
Technical Report RT/07/2005

A Comprehensive Approach for Memory
Management of Replicated Objects

Luı́s Veiga Paulo Ferreira
INESC-ID/IST, Rua Alves Redol No 9, 1000-029 Lisboa, Portugal

{luis.veiga, paulo.ferreira}@inesc-id.pt

April 2005

Abstract

Replication is a widely-adopted technique for improving data availability and application performance. In the
replicated objects model, applications execute methods on objects replicated locally. These objects may contain
references to other objects not yet replicated.

The memory management of these distributed (and possibly persistent) graphs of replicated objects is a very difficult
task. If performed manually, it leads to memory leaks (useless objects that are never deleted) and dangling references
(referencing objects prematurely deleted) causing storage waste and application failure.

Current distributed garbage collection algorithms are not well suited for such systems because either (i) they are
unsafe since they do not consider the existence of replication, or (ii) they impose severe constraints on scalability by
requiring causal delivery to be provided by the underlying communication layer, or iii) they are not complete, w.r.t
distributed cycles of garbage.

We address this problem by developing a comprehensive approach to distributed garbage collection for replicated
objects. Our solution is based on: i) an acyclic distributed garbage collector capable of handling replicated objects
safely, and ii) a cyclic algorithm that complements the previous one by detecting distributed cycles of garbage involv-
ing replicated objects. This twofold hybrid approach is, therefore, complete.

This is the first complete solution of the problem of distributed garbage collection for replicated objects; in partic-
ular, the detection and reclamation of distributed garbage cycles does not need any kind of global synchronization.
To achieve this goal we introduce the notion of a GC-consistent cut for distributed systems with object replication.
We have implemented the algorithm both on Rotor (a free source version of Microsoft .Net, extended to allow object
replication) and on OBIWAN (a platform supporting mobile agents, object replication and remote invocation); we
observed that applications are not disrupted.

1 Introduction

Replication is a well-know technique for improving data
availability and application performance as it allows to
collocate data and code. Thus, data availability is ensured
because, even if the network is not available, data remains
locally available; in addition, application performance is
potentially better (when compared to a remote invoca-
tion approach) as all accesses to data are local. However,
there are several relevant difficulties that must be solved
to take full advantage of replication.

In particular, the memory management of distributed
(and possibly persistent) graphs of replicated objects is
a very difficult task. If performed manually, it leads
to memory leaks (useless objects that are never deleted)
and dangling references (referencing objects prematurely
deleted) causing storage waste and application failure.
The reason is that graphs of reachability are large, widely
distributed and frequently modified through assignment
operations executed by applications. In addition, data
replicated in many processes is not necessarily coherent
making manual memory management much harder.

Furthermore, the presence of replication increases the
need for a complete solution concerning the automatic
memory management of replicated objects. As it will be-
come clear in the following sections, it only takes one
replica of an object being involved in a distributed cyclic
garbage, to consequently encompass all other replicas of
the same object in the cycle, and prevent their reclama-
tion. Thus, distributed cyclic garbage involving repli-
cated objects is, arguably, more frequent and wastes more
storage, when compared with systems without replica-
tion [47, 22, 30].

For these reasons, it is impossible to do manual mem-
ory management without generating dangling references
and/or memory leaks. Automatic memory management,
also known as Garbage Collection (GC), is the single
realistic option which is able to maintain referential in-
tegrity (i.e. no dangling references or memory leaks) in
object-based replicated memory (RM) systems. As a re-
sult, program reliability and programmer productivity are
clearly improved.

There are two fundamental problems concerning dis-
tributed garbage collection (DGC) in RM systems: i) en-
suring safety in presence of replication, and ii) achieving
completeness. Obviously, the solutions provided must be
feasible, in particular, they must be scalable and not in-
trusive to applications.

The first issue, safety of the DGC, has been solved
in our previous work with an acyclic, reference-listing
based, replication-aware DGC algorithm [34]. However,
this solution is not complete, i.e. it does not reclaim cy-
cles of garbage. The design of complete DGC algorithms
is a problem that has been addressed many times before
for systems without replication [28, 1]. However, such
solutions, besides other considerations concerning scala-
bility, performance, etc., suffer from a fundamental draw-
back: they are not safe because they do not take into ac-
count the existence of replicated objects.

Thus, we propose a solution that, as others before, fol-
lows a hybrid approach: an acyclic distributed collector
based on reference-listing [35, 34], improved with rules
for safety in presence of replicated objects, and a cycle
detector that complements the first, thus providing a com-
plete solution for the problem of DGC.

The novelty of our work is that we provide a solution
for the detection and reclamation of cycles of garbage
for systems with replicated objects; it does not require
global synchronization, it is completely asynchronous,
and it does not disrupt applications.

Our algorithm uses a centralized approach. The de-
tection of distributed cycles of garbage works on a view
of the global distributed graph that is consistent solely
for this purpose. This view results from the combina-
tion of graph snapshots taken by each process indepen-
dently. While this view may not correspond to a consis-
tent cut, it still allows safe detection of distributed cy-
cles of garbage. This view results from a cut named GC-
consistent-cut. GC-consistent-cuts can be obtained with-
out requiring any distributed synchronization among the
processes involved.

The rest of this paper is organized as follows. The next
section characterizes the RM model assumed by the DGC
algorithm; it is rather abstract and general, so that the
GC solutions provided are widely applicable. Section 3
briefly describes the acyclic DGC algorithm. Section 4
presents the algorithm for cycles detection and reclama-
tion. In Section 5, we present a discussion of the algo-
rithm properties. Sections 6 and 7 address the implemen-
tation and performance evaluation respectively. In Sec-
tions 8 and 9 we describe relevant related work and final
conclusions.

1

2 Model

The DGC algorithm proposed is rather general given that
it applies to systems with minimal requirements. Basi-
cally these systems support object replication; the under-
lying model is called Replicated Memory Model (RMM).
This model clearly defines the environment for which the
DGC algorithm is conceived.

A RM system is a replicated distributed memory span-
ning several processes. These processes are connected
in a network and communicate only by asynchronous
message passing. These messages do not support any
kind of remote invocation. As a matter of fact, in a RM
system, the only way to share information is by repli-
cation of data, which can be done with a DSM based
mechanism[20]. Thus, processes do not use Remote Pro-
cedure Call (RPC) to access remote data. In other words,
application code inside a process never sends messages
explicitly. Instead, application code access data always
locally; transparently to the application code, the RM
runtime system is responsible to replicate data locally
when needed.

Each participating process in the RM system encloses
the following entities: memory, mutator,1 and a coher-
ence engine. In our RM model, for each one of these
entities, we consider only the operations that are relevant
for GC purposes.

2.1 Memory Organization

An object is defined to be a consecutive sequence of
bytes in memory. Applications can have different views
of objects and can see them as language-level class in-
stances, memory pages, data base records, web pages,
etc.

Objects can containreferencespointing to other ob-
jects. Anoutgoing inter-processreference is a reference
to a target object in a different process. Anincoming
inter-processreference is a reference to an object that is
pointed from a different process. Our model does not re-
strict how references are actually implemented. They can
be virtual memory pointers, URLs, etc.

We definelocal-root to be the set of references in a
process enclosed in global variables and stacks. An ob-
ject isreachable-locallywhen it is transitively reachable

1The term mutator [6] designates the application code which, from
the point of view of the garbage collector, mutates (or modifies) the
reachability graph of objects.

from the local-root of its enclosing process. An object is
reachable-remotelywhen it is referenced by other ob-
ject(s) in different process(es).

For DGC purposes, objects can be either dead or live.
An object is said to belive if it is reachable-locally
(in some process) or if it is reachable-remotely from
some object that is reachable-locally (thus, live objects
are reachable-globally). An object is said to bedead
if it is neither reachable-locally nor (directly or indi-
rectly) reachable-remotely from a reachable-locally ob-
ject. Dead objects are calledgarbage. Thus, objects
solely reachable-remotely may be either live or dead: live
objects are transitively reachable (through a chain of re-
mote references) from a local-root of some other process;
dead objects constitute distributed garbage.

Distributed garbage may be acyclic, cyclic, or hybrid.
Every DGC algorithm is able to detect acyclic distributed
garbage. Complete DGC algorithms are able to detect
and reclaim cyclic distributed garbage. Hybrid garbage
may be detected by a single algorithm (one that is com-
plete), or by cooperation of acyclic and cyclic collectors.

The unit for replication is the object. Any object can be
replicated in any process. A replica of objectX in process
P is notedXP. Each process can hold a replica of any
object for reading or writing according to the coherence
protocol being used.

2.2 Mutator model

The single operation executed by mutators, which is rel-
evant for GC purposes, isreference assignment; this is
the only way for applications to modify the graph of ob-
jects.

The reference assignment operation executed by a mu-
tator in some processP is notedX := YP. This means
that a reference contained in objectX is assigned to the
value of a reference contained in objectY.2 If Y points to
an objectZ in some other process, this assignment oper-
ation results in the creation of a new inter-process refer-
ence fromX to Z.

Obviously, other assignments can delete references
transforming objects in garbage. For example, in pro-
cessP the mutator may perform(X := NULL)P; this

2This notation is not fully accurate but it simplifies the explana-
tion of the DGC algorithm. As a matter of fact, to be more precise we
should writeX.re f = Y.re f (C++ style notation). However, this im-
proved precision is not important for the DGC algorithm description
and would complicate it un-necessarily.

2

may result on some objectZ to become unreachable, i.e.
garbage, given that there are no references pointing to it.
In conclusion, assignment operations (done by mutators)
modify the object graph either creating or deleting refer-
ences.

2.3 Coherence Model

The coherence engine is the entity of the RM system that
is responsible to manage the coherence of replicas. The
coherence protocol effectively used varies from system to
system and depends on several factors such as the num-
ber of replicas, distances between processes, and others.
However, the only coherence operation, which is relevant
for GC purposes, is thepropagation of an object, i.e. the
replication of an object from one process to another. The
propagation of an objectY from processP1 to processP2
is notedpropagateYP1→P2.

We assume that any process can propagate a replica
into itself as long as the mutator causing the propagation
holds a reference to the object being propagated. Thus,
if an objectX is unreachable-locally in processP1, the
mutator in that process can not force the propagation ofX
to some other process; however, if some other processP2
holds a reference toX, it can requestX to be propagated
from P1 to P2 (more details in Section 3).

In each process, the coherence engine holds two data
structures, calledinPropList andoutPropList ; these in-
dicate the processfrom whicheach object has been prop-
agated, and the processesto whicheach object has been
propagated, respectively.3 Thus, each entry of theinPro-
pList /outPropList contains the following information:

• propObj - the reference of the object that has been
propagated into/to a process;

• propProc - the process from/to which the object
propObj has been propagated;

• sentUmess/recUmess - bit indicating if a
Unreachablemessage has been sent or received
(more details in Section 3).

In the rest of this paper, for clarity, entries in the
inPropList and outPropList will be referred to asIn-
Prop/OutPropentries, or simply asInProps/OutProps.

3Usually, this information does exist in the coherence engine in
order to manage the replicas.

When an object is propagated to a process we say that
its enclosed references areexported from the sending
process to the receiving process; on the receiving pro-
cess, i.e. the one receiving the propagated object, we say
that the object’s enclosed references areimported.

It’s worthy to note the following aspects concerning
the creation of inter-process references. The only way a
process can create an inter-process reference is through
the execution of only two operations: (i) reference as-
signment, which is performed explicitly by the mutator
(as described in Section 2.2), and (ii) object propagation,
which is performed by the coherence engine in order to
allow the mutator to access some object.4

3 Acyclic Distributed Garbage Collec-
tion

The overall solution for the problem of DGC in a RM
system, is constituted by the following algorithms: i) a
local tracing-based garbage collection (LGC) algorithm
running in each process, ii) a replication-aware reference-
listing acyclic distributed garbage collector (ADGC) al-
gorithm [34], and iii) a distributed cycles detector (DCD)
algorithm. The LGC, ADGC and DCD algorithms de-
pend on each other to perform their job, as explained af-
terwards.

Common to both the ADGC and the DCD (and used
also by the LGC), there are two main data structures:

• Stub - A stub describes an outgoing inter-process
reference, from a source process to a target process
(e.g. from object X in a process P1 to object Y in
P2).

• Scion - A scion describes an incoming inter-process
reference, from a source process to a target process
(e.g. to object Y in a process P2 from object X in
P1).

Thus, a scion represents an incoming reference, i.e., a
reference pointing to an object in the scion’s process; a
stub represents an outgoing remote reference, i.e., a ref-
erence pointing to an object in another process.

4For example, in some DSM-based systems, when the mutator
tries to access an object that is not yet cached locally, a page fault is
generated; then, this fault is automatically recovered by the coherence
engine that obtains a replica of the faulted object from some other
process.

3

process P1 process P2

X X

Z

local
root

process P3

local
root

local
root

Figure 1: Safety problem of current DGC algorithms
which do not handle replicated data:Z is erroneously
considered unreachable.

Note that stubs and scions do not impose any indirec-
tion on the native reference mechanism. In other words,
they do not interfere either with the structure of refer-
ences or the invocation mechanism. They are simply
GC specific auxiliary data structures. Thus, stubs and
scions should not be confused with (virtual machine) na-
tive stubs and scions (or skeletons/proxies) used for re-
mote method invocations (RMI).

In the remaining of this section we describe the LGC
and ADGC algorithms. These algorithms are (briefly)
presented mainly for completeness of the solution and as
a means to explain the usefulness of stubs and scions, and
how replication is safely dealt with. Then, in Section 4
we focus on the DCD algorithm.

3.1 Replication Awareness

Both the ADGC and the DCD algorithms follow a set of
well-defined rules (presented later) so that they are safe
and live in presence of replication. This means that these
algorithms solve the safety problem that is not addressed
by other DGC algorithms [28, 1]; as a matter of fact, such
algorithms do not take into account the existence of repli-
cated objects, as explained now.

Consider Figure 1 in which an objectX is replicated in
processesP1 andP2. Now, suppose thatXP1 contains a
reference to an objectZ in another processP3, XP1 points
to no other object,XP1 is not reachable-locally andXP2 is
reachable-locally. Then, the question is: shouldZ be con-
sidered garbage? Classical DGC algorithms (designed
for function-shipping systems) consider thatZ is effec-
tively garbage. However, this is wrong because, in a RM
system, it is possible for an application inP2 to acquire a
replica ofX from some other process, in particular,XP1.

Thus, the fact thatXP1 is not reachable-locally in pro-
cessP1 does not mean thatX is unreachable-globally; as
a matter of fact, according to the coherence model,XP1

contents can be accessed by an application in processP2
by means of a propagate operation.

Therefore, in a RM system, a target objectZ is con-
sidered unreachable only if the union of all the replicas
of the source object,X in this example, do not refer to it.
This is theUnion Rule introduced in Larchant [10, 11]:
a target objectZ is considered unreachable only if the
union of all the replicas of the source objects do not refer
to it. The next sections show how this rule is enforced.

3.2 LGC

Each process has a local garbage collector (LGC); it
works as any standard tracing collector with the differ-
ences stated now. The LGC starts the graph tracing
from the process’s local-root and set of scions. For each
outgoing inter-process reference it creates a stub in the
new set of stubs. Once this tracing is completed, every
object reachable-locally by the mutator has been found
(e.g. marked, if a mark-and-sweep algorithm is used);
objects not yet found are unreachable-locally; however,
they can still be reachable from some other process hold-
ing a replica of, at least, one of such objects (as is the
case ofXP1 in Figure 1). To prevent the erroneous dele-
tion of such objects, the collector traces the objects graph
(marking the objects found) from the listsinPropList
and outPropList , and performs as follows: i) when
a reachable-locally object (previously discovered by the
LGC) is found, the tracing along that reference path ends,
and ii) when an outgoing inter-process reference is found
the corresponding stub is created in the new set of stubs.

3.3 ADGC

From time to time, possibly after a local collection, the
ADGC sends a messageNewSetStubs; this message con-
tains the new set of stubs that resulted from the previ-
ous local collection; this message is sent to the processes
holding the scions corresponding to the stubs in the pre-
vious stub set. In each of the receiving processes, the
ADGC matches the just received set of stubs with its
set of scions; those scions that no longer have the cor-
responding stub, are deleted.

As previously stated, the ADGC, to be correct in pres-
ence of replicated objects, must ensure the Union Rule.

4

This rule, fundamental for the safety of the ADGC, is en-
sured as follows:

• For an object which is reachable only from the
inPropList , a messageUnreachable is sent to
the site from where that object has been propa-
gated; this sending event is registered by changing
a sentUmess bit in the correspondinginPropList
entry from 0 to 1.5

When aUnreachablemessage reaches a process,
this delivery event is registered by changing a
recUmess bit in the correspondingoutPropList
entry from 0 to 1.

• For an object which is reachable only from the
outPropList , and the enclosing process has al-
ready received aUnreachablemessage from all
the processes to which that object has been previ-
ously propagated, aReclaimmessage is sent to all
those processes and the corresponding entry in the
outPropList is deleted; otherwise, nothing is done.

When a process receives aReclaim message it
deletes the corresponding entry in theinPropList .

In summary, besides the messageNewSetStubs, two
other messages may be sent by the ADGC:Unreachable
andReclaim. On the receiving process, these messages
are handled by the ADGC that performs the following
operations: sets therecUmess bit in the corresponding
outPropList entry, and deletes the corresponding entry
in the inPropList , respectively. Thus, a replicated ob-
ject is effectively reclaimed (by the LGC) only after the
corresponding entry in theinPropList is deleted.

3.4 Propagation

In a RM system mutators may create inter-process refer-
ences very easily and frequently, through a simple refer-
ence assignment operation (see Section 2.2). Note that
when such an assignment does result in the creation of
an inter-process reference, this can only happen because,
in the local process, there was already an object replica

5Note that from now on, the replica is not reachable by the local
mutator; if another propagate operation occurs bringing anewreplica
of that same object into the process, theold replica remains locally
unreachable, and a new entry is created in theinPropList with the
correspondingsentUmess set to 0.

containing the reference to a remote object. Thus, inter-
process references are created as a result of the propaga-
tion of replicas. Such propagation leads to the export and
import of references, as mentioned in Section 2.3.

Thus, whatever the coherence protocol, there is only
one interaction of the mutator with the ADGC algorithm.
This interaction is twofold: (i) immediately before a
propagate message is sent, the references being exported
(contained in the propagated object) must be found in or-
der to create the corresponding scions, and (ii) immedi-
ately before a propagate message is delivered, the out-
going inter-process references being imported must be
found in order to create the corresponding local stubs,
if they do not exist yet. Note that this may result in the
creation of chains of stub-scion pairs, as it happens in the
SSP Chains algorithm [36]. To summarize, the following
rules are enforced by the ADGC:

• Clean Before Send Propagate: Before sending a
propagate message, enclosing an objectY, from a
processP2, Y must be scanned for references and
the corresponding scions created inP2.

• Clean Before Deliver Propagate:Before deliver-
ing a propagate message, enclosing an objectY, in
a processP1, Y must be scanned for outgoing inter-
process references and the corresponding stubs cre-
ated inP1, if they do not exist yet.

It is worthy to note that the mutator does not have to be
blocked while the ADGC specific operations mentioned
above are executed (scanning the object being propagated
and creating the corresponding scion and stub); such op-
erations can be executed in the background.

From these rules, results the fact that scions are always
created before the corresponding stubs; and OutProps are
always created before their corresponding InProps. This
is due to a causality relationship (their creation is causally
ordered) between them.

3.5 Completeness

The ADGC is not complete as it does not reclaim dis-
tributed cycles of garbage. The detection and deletion of
distributed cycles of garbage is a difficult problem that
has been addressed in many ways: global tracing, back-
tracing, detection within groups, with centralized or dis-
tributed approaches (see Section 8 for a comparison of
the most relevant work to ours).

5

We solved this limitation by developing another algo-
rithm, the DCD algorithm, capable of detecting such cy-
cles asynchronously. Once a cycle is detected, the DCD
instructs the ADGC algorithm to delete one of its entries
so that the cycle is eliminated. Then, the ADGC is capa-
ble of reclaiming the remaining garbage objects.

Our algorithm makes use of a centralized approach.
The detection of distributed cycles of garbage works on a
view of the global distributed graph that is consistent for
its purposes. Such a view results from the graph snap-
shots taken by each process independently (i.e., with no
synchronization required at all). As explained later, this
view may not correspond to a consistent cut (as defined
by Lamport [18]) but it still allows to safely detect dis-
tributed cycles of garbage. This view, results from a cut
that we call a GC-consistent-cut. GC-consistent-cuts can
be obtained without requiring any distributed synchro-
nization among the processes involved.

4 Cyclic Distributed Garbage Collec-
tion

In this section, we describe the DCD algorithm; we first
provide an overview of the algorithm, the main data
structures, and then we present the details of the detec-
tion of distributed garbage cycles.

Objects are represented by their name (a letter) and
their enclosing process (e.g.,AP1 in Figure 2). Sub-
graphs of connected objects may be represented in abbre-
viation (e.g.,{{A, W′, B}P1,{F, H, I}P2}), aggregated
by its/their enclosing process. References may be also
explicitly described when relevant (e.g.,BP1 → FP2).

Remote references are described by their correspond-
ing stubs and scions (e.g.,BP1 → FP2). Objects repli-
cated from/to processes (e.g.,W′

P1) are represented with
their associated inProp/outProp entries. Furthermore, the
association among replicas of the same object, in differ-
ent processes, is made explicit by gray dashed lines. This
eases visualization of the Union Rule presented earlier.

Throughout this section, for clarity, we extend the no-
tions of reachability, already defined for objects (recall
Section 2.1), also to GC structures like scions, stubs and
InProp and OutProp entries. In particular, when we say
that some stubs are reachable from a scion, we actually
mean: stubs, describing remote references, enclosed in
objects, which are reachable from another object, tar-
geted by an incoming remote reference, described by a

scion.

4.1 Cyclic Garbage Comprising Replicated Ob-
jects

Following this notation, a simple example of a dis-
tributed cycle, comprising replicated objects, can be
seen in Figure 2. This cycle can be represented by the
following (others possible) chain of objects (starting and
finishing inP2):

{{F, H, I}P2,{O, W, K}P3,{D, W′, B}P1}
Clearly, all objects belong to a distributed garbage cy-

cle, since none of them is reachable from any local root
(the one in processP1 targeting objectAP1 has been
deleted by the mutator). Therefore, there are no sources
of global reachability. However, in this situation, the
ADGC algorithm is unable to proceed, because it con-
siders objects to be live, when they are reachable from
scions.

ReplicasWP3 andW′
P1 must both be found unreach-

able for any (or both) of them to be reclaimed. How-
ever, both of them are targeted by other objects (OP3,
DP1 respectively) that are reachable remotely (due toIP2,
KP3 respectively). Thus, the ADGC algorithm presented
earlier will never issueUnreachable(and consequently,
Reclaim) messages regarding replicasWP3 andW′

P1. Con-
versely, without receiving these messages, processesP1
andP3 will remain including stubs regarding remote ref-
erences (BP1 → FP2 andKP3 → DP1, respectively) in
their NewSetStubsmessages. Due to this double inter-
dependency, the ADGC algorithm always perceives the
objects included in the example portrayed, as reachable-
globally (therefore, as live objects) while, in fact, they are
no longer reachable to the mutator.

Cyclic distributed garbage is created at a lower rate
than acyclic distributed garbage. Nevertheless, it is still
frequent [47, 22, 30]. Arguably, it is even more so with
replicated objects. If not detected and reclaimed, it sim-
ply accumulates over time, wasting an ever increasing
fraction of the memory space.

Thus, to achieve completeness, we must also provide
a detector for cyclic distributed garbage objects. Ex-
isting cycle detectors (and otherwise complete DGC al-
gorithms), found in the literature, are not applicable to
the RM model. They cannot handle replication safely
as stated earlier, given that they do not take replication
into account. Naive extensions of these algorithms, in

6

\

A

B

P1

W

D

O

W

K

P3

P2

F

H

I

OutProp
W P1 0

InProp
W P3 0

local

root

Stub

Scion

'

Figure 2: Cyclic distributed garbage comprising replicated objects. ObjectW has been previously replicated from
processP3 to processP1.

which replicas are simply considered as additional ob-
jects, are not safe either and lead to premature reclama-
tion of replica content, that could still be of potential
use to applications (recall Figure 1). A comprehensive
overview of DGC algorithms, with further details, is pre-
sented in Section 8.

4.2 Algorithm Overview

Our algorithm makes use of a centralized approach. The
first approach of this kind was introduced in [21]. How-
ever, our work has several differences that will be become
clear afterwards.

In the following paragraphs, we describe the main idea
of the DCD algorithm. We follow an intuitive descrip-
tion that does not consider many subtle aspects; these are
addressed in the next sections. However, it provides a
description of the main idea that is easy to understand.

The process performing the detection of the distributed
cycles of garbage (called DCDP for distributed cycles de-
tector process) receives object graph snapshots from each
participating process and detects distributed cycles com-
prised within these processes (existing at the time these
snapshots were taken). As a matter of fact, the DCDP

receives summarized snapshots of processes (instead of
full graphs). These summarized snapshots contain all the
information relevant for DCD purposes, and are much
smaller than the full object graphs.

Using these snapshots, the DCDP performs a global
mark-and-sweep (GMS) on the graphs description re-
ceived. This is performed in a way so that inter-process
references are traced only if the corresponding stub-scion
pairs are consistent in the graphs description. Simi-
larly, corresponding OutProp and InProp entries, indi-
cating replication paths are also traced by the GMS, as
implicit inter-process references, in order to uphold the
Union Rule. Otherwise, the marking on that reference
stops.

When a garbage cycle is detected, the DCDP can in-
struct certain processes to delete one or more of their
scions, InProp or OutProp entries. The explicit deletion
of such structures is a safe operation due to the property
of garbage being stable, i.e., once an object is garbage,
it stays so. Explicit deletion of InProp and OutProp can
be performed by triggering entries to sendUnreachable
messages. The end result of these explicit deletions is
the transformation of a distributed cycle of garbage into
a set of acyclic garbage objects; thus, these objects can

7

be readily reclaimed by the ADGC algorithm described
previously.

The DCDP works on a view of the global distributed
graph that is consistent for its purposes. As explained in
this section, this view may not correspond to a consis-
tent cut (as defined by Lamport [18]) but it still allows to
safely detect distributed cycles of garbage. We call such
a cut, a GC-consistent-cut.

This a weaker requirement than that of a consistent-
cut in a distributed system due to: i) distributed cyclic
garbage (as all garbage) is stable, i.e., after it becomes
garbage it will not be touched again by the mutator, and
ii) distributed cyclic garbage is always preserved by the
ADGC (that is why we need a special detector), i.e., if
the DCD algorithm does nothing, it still is safe.

GC-consistent-cuts can be obtained without requiring
a distributed consensus [15] among the applications pro-
cesses that send their graph descriptions to the DCDP.
This means that the DCDP still performs useful work, i.e.
it is capable of detecting cycles, even if its global view
of the graph is made of local graph descriptions (sent by
the applications processes) at different and uncoordinated
moments.

The DCDP is also capable of performing its task with-
out requiring every existing process to send its graph de-
scription. The only consequence is that cycles compris-
ing objects in processes, unknown to the DCDP, are not
detected. However, all other cycles are detected and re-
claimed.

4.3 Data Structures

The data structures manipulated by the DCD algo-
rithm are extensions to the ADGC data structures
(Stubs, Scions, InProp andOutProp). For the DCD al-
gorithm, these structures are grouped, in each process, in
two sets:Source−SetandTarget−Set.

TheSource−Set, in a process, includes all the entries
of the above mentioned data structures that can propa-
gate global reachabilityinsidea process, i.e., commonly
scions, and OutProp and InProp entries. The need to in-
clude InProp entries along with OutProp entries stems
from the need to uphold the Union Rule. This way, when-
ever a replica is reachable-globally, every other replica
of the same object must be so as well. Thus, globally
reachability must be propagated both ways, thus through
OutProp and InProp entries.

The Target−Set in a process includes all the entries

of the above mentioned data structures that can propa-
gate global reachabilityoutsidea process, i.e., commonly
stubs, and InProp and OutProp entries. The need to in-
clude OutProp entries along with InProp entries, is sym-
metrical to the previous case. It also stems from the need
to uphold the Union Rule.

The notions ofSource−SetandTarget−Set (calcu-
lated via graph summarization described further in Sec-
tion 4.4) are illustrated generally in Figure 3. Note that
to uphold the Union Rule, InProp and OutProp entries
belong to bothSource−SetandTarget−Setof the sum-
marized graph. This is made explicit in the original graph
by using double-direction arrows between these entries
and the objects they refer to. In the summarized version,
this is made clear with different shadings: brighter for
Source−Setand darker forTarget−Set.

The ADGC structures must be extended with time-
stamps. Thus, DCDP is able to perform GMS along dis-
tributed paths consistently, for cycle detection purposes.
When needed information is missing, the DCDP acts
conservatively to ensure safety. Nonetheless, these time-
stamps may already be present for other DGC and coher-
ence purposes, like preserving correctness in the presence
of lost, duplicated or delayed messages. Thus, this may
not be an additional demand to most systems.

Additionally, every entry belonging to theSource−Set
must include the set of entries of theTarget−Setthat are
(transitively) reachable from it. The need for this infor-
mation is justified and detailed in Section 4.4.

Finally, every entry in theTarget−Set must bear a
special bit indicating reachability-local, i.e., if there is a
transitive path from a local root of the enclosing process,
that can lead to this entry.

In summary, the extensions to these structures, manip-
ulated by the DCDP, are as follows.

Scion(member of theSource−Set):

• time−stamp: for GC-consistent-cut purposes.

• TargetsFrom: list of stubs, InProps, and OutProps,
in the same process, transitively reachablefrom the
scion.

Stub (member of theTarget−Set):

• time−stamp: for GC-consistent-cut purposes.

• Reach.LOCAL: flag-bit accounting for local reacha-
bility (from the local root of the enclosing process)
of the stub.

8

local-root

original graph summarized graph

local-root

InProp

OutProp OutProp

InProp

Source-Set Target-Set

Figure 3: Summarization of an object graph intoSource−SetandTarget−Set.

OutProp (member of theSource− Set and of the
Target−Set):

• time−stamp: for GC-consistent-cut purposes.

• TargetsFrom: list of stubs, InProps, and OutProps,
in the same process, transitively reachablefrom the
object the OutProp refers to.

• Reach.LOCAL: flag-bit accounting for local reacha-
bility (from the local root of the enclosing process)
of the object the OutProp entry refers to.

InProp (member of theSource− Set and of the
Target−Set):

• time−stamp: for GC-consistent-cut purposes.

• TargetsFrom: list of stubs, InProps, and OutProps,
in the same process, transitively reachablefrom the
object the InProp refers to.

• Reach.LOCAL: flag-bit accounting for local reacha-
bility (from the local root of the enclosing process)
of the object the InProp entry refers to.

The TargetsFromlists, held for each entry in the
Source−Set, establish reachability associations, among
objects targeted by incoming remote references, and ob-
jects holding outgoing remote references, in each pro-
cess. These lists allows the DCD algorithm to determine,
while detecting cycles, the next set of processes (targeted
by implicit or explicit outgoing references) that should be
marked in order to transverse the full distributed graph

available. Finally, theReach.LOCAL flag, in each ele-
ment of theTarget−Set, indicates the local reachability
of the entries for inclusion in the GMS roots.

These structures effectively summarize, in each pro-
cess, and solely for distributed cycle detection purposes,
all the relevant information of application object graphs.
The full calculation of these structures is addressed in the
following subsection.

4.4 Graph Summarization

Object graphs in application processes may be very large.
Consequently, the size of the corresponding snapshot
may contribute to increase bandwidth usage, memory oc-
cupation by the DCDP, and a large amount of disk space.
In addition, such a large amount of data could turn cy-
cle detection into a CPU-consuming operation requiring
access to a large amount of data.

This problem is solved by summarizing the object
graph snapshot of each application process in such a way
that, from the point of view of the DCDP, there is no
loss of relevant information. This summarization trans-
forms a snapshot of an application graph into the two sets
(Source−Set and Target−Set) presented earlier, with
their corresponding associations.

As a matter of fact, references strictly internal to
a process are not relevant for the DCDP, as long as
the relations between entries in theSource− Set and
Target−Set are known. In Fig. 2, in processP2, ref-
erences{F → H, H → I}P2 fall into this category. In
other words, what is relevant for the DCD algorithm,
is to know which stubs, InProps and OutProps (i.e.,the

9

Target−Set), are reachable form scion, InProps and Out-
Props (i.e., theSource−Set).

This summarization is performed on every snapshot;
then it is made available to the DCDP. Thus, while pro-
cesses can take snapshots by serializing local graphs, the
DCDP uses them only in their summarized form, i.e., af-
ter graph summarization. In the remainder of the doc-
ument, the termssnapshot, graph description, andsum-
marized graph descriptionare logically equivalent, w.r.t.
the DCDP. Once available, summarized object graphs are
sent to the DCDP. The summarized graph has obvious ad-
vantages both in terms of network and disk usage. In ad-
dition, this summarization can be performed lazily, with
low priority, with minimal impact on application perfor-
mance (see Section 7).

In the example shown in Fig. 2, the summarized graph
information at processP1 would hold the following
data:6

• Scion(DP1)@P1 ⇒ {TargetsFrom≡ {FP2, W′
P1}};

this means that, inP1, Scion(DP1) leads to
Stub(FP2) andInProp(W′

P1) (describing replication
via WP3).

• Stub(FP2)@P1 ⇒ {Reach.LOCAL ≡ f alse}; this
means thatStub(FP2) is not reachable from the local
root of processP1 (Reach.LOCAL is f alse). Note
that while the stub refers to an object located in
processP2, the stub structure is keptat processP1
where the remote reference actually exists. This is
denoted by the symbol@.

• InProp(W′
P1)@P1 ⇒ {TargetsFrom ≡

{FP2, W′
P1},Reach.LOCAL ≡ f alse}; this

means that InProp(W′
P1) leads to Stub(FP2)

and InProp(W′
P1) (InProp(W′

P1) leads to itself,
since InProps and OutProps propagate reachability
marks in both directions due to the Union Rule; in
this case, it will propagate reachabilityto andfrom
OutProp(WP3)). Furthermore, it is not reachable
from local root ofP1.

Therefore, summarized information of processP1 is
completed with the contents ofSource−SetandTarget−
Set:

6Symbol⇒meansevaluates toor returns,≡ relates a field name
and its value.

• Source−Set(P1)⇒{Scion(DP1), InProp(W′
P1)}

• Target−Set(P1)⇒{Stub(FP2), InProp(W′
P1)}

Graph summarization is performed transversing the
graph, while propagating and combining reachability in-
formation (regarding elements in theSource−Set) of ob-
jects. This is done breadth-first, in order to minimize the
number of times each object is re-scanned.

4.5 Distributed Cycle Detection Process

As already mentioned, to perform the DCD algorithm,
the DCDP receives a summarized description of the ob-
ject graph of applications processes.7 Note that such ob-
ject graphs are strictly local to each application process.
In addition, as will be made clear afterwards, the DCDP
does not require the object graph of all the existing appli-
cation processes to perform useful work; thus, cycles are
detected even with a partial view of the global graph.

It’s worthy to note that our algorithm does not require
the snapshots to be taken synchronously by every appli-
cation involved. In other words, there is no need for a
distributed consensus [15] which would be clearly a bad
solution for performance and scalability reasons. Thus,
as explained now, the DCDP analyzes the object graphs
with special care for consistency and causality from a
DGC point of view.

Each process maintains a private counter global to the
process. Time-stamps are created, in each process, by
monotonically increasing this counter. Thus, each time
a scion, or OutProp entry is created, the counter value is
stored in its time-stamp field, and the counter is atomi-
cally incremented. Stubs (and InProp entries) receive the
same time-stamp stored at their counterpart scions (and
OutProp entries, respectively).

Each process sends to the DCDP, included with its
summarized graph description, a list containing, for each
process, the highest time-stamp value it has received
from it. Then, the DCDP performs a global mark-and-
sweep (GMS) on the graphs description received. This
GMS is done in such a way that inter-process references
are traced only if the corresponding stub-scion pair exists
in the graphs description. Similarly, corresponding Out-
Prop and InProp entries, indicating replication paths are

7A description of an object graph is obtained using a library that,
through serialization, writes a file describing the objects, stubs and
scions, InProps and OutProps, of the process. This description is then
subject to a summarization process.

10

application

process P1
application
process P4

application

process P2

application

process P3

list of stubs

local

root

object

graph

P
2
 g

ra
p
h

d
es

cr
ip

ti
o
n

list of scions (empty)

list of stubs (empty)

local

root

list of scionslist of scions

local

root

object

graph

list of scionslist of scions

P
1
 g

ra
p
h

d
es

cr
ip

ti
o
n

P
3
 g

ra
p
h

d
es

cr
ip

ti
o
n

P4 graph

description not

available at

DCDP

DCDP

object

graph

c) Example of an object graph
description in DCDP.

a) Example of a set of applications
processes with inter-process
references.

b) Graph descriptions (at DCDP) of applications processes P1, P2 and P3.

list of stubs

OutProp
InProp
lists

OutProp
InProp
(empty)

OutProp
InProp
lists

In

Out

In

Figure 4: Roots of the GMS at the DCDP.

also traced by the GMS, as implicit inter-process refer-
ences, in order to uphold the Union Rule. Otherwise, the
tracing on that reference stops.

The roots of the GMS are the following (see Figure 4):

• Those objects that, in each application process, are
directly reachable from the local roots (stack, etc.)
must be obviously considered roots of the GMS (in
Figure 4-c such objects are shaded).

• Scions whose corresponding stubs are included in
processes whose graph description is not available
at the DCDP (when performing the GMS), are also
members of the GMS root (in Figure 4-b such a
scion is the one in P3 whose corresponding stub is
in P4). These scions are members of the GMS root
for safety reasons. As a matter of fact, such scions
may not have a corresponding stub (so they could
be simply discarded) but the DCDP can’t say that
for sure. Thus, it uses a conservative approach.

• InProp and OutProp entries, whose corresponding
OutProps and InProps are included in processes not
available at the DCDP, must also be considered as
members of the GMS root. This is a conservative
approach, once again, to ensure safety.

• Those scions whose associated time-stamp has a
value greater than the greatest value known in the

process holding the corresponding stub, are also
members of the GMS root.

• OutProp entries, whose associated time-stamp has a
value greater than the greatest value known in the
processing holding the corresponding InProp entry,
are also members of the GMS root.

The last two rules enforce a conservative approach to
ensure safety. The scions in this situation are those whose
corresponding stubs have not been created yet when their
enclosing application process has created its graph de-
scription (then sent to the DCDP). Similarly, the Out-
Prop entries are those whose corresponding InProp en-
tries have not been created when their enclosing process
generated its graph description (then sent to the DCDP).

Note that the situations, described in the last two items,
may occur because the graph descriptions received by the
DCDP are snapshots taken at different moments at differ-
ent processes, with no coordination at all. This is a con-
sequence of the fact that there is no need for global syn-
chronization among participating processes, w.r.t. gener-
ating summarized graph descriptions and sending them
do the DCDP. Such a situation is illustrated in Figure 5.
At momentta , the graphs are in fact those as illustrated
in Figure 4-a. However, the view DCDP has, based on
graph descriptions received so far, is different because
the graph descriptions obtained from P2 is older than P3

11

P1

P2

P3

CDP

t

t

t

t

graphdescription

graph

description
graph

description

graph

description
graph

description

ta

P1

P2 P3

a) Object graphs received by DCDP provide a view of the global graph that does not

corresponds to a real one; the differences are due to the shaded stubs, scions, and

InProp and OutProp entries. LGCs are not represented as they can occur at any time.
The line in bold represents an inconsistent cut but safe for cyclic GC purposes. Creation
 of scion and OutProp entries always preceed creation of stubs and InProps entries. This
is because there is a causality relation among them, due to the ADGC safety rules
presented.

b) The global graph as perceived

by the DCDP based on the graph

descriptions received so far:

shaded elements do not exist.

P4 graph

description

not available

at DCDP

tb

G
C
 C

u
t

Out

In

Out

In

Figure 5: View of the graphs as seen by the DCDP.

and the graph description of P1 is even older than P2’s.
The shaded scions and stubs reflect such differences.

In Figure 5-a we show, in bold, a cut that is not causally
consistent; it results from the uncoordinated creation and
sending of summarized object graphs, from each appli-
cation process to the DCDP. It is clear that this cut is
such that the creation of stubs and scions, InProps and
OutProps, is not consistent for regular DGC purposes.
However, based on such graphs, the DCDP builds a GC-
consistent cut that allows it to detect distributed cycles
of garbage. This cut is consistent w.r.t. the finding of
such cycles. Thus, a GC-consistent cut is a set of GC
structures, together with their associations, that provide
a safe view of the distributed object graph, for the sole
purpose of detecting cycles. This is ensured as long as
the rules to define the root-set of the GMS (performed by
the DCDP) and tracing are respected. In particular, these
rules specify which scions, OutProps and InProps must
be members of the root-set of the GMS.

The result from the GMS is a set of garbage stubs,
scions, and InProps, OutProps. However, not all of
these belong to distributed cycles of garbage. Some of
these (those that are not members of distributed cycles of
garbage) are reclaimed by the acyclic algorithm.

The DCDP determines which of such scions, Out-
Props and InProps actually belong to cycles comprising
replicated objects. This is done as follows: only scions
that are simultaneously garbage and, still, referenced by
stubs, can belong to a distributed cycle of garbage. Sim-
ilarly, only those OutProp entries found to be garbage
but with their corresponding InProp entries known to the
DCDP, can belong to cyclic garbage. Then, one, any,
or all of them, can be selected for deletion and the ade-

quate message(s) sent to their enclosing process(es). The
number of messages sent only influences the bandwidth
used and the speed of cycle reclamation. Those dis-
tributed garbage cycles that already existed when the ear-
liest graph description (being processed by the DCDP)
was created, and are totally included in the graph descrip-
tions available at the DCDP, are effectively detected and
reclaimed. Thus, considering Figure 5-a, all cycles that
existed beforetb , that are totally enclosed in processes
P1, P2, and P3, are detected by the DCDP.

5 Discussion of Algorithm Properties

In this section, we address the relevant properties of any
complete distributed garbage collector discussing them
against the algorithm proposed: safety, liveness, com-
pleteness, termination, and scalability.

Safety: The ADGC and DCD algorithms are resilient
to message loss, delay, re-ordering and replay. Concern-
ing ADGC, loss or delay ofNewSetStubs, Unreachable
andReclaimmessages does not affect safety because ob-
jects deletion is only triggered by reception of these mes-
sages. It may, however, delay garbage detection. Mes-
sage replay is innocuous since all messages are idempo-
tent. This is trivial forUnreachableandReclaimmes-
sages.NewSetStubsmessages always carry information
about the most recent scion known when they were first
sent. This way, a replayedNewSetStubsmessage will not
prematurely delete scions created more recently.

W.r.t. DCD, when the DCDP performs GMS, it is safe
when considering scions, InProps and OutProps refer-

12

ring to processes that have yet not sent their graph de-
scriptions to the DCDP. It conservatively considers them
as GMS roots. Furthermore, scions, InProps and Out-
Props, with time-stamps greater than the highest value
known in the process holding the stub, InProp and Out-
Prop counterparts, are also conservatively considered as
GMS roots. There are no ordering requirements, and
therefore no competition, nor racing conditions, among
messages sent to DCDP. Message loss will only delay
garbage detection. Replay of older messages may, how-
ever, prevent detection of newer cycles. This will be
solved when an updated graph description is received by
the DCDP. Additionally, several independent DCDP may
execute without error.

Liveness: Algorithm liveness, w.r.t. acyclic distributed
garbage, relies on processes sendingNewSetStubsmes-
sages (containing live stubs) andUnreachable and
Reclaimmessages regarding unreachable replicas. This
is ensured since every process will eventually send these
messages after execution of the LGC.

W.r.t. to DCD, the algorithm liveness is obviously de-
pendent on DCDP receiving messages, carrying graph
descriptions, by participating processes. These graph de-
scriptions must be eventually updated regarding each of
these processes.

Completeness: The algorithm is complete in the sense
that any cyclic distributed garbage is eventually detected
and reclaimed. Distributed garbage cycles comprise
replicated objects that eventually will be included in the
graph descriptions, created independently by the pro-
cesses comprising them. Once these summarized de-
scriptions are made available to the DCDP, it will detect
the distributed garbage cycles contained in them.

To remain safe, the DCDP can only detect distributed
cycles of garbage that are fully enclosed in the graphs de-
scriptions it holds. This may suit most distributed cycles,
that are small, but clearly limits the maximum size of the
detectable cycles. However, this limitation can be solved
because it is possible (and desirable, for scalability and
availability purposes) to have several DCDPs. These
DCDPs can be organized hierarchically (or in any other
way) so that a DCDP at a higher level has a larger view of
the global distributed object graph. Such a larger view is
obtained as follows. Each DCDP applies a graph reduc-
tion on the set of graphs it holds already summarized and

then sends the reduced graph to its parent DCDP. With
this scheme, it is possible to detect (and reclaim) any dis-
tributed cycle of garbage independently of its size.

Floating-garbage consists of just recently created dis-
tributed cycles that cannot be detected until summarized
graph information, at processes, correctly reflects it. The
algorithm is conservative in these situations. Obviously,
this is an inevitable phenomenon to GC in general. How-
ever, the relevant issue w.r.t. cycle detection is eventu-
ally detecting them, since they are stable (therefore, long-
lived), and created at a slow rate.

Termination: Regarding termination, cycle detections
are trivially granted to terminated due to the centralized
approach used for cycle detection. Once the DCDP ini-
tiates a cycle detection regarding a set of participating
processes, it will terminate promptly whether cycles are
found or not. Propagation of reachability marks during
GMS is granted to finish, since it is performed locally and
needs to visit each element (belonging toSource−Sets
andTarget−Sets) only once.

Scalability: W.r.t. scalability, it stems mainly from
the loose synchronization requirements (cycle detection
is performed asynchronously w.r.t. participating pro-
cesses), and detections in course do not require storing
additional state information at participating processes.
Moreover, each participating process is ignorant of the
others sending summarized graph descriptions to the
DCDP. Hierarchical cooperation of several DCDPs, al-
ready presented when we addressed completeness, also
contributes to scalability w.r.t. distributed cycle detec-
tion. In addition, several distinct DCD can be done in
parallel using different DCDP.

6 Implementation

The algorithms were implemented in Rotor[39] (a free
version of Microsoft .Net[29]), that we extended to sup-
port object replication. We have also implemented them
in OBIWAN [40, 41, 13], a middleware that supports ob-
ject replication on top of .Net and Java.

The algorithms (ADGC and DCD) were implemented
combining modules written in C++ and C#. The imple-
mentation we have done on Rotor includes virtual ma-
chine modification (for LGC and DGC integration), Re-

13

moting code instrumentation (to detect export and import
of references), and distributed cycle detection.

Virtual machine modifications were implemented in
C++. This is the language Rotor core is implemented
in. Remoting instrumentation code was developed in C#,
since high-level code of the Remoting services is writ-
ten in this language. Graph summarization and the actual
DCDP were also written in C#.

In this section we briefly describe the most important
implementation aspects concerning the above mentioned
code, with greater emphasis on the modifications made
on Rotor.

6.1 LGC and ADGC Integration

The ADGC algorithm must cooperate with the LGC, es-
sentially, in two ways:

• the LGC must provide, in some way, the ADGC
with information about every remote objects refer-
enced by local objects; this is necessary to ensure
that all stubs (representing outgoing remote refer-
ences) are correctly created/preserved;

• the ADGC algorithm must prevent the LGC from re-
claiming objects that are no longer reachable-locally
but are target of incoming remote references; this
ensures that scions actually prevent objects from be-
ing reclaimed. Similarly, InProp and OutProp en-
tries also prevent replicated objects from being pre-
maturely reclaimed.

The implemented solution consists simply on a run-
ning thread that monitors existing stubs verifying that
they are still valid, i.e., the Rotor transparent proxies as-
sociated with them still exist. This is achieved using Ro-
tor weak-references. A similar approach is used to mon-
itor InProp and OutProp entries.

This approach has several advantages: i) it does not
impose relevant modifications on the Rotor Kernel (CLR
- Common Language Runtime), ii) it can be implemented
using a high-level language such as C#, iii) modifications
are mainly restricted to the Remoting package, and iv) it
does not interfere with the LGC used.

The data structures representing stubs, scions, InPro-
pLists and OutPropLists are all implemented as hash-
tables so that when needed, they are accessed efficiently.

6.2 Remoting Code Instrumentation

Remoting services code instrumentation intercepts mes-
sages sent and received by processes in the context of
object propagations (performed resorting to remote invo-
cation), so that scions, stubs, InProps and OutProps are
created accordingly.8

To accomplish this, custom headers were appended to
Remoting messages, e.g.,
scionIndex, machine, processIdto uniquely identify GC
structures associated with replicas and remote references
included in Remoting messages. These values must be
propagated throughout the entire sink chain. Therefore,
adaptations were made on base files asbasetransport-
headers.cs, corechannel.cs, message.cs, dispatchchan-
nelsink.cs, binaryformattersink.cs. Higher level files
such asremotingservices.cs, tcpsocketmanager.cs, bina-
ryformatter.csand activator.cswere also modified pri-
marily to invoke, when remote references were detected,
specialized methods included in the previous files. One
specialized file,gcdata.cs, implements a new class,GC-
Manager, containing all the utility methods and GC state
used in all other files.

Code implementing ADGC algorithm’s explicit mes-
sages is grouped in a specific classDGCManager; this
code runs as a low priority thread in each application
process, and is responsible for composing and send-
ing NewSetStubs, Unreachableand Reclaimmessages
lazily. NewSetStubs, Unreachableand Reclaimmes-
sages from other processes, are delivered when well-
known remote methods made available by DGCManager
are invoked by another process.

6.3 Graph Description Summarization

In order to be consistent, object graph serialization must
be performed while the application code is not running.
In the current implementation, this is performed immedi-
ately after the LGC9 and before allowing the application
to proceed. However, this object graph serialization is
needed only for cycle detection. Thus, it only needs to
be seldom done. This allows the serialization of the ob-

8In Rotor, messages exchanged by these services are created, in-
tercepted, coded and decoded in several stages, called sinks. A group
of different sinks that sequentially process a message constitutes a
sink chain.

9This needs to be performed not necessarily after every LGC. This
operation may be only seldom performed, e.g., once out of every 10
(or 100) LGC executions.

14

ject graph to be done in other more convenient situations,
such as when the application stops waiting for input, or
is idle. In particular, it does not have to be created ev-
ery time an LGC occurs. It can be further optimized with
operating system support; e.g., using copy-on-write on
graph pages, serialization can be performed lazily in the
background with minimal delay, extra memory, and pro-
cessor load.

Graph summarization is coded in C#. It is performed,
lazily and incrementally, in each process, after a new
object graph has been serialized, by a separate thread
(which is almost always blocked). Summarization of ob-
ject graphs stored persistently in files is performed by
an off-line process executing the same function: it trans-
verses the graph, breadth-first, in order to minimize time
overhead (i.e., re-tracing of objects). Once summarized,
graph information becomes atomically available to the
DCDP.

6.4 Cycle Detection

The DCDP performing GMS is implemented in C# both
in Rotor[39] and OBIWAN[40, 41, 13]. The choice
of the implementation language of the cycles detector
had no constraints, provided that inter-operability could
be fulfilled between the DCD and the graph serializa-
tion/summarization component in each process.

Cycle detection is implemented as a standard mark and
sweep algorithm abiding to the marking rules presented
earlier (namely, one that enforces the Union Rule). Any
mark-and-sweep algorithm could be used (as long as it
respects the marking rules). Therefore, we do not provide
more details about its implementation.

7 Performance Evaluation

The most relevant performance results of our imple-
mentation are those related to phases critical to appli-
cations performance: i) stub/scion creation common to
any acyclic DGC (corresponding to the implementation
of safety rulesClean Before Send PropagateandClean
Before Deliver Propagate presented in Section 3.4),
and ii) snapshot serialization. These phases could de-
lay and potentially disrupt the mutator, therefore appli-
cations. Results were obtained using a Pentium 4 Mobile
1600Mhz with 512 Mb RAM.

We measured the creation of stubs and scions when

of propagations Rotor Rotor w/ DGC Variation
10 1933 2072 7.19%
100 12417 14731 18.64%
500 58754 70931 20.73%
1000 118890 140191 17.92%

Table 1: Propagation latency (in ms) due to ADGC man-
agement of remote references (including relative varia-
tion).

remote references are exported/imported, resulting from
the propagation of replicas. For safety, these opera-
tions are always performed and cannot be fulfilled lazily.
We tested worst case scenarios, discarding potentially
long network communication times, that could mask
stub/scion creation overhead. Figure 6 and Table 1 show
results for increasing series of object propagations car-
rying 10 references (10 different references being ex-
ported/imported), where client and server processes ex-
ecute in the same machine. This forces the ADGC to
create 10 scions and stubs each time a propagation takes
place. The overhead associated with the creation of stubs
and scions, in this worst case scenario without commu-
nication delay, is within 7%-21% which is acceptable for
the functionality provided, i.e., a safe DGC (and not one
that is lease-based).

The results regarding snapshot creation (by means of
serialization of the object graph) were very bad on Ro-
tor (see Figure 7). We must stress, though, that these
operations do not have to be performed frequently. As
a micro-benchmark, we used graphs with 10000 linked
dummy objects (just holding a reference). Rotor seri-
alization takes on average 26037 ms. To serialize the
same graph, with every object containing an additional
remote reference (additional 10000 stubs), it takes 45125
ms (73% more). This portrays a very conservative sce-
nario, concerning the number of outgoing inter-process
references: one in that each object holds a unique remote
reference. In normal circumstances, the number of re-
mote references in a process, is several orders of magni-
tude lower than the number of local references.

Nevertheless, serializing a remote reference is faster
than serializing an additional dummy object and, there-
fore, the impact of serializing GC structures is lower than
that of objects. However, these rather un-encouraging re-
sults are a direct consequence of the very inefficient seri-
alization code (for any purpose) included in Rotor. We
think this is intentional as Microsoft considers several

15

1933

12417

58754

118890

2072

14731

70931

140191

0

20000

40000

60000

80000

100000

120000

140000

160000

10 100 500 1000

propagations

T
im

e
 (

m
s

)

Rotor Rotor with ADGC

Figure 6: Propagation latency due to ADGC management of remote references.

aspects of the .Net CLR (Common Language Runtime)
as commercial product critical code, namely serialization
and LGC.

To address these limitations, we re-implemented the
algorithm (the same ADGC, with the same code for
DCDP, on OBIWAN[40, 41, 13] at user-level), so that
it runs on top of the commercial version of .Net. In this
second implementation, with production-level .Net seri-
alization code, serialization times are subject to a speed-
up of approximately 100 times. These results are more
encouraging (see Figure 8). They range from 250ms to
350ms. This imposes significantly shorter pause times.
Moreover, these operations needs to be performed only
sporadically.

8 Related Work

Given that the DGC algorithms presented in this article
provide a complete approach to the problem of DGC for
replicated object systems, the solutions can be related to
a large number of work performed in the area of garbage
collection. As a matter of fact, DGC has been a mature
field of study for many years and there is extensive liter-
ature [28, 1, 37] about it. However, given that our main

contribution addresses the issue of detecting and reclaim-
ing cycles of garbage for replicated object systems, we
focus on previous work dealing either with DGC algo-
rithms in replicated environments (which are not com-
plete), or with algorithms for collecting distributed cycles
of garbage, (i.e., algorithms that are complete) in non-
replicated environments. Note that, as there is no pre-
vious work addressing the detection and reclamation of
garbage cycles in a replicated system, this approach cov-
ers the all spectrum of existing solutions that may have
some aspect that can be compared to our DCD algorithm.

8.1 ADGC for Replicated Environments

DGC for replicated objects was first addressed by Fer-
reira [7, 8] in the framework of the Larchant project [9,
10, 11]. This work proposed a new DGC algorithm based
on a set of safety rules that take into account the existence
of replicated objects, thus solving the problem illustrated
in Figure1. In particular, the Union Rule then introduced,
ensures the safety of the DGC algorithm. However, the
solution then proposed is not scalable because it requires
the underlying communication layer to support causal de-
livery. In addition, it is not complete as it fails to detect

16

270 531 791 1052 1332
2644

5258

7871

10495

13079

26037

601 1182 1773 2333 2924

5898

9243

13580

17786

22502

45125

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

100 200 300 400 500 1000 2000 3000 4000 5000 10000

objects

T
im

e
 (

m
s
)

Rotor Modified Rotor with remote refs

Figure 7: Test-graph serialization times in Rotor: local references only, and with custom-serialization of proxy objects
for remote references.

270 531 791 1052 1332
2644

5258

7871

10495

13079

26037

0 10 10 10 20 30 50 70 100 120 2500

5000

10000

15000

20000

25000

30000

100 200 300 400 500 1000 2000 3000 4000 5000 10000

objects

T
im

e
 (

m
s
)

Rotor .Net

Figure 8: Test-graph serialization times in Rotor and in .Net commercial version.

17

and reclaim cycles of garbage.
The PerDiS project [5, 34, 12] improved on previous

work so that it no longer required the underlying com-
munication layer to support causal delivery. This was
achieved by means of a new set of rules that conserva-
tively creates the scion-stub pair of an inter-process refer-
ence immediately before being exported/imported. How-
ever, this algorithm is also not complete, i.e. it does not
reclaim cycles of garbage. This algorithm has also been
used to enforce referential integrity and minimize storage
waste in web content replication systems [43].

Our current work, concerning the ADGC described in
this article, improves on the mentioned above algorithms
in the sense that it is integrated with the DCD, thus mak-
ing a complete solution for the GC in object replicated
systems.

The work described in [48] is related to ours given that
it addresses the issue of DGC for a distributed shared
memory system (TreadMarks [17]). They propose a con-
servative collector that uses partitioned garbage collec-
tion on a process basis; this approach is the same used
by many others. All messages exchanged between pro-
cesses are scanned for possible contained pointers; this
is similar to the safety rules mentioned above w.r.t. the
DGC in Larchant. However, their solution is specific to
TreadMarks, i.e. it is not widely applicable. In addition,
it does not reclaim cycles of garbage.

8.2 Cyclic DGC for non-Replicated Environ-
ments

Global propagation of time-stamps until a global mini-
mum can be computed was first proposed in [16] to de-
tect distributed cycles of garbage. Distributed garbage
collection based in cycles detection within groups of pro-
cesses was first introduced in [19]. These algorithms are
not scalable since they require a distributed consensus
by the participating processes on the termination of the
global trace. This is also impossible in the presence of
faults [15].

Migrating objects to a single process in order to con-
vert a distributed cycle into a local one, that is trace-
able by a basic LGC, was suggested by several others
in [4, 23]. Object migration, for the sole purpose of GC,
is a heavy requirement for a system, needs extra and
possible lengthy messages (bearing the actual objects)
among participating processes. It is very difficult to accu-
rately select the appropriate process that will contain the

entire cycle. Cycles that span many objects, copied into
a single process in charge of tracing may cause overload.

In another centralized approach, distributed garbage
collection is performed by a logically centralized
server [21] that receives graph information from every
process. The centralized server performs complete dis-
tributed garbage collection and informs processes of ob-
jects to delete. Requirements on clock synchronization
and message latency are strict making this solution un-
scalable.

The work presented in [46] proposes trial deletion to
detect distributed cyclic garbage. It uses a separate set
of reference count fields for trial deletion in each object.
These count fields are used to propagate the effect of trial
(simulated) deletions. Trial deletion starts on an object
suspect of belonging to a distributed cycle. The algorithm
simulates the recursive deletion of the candidate object
and all its referents. When, and if the trial counts of every
object of the sub-graph drop to zero, a distributed cycle
has been successfully found. It imposes the use of refer-
ence counting for LGC (which is seldom chosen); this is
an important limitation. The recursive freeing process is
unbounded. Furthermore, it has problems with mutually
referencing distributed cycles of garbage.

In [24], distributed backtracing starts from suspected
objects (of belonging to a distributed cycle of garbage),
and stops until it finds local roots or when all objects
leading to the suspect have been backtraced. There are
two mutually recursive procedures: one to perform local
backtracing and another is in charge of remote backtrac-
ing. Distributed backtracing results in a direct acyclic
chaining of recursive remote procedure calls, which is
clearly unscalable. To ensure termination and avoid
looping during backtracing, eachioref (representing re-
mote references) must be marked with a list of trace-
id’s to remember which backtraces have already visited
it. This requires processes to keep state about detections
on course which raises questions of fault-tolerance. Lo-
cal back-tracking is performed with resort to optimized
structures similar to our graph summarization mecha-
nism. To ensure safety, reference copies (local and re-
mote) must be subject to a transfer-barrier that updates
iorefs. The distributed transfer barrier may need to send
extra messages that are guarded against delayed delivery.

Distributed backtracking is also used in [33] for cycle
detection in CORBA. As in our work, it addresses de-
tailed issues about implementation of this concept in a
real environment/system with off-the-shelf software.

18

In [31], groups of processes are created to be scanned
as a whole and detect cycles exclusively comprised
within them. Groups of processes can also be merged
and synchronized so that ongoing detections can be re-
used and combined. It has fewer synchronization require-
ments w.r.t. [19, 32]. When a candidate is selected, two
strictly ordered distributed phases must be performed to
trace objects. Mark-red phase paints the distributed tran-
sitive closure of the suspect objects with the color red.
This must be performed for every cycle candidate. Ter-
mination of this phase creates a group. Afterwards, the
scan-phase is started independently in each of the partici-
pating processes. The scan-phase ensures un-reachability
of suspected objects. Objects also reachable from other
clients (outside the group) are marked green. This con-
sists of alternating local and remote steps. The cycle de-
tector must inspect objects individually. This demands
strong integration and cross-dependency with the execu-
tion environment and the local garbage collector. Muta-
tor requests on objects are asynchronous w.r.t. GC; when
this happens during scan-phase, to ensure safety, all of
an object descendants may need to atomically be marked
green, which blocks application when it is actually mu-
tating objects. As in [24], GC structures need to store
state about all ongoing detections passing through them.

In [14], marks associated both with stubs and scions
are propagated between sites until cycles are detected.
Marks are complex holding three fields (distance, range
and generator identifier) and an additional color field. Lo-
cal roots first, and then scions, are sorted according to
these marks. Stubs require two marks. Objects are traced
twice every time the LGC runs (with important perfor-
mance penalty to applications) starting from local roots
and scions: first in decreasing, and then in increasing or-
der of marks, towards stubs. Mark propagation through
objects to the stubs is decided by min-max marking (this
is heavier than simply reach-bit propagation). One mes-
sage propagates marks from stubs to scions.

Cycle detection is started by generators that propagate
marks, initiating in local roots and scions recently cre-
ated or touched by the mutator. When a remote invoca-
tion takes place, a new generator is created and its as-
sociated mark must be propagated along the downstream
distributed sub-graph. Generator records include creation
time, a range field and a locator of the mark generator.
White marks represent pure marks while gray marks in-
dicate mixing of marks from different generators during a
local trace. When a generator receives back its own mark,

colored white, a cycle has been detected. If the mark
is gray, it means other paths lead to the scion and sub-
generations must be initiated. Stub messages need to in-
clude, besides marks, additional information about every
single sub-generator reaching each stub. Sub-generators
are created in the back-trace of the generator that receives
the gray mark. This lazy back-tracking mechanism can
be very slow. An optimistic variation leverages knowl-
edge about sub-generators triggering several back-traces
in different processes. Possible errors are prevented re-
sorting to a special black color associated with marks in
scions whose sub-generator status is later revised.

The resulting global approach to cycle detection is
achieved at the expense of additional complexity and per-
formance penalties. It imposes a specific, longer, heav-
ier LGC that must collaborate with the cycle detector.
There is a tight connection and dependency among LGC,
acyclic DGC and cycles detection. This is inflexible since
each of these aspects is subject to optimization in very
different ways, and should not be limited by decisions
about the others. The mark propagation consists of a
global task being continuously performed; it has a per-
manent cost. Instead it should be deferred in time, and
executed less frequently.

Relevant mutator events (i.e., edge-creation and edge-
destruction), and causal dependencies among them, are
monitored in [22] to perform DGC. Only edge-creation
and destruction involving remote references are relevant.
Objects targeted by remote references are designated
global roots. Analysis of mutator events is used as an
alternative to tracing the distributed object graph. Each
relevant event equates to lazily sending a control mes-
sage (either create or destroy) with respective direct de-
pendency vector (DDV) that reflects causal dependencies
on operations performed by other global roots. DDV are
logged, merged with its causal predecessors, and propa-
gated, until full vector-time is obtained for each global
root. This enables calculation of the complete transitive
closure of the graph. This approach is complete. It is re-
silient to message loss and duplication, and lazy message
exchange avoids races and synchronization bottlenecks.
However, it has unbounded latency for all garbage de-
tection (not just for cyclic garbage) and increased space
overhead. The use of vector clock logs, for each global
root, makes this algorithm unscalable.

Our management of unsynchronized summarized
graph descriptions can be related to GC-consistent-cuts
in databases as proposed in [38]. In this work, a GC-

19

consistent-cut has one or more copies of every page in
the database. These copies, possibly inconsistent from
a transactional point of view, can be created at different
instants. However, all these pages, when combined with
knowledge from database locks, may be consistently and
safely used for LGC purposes. This may require at least
as much memory as the database data itself. This work
can be applied only to a centralized database system, it
is not distributed, and is strongly dependent of the spe-
cific information provided by the database synchroniza-
tion mechanisms.

In our work, GC-consistent-cuts apply to distributed
systems and do not require any kind of synchronization
information about participating applications. Obtaining
and managing such synchronization information, in dis-
tributed systems, would be clearly undesirable for scala-
bility and performance reasons.

GC-consistent-cuts were used before, in the context
of distributed systems, in [42]. However, the solution
presented is not replication-aware, i.e., it is not safe in
the presence of replicated objects. A de-centralized ver-
sion of this algorithm is presented in [44, 45]. It intro-
duces algebra-based cycle detection by forwarding probe
messages (piggy-backed on acyclic DGC messages) that
carry an algebraic representation of a distributed path be-
ing transversed. This algebra comprises all the objects
that the message has been sent to (calledtargets), and
unresolved dependencies (sources). The latter constitute
objects still un-visited by the probe message, but that may
still maintain the whole cycle reachable.

Upon message reception, each process applies a
matching predicate to the received algebra. If it succeeds,
a distributed garbage cycle has been found. If not, it
may either forward an updated version of the algebra to
other processes (containing target objects) or terminate
detection (e.g., when local roots are reached, a mutator-
cycle detector race is detected, or an identical probe mes-
sage has already been forwarded through the same path).
State concerning multiple cycle detections in progress is
kept exclusively in each of algebra-carrying probing mes-
sages. The algorithm does not need to store information
in processes regarding each specific on-going detection.
This helps scalability and robustness.

8.3 Additional Remarks

Design and implementation of complete GC on single-
site partitioned object stores is thoroughly addressed in

[25]. GC collects one partition at-a-time. Inter-partition
references must be managed, and inter-partition cycles
can occur, as inter-site in DGC. However, there are no
issues of distribution to address here.

Recently, in [27] a complete proof of safety and
liveness is provided forBirrel’s reference listing algo-
rithm [2, 3] on which Java DGC is based. Although this
algorithm is not complete, as it cannot detect distributed
cycles of garbage objects, it is arguably the most widely
deployed DGC algorithm.

Another example of usage of snapshots in distributed
object stores, while completely unrelated to GC, appears
in [26]. It enables efficient system archiving and allows
safe computation over earlier system states.

In summary, our approach is the first to address mem-
ory management for replicated object systems, in a com-
prehensive manner. It presents the first DGC algorithm
for these systems, that is complete, i.e., that can detect
and reclaim distributed cycles of garbage comprised of
replicated objects spanning several processes. It has few
requirements on synchronization avoiding disruption to
mutator and intrusion to LGC. Furthermore, it has been
implemented on realistic off-the-shelf systems.

9 Conclusions

We presented a comprehensive solution to address mem-
ory management for replicated object systems. To the
best of our knowledge, we presented the first distributed
garbage collection algorithm that is both safe in the pres-
ence of replication, and complete w.r.t. distributed cycles
of garbage comprising replicated objects.

The main contributions of our work are: i) a novel dis-
tributed cycles detector algorithm that is able to reclaim
distributed cycles comprising replicated objects. It does
not require global synchronization, it is scalable, and it is
not intrusive w.r.t. mutator and LGC. It is able to make
progress without requiring all processes to participate, ii)
the notion of DGC-consistent cut applied to wide area
replicated objects, and iii) an implementation on Rotor
and on .Net with minimum impact on the source code of
Rotor runtime.

In comparison with previous work, our approach,
while being complete and scalable, is more flexible. In
fact, it imposes fewer and lighter restrictions w.r.t. syn-
chronization among processes, state management at each
process about detections in course, and intrusion with the

20

mutator and with the LGC. Thus, it is specially adequate
for realistic systems with off-the-shelf software. This fact
is confirmed by our implementation on Rotor and using
.Net.

Finally, although we have implemented the ADGC and
DCD algorithms in Rotor and OBIWAN, our solutions
are rather general. It is possible to apply the same ideas
and, in particular the notion of the CG-consistent-cut and
the DCDP, to other platforms supporting object replica-
tion.

In the future, we plan to address the following subjects:

• investigate how the implementation can be further
optimized, namely w.r.t. graph summarization (pos-
sibly integrating it with incremental LGC provided
with the VM)

• as an alternative (yet, complemental) direction, w.r.t.
the previous item, we also wish to maximize porta-
bility, possibly at the cost of hurting performance.
This way, we want to investigate placement of the
all GC-related code in custom proxies, static classes,
and custom attributes (with associated code) applied
to application classes. This would allow that appli-
cations with and without replication and/or cyclic
GC can co-exist without changing applications nei-
ther the VM.

• addressing the formal correctness proof of the
ADGC and DCD algorithms .

• development of a de-centralized version of the algo-
rithm presented here.

References
[1] Saleh E. Abdullahi and Graem A. Ringwood. Garbage collecting the

internet: a survey of distributed garbage collection.ACM Computing
Surveys (CSUR), 30(3):330–373, 1998.

[2] Greg Nelson Susan Owicki Edward Wobber Andrew Birrel, David Ev-
ers. Distributed garbage collection for network objects. Technical Report
116, Digital Systems Research Center, 1993.

[3] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Net-
work objects. InSOSP ’93: Proceedings of the fourteenth ACM sympo-
sium on Operating systems principles, pages 217–230, New York, NY,
USA, 1993. ACM Press.

[4] Peter B. Bishop.Computer Systems with a Very Large Address Space
and Garbage Collection. PhD thesis, Massachusetts Institute of Tech-
nology Laboratory for Computer Science, May 1977. Technical report
MIT/LCS/TR-178.

[5] Xavier Blondel, Paulo Ferreira, and Marc Shapiro. Implementing
garbage collection in the perdis system. InProc. of the Eigth Int’l
W’shop on Persistent Object Systems: Design, Implementation and Use
(POS-8), 1998.

[6] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: an exercise in cooperation.
Comm. of the ACM, 21(11):966–975, November 1978.

[7] Paulo Ferreira and Marc Shapiro. Garbage collection and DSM consis-
tency. InProc. of the First Symposium on Operating Systems Design and
Implementation (OSDI), Monterey, California (USA), November 1994.
ACM.

[8] Paulo Ferreira and Marc Shapiro. Garbage collection of persistent ob-
jects in dist. shared memory. InProc. of the 6th Int’l W’shop on Per-
sistent Object Systems, Tarascon (France), September 1994. Springer-
Verlag.

[9] Paulo Ferreira and Marc Shapiro. Garbage collection in the larchant
persistent dist. shared store. InProc. of the 5th W’shop on Future Trends
in Dist. Computing Systems, Cheju Island (Republic of Koreia), August
1995. IEEE.

[10] Paulo Ferreira and Marc Shapiro. Larchant: Persistence by reachability
in dist. shared memory through garbage collection. InInt’l Conf. on
Dist. Computing Systems (ICDCS’96), Hong Kong, May 1996. IEEE.

[11] Paulo Ferreira and Marc Shapiro. Modelling a dist. cached store
for garbage collection: the algorithm and its correctness proof. In
ECOOP’98, Proc. of the Eight European Conf. on Object-Oriented Pro-
gramming, Brussels (Belgium), July 1998.

[12] Paulo Ferreira, Marc Shapiro, Xavier Blondel, Olivier Fambon, Jo ao
Garcia, Sytse Kloosterman, Nicolas Richer, Marcus Robert, Fadi San-
dakly, George Coulouris, Jean Dollimore, Paulo Guedes, Daniel Hagi-
mont, and Sacha Krakowiak. PerDiS: design, implementation, and use
of a PERsistent DIstributed Store.Recent Advances in Dist. Systems,
Springer Verlag LNCS, Eds. S. Krakowiak and S.K. Shrivastava, 1752,
February 2000.

[13] Paulo Ferreira, Lúıs Veiga, and Carlos Ribeiro. Obiwan - design and im-
plementation of a middleware platform.IEEE Transactions on Parallel
and Distributed Systems, 14(11):1086–1099, November 2003.

[14] Fabrice Le Fessant. Detecting distributed cycles of garbage in large-
scale systems. InConference on Principles of Distributed Comput-
ing(PODC), 2001.

[15] M. Fisher, N. Lynch, and M. Patterson. Impossibility of distributed con-
sensus with one faulty process.Journal of the ACM, 32(2):274–382,
April 1985.

[16] John Hughes. A distributed garbage collection algorithm. In Jean-Pierre
Jouannaud, editor,Functional Languages and Computer Architectures,
number 201 in Lecture Notes in Computer Science, pages 256–272,
Nancy (France), September 1985. Springer-Verlag.

[17] P. Keleher, A. Cox, and W. Zwaenepoel. TreadMarks: Dist. shared mem-
ory on standard workstations and operating systems.Proc. of the 1994
Winter USENIX Conf., January 1994.

[18] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system.Communications of the ACM, 21(7):558–565, July 1978.

[19] Bernard Lang, Christian Quenniac, and José Piquer. Garbage collecting
the world. InConf. Record of the Nineteenth Annual ACM Symposium on
Principles of Programming Languages, ACM SIGPLAN Notices, pages
39–50. ACM Press, January 1992.

21

[20] Kai Li and Paul Hudak. Memory coherence in shared virtual memory
systems.ACM Trans. on Computer Systems, 7(4):321–359, November
1989.

[21] Barbara Liskov and Rivka Ladin. Highly-available distributed services
and fault-tolerant distributed garbage collection. InProceedings of the
5th Symposium on the Principles of Distributed Computing, pages 29–
39, Vancouver (Canada), August 1986. ACM.

[22] Sylvain R.Y. Louboutin and Vinny Cahill. Comprehensive dist. garbage
collection by tracking causal dependencies of relevant mutator events. In
Proc. of ICDCS’97 Int’l Conf. on Dist. Computing Systems. IEEE Press,
1997.

[23] Umesh Maheshwari and Barbara Liskov. Collecting cyclic dist. garbage
by controlled migration. InProc. of PODC’95 Principles of Dist. Com-
puting, 1995. Later appeared in Dist. Computing, Springer Verlag, 1996.

[24] Umesh Maheshwari and Barbara Liskov. Collecting cyclic dist. garbage
by back tracing. InProc. of PODC’97 Principles of Dist. Computing,
1997.

[25] Umesh Maheshwari and Barbara Liskov. Partitioned garbage collection
of a large object store. InProc. of SIGMOD’97, 1997.

[26] Chuang-Hue Moh and Barbara Liskov. Timeline: A high performance
archive for a distributed object store. InSymposium on Networked Sys-
tems Design and Implementation (NSDI ’04), 2004.

[27] Luc Moreau, Peter Dickman, and Richard Jones. Birrell’s distributed
reference listing revisited. Technical Report 8–03, University of Kent,
Canterbury, July 2003. (later accepted for publication in ACM Transac-
tions On Programming Languages And Systems in 2004).

[28] David Plainfosśe and Marc Shapiro. A survey of dist. garbage collection
techniques. InProc. Int. W’shop on Memory Management, Kinross Scot-
land (UK), September 1995. http://www-sor.inria.fr/SOR/docs/SDGC-
iwmm95.html.

[29] David S. Platt. Introducing the Microsoft.NET Platform. Microsoft
Press, 2001.

[30] Nicolas Richer and Marc Shapiro. The memory behavior of the WWW,
or the WWW considered as a persistent store. InPOS 2000, pages 161–
176, 2000.

[31] Helena Rodrigues and Richard Jones. Cyclic distributed garbage col-
lection with group merger.Lecture Notes in Computer Science, 1445,
1998.

[32] Helena C. C. D. Rodrigues and Richard E. Jones. A cyclic dist. garbage
collector for Network Objects. In Ozalp Babaoglu and Keith Marzullo,
editors, Tenth Int’l W’shop on Dist. Algorithms WDAG’96, volume
1151 of Lecture Notes in Computer Science, Bologna, October 1996.
Springer-Verlag.

[33] Gustavo Rodriguez-Rivera and Vince Russo. Cyclic distributed garbage
collection without global synchronization in corba. InOOPSLA’97 GC
& MM Workshop, 1997.

[34] Alfonso Sanchez, Lúıs Veiga, and Paulo Ferreira. Dist. garbage collec-
tion for wide area replicated memory. InProc. of the Sixth USENIX
Conf. on Object-Oriented Technologies and Systems (COOTS’01), San
Antonio (USA), January 2001.

[35] Marc Shapiro, Peter Dickman, and David Plainfossé. Robust, dist. ref-
erences and acyclic garbage collection. InSymp. on Principles of Dist.
Computing, pages 135–146, Vancouver (Canada), August 1992. ACM.

[36] Marc Shapiro, Peter Dickman, and David Plainfossé. SSP chains: Ro-
bust, dist. references supporting acyclic garbage collection. Rapport de
Recherche 1799, Institut National de Recherche en Informatique et Au-
tomatique, Rocquencourt (France), November 1992. http://www-sor.-
inria.fr/SOR/docs/SSPCrr1799.html.

[37] Marc Shapiro, Fabrice Le Fessant, and Paulo Ferreira. Recent advances
in distributed garbage collection.Lecture Notes in Computer Science,
1752:104, 2000.

[38] M. Skubiszewski and P. Valduriez. Concurrent garbage collection in O2.
In M. Jarke, M. J. Carey, K. R. Dittrich, F. H. Lochovsky, P. Loucopou-
los, and M. A. Jeusfeld, editors,Proc. of 23rd Int’l Conf. on Very Large
Databases, pages 356–365, Athens, 1997. Morgan Kaufman.

[39] David Stutz. The microsoft shared source cli implementation. MSDN
Library Article, Microsoft Corporation, march 2002.

[40] Luı́s Veiga and Paulo Ferreira. Incremental replication for mobility sup-
port in OBIWAN. In The 22nd International Conference on Distributed
Computer Systems, pages 249–256, Viena (Austria), July 2002.

[41] Luı́s Veiga and Paulo Ferreira. Mobility support in OBIWAN. In2nd
Microsoft Research Summer Workshop, Cambridge (UK), Sep 2002.

[42] Luı́s Veiga and Paulo Ferreira. Complete distributed garbage collection,
an experience with rotor.IEE Research Journals - Software, 150(5), oct
2003.

[43] Luı́s Veiga and Paulo Ferreira. Repweb: Replicated web with referential
integrity. In 18th ACM Symposium on Applied Computing (SAC’03),
Melbourne, Florida, USA, Mar 2003.

[44] Luı́s Veiga and Paulo Ferreira. Asyncronous, complete distributed
garbage collection. Technical report rt/11/2004, INESC-ID Lisboa, june
2004.

[45] Luı́s Veiga and Paulo Ferreira. Asynchronous complete distributed
garbage collection. In19th IEEE International Parallel and Distributed
Processing Symposium, Denver, CO, USA, april 2005.

[46] S. C. Vestal. Garbage collection: an exercise in distributed, fault-
tolerant programming. PhD thesis, Seattle, WA, USA, 1987.

[47] Paul Wilson. Distributed garbage collection general discussion for faq.
GCList Mailing List (gclist@iecc.com), march 1996.

[48] Weimin Yu and Alan Cox. Conservative garbage collection on dist.
shared memory systems. InThe 16th Int’l Conf. on Dist. Computer
Systems, pages 402–410, Hong-Kong, May 1996.

22

