when choosing routing
path

Viceroy 𝑛: number of peers; 𝑂(𝑙𝑜𝑔(𝑛)) with high
probability

𝑂(1) None

Koorde 𝑛: number of peers; 𝑂(𝑙𝑜𝑔(𝑛)) 𝑂(1) None

Symphony 𝑛: number of peers; 𝑘
constant

𝑂( 1
𝑘
𝑙𝑜𝑔2(𝑛)) 𝑂(1) None

Table 1. Comparison of structured peer-to-peer protocols.

Squirrel

Squirrel [23] is a decentralized peer-to-peer web cache. It uses Pastry as its object location service. Pastry
identifies nodes that contain cached copies of a requested object. Squirrel may operate using one of two
modes. Following a request, a client node will contact the node responsible for that request, the home
node:

1. If the home node does not have the object, it will request it from the remote server and send it to the
client

2. The home has a directory, potentially empty, with references of other nodes that may have a copy of
the object. These were created at previous requests. A randomly chosen reference is sent back to the
client, and he is optimistically added to the directory.

Evaluation of the Squirrel system was performed using a mathematical simulation, fed with real data
acquired by executing two different traces of Internet usage. Ranging from 105 to 36782 clients.

Scribe

Scribe [10] is an application-level multicast infrastructure built on top of Pastry. Scribe overcomes lack of
wide-spread deployment of network level multicast by building a self organizing peer-to-peer network to
perform this task.

Any Scribe node can create a group. Other nodes may join that group. The system provides a best-
effort delivery policy, and no delivery order guarantee. Each group has a 𝑔𝑟𝑜𝑢𝑝𝐼𝑑, and information of the
nodes in the group. These are mapped into a 𝑘𝑒𝑦, 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 pair. The Pastry node responsible for the
𝑔𝑟𝑜𝑢𝑝𝐼𝑑 acts as a rendez-vous point, for that group. It is also possible to force the rendez-vous point to
be the group creator. Message delivery is done through a multicast tree algorithm similar to reverse path
algorithm [16].
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Scribe was evaluated using a custom build discrete event simulator. The simulation was composed of
100,000 nodes. The simulation was composed of both the Pastry nodes and the underlying routers (5,050),
this allowed to simulate delay penalty of application multicast over network multicast.

PAST

PAST [48] is a peer-to-peer persistent storage system not unlike OceanStore. Files are stored, cached and
replicated over a network of peer-to-peer nodes organized using the Pastry protocol. Files stored in PAST
possess a unique id and are therefore immutable. PAST uses Pastry’s network locality to minimize client
latency.

PAST evaluation was done using a custom simulation over the actual implementation of the system.
It used a single Java virtual machine. Simulation was fed data from two traces, one referencing 4,000,000
documents and the other 2,027,908.

Meghdoot

Meghdoot [19] is a publish subscribe system based on CAN. The events are described as tuple of attributes
where each attribute has a name and, a value or range. Subscriptions are stored in the network. When an
event arrives, the network must identify all matching subscriptions and deliver the event.

Simulation of Meghdoot was done using a custom simulator. Two event sets were used, one generated
randomly, the other real stock data. Subscriptions were generated randomly. The event sets contained
115,000 objects and 115,353 respectively. The system was tested with 100, 1000 and 10,000 peers.

Others

Other examples of peer-to-peer systems are Ivy [39], a versioned file storage system. Farsite [1] is another
distributed file storage system.

3.1.3 Peer-to-Peer protocols for Resource Discovery

Nodes participating in a network usually share resources between them. The systems we have seen so far
have these resources completely specified and integrated in the underlying protocol, namely files, documents
or even topics. Grid like networks can be built on top of a peer-to-peer overlay only if the overlay is capable
of providing a resource discovery service for computing resources (i.e., CPU time).

It has been argued in literature that Grid and Peer-to-Peer systems will eventually converge [54].
Resource discovery protocols in peer-to-peer systems can be devided as targeting structured and un-

structured networks. Examples of these protocols for unstructured networks can be found in [22, 55, 34].

Resource discovery in unstructured peer-to-peer networks

Regarding architecture, nodes are generally organized into a cluster, mostly grouped by virtual organiza-
tion, where one or more of the nodes act as a super-peers.

Resource indexing is done at the level of the super-peer or equivalent, or, in Iamnitchi et al. [22] each
peer maintain information about one or more resources.

Query resolution is done using a routing index. Statistical methods based on previous querys select the
super-peers with the highest probability of success. However, in Iamnitchi et al. queries are routed using
either random walk or a learning-based best-neighbor algorithm.

Experiments [34] show that the super-peer model is an appropriate model for grid like services, due to
its closeness to the current Grid model.
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Resource discovery in structured peer-to-peer networks

MAAN [8] proposes an extension to the Chord protocol to accept multi-attribute range-queries. Queries
are composed of multiple single attribute queries, one different DHT per attribute.

Andrzejak et al. [3] extended the CAN system to support range queries. Resources are described by
attributes. Queries on discrete attributes will be routed using regular CAN functionality, queries over
continuous spaces will use the extension. As in MAAN, there is one DHT per attribute.

SWORD [41] uses a DHT system called Bamboo, similar to Pastry. SWORD provides mechanisms for
multi-attribute range queries as before. However in SWORD each attribute is assigned to a subregion of
a single DHT.

XenoSearch [51] extends Pastry. Once again each attribute is mapped to its own Pastry ring. Attribute
range queries are preformed separately and then combined through intersection.

Mercury [4] is based on Symphony. Each single attribute is assigned a different DHT. Each node stores
all information on all attributes on all hubs. This way the smallest range query is chosen and therefore
only one DHT needs to be queried.

3.2 Simulation

Simulation is an important tool to test protocols, applications and systems in general. Simulation can be
used to provide empirical data about a system, simplify design and improve productivity, reliability, avoid-
ing deployment costs. Simulation testbeds offer different semantics/abstraction levels in their configuration
and execution according to the level of abstraction desirable for each type of simulation.

We will look at the simulation of systems, networks and agents, and their relevance to the distributed
simulation of peer-to-peer network overlays. We will look at two types of simulation: discrete-event and
real-time simulation.

Discrete-event Simulation

Traditional discrete-event simulations are executed in a sequential manner. A variable 𝑐𝑙𝑜𝑐𝑘 maintains the
current status of the simulation and is updated it progresses. A 𝑒𝑣𝑒𝑛𝑡𝑙𝑖𝑠𝑡 data structure holds a set of
messages scheduled to be delivered in the future. The message with the closer delivery time is removed from
the event list, the corresponding process is simulated and the 𝑐𝑙𝑜𝑐𝑘 is updated to the delivery time. If the
simulated process generates more messages, these are added to the event list. This is called event-driven
simulation because the clock always moves to the next delivery time and never in between.

Real-time Simulation

Real-time simulation evolved from virtual training environments. Particularly useful to the military, it
respects real-time to integrate simulated components with live entities, such as humans. It suffers from
scalability problems, as the whole simulation and simulated activities must be executed in real-time (prob-
ably in concurrent manner).

3.3 Network Simulation

Network simulation is a low level type of simulation. Network simulation tools model a communications
network by calculating the behavior of interacting network components such as hosts and routers, or even
more abstract entities such as data links. Network simulation tools allow engineers to observe the behavior
of network components under specific conditions without the deployment costs of a real large-scale network.
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High-level design problems for the digital communication infrastructure are very challenging. The
large scale and the heterogeneity of applications, traffic and media, combined with QoS restrictions and
unreliable connectivity, makes this a non-trivial problem.

Application and protocol development at the network level involve a number of heterogeneous nodes
that are both expensive and hard to assemble. Simulation is therefore the best solution when testing low
level network applications and protocols.

3.3.1 Ns-2

Ns-2 2 is a discrete-event network simulator. Ns-2 is the defacto standard tool for network simulation.
NS-2 generates data down to the packet level. The simulator ships with a number of simulated protocols

such as udp and tcp. The modular approach allows for the implementation of custom protocols, this can
be done by extending base classes of the simulator.

Simulations are executed and controlled through configuration scripts written in the OTcl language
with a custom API.

3.3.2 Peer-to-peer Network Simulation

Peer-to-peer simulation is an abstraction from general network simulation. Simulating peer-to-peer pro-
tocols involves the transfer of messages between peers and the collection of statistics relevant to the
simulation.

The peer-to-peer simulation as in general network simulation, is composed of two different pieces of
code. The simulator code is responsible for the execution of the simulation, it creates peers, maintains the
main simulation loop and delivers messages if necessary. The simulated protocol code is responsible for
the logic particular to the protocol, it is the code to be run when a node needs to be simulated. This code
will be run either to simulate message arrival or at regular interval during the main loop.

We will look at current peer-to-peer simulators regarding their:

– Simulation type
– Scalability
– Usability
– Underlying network simulation fidelity.

Current peer-to-peer simulators may offer two modes of operation, the event-driven mode is a discrete-
event simulation closely related to more general network simulation and to the simulation of systems.
Messages are sent between simulated peers, they are saved in a queue and processed in order by the
simulation engine, that runs code to simulate the destination peer receiving the message.

The other type of simulation is a cycle-based simulation, it resembles real-time simulation. In cycle-
based simulation each simulated component (the peer) is run once per cycle, whether or not it has work to
be done. This offers a greater abstraction than the event-based engine as the simulated peers information
are available at all points of the simulation. The level of encapsulation when simulating an individual peer
is left to the implementor of the protocol to decide.

Simulation of very large networks is particularly relevant when simulating peer-to-peer protocols and
systems. The usual deployment environment for a peer-to-peer application is a wide-area network. Whether
a peer-to-peer simulator can scale to the size of real wide-area network is a very important factor in choosing
a peer-to-peer simulator.

Another important factor is how well documented is the simulator. The simulator must be configured
using a configuration language that is either declarative or procedural, we must take into consideration
how easy and powerful it is.

2 http://www.isi.edu/nsnam/ns/
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Peersim

Peersim [37] is a peer-to-peer simulator written in Java. It is released under the GPL, which makes it very
attractive for research.

Peersim offers both cycle-based and event-driven engines. It is the only peer-to-peer simulator discussed
here that offers support for the cycle-based mode. Peersim authors claim the simulation may reach 106

nodes in this mode.
The cycle-based mode is well documented with examples, tutorials and class level documentation. The

event-driven mode however, is only documented at class level. Peersim utilizes a simple custom language
for the simulation configuration. All control and statistical gathering must be done by extending classes
of the simulator that will then be run in the simulation.

Peersim offers some underlying network simulation in the event-driven mode, it will respect message
delay as requested by the sender.

P2PSim

P2PSim [18] is a peer-to-peer simulator that focus on the underlying network simulation. It is written in
C++ and like in Peersim, developers may extend the simulator classes to implement peer-to-peer protocols.

The network simulation stack makes scalability a problem in P2PSim. P2PSim developers have been
able to test the simulator with up to 3,000 nodes.

The C++ documentation is poor but existent. Event scripts can be used to control the simulation. A
minimal statistics gathering mechanism exists built in to the simulator.

Overlay Weaver

Overlay Weaver [50] is a toolkit for the development and testing of peer-to-peer protocols. It uses a
discrete-event engine or TCP/UDP for real network testing.

Distributed simulation appears to be possible but it is not adequately documented. Scalability wise the
documentation claims the simulator may handle up to 4,000 nodes, the number of nodes is limited by the
operating systems thread limit.

The documentation is appropriate and the API is simple and intuitive. Overlay Weaver does not model
the underlying network.

PlanetSim

PlanetSim [17] is also a discrete-event simulator written in Java. It uses the Common API given in [15].
The simulator can scale up to 100,000 nodes. The API and the design have been extensively documented.

The support for the simulation of the underlying network is limited, however it is possible to use BRITE
[36] information for this purpose.

3.4 Parallel simulation

Parallelization requires the partition of the simulation into components to be run concurrently. Simulation
of systems embodies this concept directly.

We can model a system as:

System A collection of autonomous entities interacting over time.
Process An autonomous entity.
System state A set of variables describing the system state.
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Simulator Engine Type Scalability Usability Underlying
Network

PeerSim cycle-driven and
discrete-event

1,000,000 nodes good documentation
for the cycle-driven
engine

not modeled

P2PSim discrete-event 3,000 nodes some documentation strong underly-
ing network sim-
ulation

Overlay Weaver discrete-event 4,000 nodes (lim-
ited by OS max
threads)

appropriate docu-
mentation

not modeled

PlanetSim discrete-event 100,000 nodes good documentation some support

Table 2. Comparison of Peer-to-Peer Simulators

Event An instantaneous occurrence that might change the state of the system.

Processes are the autonomous components to be ran in parallel. However, the separation of the sim-
ulation into multiple components requires concurrent access to the system state which poses problems of
synchronization.

Real-time simulation is typically parallel as components should be simulated concurrently given the real-
time restrictions and the interaction with live components. In real-time simulation even if some components
are implemented sequentially, partition for parallel execution is a trivial process since all events must be
made available to all (interested) components at the time they occur.

Discrete event simulation is usually sequential.

3.4.1 Parallel discrete-event simulation of systems

In parallel simulation of physical systems, consisting of one or more autonomous processes,interacting with
each other through messages, the synchronization problem arises. The system state is represented through
the messages transfered between processes, these messages are only available to the interacting processes
creating a global de-synchronization.

A discrete-event simulation is typically a loop where the simulator will fetch one event from a queue,
execute one step of the simulation, possibly update the queue and restart. Simulation is slower than the
simulated systems.

Discrete-event system simulations are by their very nature sequential. Unfortunately this means existing
simulations cannot be partitioned for concurrent execution.

Sophisticated clock synchronization techniques are required to ensure cause-effect relationships.
In systems where process behavior is uniquely defined by the systems events, the maximum ideal

parallelization can be calculated as the ratio of the total time require to process all events, to the length
of the critical path through the execution of the simulation.

Parallelization of a discrete-event simulation can be approached using one of two strategies, regarding
causality:

Conservative strategy If a process knows an event with a time stamp 𝑇1, it can only process this event
if, for all other events 𝑇𝑛 received afterwards: 𝑇1 < 𝑇𝑛. A parallel discrete-event algorithm was devel-
oped independently by Chandy and Mistra [11] and Bryant [6]. The simulation must statically define
links between communicating processes. By guaranteeing that messages are sent chronologically across
links, the process can repeatedly select the link with the lowest clock, and if there are any messages
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there, process it. This might lead to deadlocks when all processes are waiting on links with no messages.
The problem of deadlocks can be solved using null messages, a process will send an empty message to
update the links clock preventing deadlocks. This is highly inefficient so other approaches have been
proposed [12].

Optimistic strategy Is based on the idea of rollback. The process does not have to respect causality
in processing received messages, it may process all messages it has already received (in chronological
order) independent of the incoming link clocks. To recover from errors, the process maintains a Local
Virtual Time (LVT) equal to maximum of all processed messages. It must also maintain a record of its
actions from the simulation time (the lowest time stamp on all links) up to its LVT. When a message
with a time stamp smaller than the LVT arrives, called a straggler, recovery must be done. The rollback
process consists on recovering the state of the process at the time of the straggler. The process must
also undo all messages that it might have sent. The undo process involves sending an anti-message.
The receiving process must then initiate a rollback process up to the message it has processed before
the anti-message. This process is called Time Warp with aggressive cancellation. Alternatively, the
process might only send the anti-message to a incorrectly sent message 𝑀 if it verifies that 𝑀 is not
generated up the its time stamp.

An optimistic approach places an extra burden on the protocol description, as it must describe anti-
messages, which are not necessary under live deployment.

Lazy cancellation may improve performance depending on the simulated system. Studies on perfor-
mance using optimistic strategies can be found in [29, 31]. An optimization to the Time Warp protocol
in a system where each instance is responsible for more than one component can be found in [56].

3.5 Distributed Simulation

Distributed simulation differs from parallel simulation on a small number of aspects.

Distributed systems must take into account network issues related to their distributed nature, notably:

– Latency

– Bandwidth

– Synchronization

The above are problems that all distributed systems must take into account. Other problems, depending
on the type of simulation may also arise. Fault tolerance, replication, shared state, interest management
and load balancing are examples of those.

Simulation of peer-to-peer systems is traditionally done in a sequential manner, and with the exception
of Oversim no simulator offers the possibility of distributed execution, and this is more a foreseen possibility
than an actual implementation [40].

We have to look outside of network simulation to get insights on the inner workings of distributed
simulators.

Simgrid [9] is a high-level simulator for scheduling in cycle-sharing systems. GridSim [7] is also a
toolkit for modeling and simulation of resource managements in grid environments. These very high level
simulators capture only a small portion of the complexity in grid resource allocation and management.

Other systems such as cycle sharing systems [2, 13] implement related mechanisms as they abstract
units of work to be executed in distributed environments. These, as with frameworks to help distribute
systems like the PVM [53], have close ties to distributed simulation as they suffer from the same problems
and implement some of the same solutions regarding the distributed aspect of their operation.
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Distributed simulation of agent-based systems

Agent simulation is an area where distributed simulation environments are used extensively.
Agent based systems deployment areas include telecommunications, business process modeling, com-

puter games, control of mobile robots and military simulations [24]. An agent can be viewed as a self
contained thread of control able to communicate with its environment and other agents through message
passing.

Multi agent systems are usually complex and hard to formally verify [24]. As a result, design and
implementation remain extremely experimental. However, no testbed is appropriate for all agents and
environments [20].

The resources required by simulation overcome the capabilities of a single computer, given the amount
of information each agent must keep track of. As with any simulation of communicating components,
agent based systems have a high degree of parallelism, and as with other particular types of simulation
distributing agents over a network of parallel communicating processes have been proven to yield poor
results [21].

JAMES, a platform for telecommunication network management with agents is an example of a system
that does parallel simulation [42].

Decentralized event-driven distributed simulation is particularly suitable for systems inherently asyn-
chronous and parallel. Existing attempts model the agents environment as a part of a central time-driven
simulation engine. Agents may have very different types of access to their environment. Depending on this
type of access and their own implementation they might be more or less autonomous. Given traditional
agent based models, distributed simulation of agents based systems differs from other discrete-event simu-
lation in one important aspect: usual interaction is between the agent and its current environment, there
is no direct interaction between agents.

Real time large scale simulation approaches the problem of interest management [38]. An interest
manager matches events with the agents that have an interest in that event. This helps the system to save
resources by only making available events to the agents that actually require them. Interest expressions
are used to filter information so that it processes only access information relevant to them.

4 Architecture

This thesis is part of a larger internal project (see Figure 1) to:

– Increase scalability of simulation tools
– Unleash the power of idle CPU cycles
– Further Grid and overlay research

The project aims at solving not only the limitations of current peer-to-peer simulation, but to create an
environment for peer-to-peer overlay and Grid research that is extensible, promotes code reuse and defines
new standards. Leveraging idle CPU cycles that are so prevalent today, as more and more computer-like
devices are present in peoples life, is both the goal and the reasoning behind this project as applications
must be built to take advantage of this reality. This thesis is a step towards improving the peer-to-peer
simulation tools and building the distributed basis that will allow future grid research to take advantage
of the global network environment.

4.1 DIPS: Distributed Implementation of the Peersim Simulator

Peersim is a very flexible and simple tool that allows for the same idea to be implemented in a number
of different ways. In particular, simulations can be implemented using both a cycle driven engine and an
event driven engine.
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Fig. 1. Overview of the Peer4Peer architecture
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Peersim seems to focus on simplicity and takes a get out of the way approach. One example of this is
the direct access to objects simulating the peers, these objects have access to the entire simulation state
and could potentially create a web of references not at all appropriate for distributed execution.

Taking advantage of the flexibility in Peersim, we propose DIPS, a distributed implementation of
the Peersim simulator. As shown in Figure 2, DIPS is a system composed of several Peersim instances
communicating between them to improve the amount of resources available to the simulation.

We propose the execution engine of DIPS to be divided in three complementary aspects, to be imple-
mented in sequence. Peersim current implementation is already divided between a cycle-driven mode and
a event-driven mode. We maintain these two modes and aim at maintaining compatibility with the current
API; we add a third mode in order to, although breaking compatibility, overcome the performance issues
that the cycle-driven mode will unavoidably suffer.

Fig. 2. Overview of DIPS instances

Fig. 3. Overview of the DIPS architecture
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4.2 Aspect I: Fully transparent distributed interface

This approach is the one that most resembles original Peersim implementation. Its main purpose is to
maintain compatibility with simulations built for the original Peersim. As a result it aims to provide one
simple improvement: developers wanting to implement a simple simulation, or unwilling to deal with the
specific issues of a distributed simulation, can use this approach to overcome Peersim original memory
limitation using all of the original API.

However some limitations are inevitable. Peer proxies are used to communicate between central control
and distributed peers, therefore only methods can be called, central control does not have access to prop-
erties of the peers. Also any parameter and return value of a proxied method, must be serializable. The
developer must write the implementation so that modification to objects directly under a peer control, be
encapsulated.

Fig. 4. Aspect I: Fully transparent distributed interface

4.3 Aspect II: Distributed Control with aggregation

This approach would be the preferred way to take advantage of DIPS in the cycle driven mode. The
objective is the same as the first approach, overcome the memory limitation of a single Peersim instance.
In order to do so and keep performance at acceptable levels, a set of APIs would be offered. The original
API would be respected, however it would only have access to local peers. Communication between control
objects in different Peersim instances would be guaranteed through an additional API, including transfer
of peers between instances.

The figure shows that simulation control would be distributed among instances. This control would
have to synchronize or, at least operate knowing that each piece only controls local peers. This aspect
requires that developers know their simulation will be ran in a distributed environment.

4.4 Aspect III: Event driven distributed simulation

The event driven simulation aspect would be the primary approach for event driven simulation. Messages
to be passed between nodes are intercepted and routed to the right instance. The api would use a best effort
approach to the message transport delay simulation. All compatibility between the event driven engine
and the cycle driven engine would be broken. This is necessary to limit the overhead of synchronization
between Peersim instances. Control objects can be used as in the second aspect.
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Fig. 5. Aspect II: Distributed Control with aggregation

Fig. 6. Aspect III: Event driven distributed simulation
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4.5 Simulation Realism

Determinism is not a requirement for peer-to-peer protocols in live deployments. As such, it is also not a
strict requirement for peer-to-peer simulation. Reproducibility would be a welcomed characteristic to the
simulation engine, unfortunately much of the gains of parallelization are incompatible with the determinism
required for reproducibility.

Still, we want the simulation to portray the simulated system/overlay as realistically as possible, ac-
cording to the expected protocol behavior when deployed in a wide area network.

Peer-to-peer protocols, contrary to lower-level network protocols, cannot rely for correctness on guaran-
tees regarding message latency or delivery delay. Therefore, correct protocols will operate correctly
on a distributed simulator without such guarantees.

Nevertheless, we want simulation to be realistic, that is, that the observed node behavior and inter-
actions among nodes are coherent with what would be observed in a real deployment assuming normal
network operation.

The simulation of each partition without any coordination would reveal isles in the overlay, not reflecting
any characteristic of the topology, but simple artifacts of the simulation. Unlike in real deployment, regions
would be created where message links with a much higher throughput and much lower latency would be
formed between nodes present in these regions. The presence of these links would generate an artificial
increase of interaction between the nodes connected by them. This would cause imbalance in resource
usage and possibly lower resource utilization in overlays characterized by great dynamism (e.g., resource
discovery in a cycle-sharing system).

We intend to offer a spectrum of realism levels in the simulation, trading better performance for
increasing unrealistic deviations in relative message delivery delay:

– On one end, all instances implement a barrier where they can only progress when they achieve con-
firmation that there are no outstanding messages to be delivered to nodes simulated in that instance,
across the simulation.

– On the other end, simulation will carry on as described above, for those protocols that do not suffer
from message delivery time varying unrealistically.

Between these two extremes, inspired by approaches based in divergence bounding [49, 57], instances
may delay and batch messages sent to nodes in other instances (i.e. transfer messages in batch packets)
up to a maximum divergence bound, upon which, confirmation of message delivery is mandatory (i.e., a
barrier is dynamically set-up among two or more instances of PeerSim).

The divergence bound may be expressed as a real time simulation parameter (e.g., every 10 seconds of
clock time) or as simulation time (e.g., up to 100 messages between nodes placed in different instances).

4.6 Routing and Load Balancing

Simulated peers must be distributed through the simulator instances. This poses two problems:

– The number of peers must be balanced throughout the instances.
– The simulation engine must know in which instance, any given peer, is located (i.e., being simulated).

We propose two solutions, a distributed hash table and neighborhood clustering.
The traditional approach is to use a distributed hash table. Simulated peer 𝑖𝑑𝑠 are already generated

randomly, we apply a consistent hashing algorithm to these 𝑖𝑑𝑠, this will give the location of the peer with
that id. By using consistent hashing we guarantee load balancing throughout the instances. Location of
peers is therefore only dependent on the hashing algorithm, with no memory overhead.
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In order to optimize peer location we propose that this location can be defined by clustering together
neighboring peers. Peer permanent location will only be decided when the implementing protocol defines
a neighborhood between that peer and other peers. Then the peer temporary 𝑖𝑑 will be substituted by
an 𝑖𝑑 prefixed with a 𝑛𝑎𝑚𝑒𝑠𝑝𝑎𝑐𝑒 that identifies the peer location. It is noteworthy that the peer 𝑖𝑑 will
maintain its random properties as the second part of the 𝑖𝑑 will still be random.

4.7 Fault-Tolerance

When PeerSim fails, simulations must be restarted. With several instances of PeerSim, the probability of
one failing increases. Whenever instances block on a global barrier (e.g., every 2 hours of execution), each
one saves on disk:

– its node list and state
– message queue
– message batch packets unsent and those received but not yet inserted in queue
– global simulation time

If one fails, the whole simulation can be restarted from a previously completed checkpoint.

5 Assessment

In order to execute a general assessment of our peer-to-peer simulator we will adapt, as necessary, the
protocols distributed as examples with Peersim, to work with our distributed peer-to-peer simulator. All
necessary adaptations will be analyzed to guarantee their necessity. Our goal is to provide an API that
gracefully degrades, i.e. adaptations are not mandatory but they will improve performance.

A number of tests will then be executed to assess the correctness and performance of the simulator:

– Each protocol must be tested in both the original Peersim and in our simulator to guarantee the
simulators correctness, i.e., that the protocol does not break by having simulated peers with wrong or
unrealistic behavior. Furthermore, any protocol that exhibits some kind of convergence property (e.g.,
estimating network radius) will also behave accordingly in simulation.
This does not entail necessarily complete determinism (in message delivery order) among different runs
of the same simulation. This stricter propoerty is not required by peer-to-peer protocols as it is not
enforceable in real world wide area networks.

– Each protocol must also be tested in increasing peer count, in both Peersim and DIPS to gain empirical
data about the performance penalty incurred by our distributed simulator.

The distributed peer-to-peer simulator must be evaluated in accordance with objectives described in
section 2. Tests will be performed to assess the completion of those objectives:

Overcome memory limitations of current peer-to-peer simulators We will conduct independent
experiments to assess the memory limitations of current peer-to-peer simulators using provided example
protocols. These protocols will then be adapted to work with our distributed peer-to-peer simulator
in order to prove those memory limitations have been overcome.

Reach one order of magnitude higher peer count The maximum peer count is claimed by the Peer-
sim simulator, which will serve as the basis to DIPS, and is set at one million nodes. We will create a
simple protocol for our simulator to prove it can reach ten million simulated nodes.

Minimize simulation overhead We will further assess the performance gains of the second aspect of
our simulator by comparing absolute simulation times of similar simulations in both the first and second
aspects, therefore evaluating simulation speedup in throughput and, ultimately, simulation scalability.
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6 Conclusions

Peer-to-peer overlays and applications are very important in current day-to-day applications. In the future
this seems to be even more relevant.

In this thesis we have shown the benefits of using peer-to-peer technologies. We have also shown the
importance of simulation in the development of peer-to-peer applications and protocols.

Unfortunately current peer-to-peer simulators are flawed and unable to serve their purpose beyond the
limitations in memory and performance of a single machine.

We concluded that Peersim is the most complete simulation tool in the peer-to-peer realm, it’s cycle-
based and event-driven engine allow developers access to the different levels of abstraction needed in each
step of the development process.

We proposed DIPS, a distributed implementation of the Peersim simulator to overcome these limita-
tions. By utilizing technologies from parallel systems simulation, distributed agent simulation and peer-
to-peer overlays themselves we hope to produce a tool that not only overcomes the limitations of current
peer-to-peer simulators but also outperforms them.
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A Planning

The implementation of the DIPS simulator will be executed according to the following plan:

– Prepare the Peersim engines for distributed execution - 4 weeks
– Implement the proxy component - 2 weeks
– Implement communication APIs for distributed control - 3 weeks
– Implement the message routing interface - 1 weeks
– Implement the checkpoint component - 3 weeks
– Implement the message buffer component - 1 week
– Implement the optimistic algorithms to the message buffer component - 4 weeks
– Implement the neighborhood based load balance component - 3 weeks
– Final tests - 3 weeks

This project has an expected duration of 24 weeks, to be started on 01-02-2011 and end at 19-07-2011.
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