
Self-Regulation in P2P Systems

Ion Craciun
ion.craciun@tecnico.ulisboa.pt

Student Number 66999

Instituto Superior Técnico

Abstract. Peer-to-peer systems became known to general public due
to the intensive use of file-sharing. P2P systems can be used for sharing
any type of resources between users, but expecting resources in return.
There is no real currency in the system, and we need to guarantee that
every user actually contributes to the system otherwise it will become
depleted of resources. Our objective is to define an abstract of a P2P
system and the properties that the system should reach (liveness) and
those that should never occur (safety). Then we need to verify that these
properties satisfy our system and provide formal guarantees. To achieve
this we started by studying the incentive systems, systems that try to
motivate the users to contribute to the system, then we studied the ex-
isting verification frameworks that were used to prove certain properties
in P2P systems.

1 Introduction

Nowadays peer-to-peer systems are known to general public due to intensive
use of file-sharing. However, P2P systems can be used for sharing any type
of resources between users, including CPU and memory for the execution of
tasks, jobs, virtual machines. A P2P network distributes information among the
peers instead of concentrating it at a single server, bringing new advantages in
information sharing but also presenting challenging disadvantages. One of the
biggest disadvantages in P2P systems is the resource sharing. In a P2P system
every user can act both as a client and as a server, and in a voluntary or altruistic
way he must contribute to the system with resources. Not everyone can or wants
to contribute in the system. Many times a user just takes the resources he wants
from the system and leaves it. We call these users free-riders. A lot of free-
riders in the same network leads to a client-server architecture and decreases
the advantages of a P2P system. Our objective in this work is to define an
abstraction of a system and study the liveness (propertie that a system should
reach) and safety (property that should never occur) properties of this system
that could demonstrate the feasibility of community clouds.

To have a P2P system with no free-riders, we must motivate the users not
only to consume resources but also to start sharing them. To achieve this, we
studied the existing incentive systems and figured out how to handle out the
free-riders. We approach incentive systems based on Game Theories, Trust and



Reputation. In our solution we use the incentive system proposed by Rodrigues
et al. in [20]. They studied incentive mechanisms for P2P voluntary cycle sys-
tems, which enable the correct operation of the systems, imposing a balance
between demand for resources and the existing offer. They explored concepts
such as reputation and currency, which are used in other systems, enabling a
coherent scheme to detect untrustworthy users and reward truthful peers with
faster access to the resources. Their verification was however done simply by
simulation and no formal guarantees were given.

Our second part of this work was to search and study the verification tech-
niques for a given property in a given system. To define and prove the properties
that reach the liveness and safety of a system, we had to study other systems
and properties to understand how it was done. We studied in more details the
verification of the security properties proposed by Mark Ryan in [5] using CSP [7]
and the verification of the Pastry Protocol in [15] using TLA+ [13].

Finally in the end we have our new system based on [20], and the properties
that we need to study and prove using TLA+.

The rest of paper is structured as follows. In Section 2 we have the objectives
of this work. Section 3 is the Related Work, with the incentive systems and
verification techniques we studied. In Section 4 is and abstract architecture of
the new system and the properties that the system should reach. Finally we have
Section 5 that concludes our work.

1.1 Peer-to-Peer

A small introduction to the peer-to-peer systems and several P2P architectures
concepts that are used later in this work and we explain them in this part.

What is peer to peer? Peer-to-peer (P2P) network is a distributed application
that distributes information among the member nodes (peers) instead of using a
centralized server. Peers are equal in their capacity for sharing information with
other network nodes and they can act as server or client. Each peer has some
information available for distribution, and also can establish connections with
any other node to download information. The ideal scenario for a P2P network
is when a node does not consume more resources than the shared ones. In reality
this is hard to achieve as nodes can consume data and leave the P2P network at
any time without sharing resources. Nevertheless this model offers advantages
in information sharing but also has challenging disadvantages.

1.2 Peer-to-peer architectures types

Centralized Napster is one of the famous examples to characterize a centralized
P2P network. Napster has a central constantly-updated directory at a central
location (e.g Napster site). Nodes from the network will query the directory to
find which nodes from the network hold the data they need. Such centralized
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approach does not scale very well and has some failures (e.g we can perform
attacks on the central directory) [16].

The decentralized P2P architectures are divided in two categories:

Decentralized structured These systems have no central directory like Nap-
ster, but they have some structures in the network. By structure we mean that
data, nodes and connections between nodes are organized such way that queries
in the network are easier to satisfy.

Decentralized unstructured These systems have no central directory and
also have no structures in the network. The network is formed by nodes joining
the network following some rules. The data is randomly distributed, so for a
node to find a file it must flood his neighbors with queries. These systems are
resilient to nodes entering and leaving the network but the search mechanisms
used are extremely unscalable.

2 Objectives

Peer-to-peer file-sharing networks are currently receiving much attention as a
means of sharing and distribution information. However, the anonymous, open
nature of these networks made them to be the target of many attacks and threats.
The main threat for P2P system are the free-riders, peers that consume more
resources than the provided ones. The ideal P2P system would be a system with
no free-riders. However, this is almost impossible to reach, as there is always
someone that wants to abuse the system. The objective of this work is to study
the P2P systems, and define some properties that a system should reach (live-
ness), and those that should never occur (safety). To achieve this, we need to
do the following things:

1. Analyze the existing P2P architectures and see how the peers, the commu-
nication between them, and the resources are organized in the system.

2. Assess all the attacks and threats that a P2P system can be exposed, and
choose the relevant ones for our study. We are interested in the attacks and
threats that abuse the resources of the system.

3. Study the existing incentive systems to discover how to reduce the threats
and attacks over a P2P system and motivate the users to participate and
contribute in the system.

4. Search for verification frameworks that were used to prove properties of P2P
systems. We must analyze and understand how these properties were proven
by the given framework.

5. Model our P2P system, the associated incentive system, and prove the in-
tended properties using the chosen framework.

6. Try to improve existing systems by developing better incentive systems that
satisfy the studied properties.

3



The first four objectives form the core of our Related Work. We start by
describing famous P2P architectures that are widely use. Next we present the
attacks and threats that are relevant for our work, and the incentive systems that
try to reduce the attacks and motivate the users to participate in the system.
Finally we approach the verification framework and present examples of usage
to prove specific properties in a given P2P system.

Our architecture and the future work is based on the last two objectives. In
Section 4 we present our architecture and the properties that we want to prove.

3 Related Work

In this section we start by approaching some specific P2P architectures. We then
describe the major attacks and vulnerabilities that a peer-to-peer network can
be exposed and present the incentive systems that try to reduce the attacks. In
the end we present the verification techniques that were used to prove certain
properties of P2P systems.

3.1 Architectures

Chord Nowadays one of the problems in peer-to-peer systems is to efficiently
locate the node with a particular data we need. Chord is a distributed protocol
that approaches this issue and provides support for just one operation: given
a key, it maps the key onto a node [22]. Chord tries to simplify the design of
P2P systems and addresses some of the problems as load balance, scalability,
decentralization, availability and flexible names. To assign keys to Chord nodes,
a variant of consistent hashing is used. Consistent hash function is one that
changes minimally as the range of the function changes [11] (e.g to resize a hash
table with consistent hashing, only K/n keys need to be remapped on average,
where K is the number of keys, n is the number of slots). To address the load
balance problem, Chord uses consistent hashing and every node receives roughly
the same number of keys, and that’s why Chord adapts efficiently as nodes join
or leave the system.

Nodes and keys are assigned a m-bit identifier using consistent hashing.
Node’s identifier is chosen by hashing his IP while key’s identifier is a result
of hashing the key. Using Chord protocol, nodes and keys are ordered in an
identifier circle that has at most 2m nodes with range 0 - 2m − 1 and m large
enough to avoid collisions. Each node has a successor and a predecessor. The
successor node is the next node in the identifier circle in a clockwise direction.
The predecessor node is the next node in a counter clockwise direction. In figure 1
we have an example with a an identifier circle with m = 3. The circle has three
nodes: 1, 5 and 6. The successor(1) = 1, so the key would be located at 1, key
3 at node 5 and key 7 at node 1.

Pastry Another solution to locate efficiently a node with particular data and
efficient routing within the network is Pastry. Pastry is a generic peer-to-peer ob-
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Fig. 1: Chord network

ject location and routing scheme, based on a self-organizing overlay network. Pas-
try is completely decentralized, fault-resilient, scalable, reliable and with good
route locality properties [19]. In this system each node has a unique numeric
identifier (nodeID) and each node maintains a routing table, a neighborhood
set and a leaf set. As nodes keep track of its immediate neighbors, they notify
applications of new node arrivals, node failures and recoveries. Since these IDs
are randomly assigned, the set of nodes with adjacent nodeID is diverse in ge-
ography, ownership, jurisdiction, etc. Applications like PAST [18] can leverage
this, as Pastry can route to one of k nodes numerically closest to the key. When
Pastry receives a message and a numeric key, it routes the message to the node
with a nodeID that is numerically closest to the key, among all currently working
Pastry nodes.

3.2 Attacks and threats

Free Riding A free-rider is a user that exploits the P2P network resources but
does not contribute to the network. A free-rider is considered a threat for P2P
networks. A large number of free-riders can cause the degradation of the system
performance, and augment the vulnerabilities of the system. There are several
motivations behind free riding:

• peers with a Network Address Translation (NAT) may act as a free rider: a
lot of computers share the same domain IP through NAT and if two peers
are using NAT-based IP, they cannot download files from each other and
also cannot upload files, which makes them to be considered free-riders [10].

• bandwidth limitation is another cause: there are peers that have scarce band-
width and sometimes we assume they don’t want to share it by uploading
files. In [1] we can see that there is no strong correlation between bandwidth
and free riding. A peer with a large amount of bandwidth has the same
tendency to be a free rider as a peer with poor connection.
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• users are concern of sharing illegal data on their personal computers: peers
don’t want to be responsible for the data item on any occasion of surveillance,
and in many cases users only download content to use it for a short time
and delete it afterwards.

• users are concern of security issues if they share something: sometimes peers
are just afraid to share resources as they think other peers may discover and
attack their personal computer.

There also are several types of free-riders:

• A user does not share anything at all or shares uninteresting files: if a peer
does not responds to requests from other peers, there may be two reasons
for that, the peer does not have the files that other peers request or the peer
does not share any files at all [10].

• A peer consumes more resources than the ones he shares: we can discover
a peer that consumes more resources than those the he shares by counting
the affirmative responses to other peers, and the requests made by him to
its neighbors, and comparing them.

• A peer drops the queries from other peers: if a monitoring peer counts the
requests and responses for a neighbor, and they are low, it can be assumed
that the neighbor has few connections or drops the queries.

There are several attacks that a peer can perform to conceal himself. One of
them is reply with fake messages to their neighbors when he is asked to share
some files: he says that he has the file but when asked to share it, he refuses the
connection. Another attack is sharing dummy files with popular names in order
to cheat querying peers. A lot of free riders in the same network may lead to
scalability problems as a lot of download requests will be directed to the same
peers. This will lead to a client-server architecture and decrease the P2P network
advantages.

Sybil attack / Whitewashing The main idea behind Sybil attack is that a
single user can present multiple identities and abuse the system. He can corrupt
the files that pass through his peers, he can reroute all queries in the wrong
direction thus slowing down the network. When a single user leaves and rejoins
the network under a new identity to avoid system penalties, we call him a white-
washer. A free-rider chooses to be a whitewasher in the network when the system
has low cost of acquiring new identities. A solution is to impose a penalty on
all newcomers, since it is impossible to distinguish a whitewasher from a new-
comer. Another solution to avoid these attacks is to have in the system a trusted
identification authority [6] (e.g a group of peers that vouch for the newcomer).

Malicous attacks Peer-to-peer file sharing networks have advantages over
client-server approaches but the open and anonymous nature of these networks
open a door for the malicious peers that want to abuse these networks. The
difference between a free-rider and a malicious peer is that the free-rider only
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consumes the resources offering nothing in change while a malicious peer tries to
infect the network, for example with a virus, to take control over other peers [8].

As P2P network are large networks with a lot of nodes, there is the possibility
to find malicious collectives. A malicious collective is a group of malicious peers
that know each other and try to cheat the trust incentive systems by giving each
other high local trust values and give all other peers low values.

Poisoning and pollution Nowadays peer-to-peer file sharing systems are the
predominant sources of Internet traffic and a lot of copyright holders are worried
by the potential loss of revenue due to file sharing. They have been exploring
several options to decrease the availability of the items that belong to them
(e.g, movies, songs, games) [3]. A common technique that they are using to de-
crease the availability is item poisoning. Item poisoning corresponds to injecting
corrupted files into the network with name and meta-data (e.g movie name, du-
ration) as the original item. Pollution, similarly to poisoning, injects corrupted
files into the network but has different objectives and impacts on the systems.
The goal of pollution is to create noise in the network while poisoning usually
targets a specific file in the network and tries to decrease its availability.
There are three strategies to inject bad files:

• Random injection - At lower levels, this strategy can be considered as a
pollution attack. At higher levels this strategy is inefficient as flooding the
network with random bad files does not change the availability of the most
popular files. In fact, to successfully poison the network using this strategy
we need to inject a big number of corrupted files.

• Replicated injection - next strategy is injecting numerous replicas of the
same corrupted file. This poisoning attack is easily countered by a reputation
system.

• Replicated transient decoy injection - we can cheat the reputation sys-
tem by frequently replacing the replicated corrupted files injected in the
network. It does not change the temporal stability properties of network so
significantly, and may not leave an obvious statistical signature, which makes
this strategy hard to detect.

All this strategies are not mutually exclusive. We may combine them and
create very strong poisoning attacks that will be difficult to detect and will lead
to drastically decreasing the content availability of the specific file.

3.3 Incentive systems

In this section we present the incentive systems that we studied and are coun-
termeasures against the attacks previously described. The goal of these systems
is also to motivate the peers to contribute and participate in the P2P networks.
The incentive systems must consider several issues:

• Simplicity - the actions observed and reactions to them should be simple
to implement and manage.
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• Decentralise - making decisions and taking actions should be executed in
a decentralized way.

• Cooperation - should be intensified with coordination among peers.
• Low overhead - methods should not cause much overhead. Non free-riders

should not devote much resources to prevent free riding.
• Abuse-proof - peers may try to walk around mechanism by misreporting

their status or implementing their own client programs. Mechanism must
not depend on information provided by peers solely.

• Fairness - peers with low bandwidth connections may not contribute even
when they are willing to do so. The peers with NAT-based IPs also behave
like free-riders. Mechanism and policies applied against free-riders should be
fair and smart enough to distinguish the peers which are not real free-riders.

Mechanism against free riders The first incentive system we present, is a
simple system in which every peer passively monitors the other peers proposed
by [10]. In this system every peer has two roles. The first role is a monitor
peer that monitors and records the number of messages coming from and going
to neighboring peers [10]. The second role a peer can take is controlled peer,
which means his messages are monitored and recorded by his neighbors. After
examining the messages from a neighbor, and compiling the information recorded
about the neighbor and its related messages, a monitoring peer may suspect if
is a free-rider. Then he can take counter actions against this suspected peer. In
figure 2 we have an example how the peers can be connected and monitor each
other.

Fig. 2: Peers in two roles: monitoring and controlled

In order to determine if a controlled peer is a free-rider or not, several clues
must be derived from the behaviors of the neighbors. Each peer needs to maintain
information about each neighbor and its behaviors. The information that each
peer maintains about neighbors consists of some statistical counters presented
in table 1 [10]. The clues about his neighbors, if they are free-riders or not, are
derived from these values. If a peer identifies another peer as a free rider it can
take some counter-actions against it:

8



Symbol Description
Qp Number of Query descriptors submitted by peer P.
RQp Number of Query descriptors routed by peer P.
TQp Number of Query descriptors routed towards peer P.
QHp Number of QueryHit descriptors submitted by peer P.
RQHp Number of QueryHit descriptors routed by peer P.
SQHp Number of QueryHit descriptors satisfying queries of peer P.
Np Number of Notify descriptors submitted for peer P.

Table 1: Descriptors observed

• Decrementing TTL(Time to Live) value - when a peer receives a request
from his neighbors, first he searches on local files for a match, otherwise
forwards the request to the other neighbors peers. Before forwarding the
request, the TTL value is decremented by one. If the peer suspects that the
request comes from a free-rider, he can decrement the TTL value by more
then one before forwarding. This reduces the range of free-riders to search
the files they need and also reduces the overhead of the network.

• Ignoring request - a monitor peer can punish a free-rider by simply ignoring
his request, simply by dropping the query from the free-rider. In this case
the monitoring peer should be very careful about the origin of the request
and drop only the requests coming from free-riders.

• Disconnecting from network - in this case if a monitor peer is 100% sure that
his neighbor is a free-rider, he drops the connection with him. The difference
from ignoring requests is that here the free-rider needs to disconnect and
reconnect to the system through a new peer, while ignoring him we can
change our opinion if we see any change in the behavior.

We saw how to detect the free riding types and the possible countermeasures.
Now we integrate them together using a ECA (Event Condition Action) rule
and a FSM (Finiti State Machine). As we saw in Section 3.2 a free-riding peer
can be a consumer,a non-contributor, a dropper or a combination of these. If
a neighbor is a good behaving peer, it will not show any of the mentioned free
riding types. To denote if a neighbor belongs to these categories, three boolean
variables are used. N for non-contributor, D for dropper and C for consumer. If
a peer has the boolean, for example D (dropper), equal to 1 than we can say it
is a dropper, otherwise he is not a dropper. With these booleans and with the
values maintained in the log table of a monitoring peer, we can have one of the
following eight conditions (Table 2) for a neighboring peer.

As we can see in the table 2, C0 gives us the information that there are no
free-riders in the system. C1, C2 and C4 gives us information that the peer P
is either a non-contributor, a dropper or a consumer. In C3, C5 and C6 the
controlled peer exhibits exactly two types of free riding. Condition C7 gives us
the information that the peer is showing all types of free riding.
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N D C Condition
0 0 0 C0
0 0 1 C1
0 1 0 C2
0 1 1 C3
1 0 0 C4
1 0 1 C5
1 1 0 C6
1 1 1 C7

Table 2: Conditions

The monitoring peer based on these conditions takes the countermeasures
against them. For condition C0, as the peer shows no free-riding behavior, the
monitoring peer applies no counter-action. For the conditions C1, C2 and C4,
the monitoring peer reduces the TTL value by more than 1. For C3, C5 and
C6 the monitoring peer ignores partially the requests. Finally for condition C7
the monitoring peer just drops the connection with this peer. We can integrate
these conditions in a FSM with four states: S0, S1, S2 and S3. In each state a
countermeasure is applied,except in S0 where the peer is a non free-rider and so
no counter-actions need to be applied. In S1 the countermeasures for C1, C2 and
C4 are applied, S2 for C3, C5 and C6. Finally in state S3 the countermeasure for
C7 are applied. The transition between states depend on the condition (values
of N ,D and C) changes upon an update.

Game Theory incentive systems Peer-to-peer systems are self-organizing,
distributed resource sharing networks. There is no central authority to command
or coordinate the resources that each peer should contribute [2]. Every peer in
the systems is a volunteer and that is why the system’s resources can be highly
variable and unpredictable. For example, one of the problem as we saw in the
previous section is the free-riding.

The goal of the game theory incentive systems is to develop mechanisms
by which contributions of individual peers can be solicited and predicted. We
assume that each individual (peer) is a rational, strategic player who wants to
maximize his utility by participating in the P2P system. Next we present some
specific game theory incentive systems.

Evolutionary Prisoner’s Dilemma (EPD) consists of players (peers) who meet
for the games. Each of them has a score which is initialized to 0. In each game,
one player is the client and one player is the server. They can swap roles in the
next game. The client selects the server using a strategy. Client and server each
have the choice of cooperating or defecting. Players decide whether to cooperate
or defect using a strategy. They can observe each others actions, but not their
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strategies. A player may maintain a history of other players actions. Some of the
strategies that exist in P2P systems are 100% cooperate or 100% defect. After
client and server’s action, a payoff from a payoff matrix (Table 3) is added to each
of their score [12]. R, S, T and P in the payoff matrix stand for reward, sucker,
temptation, and punishment. Each of these values can be positive or negative.

Client\Server Cooperate Defect
Cooperate Rc/Rs Sc/Tc

Defect Tc/Ss Pc/Ps

Table 3: Payoff matrix

The payoff matrix models the benefits and costs of a game, and should meet
the following requirements and associated inequalities [12]:

• Mutual cooperation is better then mutual defection Rs +Rc > P s + P c.
• Mutual cooperation must be better em terms of payoff than one player suck-

ering the other Rs +Rc > Sc + T s and Rs +Rc > Ss + T c.
• Defection dominates cooperation at the individual level T s + P s > Rs + Ss

or T c + P c > Rc + Sc.

In a P2P system, 100% Cooperators drive the system to high overall utility while
100% Defectors gain more benefit from the system than 100% Cooperators.

Tit-for-tat is a strategy that is believed to be the most effective to enforce the
collaboration among selfish users [14]. This strategy is alike EPD, a player must
defect or cooperate based on the actions from the other player. The difference is
that in tit-for-tat a player initially cooperates, and then responds with the action
that his opponent used in previous action. Tit-for-tat is applied as a strategy to
ensure fairness in distributed networks such as P2P systems that do not have
a centralized control facility, and where the users are most of the times selfish
players. For example, tit-for-tat serves as a design principle for BitTorrent [4].
In this system, peers use tit-for-tat strategy to provide parts of a particular file
as long as they receive something of interest in return. Fairness in P2P system
is very important, as any system’s performance depends on collaboration.

As we said tit-for-tat is considered to be the most effective and successful
strategy to enforce the collaboration among selfish users, but in practice it has
several problems. In a perfect tit-for-tat environment a peer is provided with a
certain contribution if it continues to give something in return. In a real P2P
system, these things are almost impossible. First we have the new peers joining
the system, and they need to download some files or parts of them before up-
loading them and cooperate with other peers. Second, peers can have neighbors
that have no usefull information for them, information that they already have.
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In [14] the authors solve these two problems by using a Seeder Strategy. The
main purpose of this strategy is to boost the download progress by providing
newcomers with initial data they can share. This data are sets of blocks, that
any new peer can download for free and start interacting with other peers and
contribute to the network. Every peer is identified by his IP address and conse-
quently a peer is not able to receive additional data for free, nor leave and rejoin
the system. Every newcomer receives different data based on his IP. This strategy
has several benefits. First, peers with different IP addresses obtain different data
blocks which ensures that the available number of distinct linear combinations
in the network is high. Second, the leechers (peers downloading data) are forced
to collaborate as seeders provide a small and specific set of blocks and do not
provide more data until they receive something in a change from the leechers.

Nash Equilibrium is a game theoretic notion to analyze the strategic choices
by different peers. The classical concept of Nash Equilibrium points a way out
of endless cycle of speculation and counter-speculation as to what strategies
the other peers will use [2]. An equilibrium point is a locally optimum set of
strategies (contribution levels in our case), where no peer can improve his utility
by deviating from the strategy. While Nash equilibrium is a powerful concept,
computing these equilibrium is non trivial. No polynomial time algorithm is
known for finding the Nash equilibrium of a general N person game.

In a traditional distributed system we assume that all participants work to-
gether cooperatively and share a common goal, do not compete with each other,
nor try to subvert the system. In a P2P system, the things are different as the
system consists of autonomous components. Users compete for shared but lim-
ited resources and at the same time, they don’t contribute with resources. We
can define these interactions between peers as a non-cooperative game among
rational and strategic players. The players are rational because they wish to
maximize their own gain, and they are strategic because they can choose their
actions that influence the system [2]. Players obtain benefits from their interac-
tions between them and this benefit is termed as a payoff or utility. The utility
depends not only on their own strategy, but also on everybody else’s strategy.
Sometimes a player might decide to switch strategy to improve his utility but
this switch can affect others players utility. The collection of players is said to be
at Nash equilibrium if no player can improve his utility by unilaterally switching
his strategy [2].

Now imagine a real P2P systems with users interacting between them. A peer
P i has a limited set of peers that interacts with him. During these interactions,
peer P i learns of the contribution made by them and tries to maximize his utility
by adjusting his own contribution. This contribution from P i is not globally
optimal because is limited to the information only from a set of peers. After
setting his own contribution, he propagates this information to the interacting
peers and they will adjust their own contribution. The reaction of the peers
to P i’s contribution can affect P i once more, and he can readjust better his
contribution. Every peer goes through an iterative process of setting its own
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contribution. If and when this process converges, the resulting contributions will
constitute a Nash Equilibrium [2].

Trust/Reputation incentive systems In an open P2P information system,
peers often have to interact with unknown peers and need to manage the risk that
is involved with the interaction without the presence of trusted third parties or
trust authorities. Trust is an important measure that a peer can use to evaluate
the risk involved when interacting with other peers and make the right decision
about requests from them.

PeerTrust is a simple and effective trust model for quantifying and assessing the
trustworthiness of peers. The PeerTrust model has two unique features. First,
has three important factors for evaluating the trustworthiness of a peer [24]:

• The amount of satisfaction a peer receives regarding his service, it usually
results from the interactions that other peers have with this peer.

• The total number of interactions that a peer has with other peers in the P2P
network is another important factor that affects the accuracy of feedback-
based trust computation. Reflects over how many services the satisfaction is
obtained.

• Balancing factor of trust is used to offset the potential of false feedback
of peers and thus can be seen as a way to differentiate the satisfaction of
credible sources from the less credible ones.

All three factors play a crucial role in the computation trust of peers because
many other models use only the first factor. Second, PeerTrust has a general trust
function that computes the trust of a peer by combining these three parame-
ters. We also want to point out two important concepts addressed in PeerTrust:
trusting belief and trusting behavior. Trusting belief between two peers is when
one peer believes that another peer is trustworthy. Trustworthy means that the
peer is willing and able to act in other entity’s best interest. Trusting behavior
between two peers is when a peer depends on another peer in a given situation
with feeling of relative security. PeerTrust uses the trusting belief relationship.
Most of the times trusting belief leads to trusting behaviour. In PeerTrust, a
peer’s trustworthiness is defined by an evaluation of the peer in terms of the
degree of satisfaction it receives in providing service to other peers in the past.

EigenTrust An important example of successful reputation management is the
online auction system eBay. In eBay’s reputation system buyers and sellers can
rate each other after each transaction, and the overall reputation of a participant
is the sum of these ratings over the last 6 months [9]. For example, each time peer
i downloads a file from peer j, it may rate the transaction as positive or negative.
Peer i may rate a download as negative, if the downloaded file is corrupted or
if the download is interrupted. Each peer i can store the number satisfactory
transactions it has had with peer j and the number unsatisfactory transactions
it has had with peer j.
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The basic concept behind EigenTrust is that each peer j is assigned a global
participation value, or EigenTrust score, that is given by the sum of the local
participation values assigned to peer j by the peers who have interacted with
him. A simple way to keep this value would be for each peer to store it, and
report its score when asked by another peer. The problem is that malicious
peers can misreport their scores or create a collective and boost each other
score. The solution would be to create some pre-trusted (for example, designers
of the network) peers that are responsible for storing and managing the scores
of their children.

Two ways to reward participatory peers is to award them faster download
times, and grant them a wider view of the network. The first incentive is to give
active participators preference when there is competition for bandwidth. In other
words, if peer j and peer i are simultaneously downloading from another peer
k, then the bandwidth of peer k is divided between peer i and peer j according
to their participation scores. The second incentive is to assign each peer a TTL
based on its participation score, giving active participators a wider view of the
network.

Another incentive that deserves some attention is changing the topology of
the network based on participation scores. The idea is to connect peers with
high participation scores to one another to form the top ring of the P2P net-
work. Those peers with lower EigenTrust score will make their own ring. This
EigenTrust-based topologies will move malicious peers to the fringe of the net-
work, limiting the interactions of good peers with malicious peers.

GINGER is a large project, Grid In a Non-Grid Environment, a P2P infrastruc-
ture intended to ease the sharing of computer resources between users. Authors
main concern in [20] is related to the overall fairness of the system. They want
to guarantee that malicious users will not corrupt the entire system by not con-
tributing to the resource pool or delivering false results. Their aim is the balance
between a currency and reputation-based system capable of delivering proper in-
centives to users. They conclude that a good incentive-based application must
rely on both reputation and currency and also the existence of brokers that
manage a number of peers.

The solution was developed on top of the Pastry and Ginger [23]. The network
is represented as a ring of peers connected to their neighbors. Virtual groups of
users were implemented to structure the network with a broker assigned to each
group. The existence of brokers makes the architecture to be classified as partially
hierarchical and structured.

To initialize the system, a set of trustworthy users is needed, to act as super
nodes. To be classified as trustworthy, these users need to reside in the system
long enough. Brokers will be elected from the pool of peers, according to their
reputation. The brokers are the only users capable of introducing currency in
the system and are responsible for registering an additional amount of currency
to the most reputed users upon the entrance of a new peer [20]. Periodically, to
promote activity, a broker adjusts downwards the reputation of a user.
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3.4 Verification Techniques

Nowadays a lot of properties verifications are done simply by simulation and
no formal guarantees are given. In this section our objective is to study the
existing frameworks for verification and the properties they prove. We detach
two frameworks. First one is TLA+, that was used for the verification of the
Pastry Protocol in [15]. Second framework is CSP used by Mark Ryan in [5] to
verify the security properties of P2P systems.

Verification of the Pastry Protol using TLA+ TLA (Temporal logic of
actions) was invented by Leslie Lamport and can describe a system by a single
formula. TLA provides a nice way to formalize the style of reasoning about
systems, known as assertional reasoning, that has proved to be most effective
in practice. One of the disadvantages of TLA is that it does not have notations
for writing long formulas. Mathematicians have developed the science of writing
formulas, but they never turned that science into an engineering discipline. The
notations they developed were for the mathematics in the small but not in the
large. As the specification of a real system can be hundred of pages long, and
mathematicians know how to write 100-line formuas, not 100-page formulas,
Lamport had to introduce notations for writing long formulas. A new language
was born, called TLA+. TLA+ is good for specifying a wide class of systems
from program interface to distributed systems. It can be used to write a precise,
formal description of almost any sort of discrete systems [13].

In [15] authors modeled Pastry’s core routing algorithms and communication
protocol in TLA+. To validade the model and to search for bugs, they employed
the TLA+ model checker TLC to analyze several quality properties.

In Pastry two of the most important sub-protocols are join and lookup. The
join protocol adds a new node with an unused network ID to the ring. The lookup
protocol delivers the hash table entry for a given key. An important property of
Pastry that requires that there is always at most one node responsible for a given
key is Correct Key Delivery. This property is non-trivial to obtain as nodes can
leave, drop or join at any moment. Therefore every node holds two leaf sets of
size l containing its closest neighbors to either side (l nodes to the left and l to the
right) and the hash table content of its leaf set neighbours. In [15] authors had
several challenges related to Pastry. First challenge in modeling Pastry was to
determine an appropriate level of abstraction. They focused the model towards
supporting detailed proofs of the correctness properties. They prescind from the
notion of time because it does not contribute to the verification of correctness
properties. The second challenge was to fill in the necessary details for the format
model that are not contained in the published descriptions of Pastry. Another
challenge and the main property that the authors were interested is that lookup
message for a particular key is answered by at most one ready node covering the
key. A ready node is a prepared node to answer lookup and join protocols.

The join protocol is the most important part of Pastry correctness. A new
node joins the ring between two ready nodes. This new node receives its leaf
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sets from ready nodes, negotiates with both nodes the new leaf sets and goes to
status ready.

Fig. 3: Join protocol

In figure 3 we have an example of join protocol. Node j wants to join the ring
by performing a Join action, and keeps its state in status wait. Its join request
will be handle by a ready node i, that replies with a JReply action, transmitting
its current leaf sets to enable node j to construct its own leaf set. Node i probes
all nodes in its leaf sets to confirm their presence in the ring. All the nodes from
leaf sets reply with PReply action that signals j that the respective leaf set node
received information about j and updated its local leaf with j. After receiving a
probe reply from every node from the leaf sets, j updates the local information
based on the received messages. When the leaf set is complete, j goes to status
ready, otherwise goes to repair if any fault happened.

The overall structure of the TLA+ specification of Pastry is presented next:

vars ,
〈
receivedMsg, status, lset, probing, failed, rtable

〉
Init , ∧ receivedMsg = {}

∧ status = [i ∈ I 7→ IF i ∈ A THEN "ready"ELSE "dead"]

∧ lset = [i ∈ I 7→ IF i ∈ A

THEN AddToLSet(A, [node 7→ i, left 7→ {}, right 7→ {}])

ELSE [node 7→ i, left 7→ {}, right 7→ {}]]

∧ probing = [i ∈ I 7→ {}]

∧ failed = [i ∈ I 7→ {}]
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∧ rtable = . . .

Next , ∃i, j ∈ I : ∨Deliver(i, j)

∨ Join(i, j)

∨ JReply(i, j)

∨Probe(i, j)

∨PReply(i, j)

∨ . . .

Spec , Init ∧�[Next]vars

TLA formulas that represents programs can always be written in the same
form, for example, Init ∧ � [N ]f where:

• Init is a predicate specifying the initial values of the variables.
• � is an unary operator read as always.
• N is the program’s next-state relation, the action whose steps represent ex-

ecutions of individual atomic operations.
• f is the n-tuple of all flexible variables.

In our case the system specification Spec is defined as Init ∧ � [Next]vars.
It requires that all runs start with a state that satisfies Init, which is the initial
condition, and every transition either does not change vars or corresponds to a
system transition defined by Next. As Init ∧ � [N ]f is a safety property, we can
see that this system specification is only for proving safety property. To prove
the liveness properties of this model, fairness hypotheses should be added to
assert that certain actions eventually occur. Authors left the liveness properties
for the future work, when they tend to extend the model. The full proofs are
available on Web1.

Verification of security properties in P2P systems using CSP Com-
municating Sequential Processes is a formal language for describing patterns
of interaction in concurrent systems. CSP was introduced by C.A.R Hoare in
his paper [7] in 1978 and is a concept of a system of processes interacting by
sending messages to each other via handshaken communication [17]. CSP was
the first version of all these languages called process algebras. Many researchers
use the original version, others built upon its ideas to develop their own lan-
guages and notations. The majority of these languages have been notations for
describing and reasoning about purely communicating systems. Process algebra
notations and theories of concurrency are useful because they bring the problems
of concurrency into sharp form [17]. We can use them to address the problems
at the high level of constructing theories of concurrency and at the lower level
specifying and designing individual systems.
1 http://www.mpi-inf.mpg.de/~tianlu/software/PastryTheoremProving.zip
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In [5] authors focus on a specific security property, called the root authenticity
(RA) property of the structured P2P overlays (e.g Chord, Pastry). They propose
a P2P architecture that uses Trusted Computing as the security mechanism,
formalize the system using CSP, and then verify that it indeed meets the RA
property. A P2P system satisfies the root authenticity (RA) property when it
solves the attack in which the adversary falsely claims that he is the destination
of a search key k.

There are a lot of structured P2P systems, each differs from another in its
topology, routing or maintenance protocols. In [5] authors consider Chord as it
is more popular than the other systems due to its simplicity and efficient routing
protocol. In systems like Chord, an attacker may attempt to impersonate the
destination of a search key. For example an attacker controls a specific peer and
can convince another honest peer that his node is the destination for the data
that comes from the honest peer. The RA property implies that such an attack
is not possible. The definitions of root authenticity (RA) property and neighbor
authenticity (NA) property are the following:

Root Authenticity (RA): Let P t be the set of current nodes in the P2P
system, at a given time t. Assume that the system evolves from t to (t + 1) as
a new peer joins or and existing peer leaves the system. The RA property is
defined as [5]:

∀D, k ∈ ID, t. V.destV erification(k,D)

=⇒ D ∈ P t ∧ (∀D’ ∈ P t\{D}.|D’ 	 k| > |D 	 k|)

Neighbor Authenticity (NA): Let P t be the set of current nodes in the
P2P system, at a given time t. Assume that the system evolves from t to (t+1)
as a new peer joins or and existing peer leaves the system. The NA property is
defined as:

∀L,D, t. V.neighborV erification(L,D)

=⇒ L,D ⊆ P t ∧ (∀D’ ∈ P t\{L}.|D’ 	 L| ≥ |D 	 L|)

The RA property requires that for any key k and a peer D at time t, if
destV erification(k,D) return true then D is the closest peer on the right of k
at time t [5]. The NA property requires that at time t for any peer L and D in
the network, if neighborV erification(L,D) returns true then L is the immediate
left neighbor of D at time t. From these definitions the authors were able to show
the next theorem that states that if the neighbor verification protocol is correct,
then the system satisfies the RA property.

NA =⇒ RA

We said that authors in [5] used Trusted Computing in their architecture.
What is Trusted Computing? Trusted Computing is a collection of initiatives to
root security in hardware. The most noticeable manifestations are the Trusted
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Platform Module (TPM), Intel’s Trusted eXecution Technology (TXT) and Vir-
tualisation Technology (VT-d). TPM is a hardware chip shipped in high-end lap-
tops, desktops and servers made by all the major manufactures. TPM provides
hardware-secured storage, secure platform integrity measurement and reporting,
and authentication. In this P2P system, it is assumed that all peers have support
for the trusted computing infrastructure and are equipped with TPMs. Also in
this architecture a certificate authority (CA) is considered. CA is trusted to issue
neighbor certificates as peers join and leave the network, and does not have to
run on trusted hardware.

CSP has three denotational semantic models: traces, stable failures and fail-
ures/divergences. In this work, authors only used the traces model, especially the
refinement relation on traces [5]. Let traces(P ) and traces(Q) be set of traces
of the process P and Q, then Q is said to refine P , written as P vT Q.

The system model in CSP consists of several agents:

1. Nonce Manager - supplies fresh and unique nonces for other agents.
2. TPM - models the trusted hardware used in the system. Each TPM has a

counter cid for P2P operations and is known to all peers.
3. CA - is trusted to issue neighbor certificates as peers join and leave the

network.
4. Verifier - picks a random peer and asks it for its immediate right neighbor.
5. Adversary - models the attacker trying to break the RA property.

To prove that the system satisfies the RA property is equivalent to showing
the following:

Spec({}, P ) v T System

The current CSP model System is very large and complex. Even for a network
with small number of peers, the model contains too many states and transitions
to be checked automatically by a model checker. Authors approach for the verifi-
cation was firstly to find an abstraction of the original model called Abstraction,
whose state-space is smaller. The abstraction satisfies: Abstraction vT System.
Next they demonstrated that Spec({}, P ) vT Abstraction, which then implies
that Spec({}, P ) vT System is correct. All the proofs can be found in [5].

4 Proposed architecture

The objective of this work is to to take a P2P system, and provide formal
guarantees of liveness and safety properties, and verify specific properties that
we define.

The architecture of our P2P system is similar to GINGER [20]. The network
is represented as a ring of peers connected to their neighbors. Every peer in the
ring is a broker (super-node). Every broker has a group of peers that he must
manage. The peers are grouped based on the type of the resources they are going
to share (e.g books, movies, music, software, etc.) as we can see in the figure 4.

The peers have the same features as described in GINGER. We keep the
currency and reputation for a peer, and only brokers are capable of introducing
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Fig. 4: Architecture of the system

new currency in the system. In a resource exchange, the buyer gives currency to
the seller, and as a result the buyer becomes poorer while the seller wealthier.
In our case, if the transaction was successful the broker gives positive reputation
to both peers that participated in the exchange. To promote the activity in the
system, the brokers will periodically adjust the reputation of a user downwards.
The brokers are elected among the users with high activity and reputation.
In case a broker fails, the system chooses another broker from the respective
group among the ones with the highest activity and reputation. We assume that
the brokers are intelligent users that won’t risk their reputation to attack the
system. In case we detect a broker as a malicious peer, we disconnect him from
the network and ban him.

Every peer starts his activity in the network with a default currency and zero
reputation. A new peer can join a specific group if he meets specific requirements,
that we explain in the next paragraph, or he can join an initial group with peers
that also have no start resources to share. In the case where new peers have no
resources to share, the system will give them some resources so they can start
their activity to raise their currency and reputation. When a user wants to buy
something from the another peer, but has his uncertainties, he can ask the broker
about the reputation of the other peer. To encourage users to report malicious
users, a bonus is awarded in case the reclamation is verified.
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4.1 Evaluation

In [21] authors propose a new peer group joining protocol. A peer that wants to
be a member of one of the groups in the system, must have certain properties or
meet the requirements related to the resources they provide to the other peers.
For example to be a member of the software group, the peer must provide some
open source software that he already has; to be a member of the movies group,
the peer has to make available at least 10GB of movies. Also before joining a
group a peer may want to verify conditions concerning the peers of this group
to avoid joining malicious groups. For example imagine a peer p wants to join
the group software. In this case the broker sends the requirements to p:

FreeSoftwareMembership← @p(Software(Licenced

= False ∧ size = 1.5GB))

requiring p to share with the members of the group at least 1.5 GB of open
source software. On his side, p is interested in joining the software group only
if the peers in the group provide word processing, antivirus and threat removal
tools [21], and sends to the broker his requirement:

@p(Software(Licenced = False ∧ size = 1.5GB ← ∀FreeSoftware.x

(@FreeSoftware.x(Software(Type = WordProcessor ∧ Type = Antivirus∧

Type = ThreatRemover)

The authors in [21] tested and evaluated their approach on an extension of
the JXTA P2P platform. However no formal model of the system in order to
define correctness proofs of the presented protocols were provided. They left it
for the future work.

Our objective is to provide correctness proofs of this join protocol using
TLA+. Other properties will be considered and analysed in our future work. For
example we will give high priority to the next properties and try to prove them:

• The resources delivered by one peer, will be received by another peer with
no modifications and with no problems during the delivery.
• Ensure a downloading peer that the provided information is authentic and

not poisoned.
• Once a resource got into the network, it will always be available and never

dissapear.

In the end if we manage to prove these properties, and they satisfy our
system, then we can say our work was successful.

5 Conclusions

We end our work by making an overview of what we have done. We started our
work by studying the vulnerabilities of the P2P systems, and possible attacks
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on them. Then we have surveyed the incentive systems, and saw how the P2P
system can be improved, especially when we want to reduce the free riding in
the network and reward the active users. This allowed us to build a necessary
knowledge base for our future system. To define the properties that our system
must satisfy, we had to study the verification frameworks and the properties
they proved in another systems. We detached two frameworks CSP and TLA+.

Regarding our proposed architecture we need to improve it a lot. The hard
part of the architecture was to define the properties for the system. We want to
define properties related with system resources that satisfy our system. However,
all the related work we found about verification was related in most of cases with
security and authentication properties.

The current architecture is based on GINGER [20] and the property we
suggest to prove using TLA+ is from [21]. In [21] the verification was done only
by simulation and no formal guarantees were given. We presented additional
properties that we would like that our system satisfy.
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A Planning

Tasks Duration
Improvement of current solution February (1 week)

Introduction to TLA+ February (2 weeks)
Formal model in TLA+ March (4 weeks)

Verification of the properties April (4 weeks)
Evaluation and conclusions May (4 weeks)
Thesis final report writing June - September

Review September
Documentation February - September

Bi-weekly meetings February - September

Table 4: Planning schedule
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