
VFC-BOX: A Multi-user System For Consistent

File Sharing

Jean-Pierre Ramos
Advisor: Prof. Dr. Paulo Ferreira

Distributed Systems Group, INESC-ID
Technical University of Lisbon
jean-pierre.ramos@ist.utl.pt

Abstract

Computer assisted collaborative work has been motivating the design
and implementation of systems capable of e�ciently sharing and storing
data. This document provides an overview of the current state-of-the-art
technologies to e�ciently share and store data. Further, it focuses on the
ability of systems to use the interest of collaborators over parts of the
shared information in order to reduce the use of network resources and
shrink the data's latency seen by users.

Relevant systems are presented and discussed, indicating their main
advantages and disadvantages. Finally, this document presents an overview
of the preliminary VFC-BOX architecture. VFC-BOX is a multi-user con-
sistent �le sharing system, based on deduplication techniques and a consis-
tency model that takes into account the interest management (or locality-
awareness) of a user. Through these techniques, this system may achieve
higher performances w.r.t. data transfer/synchronization and storage.

Keywords: VFC-BOX, File Sharing, E�cient Storage, E�cient Synchro-
nization, Data Deduplication, Optimistic Replication, Interest Management
(locality-awareness).

1 Introduction

The increasing development of the ubiquitous and pervasive computing areas[45]
have been creating a requirement for new and more e�cient ways of sharing data.
Ally to this, there are collaborative tools that foster this sharing of data and its
manipulation amongst users. These types of tools are being spread for many
environments, in which there are many limitations such as reduced memory and
low bandwidth networks. Due to this, e�cient information sharing is considered
a fundamental aspect to computer supported cooperative work (CSCW)[17].

Consider for instance a team of co-workers that want to share and change

1

mailto:jean-pierre.ramos@ist.utl.pt


a set of �les. To do this, they can use a system that shares data consistently.
Furthermore, users can be working with either a desktop that has a high speed
connection; a laptop linked to a low bandwidth network, or even with a smart-
phone with an intermittent connection to the network. Additionally, we may
�nd that many times most of the elements of the team are only interested in
some �les or even parts of a �le. For instance, a team of co-workers writing a
document may have elements that are only working in a speci�c part of the doc-
ument, not being really interested on the rest of the document. Taking this into
account. we may say that it might not be a concern to the elements of a working
team, if parts of the sharing data in which they are not interested are not con-
sistent at all times. Nevertheless, if two users are working in the same chapter of
a document, they may want to ensure the consistency of that data through time.

The goal of this work is to design and build a system called VFC-BOX that
e�ciently manages the consistent sharing and storage of data across a multi-user
network. The system is required to be e�cient, regarding not only the extra
overhead required for synchronization, but also the memory usage required for
storage and network bandwith. Another requirement is that the system has to
be scalable to large networks and to manage large amounts of data. Ideally,
the system should also be able to reduce the latency of data which is consid-
ered as interest to users and improve concurrency amongst users. To deal with
large networks and avoid the problem of having a bottleneck in the network
communication, VFC-BOX has to consume the minimum of network bandwith,
reducing communication channels where they are not fundamental as well as
data to be transfered. To deal with large amounts of data and avoid an over�ow
of the storage site's disk capacity, this system has to reduce the amount of data
stored.

To ful�ll the above mentioned requirements, VFC-BOX has to deal with the
following challenges: i) reduce the space used to store data through the use of
compact forms of representing data; ii) reduce the amount of data to be trans-
fered through compact forms of representing data to be transfered; iii) allow
concurrent access to �les, while preserving replica consistency; iv) ensure the
correct data synchronization, while reducing the use of network resources; v)
deal with con�icts, supporting ways of detecting and resolving them through
the merge of concurrent data updates; vi) support disconnected work.

Many of the current solutions either to synchronize or store data in dis-
tributed systems such as Semantic-chunks[41], BackupChunk [25], Venti[29] and
LBFS[24], are based in similarity between data. Data similarity or data redun-
dancy is the concept related with the fact that most of the data that we share
and store is similar to other pieces. This redundancy can be detected using data
deduplication[22] techniques that compare the similarity between portions of
data. With this data similarity exploitation, we may achieve higher perfor-
mance in the storage of data, eliminating redundant data, and substituting it
by references to a single instance storage. E�cient synchronization may also
be achieved by not sending data that is found as redundant between two sites.
Nevertheless, these solutions have the problem of not reducing/postponing com-

2



munications between sites, due to the inability to adapt consistency guarantees
according to the needs.

Other solutions are based in Optimistic Replication[33], which enables
the bounded divergence of data consistency. These type of solutions try making
a trade-o� between weaker consistency guarantees and the possibility of a higher
performance on availability and access to the replica objects. Nevertheless, most
of these solutions do not contemplate an e�cient management of updates. Most
solutions decide to take an approach to either enforce strong consistency guar-
antees to all updates, or non at all. Additionally, these solutions also do not
cope with the requirements of low memory usage, not being able to sometimes
avoid over�owing the disk's storage site.

Some solutions such as Semantic-chunks[41] and VFC for Cooperative Work
[11] also take into account the interest management[16](or locality-awareness)
of a user to �lter massive volumes of data in large-scale distributed systems.
These tools try to reason about the importance of each update, performing an
intelligent management of updates and performing a selective scheduling based
on this importance. Many times, users are only concerned with a small subset
of the total sharing set of �les. Nevertheless, systems waste resources by up-
dating users with updates which are of no interest to them. Thus, the notion
of interest management brings bene�ts by �ltering data updates of low interest
to users. Systems can enforce higher consistency guarantees over data subsets
in which users are most concerned, and enforce low consistency guarantees over
the others. This can have great impacts reducing the amount of updates and
bandwith usage.

VFC-BOX combines deduplication techniques with an optimistic replica-
tion schema that is capable of adapt consistency guarantees according to the
users interest. Through information provided by the user, the system is able to
identify the user's interest over each data set. The bene�ts of this interest man-
agement are dual. First, data with higher interest can be forwarded to users in
advance, reducing its latency and helping users to receive it ahead of data with
less interest. Second, it reduces the number of updating messages regarding
data of low interest. Additionally, deduplication techniques allow the system to
reduce the redundant data stored and transfered between sites, reducing space
and bandwith usage. Thus, the system aims to an e�cient way of sharing data,
reducing its redundancy and the amount of communications taking into account
the subsets of data that are more relevant to users.

The remainder of the document is organized as follows. Section 2 describe
the related work and brie�y present some relevant systems. In section 3 we
present the architecture of our solution. Section 4 presents the methodology
that will be used to evaluate the system.

3



2 Related work

This section presents the state-of-the-art of work suitable for the sharing data
system proposed in this document. Relevant design choices are studied and
existing systems are presented and discussed.

The remainder of the section is organized as follows. Section 2.1 describes
the related work on data redundancy, in which several data deduplication tech-
niques used to minimize data storage and data transfer are presented. Section
2.2 addresses the topic of optimistic replication, in which several topics about
the consistency of data are presented. Section 2.3 address the topic of adap-
tive consistency and presents the TACT and the VFC model, two replication
models that adapt consistency guarantees according to the required. Section
2.4 describes the inherent problems of storage systems over large-scale networks
(e.g. Internet) and addresses the topic of cloud computing, presenting Amazon
S3, a scalable simple storage service system for the Internet that provides a
highly scalable, reliable, secure, fast and inexpensive infrastructure for storing
data. Finally, section 2.5 presents some of the relevant systems.

2.1 Data Redundancy

Nowadays, we may �nd that most computational systems have a large percent-
age of redundancy in stored data[22]. This redundancy is related to the fact that
there is a high duplication of data parts, or a high similarity between distinct
�les. For instance, a system that keeps an history of multiple �le versions has a
substantial redundancy between multiple versions. This is because most of �le
versions only append a portion of data w.r.t. previous version, or if not, only
modify a con�ned part of it. Apart from this, there are also other situations
where we may �nd a high similarity between data, such as a �le heading that
several �les use or even a piece of code that is auto-generated, and so duplicated
across several �les. There are two distinct types of redundancy. One is related
with the redundancy between versions of the same �le and is called cross-version
redundancy. The other one is related to parts of information within a �le that
are similar to other parts within another �le, and is called cross-�le redundancy.

Data redundancy can be detected using deduplication techniques that
compare the similarity between portions of data - called chunks. With this
data similarity exploitation, higher performance in the storage of data may be
achieved, by eliminating redundant data, and replacing it by references to a sin-
gle instance storage of a chunk. E�ciently synchronization may also be achieved
by not sending data that is found as redundant between two sites.

These techniques di�er in 3 fundamental dimensions[22]: algorithm, tim-
ing, and placement. The choice of the algorithm depends on its e�ciency in
storage reduction, reconstruction time, network bandwith usage and impact
in system's resource consumption. Current algorithms are divided in three
main families: Delta-Encoding, Compare-by-hash and Version-Based deduplica-
tion. W.r.t. timing, deduplication can be performed as Synchronous/In-Band,

4



Asynchronous/Out-of-Band, or as Semi-Synchronous operation. Finally, re-
garding the placement of deduplication, it can be placed at the client side or
at the server side. This placement choice may a�ect resource utilization, for
instance, client-based placement might improve the bandwith utilization.

2.1.1 Delta-Encoding

Delta-Encoding[19, 13] is a deduplication technique that consists in the encoding
of a �le relatively to another. It is often used between versions of the same �le,
where the new version may contain a large part of the content of the previous
version. This technique compares each byte of the �le (binary di�) to be com-
pressed against another one called reference �le, and calculates a delta between
them. This delta contains the modi�cations that were made to the reference
�le. The goal is to transfer and store only the delta �les, keeping references to
the original data regions, improving the storage space and bandwith usage (by
transfering only the deltas).

To take advantage of this technique it is fulcral to detect pairs of �les in
which there is a high probability of existing data similarity. Applying this tech-
nique to two completely di�erent �les would end up in the storage of both �les,
without any storage gains. Thus, it is important to have an heuristic to help
in the detection of reference �les. Version control systems like CVS[10] and
SVN[15] use Delta-Encoding with the naming of �les as the heuristic. This
heuristic explores most of the cross-version redundancy, since a �le name is nor-
mally maintained through multiple versions.

As this technique needs to compare two �les to exploit redundancy, it is
only able to explore redundancy locally. This type of redundancy is called lo-
cally trackable redundancy [7] where data redundancy occurs only locally, and
is the contrast to the locally untrackable redundancy [7], which exploits redun-
dancy between two sites without the need to have both �les in the same site.
This is a limitation to systems that may want to explore similarities between
data that came from multiple sites (locally untrackable redundancy). Another
limitation of this technique is the inability to detect redundancy within a set of
versions. As the algorithm makes use of the comparison between two �les, it is
only possible to detect similarities between them, and not within a set of �les.

2.1.2 Compare-by-hash

Compare-by-hash[24, 39, 12, 5] is a deduplication technique based on the com-
parison of hash values of each chunk of data. These hash values have to be
collision resistant so that we can assume that a content of a chunk is redundant
relatively to another one, only by comparing the hash values[14, 32]. If one hash
is equal to another one, we may say that the content of both chunks is identical.

This algorithm is thus capable of identifying either cross-version or cross-�le
redundancy, only by comparing hash values. It improves data storage by de-
tecting chunks with the same hash value (same content), eliminating duplicates

5



and substituting them by references to a single instance storage. Furthermore,
it is also capable of exploring locally untrackable redundancy, and improve the
bandwith usage. This technique is able to achieve this by transferring hash
values between two sites. For instance, a site S may have a �le to send to site
R. Instead of sending the whole �le, S could only send the hash values of the
data chunks. Then, R would only have to search locally for chunks with the
same hash value, and return to S the information about the data chunks that
are missing - called literal data. By the end, S would only have to send to R the
literal data, avoiding to send chunks that R already has (redundant data). This
process is depicted in Figure 1. E�cient synchronization may then be achieved
by not sending data that is found as redundant between two sites. However, in
terms of data transmission, this technique introduces a new round-trip to the
transfer protocol and an increase in the volume of meta-data exchange.

Figure 1: Example of the chunk transference protocol.

In terms of granularity, this technique can be separated in Whole File Hash-
ing, Fixed Block Hashing or Variable Block Hashing.

Whole File Hashing (WFH):
The Whole File Hashing technique used by systems such as Single Instance
Storage[8] consists on the hashing of a whole �le and its comparison against
others. It is the simplest technique of the compare-by-hash algorithms and it
is a simple method to detect duplicated �les. As it takes into account a whole
�le, it has not to calculate chunk boundaries, making it easier to implement
and more e�cient in terms of time processing. A SHA-1[14] or MD5[32] hash
of the �le can then be computed and compared to the pre-existing hashes in
the system, in order to identify duplicates. Nevertheless, it needs an heuristic
to detect similar data blocks, for e.g. the name of �les (a simple �le renaming
breaks this heuristic). It is also unable to detect other forms of redundancy, not
detecting redundancy between �le versions, or between parts of �les.

Fixed Block Hashing (FBH):
The Fixed Block Hashing technique consists in detecting data redundancy through
the hashing of chunks of the same size. Systems such as Venti[29] and Rsync[39]

6



use this technique of partitioning �les into chunks. When compressing a �le, it
has to split a �le into chunks, calculating its boundaries according to a constant
size (chosen a priori). Afterwards, it has to calculate their respective hash val-
ues (using a SHA-1 or MD5 hash over each block), and then to search for chunks
with an equivalent hash. Thus, it is able to detect redundancy in a more �ne-
grained way, according to the speci�ed size block. This is an improvement when
compared to Whole File Hashing, achieving better compression rates. However,
this approach is very sensitive to modi�cations performed on consecutive ver-
sions of a �le. Since chunk's boundaries are calculated with a �xed size, a simple
insertion of data may shift all the boundaries of the blocks from that point until
the end of the �le. Thus, these blocks will all be considered as new data blocks.
Figure 2 illustrates this problem of overlapping chunks. This technique may be
appropriate to situations where modi�cations to �les are only appending data.
Nevertheless, it is unable to detect a high percentage of redundancy when there
is a shifting of chunk's boundaries.

Figure 2: Example of application of FBH. The gray color identi�es the chunks
that were considered as new chunks.

Other problem inherent to this solution is to �nd the optimal block size,
which is a non-trivial task. Further, it depends on the type of the data. For
instance, bigger blocks work better with highly redundant data. However, a
smaller block size is able to �nd more redundancy, especially in less similar
data. But then, using smaller blocks requires more meta-data and, at some
point, the size of the meta-data generated does not pay the savings in space by
using smaller blocks.

Variable Block Hashing (VBH):
The Variable Block Hashing technique consists in splitting data into chunks
according to its content. This content-de�ned chunking is used in many sys-
tems such as LBFS[24], Pastiche[12], BackupChunk[25], Haddock-FS[6] and
ShiftBack[40]. Instead of calculating boundaries with a �xed sized, it calcu-
lates it having the content of a �le into account. Thus, it avoids the problem of
shifting of boundaries, improving e�ciency in data compression.

To divide a �le into chunks, the algorithm examines every 48-byte regions
of the �le and with a probability of 2−13 over each region's contents considers
it to be the end of a data chunk. It can also be limited with a minimum and
a maximum constant size (chosen a priori), to restrict very small or very big

7



Figure 3: Example of application of VBH. The gray color identi�es the chunks
that were considered as new chunks.

chunks of data. After calculating chunk's boundaries, this technique only has
to calculate a SHA-1 or a MD5 hash over each chunk of data, and to compare
them to the pre-existing hashes in the system, in order to identify duplicates.

Current solutions calculate the content-based boundaries using Rabin Fin-
gerprints[30]. A �ngerprint consists in a polynomial representation of the data
modulo. When the low-order 13 bits of a region's �ngerprint is equal to a chosen
value, that region constitutes a boundary. Rabin Fingerprints is normally used
because it is e�cient to compute it on a �le sliding window.

Comparing VBH with FBH, we may say that VBH is a more e�cient al-
gorithm to �nd redundant chunks of data. Nevertheless, it is a more complex
and computational expensive algorithm than FBH. When choosing between
VBH and FBH, one has to take into account whether the system requires an
algorithm more e�cient in terms of redundancy detection or in terms of com-
putational consumption. Furthermore, in systems where the problem of sliding
boundaries does not often occur, the FBH is able to �nd redundancy close to
levels obtained by VBH.

2.1.3 Version-Based Deduplication

As described before, compare-by-hash algorithms are very powerful to detect
either cross-�le or cross-version redundancy. Nevertheless, and concerning data
transmission, it adds a signi�cant overhead to the data transfer protocol. It
adds to it more round-trips and a substantial volume of exchanged meta-data.
When in presence of a low redundancy situation that overhead may not com-
pensate the gains.

The Version-Based Deduplication[4, 7, 40, 25] appears to reduce this over-
head introduced by compare-by-hash algorithms. Version-Based Deduplica-
tion is a technique used by systems such as dedupFS[4], ShiftBack[40] and
BackupChunk[25], that combines versioning information with local similarity
detection algorithms. It consists in the knowledge that each site has about the
data that is stored in another site. Having that knowledge into account, one
can avoid to send redundant data across the network. That knowledge is based
in a space-e�cient representation, such as version vectors[23]. The algorithm

8



works in 4 steps:

• A receiver site, R, informs the sender, S, of the version set that R currently
stores.

• The sender site compares R's version set with its own, determining the
intersection of versions that both contain in common.

• Using some local similarity detection algorithm (e.g. compare-by-hash), S
determines which chunks to send to R are redundant with relation to the
previous intersection.

• The sender S transfers the contents of the remaining literal chunks to R.

In order to achieve this, Version-Based deduplication imposes the unique
identi�cation of each write through the use of monotonically increasing local
counters at each site. Thus, each write constitutes a version that is identi�ed
by the site's unique identi�er and the the local write counter.

Each site maintains two version vectors to identify the knowledge that they
have about the state of the other sites. Any site S holds a Knowledge Vector,
denoted KVS , and a Pruned Knowledge Vector, denoted PrVS . The KVS is
a vector with an entry per known site and contains the last known state of
each site, represented by the unique identi�cation of the most recent version
written by the other site and obtained by S. The PrVS is a vector with an
entry per known site and contains the last known versions that were pruned
and no longer available at the site S. When S receives new data, it updates the
KVS to the value of the most recent version obtained by each site. Thus, S is
able to represent the most recent version that it has ever seen from each site.
When S removes some �les, it updates the PrVS , updating it to the most recent
version that has been deleted. The interval between the KVS and the PrVS ,
]PrVS ,KVS ] , represents the set of data that is found at the site S. Neverthe-
less, S has to guarantee that for every version v for each site i it can respect
the clause PrVS [i] < v ≤ KVS [i]. In other words, S must guarantee that the
set between the PrVS and the KVS has no gaps. To accomplish this, S must
receive only consecutive updates and discard non-consecutive updates.

This technique achieves two fundamental properties: i) as the process of
similarity detection is performed locally, it can employ more data-intensive
techniques; ii) on contrary to compare-by-hash it does not introduce a sub-
stantial overhead w.r.t data transmission. Yet, as it only takes into account
the knowledge of shared data, it does not detect locally untrackable redundancy.
Depending on the situation, that issue may or may not be important. In most
cases the redundancy comes mainly from cross-version redundancy. Thus, the
gains may overcome this limitation.

2.1.4 Deduplication Timing

Data Deduplication Timing varies according to the time in which it is employed.
It can be performed as Synchronous/In-Band, Asynchronous/Out-of-Band, or

9



as Semi-Synchronous operation.

Synchronous/In-Band :
Synchronous deduplication[22] consists in performing deduplication operations
when data is being consumed by the system. Furthermore, this means that for
each write operation there is a deduplication operation associated, before the
e�ective write occurrence.

This type of deduplication timing allows a search for redundancy before the
actually occurrence of each write. As it never writes data into the system before
compacting it, it allows a better space usage reduction. Nevertheless, this type
of deduplication timing needs to process data as it is being written. Thus, a
continuous overhead in the usage of computational resources is introduced. This
causes some latency on writing operations, reducing by this the throughput of
the system.

Asynchronous/Out-of-Band :
On contrary to synchronous deduplication operation, asynchronous deduplica-
tion [22] consists in performing deduplication operations only periodically. From
time to time, it executes a deduplication operation over the new written data,
searching for redundancy and compacting the necessary data. By this, the
system can perform its activities without being constraint by deduplication op-
erations. Thus, increasing the consumption of system's data and its throughput.
However, as data is written immediately, there is no processing before, allowing
the writing of redundant data into the system. This requires a higher storage
capacity, since it needs to stage data while uncompressed.

Normally, this type of deduplication is not a good solution when perform to-
gether with a client-based placement approach. This is �rstly explained by the
lack of up-to-date deduplicated meta-data at runtime, unabling to do queries im-
mediately. Secondly, it causes a loss in the network bandwith reduction achieved
by the client-based placement.

Semi-Synchronous:
Semi-Synchronous deduplication[22] consists in a combination between syn-
chronous and asynchronous deduplication, performing each technique when more
adequate. It chooses the type of deduplication dynamically according to resource
availability.

2.1.5 Deduplication Placement

Data Deduplication may be performed on the client side or on the server side
according to the intended.

On the client side:
When data deduplication is performed on the client side, the client has the duty
of performing deduplication operations. Thus, data is only transfered between
sites after redundancy removal. As data is already sent in a compact form, this

10



can achieve higher performances w.r.t. data transmission. Typically, this ap-
proach involves a deduplication client that communicates with a server. Thus,
the client processes data before synchronizing it with the server, sending to the
server only the respective meta-data. With the received meta-data the server
can search for identical chunks of data. Then, it informs back the client about
the missing chunks. Therefore, the client only sends to the server the literal
data, decreasing costs in the usage of network bandwith.

Despite the gains achieved in data transmission, this type of deduplication
implies a higher resource usage on the client side, regarding CPU and IO op-
erations. Taking this into account, the client could be a�ected in terms of
performance of other applications.

On the server side:
Data deduplication performed on the server side consists in having a server
appliance that executes deduplication operations on its received data. Venti[29]
and Quantum1 are examples of solutions these appliances. Normally, it is chosen
having into account the bene�ts in the server's storage. On contrary to client-
based deduplication, it does not overhead the client with the responsibility of
processing data. Nevertheless, as redundant data is sent to the server, it is not
so e�cient in terms of data transmission.

2.2 Consistency in Distributed Systems

Replication is a fundamental technique in �le sharing systems to improve avail-
ability, scalability, performance and to support disconnected operations. How-
ever, these systems have a di�cult task ensuring replica consistency across sev-
eral users. There is a lack of adaptability and e�ciency on these systems regard-
ing replica consistency. Most of them are not capable of scale to large networks,
due to the huge bottleneck in data transmission. This section presents some
replication models, comparing its advantages and disadvantages.

2.2.1 Limitations of Pessimistic Replication

Pessimistic Replication[33] is a model to ensure strong data consistency guar-
antees. It tries to guarantee that all the replicas are identical to a single copy.
Further, for any sequence of read and write operations on a replicated object,
it guarantees that the sequence of values associated are the same for any other
replica. Thus, a sequence of reads and writes on a replicated object will produce
the same e�ect as if the object were not replicated. To ensure data consistency
at the level of a non replicated schema, this model has to block access to data
whenever a replica is not up-to-date or disconnected from network. Before per-
forming any operation request over a replica, the pessimistic replication runs a
synchronous coordination protocol to ensure that the requested operation will

1Quantum: Data de-duplication overview.
http://www.quantum.com/Solutions/datadeduplication/Index.aspx.

11

http://www.quantum.com/Solutions/datadeduplication/Index.aspx


not violate any consistency guarantee. So, it preserves consistency of data pre-
venting con�icts, even at the cost of denying access to replicas.

This model of replication specially �ts to systems where stale data cannot
be read or data con�icts cannot occur. However, it comes with the cost of re-
ducing data availability, which is a big constraint to �le sharing systems. Also,
it is di�cult to scale systems that use pessimistic replication to larger networks.
Its natural frequency of updates causes system's throughput and availability to
su�er as the number of sites increases.

2.2.2 Introduction to Optimistic Replication

Optimistic replication[33] is a replication model for sharing data e�ciently in
wide-area or mobile environments. In opposition to pessimistically replicated
systems, its approach is based on the improvement of concurrency.

It consists on the guarantee that object replicas will converge to the same
value, within a certain period of time. This convergence is called eventual
consistency[33, 43], and assumes that for a long period of time, all updates will
eventually propagate through all the replicas. On contrary to Pessimistic Repli-
cation, this model does not block access to data even at the cost of su�ering
some divergence between replicas. Optimistic Replication does not have to run
any type of coordination protocol before accepting an operation request. Thus,
it overcomes Pessimistic Replication regarding access performance, as the repli-
cated system no longer waits for a synchronization before accepting a request.
Concerning scalability, Optimistic solutions are also preferred due to less co-
ordination requirements and due to the possibility of running synchronization
protocols in background. Thereby, it trades data consistency for availability
and scalability.

With this temporarily relaxed consistency, stale reads and con�icting writes
are inherent risks. A classic approach to this problem is to ignore the stale
reads and to detect and resolve con�icting writes. Unison[28](�le synchronizer)
describes 4 types of existing con�icts:

• change the name of the same �le to di�erent names on di�erent replicas;

• delete a �le on one replica and change its name on another;

• create a �le with the same name and di�erent contents on di�erent replicas;

• make di�erent modi�cations to the same content of a �le on di�erent
replicas.

The option that Unison makes to resolving con�icts is to detect them and then
request users to solve the con�icts. Most of �le synchronizers, such as Dropbox2

and SugarSync3 take this option to solve con�icts. Others, such as CVS[10] and
SVN[15] try to merge di�erent modi�cations to the content of a �le, asking the

2Dropbox: Secure backup, sync and sharing made easy. https://www.dropbox.com.
3Sugarsync: Backup and �le synchronizer. https://www.sugarsync.com/.

12

https://www.dropbox.com
https://www.sugarsync.com/


help of the user only when this attempt failures.

Optimistic replication normally �ts to systems that can tolerate some di-
vergence between replicas and where con�icts are very rare. To these type of
systems, optimistic replication can bring several advantages such as availability,
scalability and the support of disconnected operations. Many, also indicated
this model as the appropriate to some human activities, as it is better to allow
collaborators (system users) to update data independently and repair occasional
con�icts than to lock data while someone is editing it [10].

Distributed �le systems are an example of systems that usually �t to an op-
timistic replication model, where usually con�icts are very unlikely to happen
cite[44].

The goal of any optimistic replication system is to provide consistency while
improving availability and scalability. However, there are some design choices
according to the requirements of each system. On the following we describe
some of those design choices, namely update submission, update propagation,
update transfer, Operations Scheduling and Con�ict Resolution.

Update Submission: Single-Master vs. Multi-Master [33]
Update submission regards where an update can be submitted to and how it is
propagated. This can be divided in two main submission forms, Single-Master
and Multi-Master. Single-Master consists on the submission of updates exclu-
sively to one replica (master), and its propagation from that replica to the others
(slaves). Since updates are all submitted to one replica, this type of systems can
detect and solve con�icts in a centralized way. Besides its simplicity, they may
have some limited availability caused by the bottleneck in the master replica
when experiencing frequent updates.

Multi-Master consists on submitting updates to multiple replicas indepen-
dently and its propagation in the background. Updates can be submitted to any
replica, existing by this a decentralized way of detecting and solving con�icts.
In comparison to single-master systems, these improve availability with the cost
of a signi�cantly more complex system. Nevertheless, and w.r.t. scalability it
can be a problem due to the increased con�ict rate.

Update Propagation: Push vs. Pull Model [33]
Update propagation regards the model that is used when there is an update
to be propagated. There are two main models, namely push and pull model.
On the push model used by systems such as Bayou[27] and Roam[31], a replica
holding an update is responsible for pushing it to other replicas. On the pull
model there is the concept of polling replicas in order to request the new up-
dates. This polling process can be manually triggered or automatically using a
periodical signal.

This design choice can have an important impact on systems regarding scal-
ability, due to the overhead associated to periodic polling (pull model) or due
to the high frequency of update propagation. Systems like Coda[35] use hybrid

13



solutions to take both advantages of each model.

Update Transfer: State vs. Operation Transfer [33]
State and Operation Transfer are variants of update transfer and refer to what
is transfered between replicas when there is an update to be propagated. On
state-transfer systems, replicas are required to read or to overwrite a entire ob-
ject. When reading/writing an update, a replica has to read/write the whole
object to which the update concern. It is a simple model of propagating updates
that can easily and transparently be adapted to any solution, since maintaining
consistency only involves sending the newest replica contents to other replicas.

On operation-transfer systems, replicas are required to propagate only the
operations/modi�cations related to an update. In comparison to state-transfer
systems, they can be more e�cient since they do not need to send entire ob-
jects. Additionally, this model also improves concurrency and a lower con�ict
rate, since operations may be commutative. Yet, these systems are more com-
plex as they need to reconstruct an history of operations.

Some systems like LBFS[24], Semantic-chunks[41] and Haddock-FS[6] make
use of an e�cient representation of updates to achieve a mixing of the two solu-
tions (State and Operation Transfer). They use chunks as a representation for
updates. As already mentioned on this document, chunks are portions of data
within a �le. With this notion, both advantages of the state transfer and oper-
ation transfer may be achieved. When a chunk is modi�ed, its update involves
the transfer of the whole chunk, making the transfer process easier as achieved
by the state-transfer model. Yet, when a �le is modi�ed, the whole �le does not
have to be transferred, since only the a�ected chunks have to be transferred.
Thus, it improves concurrency and decreases the con�ict rate as achieved by the
operation-transfer model.

Operations Scheduling: Syntactic vs. Semantic [33]
Operations Scheduling regards to the ordering of operations in a way that pro-
duces equivalent and expected states across users. There are two policies to
produce the ordering of operations, namely Syntactic and Semantic schedul-
ing. Syntactic scheduling is based on the time in which operations happened,
preserving an operation ordering according to the relationship happens-before
de�ned by Lamport[20]. This scheduling method is simpler than the seman-
tic scheduling due to unnecessary knowledge about the semantic of operations.
Nevertheless, as it does not examine the semantics of operations, it is not able
to order operations in a way that can cause less con�icts. Semantic scheduling
is based on the ordering of operations according to the operation's semantics.
Thus, this method is able to reduce the con�ict occurrence and increase the
merging process of di�erent operations. This policy is more complex than syn-
tactic and is only applicable to operation-transfer systems, since state-transfer
systems do not take into account the semantics of operations.

14



Con�ict Resolution: Manual vs. Automatic [33]
A con�ict occurs when a precondition of the system's scheduling is violated.
The detection of con�icts may be based on a syntactic approach, when the
happens-before[20] relationship is violated (e.g. when two or more operations
are concurrently applied). On the other hand, con�ict detection may be based
on a semantic approach, which identi�es con�icts according to the violation of
precondition related with the semantics of the application.

W.r.t. con�ict resolution/reconciliation[9], it may be performed manually
or automatically. When performed manually, the con�ict is detected and then
delegated to the user to resolve. When performed automatically such as in
Bayou[27], the con�ict is resolved according to a set of rules de�ned by the
application. These techniques try to reconcile and merge updates that respect
to the same object. Systems like rcsmerge[38] try to merge updates through
techniques based on plain text �les. Systems like Semantic di�[18] try to merge
updates based on the particular context of the application. In certain situations,
this attempt of reconciliation may failure for example due to non-commutative
actions and on this case the reconciliation has to be delegated to the user.

2.3 Adaptive Data Consistency

Many times, designers of replicated services are forced to choose either to use
strong consistency guarantees or none at all, in order to cope with system's
requirements. In this section we introduce the topic of adaptive consistency. In
systems such as Haddock-FS[6] and IDEA[21], instead of having a static model
of ensuring consistency guarantees, they use a model where the system adapts
to the environment ensuring strong and weaken consistency guarantees as it is
appropriate. With this model, systems may preserve strong consistency guar-
antees while improving scalability and e�ciency.

On the following we present TACT, a middleware layer that enforces ar-
bitrary consistency bounds amongst replicas. Further we introduce locality-
awareness, a notion that has been widely researched and that can be used to
achieve adaptive consistency systems. Finally, we present Vector-Field Consis-
tency, an optimistic replication model that adapts consistency through locality-
awareness techniques.

2.3.1 TACT - A Consistency Model for Replicated Services

TACT[46, 47] is an e�cient and adaptable consistency model based on optimistic
replication. Instead of having a model where either strong or weak consistency
guarantees are enforced, TACT permits a consistency enforcement over multi-
ple levels of consistency guarantees. With this concept of multiple consistency
levels, it is possible to adapt consistency guarantees according to requirements
(availability, performance, probability of inconsistent access). To achieve this
consistency multiple level, TACT permits a bounded divergence between ob-
ject replicas in accordance to a maximum level of inconsistency. This model

15



proposes three metrics to bound consistency:

• Numerical Error: limits the total weight of writes that can be applied
across all replicas before being propagated to a given replica.

• Order Error: limits the number of tentative writes that can be outstand-
ing at any one replica.

• Staleness: limits the time delay of write propagation amongst replicas.

In order to specify consistency levels, applications specify their application-
speci�c consistency semantics using conits. A conit is a physical or logical
unit of consistency where applications quantify consistency continuously along
a three-dimensional vector:

Consistency = (Numerical Error, Order Error, Staleness)

According to consistency semantics, TACT is able to e�ciently manage
the propagation of updates, delaying updates that do not violate consistency
bounds. Thus, TACT reduces the use of network resources and masquerades
latency, while adjusting consistency guarantees in accordance to the application
semantics.

2.3.2 Locality-awareness in Large-scale Systems

To achieve system's scalability over large networks such as the Internet, there
is a need to reduce the amount of exchanged data between multiple entities.
The notion of Locality-awareness is associated with Interest Management[16,
36, 37] that is a �ltering mechanism that aims to solve the scalability problem
through techniques that take into account the users' interest. Systems such
as MANET(Mobile Ad-hoc Networks)[37] use techniques to detect the users
shared interest in some topics in order to �lter messages of low interest to them.
Therefore, a higher scalability may be achieve by �ltering massive volumes of
data and thus reducing the volume of exchanged data that would be found as
no interesting.

Locality-awareness is also a form of interest management, detecting users
interest based on their locality. For instance, in massively multiplayer games,
middlewares such as Matrix(Adaptive Middleware for Distributed Multiplayer
Games)[2], VFC for Ad-hoc Gaming[34] and Unifying Divergence Bounding and
Locality Awareness in Replicated Systems with VFC[42] can track players po-
sition. According to it, they can strengthen consistency guarantees around the
player position and weaken it as the distance to the player position increases.
This model can achieve a higher scalability since it can adapt consistency levels
according to the need and to the associated interest.

Current solutions such as Semantic-chunks[41] also use the notion of locality-
awareness to e�ciently share �les between multiple users, taking into account
information provided by the user, regarding their interests over each data set.

16



This can improve these type of systems not only by reducing the overload of the
network but also by reducing the latency, helping users to get important data
in advance.

2.3.3 Vector-Field Consistency (VFC)

Vector-Field Consistency[42, 34] is an e�cient and adaptable consistency model
based on optimistic replication. It permits a bounded divergence between object
replicas. For this, it takes into account several forms of consistency enforcement
and a multi-dimensional criteria (time, sequence and value) to limit replica di-
vergence. These forms of consistency are determined through techniques based
on locality-awareness. Thereby, it uses locality-awareness techniques to iden-
tify di�erent zones (consider a zone as a subset of a sharing set of data), in
which the VFC dynamically strengthens/weakens replica consistency. Di�erent
multi-dimensional criterias are then applied to di�erent zones, creating di�erent
divergence bounds to each zone.

To identify di�erent zones, VFC uses the concept of Pivots. Pivots are based
in locality-awareness techniques and they identify points in which consistency
around is required to be strong, and weaker as the distance from the pivot
increases. Figure 4 illustrates an example with 3 consistency zones, where a
concentric circle was chosen as the space delimiter. The object O3 was chosen
as pivot. Therefore, VFC would enforce stronger consistency within Z1, fol-
lowing with Z2 and by last Z3. Each object covered in each zone, would then
have applied di�erent divergence constraints, and thereby di�erent consistency
guarantees.

Figure 4: Consistency zones centered on a pivot.

To ensure di�erent forms of consistency, VFC provides a 3-dimensional vec-
tor, κ = [θ, σ, ν], to specify the consistency degrees. Each dimension of the
vector bounds the maximum objects divergence in a particular view.

Each dimension is a numerical scalar de�ning the maximum divergence of
the constraints time (θ), sequence (σ), and value (ν), respectively.

• Time: Speci�es the maximum time a replica can be without being re-

17



freshed with its latest value.

• Sequence: Speci�es the maximum number of lost replica updates.

• Value: Speci�es the maximum relative di�erence between replica contents
or against a constant.

For example, consider a consistency vector κ = [0.1, 6, 20], that describes the
divergence bounds of each constraint (time, sequence, value). It represents that
replicas can only be outdated for 0.1 seconds or 6 lost updates or with a 20%
variation in the replica content.

Through a selective form of increasing and decreasing consistency enforce-
ment, VFC is able to ensure critical updates to be immediately sent and less
critical to be postponed. Thereby, it makes an e�cient resource usage, reducing
the network bandwith usage and masquerading latency.

2.4 Cloud Computing for Large-Scale Storage

Cloud computing[1] is a modern concept of using software and hardware in-
frastructures as a service over the Internet. It pretends to provide high perfor-
mance computing as a cloud, where users may run their programs or store their
data without having to concern about the management of the background sys-
tem/infrastructure. As such, instead of having to manage large infrastructures
and develop systems to provide high availability and scalability, cloud users can
use the cloud as a service, paying only for what they use.

On contrary to client-server architectures, cloud computing provides an ab-
straction over the details of individual servers. Instead of performing requests
to a server, cloud users may perform requests as a service, without the need of
being concerned about the physical location of servers or cloud computing in-
frastructure. As such, users do not require any knowledge regarding the control
and management of the remote services, as they are handled by cloud providers.

The most attractive features of cloud computing are: i) Cost Reductions:
fewer IT skills, fewer implementation requirements and no waste of power and
computing resources; ii) Scalability : mechanisms may auto-scale functionality
according to users requirements. Developers do not need to concern about peak
loads, as the cloud system scale resources; iii) Availability : improved if multiple
redundant sites are used. Possibility of using multiple cloud providers; and iv)
Reliability : improved if multiple redundant sites are used Possibility of using
multiple cloud providers.

There are several types of services that may be provided by cloud comput-
ing. Nevertheless, for this particular document we focus on cloud computing
as a system to provide large-scale storage. Many systems such as Dropbox and
SugarSync use cloud systems in order to provide high available and reliable
storage.

18



2.4.1 Amazon S3 (Simple Storage Service)

Amazon S34 (Simple Storage Service)[26] is an Amazon's system based on cloud
computing to provide storage for the Internet. It provides a simple web services
interface that can be used to store and retrieve any amount of data, at any
time, from anywhere on the web. Through Amazon S3, developers may achieve
highly scalable, reliable, secure, fast and inexpensive infrastructures to store
data, without having to be concerned about any internal issues.
Amazon S3 is supported by a large number of data centers in the United States
and Europe and is expected to o�er low data access latency, in�nite data dura-
bility and 99.99% of availability[26].

Data stored in Amazon S3 is organized in a two level namespace: buckets
and object names. Buckets are similar to folders and allow users to organize
their data. Object names correspond to objects that are stored into buckets.

Regarding the data access protocols, Amazon S3 supports 3 main protocols:
SOAP5, REST6 and BitTorrent7.

2.5 Relevant Systems

2.5.1 VFC for Cooperative Work

VFC for Cooperative Work[11] is a synchronization tool to e�ciently synchro-
nize Latex documents amongst collaborators. It uses the concept of locality-
awareness to intelligently manage the transfer of updates. Through techniques
that track the editing position of a user within a document, the system is able
to reason about the importance of sections of a Latex document. With this
information it performs a selective scheduling of update propagation, enforcing
strong consistency guarantees to most important updates and weaker consis-
tency guarantees to less important updates. This system divides Latex doc-
uments into chunks, which can be considered as sections or paragraphs of a
document. Multiple consistency guarantees are then applied to multiple chunks
according to clients locality.

To accomplish the dynamically adaptation of consistency guarantees, VFC
for Cooperative Work uses the Vector-Field Consistency model. With this
model, the system is able to assign multiple consistency guarantees (creating
bounds of inconsistency) to multiple sections of a Latex document.

In comparison to systems that ensure total consistency, VFC for Cooperative
Work is able to achieve higher performances w.r.t. bandwith usage. Addition-
ally, this system is able to improve concurrency and reduce the con�ict rate,
since modi�cations to di�erent chunks of a document (di�erent sections for ex-
ample) are not considered as con�icts as they can be merged and constitute

4Amazon s3. http://aws.amazon.com/s3/.
5http://www.w3.org/TR/soap/
6http://www.ics.uci.edu/ �elding/pubs/dissertation/rest_arch_style.htm
7http://www.bittorrent.com

19

http://aws.amazon.com/s3/
http://www.w3.org/TR/soap/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.bittorrent.com


a single version. Nevertheless, this system does not perform a compression of
transfered data, being unable to reduce even more the use of network resources.
It also does not contemplate a compression of stored data.

2.5.2 Dropbox

Dropbox8 is a commercial backup and �le synchronizer[3] system that enables
users to share data with others across the Internet. It is designed to achieve a
high performance regarding the transfer of data between clients and servers. To
provide and support storage to large-scale networks, Dropbox uses Amazon S3
(described in 2.4.1) to store �les.

Each Dropbox client has in his computer a �Dropbox Folder� where he can
modify and upload new �les/folders. This folder is managed by a background
process that is responsible for the correct synchronization of the folder between
clients and servers. This application can also be used by several users as a
collaboration tool as a user can allow others to access speci�c folders inside his
�Dropbox folder�.

To accomplish the high performance w.r.t. data transfer, Dropbox uses
delta-enconding techniques to produce a �binary di�� between new and previous
versions of a �le. As such, it enables an e�cient syncing, only uploading changes
made to a �le. It also enables a �le versioning allowing clients to fetch previous
versions. To detect the existence of modi�ed data, Dropbox also uses Compare-
by-Hash techniques over folders to �nd out which folders have been modi�ed.
For this, the system exchanges folder hashes in order to �nd if the contents of
a given folder have been modi�ed.

With delta-encoding Dropbox is able to reduce the use of bandwith, by only
uploading the changes performed over a �le. However, it does not perform
deduplication to reduce the amount of stored data. Also, it does not use any
kind of technology to specify multiple consistency levels, which could improve
even more the e�ciency in data transfer. Moreover, Dropbox does not provide
any kind of tools to resolve updating con�icts, delegating to clients this task
when any concurrent operations to the same �les have been performed.

2.5.3 Haddock-FS

Haddock-FS[6] is a peer-to-peer replicated �le system. It is designed for mobile
ad-hoc environments where constraints of reduced memory and low bandwith
are usual. Haddock-FS permits collaborative operations, detecting and solving
con�icts by comparing multiple versions. To accomplish this, it uses a consis-
tency protocol that relies on dynamic version vectors[31]. Haddock-FS is based
on an update log system that organizes operations as tentative or as stable,
according to the state of updates. Tentative updates are reversible on contrary
to the stable updates. Stable updates are selected by a single replica called

8Dropbox: Secure backup, sync and sharing made easy. https://www.dropbox.com.

20

https://www.dropbox.com


primary replica.

W.r.t. data redundancy, Haddock-FS makes use of compare-by-hash tech-
niques in order to improve the bandwith usage and to reduce the memory used
by peers. To deal with the problem of shifting �le o�sets and overlapping chunks,
this system uses Variable-size Block Hashing, basing chunk boundaries on �le
contents.

Haddock-FS is based on an adaptable optimistic consistency protocol, pro-
viding a highly available access to a weakly consistent view of �les, while deliv-
ering a strongly consistent view to more demanding applications.

Brie�y, Haddock-FS is able to reduce resources consumption regarding net-
work bandwith and memory. It makes use of deduplication techniques to either
explore cross-�le or cross-version redundancy. Additionally, it is also able to
detect locally untrackable redundancy. Regarding the consistency protocol, it
makes an e�cient use of resources by enforcing either weak or strong consis-
tency guarantees according to the required. Nevertheless, this system is not
able to enforce multiple levels of consistency guarantees. By enforcing multi-
ple levels of consistency guarantees, this system could balance resources and
requirements, instead of forcing applications to choose between weak or strong
consistency guarantees. Further, as Haddock-FS makes use of compare-by-hash
techniques, it introduces an overhead regarding the meta-data exchange, which
may not compensate the gains over low redundancy situations.

2.5.4 LBFS

LBFS[24] is a network �le system designed to perform in low-bandwith net-
works. The main goal of this system is to avoid the transmission of data that
may already be found at the receiver's site. To accomplish this, this system
makes use of compare-by-hash techniques in order to improve the bandwith us-
age. To deal with the problem of shifting �le o�sets and overlapping chunks,
this system uses Variable-size Block Hashing, basing chunk boundaries on �le
contents.

To make the chunk comparison possible both client and server store chunks
in a database indexed by chunks hashes. When reading a �le from the server,
the client makes a request to the server in order to retrieve the hashes of the
chunks to be read. Further, the client compares the received hashes with the
already detained, labeling the chunks that were not found as missing. After
this, the client requests the missing chunks to the server, receiving by this the
missing data. As these operations are all pipelined, downloading a �le only
incurs in two network round-trips plus the cost of downloading the data.

When writing back a modi�ed �le, the opposite of the reading process is
done. Firstly, the client sends the hashes and only after the missing data. To
avoid dealing with the reordering of writes, LBFS implements atomic updates
and a Close-To-Open consistency model. Thus, the commitment of updates is
only applied when a �le is closed. Additionally, when a �le is closed by a client

21



and another client reads it, it always receives its last content.
To achieve atomic updates, LBFS makes use of temporary �les, in which

updates are incrementally written. When the �le is closed, the temporary �le
is then committed, overwriting the previous version of the �le. First the client
sends a �create temporary �le� request to the server, to which the client will
write the updates. Then, it sends the hashes of the chunks that compose the
new version of the �le. The server will return with a �missing chunk response�
or with an �Ok response�, which indicates that the server already detains that
chunk. Missing data is pipelined from the client to the server, and at close time
the client requests a commitment of the �le.

Summing up, LBFS is a system that e�ciently synchronize data, saving
resources regarding the use of network bandwith. Although it is clear the im-
provement in the transfer protocol, this system has to exchange sets of hash
values between client and server, which in case of low redundancy may not com-
pensate the gains and introduce a substantial overhead. Moreover, it does not
explore data redundancy to e�ciently store data. This system could use the
same deduplication techniques to explore this last issue, making this a system
that could e�ciently transfer and store data. Additionally, LBFS also does
not have into account multiple consistency guarantees, which could guarantee
a multi-level consistency according to the bandwith constraints and user needs.
This could even improve more the e�ciency w.r.t. data transmission.

2.5.5 redFS

redFS[7] is a distributed �le system that performs locally trackable deduplication
in order to achieve an e�cient synchronization. The synchronization process of
redFS is composed by two main steps: I) version tracking - responsible for de-
tecting the set of versions that two synchronizing sites share in common; II)
local redundancy detection - responsible for detecting local redundancy.

To perform the local redundancy detection, redFS makes use of Variable-
size Hashing in addition with a byte-by-byte comparison technique. redFS uses
simple hash functions over data chunks in order to detect similar chunks. After
detecting the similarity it uses a byte-by-byte comparison technique to con�rm
the chunks similarity, preventing hash collisions. With this techniques, redFS
is able to detect the common versions (common data chunks) between two sites
and reduce redundancy with local deduplication techniques, avoiding the trans-
fer of local redundant data and data that is already found at the receiver's site.
Thus, when transferring data between two sites, redundant data is substituted
by references to the actual chunks. Thus, only the non-redundant data (literal
data) is sent over the network.

Summing up, redFS may be able to achieve better data transfer performance
than systems based on Compare-By-Hash and Delta-Encoding, while maintain-
ing the integrity of data during this operation.

22



2.5.6 Semantic-chunks

Semantic-chunks[41] is a middleware that aims to e�ciently enforce data con-
sistency for cooperative work systems. It uses Compare-by-Hash techniques
with Variable-size Block Hashing to exploit data redundancy either locally or
between multiple sites. Thus, it is able to detect either locally trackable or lo-
cally untrackable redundancy, being able to improve the e�ciency of storing and
syncing data.

Additionally, Semantic-chunks have presented a model in which documents
are partitioned into chunks, and each chunk is annotated with semantic con-
sistency information. These chunks are called semantic-chunks and consist in
semantically-annotated document regions with relevance to applications and
users, further annotated with consistency information and enforcement. The
consistency information is in part provided by users. With this semantical
structure a user is capable of know the structure of a given document, without
the need of having to download the whole document content. As such, a user
can work over parts of a document without the need of having the whole content
of it. Thus, Semantic-chunks can ensure consistency over semantic-chunks of
important relevance to a user, and relax consistency over less important chunks.
With this concept, this system is able to improve concurrency and reduce up-
date con�icts. Moreover, it reduces bandwith usage, not only by exploiting data
redundancy, but also by reducing and postponing the transmission of semantic-
chunks with low relevance to a user. As Semantic-chunks uses Compare-by-Hash
techniques, sometimes the introduced overhead for hash exchange between mul-
tiple sites, may not compensate the gains achieved by deduplication due to low
redundancy. To overwhelm this situation, this system could use more e�cient
ways of representing the chunks knowledge.

2.5.7 ShiftBack

ShiftBack[40] is a backup system based in a client-server architecture, designed
to support an e�cient storage and network bandwith use. Additionally, this sys-
tem also supports a task-oriented backup with a time-shifting interface which
enables the browsing and retrieval of versions from any point in time. To cope
with the requirements it uses Version-Based Deduplication techniques to explore
locally trackable redundancy.

ShiftBack supports 3 main operations: Data Backup, Data Index and Data
Recovery. Data Backup is the most frequent operation and consists in backing
up data from the client to the server, storing and transferring only one occur-
rence of each chunk. This operation starts at the client side, that requests to
the server its current state (knowledge vector). After this, it increments the
knowledge vector and uses a Variable-size Block Hashing technique to �nd re-
dundant chunks of data. Finally it returns to the server the literal data and its
meta-data.

23



The local redundancy detection, illustrated in Figure 5, is accomplished within
3 main steps:

• Data partitioning using a rolling hash (variable-size blocks);

• Hash Calculation over the variable-sized blocks;

• Chunk repository lookup.

Figure 5: Example of deduplication process.

The chunk location table lookup is the process that involves �nding a chunk
with the same hash value (similar content). ShiftBack performs a search oper-
ation in which it tries to �nd a hash value. If the process succeeds, the chunk
is substituted by a reference link to the single instance chunk. Otherwise, The
new hash value is inserted in the chunk location table for further searches.

Data Index is a server-side only operation that consists in indexing the data
stored at the server during backup, creating mappings between each backed up
chunk's hash value and its location.

Data Recovery consists in the operation that retrieves the backed up data
to the client. To do this, the server makes use of the mappings created by the
data index operation, in order to �nd the chunks to be retrieved.

A special feature of ShiftBack is its high level of pipelining, being able to
perform deduplication operations over sets of data while others are already be-
ing sent. Moreover, ShiftBack uses a pipe and �lter architecture which allows
each �lter to run on a di�erent thread enabling a better use of the CPU at the
client.

ShiftBack provides a high e�cient protocol to backup data through low-
bandwith networks, reducing data transfer and achieving better performances
than other solutions based in Delta-Encoding and Compare-by-Hash techniques.
This is due to the use of lightweight structures (knowledge vectors) to represent
the whole state of a site, reducing the amount of exchanged meta-data. However,
this system does not provide any form to reduce/postpone the exchange of data
having into account the importance of the backed up data. This system could

24



use a model to somehow ensure that important data is immediately backed up,
and less important data is postponed to moments of high-bandwith connection.

2.5.8 Subversion (SVN)

Subversion (SVN)[15] is a revision control system typically used to synchronize
and store multiple versions of source code �les. SVN is based on a client-server
architecture. It supports disconnected operations and provides to clients tools
for handling con�icting updates, since normally there are multiple clients mak-
ing concurrent changes to the same �les.

In order to achieve higher performances w.r.t. data transfer protocol, SVN
tries to reduce the use of network resources through the use of delta-encoding
techniques. Through this technique it compares �le versions with their previous
versions, detecting cross-version redundancy. This redundancy exploitation is
not only used to reduce the use of network bandwith, but also to achieve bet-
ter performance w.r.t. data storage. As speci�ed, the delta-encoding technique
needs one new version and one old version to encode data, which forces the client
to use extra space to store old versions. Furthermore, this method also imposes
the limitation that each �le is encoded only against one other �le, which makes
SVN unable to exploit cross-�le redundancy.

In short, SVN is able to perform e�cient data transfer, improving concur-
rency and providing tools to reconcile con�icting updates.

2.6 Summary

The following table2.6 presents a summary of the above mentioned systems
w.r.t. deduplication techniques and data synchronization models.

Many systems do not have any mechanisms to adapt consistency guarantees
according to the needs/resources. Although some systems provide mechanisms
to adapt data consistency, they do not provide multiple levels of consistency.
These, either enforce weak or strong consistency guarantees, becoming unable
to provide intermediate consistency guarantees.

Further, most systems are not capable of taking into account the interests
of users in order to propagate updates of the shared data. Nevertheless, there
are some few systems that provide these features. Yet, they lack of e�cient
mechanisms to explore redundant data in order to either reduce storage space
or network bandwith.

25



System Description Deduplication Al-
gorithms

Adaptive Data
Consistency
Mechanisms

Dropbox Commercial on-
line backup sys-
tem

Delta-Encoding None

Haddock-
FS[6]

Distributed �le
system

Compare-by-hash
(Variable-Size Hash-
ing)

Hybrid consistency:
weak or strong con-
sistency guarantees
according to the re-
source constraints

LBFS[24] Network �le sys-
tem

Compare-by-hash
(Variable-Size Hash-
ing)

None

redFS[7] Distributed �le
system

Version-Based dedupli-
cation + Variable-Size
Hashing + byte-by-
byte comparison

None

Semantic-
chunks[41]

Middleware
for ubiquitous
cooperative
work

Compare-by-hash
(Variable-Size Hash-
ing)

Several consistency
levels according to
user provided infor-
mation

ShiftBack[40] Backup system Version-Based dedupli-
cation + Variable-Size
Hashing

None

SVN[15] Revision control
system

Delta-Encoding None

VFC for C.
W.[11]

Synchronization
tool

None Several consistency
levels according to
user locality

Table 1: Comparison between the studied systems.

3 Architecture

This section presents the architecture of the proposed �le sharing system, named
VFC-BOX. In section 3.1 we present the main architectural decisions regarding
deduplication and replication model. In section 3.2 we describe a global overview
of the system's architecture.

3.1 Architectural Decisions

3.1.1 Data Deduplication

To achieve a high performance both in terms of storage and bandwith reduction,
the Version-Based Deduplication technique has been selected. Additionally, a

26



Variable-size Block Hashing technique has been selected to perform compare-
by-hash techniques locally. With these techniques, both storage and bandwith
usage may have several gains. Variable-size Block Hashing permits a �ne-grained
redundancy exploitation, which can reduce space used to store data and band-
with usage since redundant data are no more sent over the network. Version-
Based Deduplication permits an e�cient way of transmitting the information
about the knowledge of each synchronizing site. This feature is an advantage
due to the low overhead introduced.

3.1.2 Replication Model

In order to prevail the features of availability, scalability, improved concurrency
and to support disconnected operations, we decided to choose an optimistic
replication model. W.r.t. con�ict resolution we decided to take the approach of
trying to merge con�icting document updates. This approach is based on the
attempt of merging updates that have application to di�erent chunks. In the
case of having con�icting writes on the same chunk, we decided to delegate the
reconciliation to the user.

We identi�ed the VFC model as a natural �tting model to this environment,
where its locality-awareness techniques can be applied from the most to the less
important user's data. By this, VFC can impose strong consistency guarantees
to parts of data that are of extreme interest to users. Or relax some consistency
guarantees to parts of data of less interest to users. Figure 6 illustrates a �le

Figure 6: A �le partitioned in chunks de�ning multiple consistency zones. This
example illustrates how VFC can be adapted to documents.

can be partitioned into several sections, de�ning multiple consistency zones. In

27



this example, the user de�ned a section that is considered as important in the
document, in which is required stronger consistency guarantees. The rest of
the sections are then considered as less important, and therefore have applied
weaker consistency guarantees. In this example, 4 consistency zones are identi-
�ed. These zones could be classi�ed as follows and have applied an according
consistency guarantee level: i) very important section; ii) related section; iii)
section likely to be related; iv) unrelated section. These zones could be mapped
to chunks (de�ned by deduplication operations) and therefore the enforcement
of consistency guarantees could be applied at the level of data chunks.

3.2 Architecture Global Overview

Figure 7: VFC-BOX's main overview.

VFC-BOX is based on a client-server architecture. Figure 7 illustrates the
process where clients submit their updates and data's interests to the server.
These interests represent parts (or chapters) of �les in which clients have special
interest. Taking these interests into account, the server is then able to enforce
multiple consistency guarantees over multiple data subsets. Thus, the process
is based on the exchange of updates between clients and server, and on the
submission of client's interests to the server. These interests are then used to
make decisions of which updates have to be immediately propagated and which
can be stored for a while and only later be sent.

To achieve the above proposed, we suggest an interface that can adapt to
di�erent �le types and in which clients can specify their interests over parts of
data (Figure 6 may represent on scenario for this). This interface is responsible
for the integration with di�erent �le types (e.g. O�ce �les) and to collect users
interests.

3.2.1 Deduplication Process

The deduplication process of VFC-BOX will be inspired on the architecture of
the ShiftBack[40] system. In short, the process is composed by three main steps:
I) Data partitioning; II) Hash Calculation; III) Lookup in chunk repository.

28



3.2.2 Data Transfer Protocol

Figure 8: VFC-BOX's data transfer protocol.

The data transfer protocol will be inspired on the architecture of the ShiftBack[40]
system. Figure8 illustrates how the system manages to transfer data. First, the
client has to make a request to the server in order to obtain server's state. After
receiving the state of the server, the client is then able to remove redundancy
from the data to be transfered, according to the knowledge of the server. By
last, only the literal data is sent over the network, avoiding to send data that is
already found at the server.

3.2.3 VFC-BOX Main Components

In this section of the document, we describe an overview of the VFC-BOX main
components, namely client and server node. Client nodes correspond to the
application and environment that enables clients to asynchronously edit �les,
while guaranteeing their e�cient synchronization and storage. This component
has also the duty of informing the server about the current interests that users
have over parts of the shared data.

Figure 9: Client Architecture. Figure 10: Server Architecture.

We propose an architecture where client nodes are composed by 4 main
layers: Application Enhancement, VFC Interest Manager, Consistency Manager
and Deduplication Layer. On the following we describe each layer in more detail:

• Application Enhancement: This layer is responsible for keeping track
of any document update performed by the application. It is also respon-
sible to provide support to the application in what concerns to con�ict
resolution.

29



• VFC Interest Manager: This layer is in charge of collapsing user's
interests over data parts and sending them to the server.

• Consistency Manager: This layer is responsible to receive and apply
incoming updates and to propagate outgoing updates to the server.

• Deduplication Layer: This layer performs deduplication operations,
either for local storage proposes or for transfer proposes.

The Server node corresponds to the central node of the system. Every up-
dates are either received or sent by the server, being this node responsible to
ensure data consistency through client nodes. This component is thus respon-
sible for receiving updates and propagate them according to users interests.
Additionally, this component also performs deduplication operations in order to
remove redundancy either from data to be stored or transferred.

We propose an architecture where server nodes are composed by 2 main lay-
ers: Deduplication Appliance and VFC Consistency Manager. On the following
we describe each layer in more detail:

• Deduplication Appliance: This layer is responsible of performing dedu-
plication operations, either for local storage propose or for transfer pro-
poses.

• VFC Consistency Manager: This layer is responsible to enforce the
VFC model over the synchronization process. Thus, it manages all users
interests in order to perform the propagation of updates in a selectively
way. This layer has also the task of managing the history of �le versions
in order to detect and resolve existing con�icts.

4 Methodology and Evaluation

To evaluate the system, four dedicated machines are required. Two of these
machines will be used to simulate two di�erent VFC-BOX clients that want to
synchronize several data �les. Another machine will be used for the VFC-BOX
server, which will perform synchronization operations and con�ict detection be-
tween clients. Finally, one machine will be used as a bandwith regulator, which
will simulate di�erent network environments by delaying network packets.

For the evaluation we aim to perform a benchmark to evaluate the perfor-
mance of deduplication operations and some mini-benchmarks to evaluate the
performance of VFC regarding bandwith usage reduction.

These benchmarks will take into account di�erent workloads:

• emacs-tar. This workload is comprised of ten snapshots of emacs9, one
from every year from 1999 to 2009, each one packed in one tar �le. This
workload is 80% redundant.

9obtained from http://www.gnu.org/software/emacs/

30

http://www.gnu.org/software/emacs/


• linux kernel. This workload is composed by several versions of the linux
kernel10 containing high percentages of cross-version redundancy.

• personal workloads. This workload is composed by several �les from
Dropbox users. This may simulate the usual workload of the Dropbox
system.

To have a reference point for the evaluation of the performance of VFC-
BOX, the same environment and testing procedure will be applied to to a set
of solutions from the state-of-the-art. The selected systems for this testing
procedure are:

• Subversion (SVN), to compare VFC-BOX with a system that performs
Delta-encoding deduplication;

• ShiftBack, to compare VFC-BOX with a system that performs Version-
Based deduplication;

• VFC for Cooperative Work, to compare VFC-BOX with a system that
performs data synchronization based on VFC;

• Dropbox, to compare VFC-BOX with a multi-user synchronizing system.

Three main measures will be taken to evaluate the system, namely Mem-
ory Usage, Bandwith Usage and Time. The system must be e�cient in terms
of memory usage both at the client and server side, in terms of bandwith us-
age (reducing the amount of transferred data) and in terms of performance,
not creating a substantial overhead in which regards to the throughput of the
system.

5 Conclusion

Computer assisted collaborative work has been motivating the design and im-
plementation of systems capable of e�ciently sharing and storing data. Further-
more, the interest of collaborators over parts of the shared information improve
the ability of systems to perform data synchronization while reducing the use
of network resources and shrinking the latency of data seen by users. This
document provides an overview of the current state-of-the-art technologies to
e�ciently share and store data.

Relevant systems were presented and discussed, indicating their main ad-
vantages and disadvantages. Finally, this document presents an overview of the
preliminary VFC-BOX's architecture. VFC-BOX is a multi-user consistent �le
sharing system based on deduplication techniques and a replication model that
takes into account the interest management (or locality-awareness) of a user.
Through these techniques, this system may achieve higher performances w.r.t.
data transfer/synchronization and storage. We expect this solution to overcome

10obtained from http://caixamagica.pt

31

http://caixamagica.pt


some limitations of current solutions, improving the capacity of users to receive
important data in a faster way through the support of an interest management
interface. Additionally, we expect to achieve higher performances than current
solutions, due to low-overhead and more e�cient data transfer protocols.

32



References

[1] M. Armbrust, A. Fox, R. Gri�th, A. Joseph, and R. Katz. A view of cloud
computing. In Magazine Communications of the ACM, Volume 53 Issue
4:50�58, 2010.

[2] R. Balan, M. Ebling, P. Castro, and A. Misra. Matrix: Adap-
tive middleware for distributed multiplayer games. In Middleware '05:
ACM/IFIP/USENIX 6th International Middleware Conference, Volume
3790:390�400, 2005.

[3] S. Balasubramaniam and B. Pierce. What is a �le synchronizer. In Mobi-
Com '98 Proceedings of the 4th annual ACM/IEEE international confer-
ence on Mobile computing and networking, 1998.

[4] J. Barreto. Optimistic replication in weakly connected resource-constrained
environments. PhD Thesis, Instituto Superior Técnico, 2008.

[5] J. Barreto and P. Ferreira. A replicated �le system for resource constrained
mobile devices. In Proceedings of IADIS International Conference on Ap-
plied Computing, 2004.

[6] J. Barreto and P. Ferreira. A highly available replicated �le system for
resource-constrained windows ce .net devices. In 3rd International Confer-
ence on .NET Technologies, 2005.

[7] J. Barreto and P. Ferreira. E�cient locally trackable deduplication in repli-
cated systems. In Middleware'09: Proceedings of the ACM/IFIP/USENIX
10th international conference on Middleware, 2009.

[8] W. Bolosky, S. Corbin, D. Goebel, and J. R. Douceur. Single instance
storage in windows 2000. In WSS'00 Proceedings of the 4th conference on
USENIX Windows Systems Symposium, Volume 4, 2000.

[9] M. Cart and J. Ferrie. Asynchronous reconciliation based on operational
transformation for p2p collaborative environments. In COLCOM '07: Pro-
ceedings of the 2007 International Conference on Collaborative Computing:
Networking, Applications and Worksharing, pages 127�138, 2007.

[10] P. Cederqvist and et al. Version management with cvs.
http://www.cvshome.org/docs/manual/. 1993.

[11] J. Costa, L. Veiga, and P. Ferreira. Vector-�eld consistency for cooperative
work. Msc Thesis, Instituto Superior Técnico, 2010.

[12] L. Cox, C. Murray, and B. Noble. Pastiche: Making backup cheap and
easy. In OSDI '02: Proceedings of the 5th symposium on Operating systems
design and implementation, pages 285�298, 2002.

33



[13] F. Douglis and A. Iyengar. Application-speci�c delta encoding via resem-
blance detection. In Proceedings of the 2003 USENIX Annual Technical
Conference, pages 113�126, 2003.

[14] D.E. Eastlake and P.E. Jones. Us secure hash algorithm 1 (sha1).
http://www.ietf.org/rfc/rfc3174.txt?number=3174, 2001.

[15] Collins-Sussman et al. Version control with subversion. O'Reilly, 2004.

[16] K. Morse et al. Interest management in large-scale distributed simulations.
Information and Computer Science, University of California, Irvine, 1996.

[17] I. Greif. Computer-supported cooperative work: a book of readings. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[18] S. Horwitz, J. Prins, and T. Reps. Integrating noninterfering versions of
programs. In Journal ACM Transactions on Programming Languages and
Systems (TOPLAS), Volume 11 Issue 3:345�387, 1989.

[19] J. J. Hunt, K.-P. Vo, and W. F. Tichy. An empirical study of delta al-
gorithms. In ICSE '96: Proceedings of the SCM-6 Workshop on System
Con�guration Management, pages 49�66, 1996.

[20] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. In Magazine Communications of the ACM, Volume 21 Issue 7,
1978.

[21] Y. Lu, Y. Lu, and H. Jiang. Adaptive consistency guarantees for large-
scale replicated services. In NAS '08 Proceedings of the 2008 International
Conference on Networking, Architecture, and Storage, 2008.

[22] N. Mandagere, P. Zhou, M. Smith, and S. Uttamchandani. De-
mystifying data deduplication. In Companion '08 Proceedings of the
ACM/IFIP/USENIX Middleware '08 Conference Companion, 2008.

[23] F. Mattern. Virtual time and global states of distributed systems. In Paral-
lel and Distributed Algorithms: proceedings of the International Workshop
on Parallel and Distributed Algorithms, 1989.

[24] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth network
�le system. In SOSP '01: Proceedings of the eighteenth ACM symposium
on Operating systems principles, Volume 35 Issue 4:174�187, 2001.

[25] J. Paiva and P. Ferreira. Backupchunk: A chunk-based backup system.
Msc Thesis, Instituto Superior Técnico, 2009.

[26] M. Palankar, A. Iamnitchi, M. Ripeanu, and S. Gar�nkel. Amazon s3 for
science grids: a viable solution? In DADC '08: Proceedings of the 2008
international workshop on Data-aware distributed computing, 2008.

34



[27] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer. The bayou archi-
tecture: Support for data sharing among mobile users. In WMCSA '94:
Proceedings of the 1994 First Workshop on Mobile Computing Systems and
Applications, pages 2�7, 1994.

[28] B. Pierce and J. Vouillon. Whats in unison? a formal speci�cation and ref-
erence implementation of a �le synchronizer. Technical Report MS-CIS-03-
36, Department of Computer and Information Science University of Penn-
sylvania, 2004.

[29] S. Quinlan and S. Dorward. Venti: a new approach to archival storage. In
First USENIX conference on File and Storage Technologies, Monterey,CA,
2002.

[30] M. Rabin. Fingerprinting by random polynomials. Technical Report TR-
15-81, Center for Research in Computing Technology, Harvard University,
1981.

[31] D. Ratner. Roam: A scalable replication system for mobile and distributed
computing. PhD Thesis 970044, University of California, 1998.

[32] R.L. Rivest. The md5 message-digest algorithm (rfc 1321).
http://www.ietf.org/rfc/rfc1321.txt?number=1321, 1992.

[33] Y. Saito and M. Shapiro. Optimistic replication. In Journal ACM Com-
puting Surveys (CSUR), Volume 37 Issue 1(1):42�81, 2005.

[34] N. Santos, L. Veiga, and P. Ferreira. Vector-�eld consistency for ad-hoc
gaming. INESC-ID/Technical University of Lisbon, Distributed Systems
Group Rua Alves Redol N 9, 1000-029 Lisboa.

[35] M. Satyanarayanan. The evolution of coda. In Journal ACM Transactions
on Computer Systems (TOCS), Volume 20 Issue 2:85�124, 2002.

[36] H. Seunghyun, L. Mingyu, and Dongman L. Scalable interest manage-
ment using interest group based �ltering for large networked virtual envi-
ronments. In VRST '00: Proceedings of the ACM symposium on Virtual
reality software and technology, 2000.

[37] A. Shiferaw, V. Scuturici, and L. Brunie. Interest-awareness for informa-
tion sharing in manets. In MDM '10: Proceedings of the 2010 Eleventh
International Conference on Mobile Data Management, 2010.

[38] W. F. Tichy. Rcs - a system for version control. Department of Computer
Sciences Purdue University West Lafayette, Indiana 47907, 1991.

[39] A. Tridgell and P. Mackerras. The rsync algorithm. Australian National
University, 1998.

[40] P. Vala and P. Ferreira. Shiftback: E�cient and time-shifting backup. Msc
Thesis, Instituto Superior Técnico, 2010.

35



[41] L. Veiga and P. Ferreira. Semantic-chunks: A middleware for ubiquitous co-
operative work. In ARM '05 Proceedings of the 4th workshop on Re�ective
and Adaptive Middleware Systems, 2005.

[42] L. Veiga, A. Negrão, N. Santos, and P. Ferreira. Unifying divergence
bounding and locality awareness in replicated systems with vector-�eld
consistency. INESC-ID/Technical University of Lisbon, Distributed Sys-
tems Group Rua Alves Redol N 9, 1000-029 Lisboa, 2009.

[43] W. Vogels. Eventually consistent. In Magazine Communications of
the ACM Communications of the ACM - Rural engineering development
CACM, Volume 52 Issue 1:40�44, 2009.

[44] A.-I. Wang, P. L. Reiher, and R. Bagrodia. Understanding the con�ict rate
metric for peer optimistically replicated �ling environments. In DEXA '02:
Proceedings of the 13th International Workshop on Database and Expert
Systems Applications, 2002.

[45] M. Weiser. The computer for the twenty-�rst century. In ACM SIGMO-
BILE Mobile Computing and Communications Review, Volume 3 Issue 3,
1991.

[46] H. Yu and A. Vahdat. Design and evaluation of a con�ct-based continuous
consistency model for replicated services. ACM Transactions on Computer
Systems (TOCS), Volume 20 Issue 3:239�282, 2002.

[47] H. Yu and A. Vahdat. The costs and limits of availability for replicated
services. In Journal ACM Transactions on Computer Systems (TOCS),
Volume 24 Issue 1:70�113, 2006.

36



Appendix: Work Scheduling

The following table presents the proposed schedule for the Dissertation
Course.

Activity Date

start(dd/mm/yy)
Date

end(dd/mm/yy)
Improve architecture design 10/01/11 05/02/11
Selection of tools 05/02/11 25/02/11
Implementation 25/02/11 30/04/11
Evaluation 01/05/11 31/05/11
Evaluate other systems 01/05/11 20/05/11
Evaluate VFC-BOX 20/05/11 31/05/11
Conclusion of Thesis and
Article writing

01/06/11 30/06/11

Thesis Review 30/06/11 30/07/11
Thesis Delivery 30/07/11


	Introduction
	Related work
	Data Redundancy
	Delta-Encoding
	Compare-by-hash
	Version-Based Deduplication
	Deduplication Timing
	Deduplication Placement

	Consistency in Distributed Systems
	Limitations of Pessimistic Replication
	Introduction to Optimistic Replication

	Adaptive Data Consistency
	TACT - A Consistency Model for Replicated Services
	Locality-awareness in Large-scale Systems
	Vector-Field Consistency (VFC)

	Cloud Computing for Large-Scale Storage
	Amazon S3 (Simple Storage Service)

	Relevant Systems
	VFC for Cooperative Work
	Dropbox
	Haddock-FS
	LBFS
	redFS
	Semantic-chunks
	ShiftBack
	Subversion (SVN)

	Summary

	Architecture
	Architectural Decisions
	Data Deduplication
	Replication Model

	Architecture Global Overview
	Deduplication Process
	Data Transfer Protocol
	VFC-BOX Main Components


	Methodology and Evaluation
	Conclusion

