
Vector-Field Consistency for Cooperative1 Work

João Filipe Ferreira da Costa

INESC-ID/Instituto Superior Técnico
Distributed Systems Group

joão.da.costa@ist.utl.pt

Abstract. Although cooperative work is widely used in a daily basis,
nonetheless cooperative work tools are not being used as their potential would
suggest. Even though the reasons behind this fact are not completely clear, the
truth is that users see current cooperative work tools as a burden to their
working activities. To work around this problem, the notion of locality-
awareness can be extremely helpful. Additionally, if we adapt consistency
models to the cooperative activities being performed by each individual user,
then we will be able to improve their experience without compromising the
overall application performance. For example, we can decide which updates
each user is most interested in and which ones he should be unaware of. The
VFC algorithm does just that but in the environment of ad-hoc gaming. We
propose VFC for Cooperative Work (VFC4CW), an adaptation of the original
VFC consistency model to the environment of cooperative work, namely
document-based cooperative work. In this work, we first study the state of the
art of consistency maintenance in cooperative work tools. Then we propose an
architecture which combines a generic VFC4CW middleware layer with a
cooperative work application. At last, we discuss how to evaluate a future
implementation of the proposed architecture.

Keywords: VFC4CW, continuous consistency model, locality-awareness,
cooperative work, document-based.

1 Introduction

In everyday life, it is more and more common to perform cooperative work to carry out some
task. For example, the cooperative production of documents (e.g. articles, presentations,
financial reports) is a daily chore in enterprises [Noël04]. Also, wikis, the massive cooperative
editor by excellence, are between the most used platforms on the Internet.

If writing is always a long and complex process, cooperative writing is an even more
complex and difficult process. Cooperatively writing a text can indeed shorten the duration of
the writing task if teams work well and so members do not hinder each others’ work. If on the
contrary teams do not function well by themselves, the additional effort needed to make them
work may not pay off.

On contrary to what may be general belief, cooperative work tools are not as used as their
potential suggests [Noël04]. Causing this, may be the general impression that these tools
represent more of a burden than a relief. Although this is true in some cases, the major

1 Although some authors suggest that there is in fact a difference in this field between the terms

cooperation and collaboration, in this work there will be no distinction.

2 João Filipe Ferreira da Costa

obstacle is still the reluctance of experienced users in changing their everyday tools and
methods of collaboration.

A suggested approach for cooperative tools to achieve the desired success is the idea of
enhancing the existing work tools to supply them with functionalities addressing cooperation.
Even though this may seem a promising technique, it is also a dangerous one. First, because
modern mature work tools have so many functionalities, adding extra ones can compromise
the tools’ usability. Also, due to the great complexity of the existing functionalities, it is not
always obvious how to provide them with cooperation faculties.

Although investigation has not yet come to a conclusion about the best method for
designing a successful cooperative tool there are already some good examples. Some popular
examples of success are the ones of Google Docs and Google Spreadsheets2. Forgetting about
the fact that they benefit from the popularity of their developer company, the key to success
may lay in their simplicity. With not so many functions but with very familiar ones, these
tools manage to create a good developing environment. Another example is of course
Wikipedia, the most popular wiki tool in the world, where users collectively produce text at a
rate of 10 words per second3. Again, the simplicity and easy access of this tool are without a
doubt reasons for its triumph. Finally, the Google Wave4 example shows a completely
different idea of what a cooperative tool should enable. Additionally to the cooperative work
per se, Google Wave provides easy communication channels between members.

Although cooperative tools are little by little becoming more accepted and users are starting
to see their potential, the replication schemes behind popular tools are still very conservative.
Following the example of Wikipedia, it is implemented above a roughly centralized
infrastructure and with no complex conflict resolver mechanism. Supporting such
infrastructures can have huge costs when scaling these tools to a great number of users
[Oster06, Weiss07, Morris07, Oster09].

This article proposes the application of a consistency model more coherent with the
cooperative tools paradigm. First, it proposes the appliance of a continuous consistency model
to better meet the requirements of these tools. Also the notion of locality-awareness will be
combined with the continuous consistency model to adapt the consistency requirements to the
current edition location of each user, within the document, and other points of registered

2 http://docs.google.com/
3 http://en.wikipedia.org/wiki/Wikipedia:Statistics
4 http://wave.google.com/

Fig. 1: Typical example of cooperative edition of a document.

Vector-Field Consistency for Cooperative Work 3

interest. To implement these concepts, the Vector-Field Consistency (VFC) algorithm will be
used and adapted to the desired context.

Since VFC was designed to the gaming environment, it is necessary to port it to the world
of cooperative work, namely translate the concepts of location and distance between users’
locations, which are pretty straightforward in its original form. Following, location is defined
as the place in the document semantics where the user is editing and distance as the distance

between the semantic regions being edited and other points of interest.
An example of how the distance between users influences the consistency boundaries is the

one given in Fig. 1. In this picture, both user A and user B are editing the first section but on
different paragraphs. User C on the other hand, is editing the second section. Thus, user A is
probably working on a different subject than user C. As for users A and B, they must be
careful because their writing about the same topic. Hence, consistency can be weakened
between user C and the remaining but strengthened between users A and B. This way, both A
and B know with great precision what the other one is changing, but not what C is modifying

In this work, as seen in the example of Fig. 1, the focus will be the edition of text

documents. But the adaptation of the VFC model should be sufficient generic to be easily
ported to other cooperative work environments like spreadsheets and presentations.

In the next section, the objectives of this work are presented. In section 3, we start by

exploring the main issues related to consistency maintenance in distributed systems, and then
we overview the importance of cooperative work tools followed by a description of some
examples. In section 4, the proposed architecture for the problem in this work is explained.
Later in section 5, a series of quantitative, qualitative and comparative parameters are
presented for a future analyzes of the success of this work. Finally, in section 6, some
conclusions are taken.

2 Objectives

The main goal of this work is to adapt the Vector-Field Consistency algorithm to the
cooperative work scenario, namely document-based cooperative work. The second is to
integrate the new adapted algorithm, to which we call VFC for Cooperative Work (VFC4CW),
in a cooperative work tool. This integration should improve performance (w.r.t. network
usage) and enhance the usability of such tools in the cooperative scenario.

The work will begin with a study of consistency enforcement in distributed systems for
cooperative work. This will provide a perspective of the benefits and flaws of the studied
techniques, which will be used to propose an architecture that fits the requirements of the
problem stated in the previous section.

The most important part of this work will be the adaptation of the VFC algorithm to a new
environment. This will be achieved by porting the VFC core concepts, which now suit the ad-
hoc gaming environment, to a new scenario where notions like distance and user position are
not adequate in their original definition.

The adapted algorithm, which will be referred to as VFC4CW, will be incorporated in an
established cooperative work tool, and/or used to create a generic middleware layer specific to
the algorithm. To measure the success of this work, the resulting product will be evaluated
using a number of criteria (listed below and in more detail in section 5).

In sum, the objectives of this work are:

4 João Filipe Ferreira da Costa

• Study of the state-of-the-art of consistency enforcement in distributed systems and
cooperative work;

• Adapt the VFC algorithm to the cooperative work scenario (VFC4CW);
• Integration of VFC4CW in a cooperative work tool and/or design of a VFC4CW generic

middleware layer to enforce the algorithm in text-based documents (e.g. plain text, wiki,
HTML, ODF5);

• Evaluate the developed system in terms of the following criteria:
o Qualitative: conformity with the model, maintain user expected properties and

functionality;
o Quantitative: performance results, application and user interaction overhead,

bandwidth usage;
o Comparative: using some of the above criteria against a selection of other

approaches found in literature.

3 Related Work

The development of cooperative distributed tools implies a need to share data across several
replicas. In general, distributed systems, like cooperative tools, need to ensure the consistency
of replicated data.

The following sections address the two principal themes studied to determine the state of
the art of the Cooperative Work in Distributed Systems field. In section 3.1, the topic of
Consistency in Distributed Systems [Saito05] is presented. The differences and usefulness of a
series of models and algorithms in this area are discussed. In section 3.2, some of the existing
Cooperative Work Tools [Rodden91, Rama06] are introduced as well as their strengths and
weaknesses. This set is mainly composed by tools and algorithms that focus on edition of
either plaintext files, structured documents or shared wikis.

3.1. Consistency in Distributed Systems

In a Distributed System, higher availability and performance is often accomplished using data
replication. Data replication enables applications to work even when some replicas are
unavailable. Moreover, several users can access data at the same time and without the need to
contact some remote and possible busy location. The downside of data replication is the
possibility of replica divergence/ inconsistency. The balance between consistency and
availability is a characteristic that separates systems in two opposite classes: optimistic

replication systems [Saito05] (section 3.1.2) and pessimistic replication systems (section
3.1.1). However, sometimes neither the pessimistic nor the unbounded optimistic approaches
are acceptable to applications. Thus, it may be beneficial to explore the semantic space
between the two alternatives. Hence, in section 3.1.5, the existing continuous consistency

models, their virtues and flaws are presented. Finally, in section 3.1.6 the idea of mixing the
state-transfer and operation-based approaches to provide efficient operation representations is
overviewed.

5 Open Document Format

Vector-Field Consistency for Cooperative Work 5

3.1.1 Pessimistic Approach
Pessimistic replication systems provide single copy consistency by allowing only one user at a
time to perform alterations to a replica. Therefore, the remaining users block until the first user
finishes. This approach prevents the existence of conflicts and offer guaranties of strong
consistency between replicas since the systems do not speculate whether it is safe or not to
update data. Although the use of pessimist replication algorithms [Bernstein86, Dietterich94]
can work well in local-area networks, when ported to a wide-area network such as the Internet,
these algorithms cannot provide good performance and availability.

3.1.2 Design Choices in the Optimistic Approach
In opposition to Pessimistic techniques, Optimistic Replication assumes that conflicts will be
extremely rare and can be fixed later whenever they appear. For this reason optimistic
algorithms do not require a priori synchronization with the other replicas to perform an
update. In result, these systems offer greater availability, flexibility, scale better and enable
asynchronous collaboration even in wide-area environments. As for consistency, in optimistic
algorithms, replicas may only converge eventually and so, controlling the differences between
them in each moment is of the most importance. In result, these algorithms can only be
deployed in systems that can support partially inconsistent data, even if only temporarily.

In optimistic replication [Saito05], a series of design choices that define these optimistic
systems can be considered. Those choices are defining characteristics that should reflect the
consistency requirements of optimistic replication systems. They are: number of writers;
definition of operations; scheduling; handling of conflicts; propagation strategies and

topologies; consistency guarantees. The analysis of these criteria provides a great overview of
the most important issues of optimistic replication.

Number of Writers: single-master vs. multi-master.

Single-master or caching systems are those in which only one replica can submit an update.
Although easy to implement, these systems have very little availability. In comparison, Multi-

master systems [Xia04, Weiss07, Preguiça09] are much more complex but offer greater
availability. They let various replicas update content simultaneously and exchange the
modifications in background. Multi-master systems, in contrast with the single-master, need to
deal with the issues of scheduling and conflict handling.

Definition of Operations: state-transfer vs. operation-transfer.

Considering how modifications are propagated and exchanged between replicas, State-

Transfer [Satyanarayanan90, Santos07] systems are a special class of systems that considers
every operation to an object as a modification of the entire object. Although this may seem
ineffective (and in fact, most times it is), there is some interesting potential behind this
technique: for instance, replicas can easily converge by receiving the most recent contents
without the need to apply every missing update. This use of the state-transfer approach can be
very useful for example when a site stays offline for too long.

In opposition to State-Transfer systems, Operation-Transfer [Ellis89, Cart07, Shapiro07,
Weiss09] systems offer a more flexible conflict resolution and reduced bandwidth
requirements at a cost of higher algorithmic complexity. To achieve that, these systems
transfer one or more operations that correspond to the user’s changes instead of transferring
the entire replicated object. This technique is particular useful when dealing with large and
high level objects.

6 João Filipe Ferreira da Costa

Nevertheless, when none of the above approaches meet applications requirements, hybrid
solutions [Muthitacharoen01, Barreto05, Veiga05] may be useful. In section 3.1.6, the benefits
and costs of such solutions will be analyzed in more detail.

Scheduling: syntactic vs. semantic.

Eventual consistency is one of the most defining characteristics of optimistic replication.
This concept means that all replicas will eventually come to the same value when users stop
the commitment of new updates. To reach eventual consistency, replicas have to produce
equivalent schedules (which produce equivalent final state). There are a number of systems
that employ different types of scheduling. On one hand we have the syntactic scheduling
[Satyanarayanan90] approach, which tries to define a total order of operations based on their
submission timing and location. Coda [Satyanarayanan90] for example implements this type
of scheduling using scalar timestamps.

On the other hand we have the semantic scheduling [Sun96, Preguiça09, Oster06]
approach, which exploits operation semantics to either transform (section 3.1.3) or commute
operations (section 3.1.4). This approach has the advantage of reducing rollbacks and
augmenting scheduling freedom in order to find the “best” (in the application point of view)
possible schedule well-suited with the existing constraints. Since semantic scheduling requires
systems to have access to some sort of semantic knowledge about objects, it can only be used
in operation-transfer systems.

Conflict Handling: syntactic vs. semantic detection & manual vs. automatic removal

Another important characteristic that separates various optimistic replication systems is the
way they handle conflicts. Conflicts happen whenever operations do not respect their
preconditions. Managing conflicts has two phases: detection of the conflict and resolving it.
Numerous systems choose not to do any type of conflict handling, although at the cost of an
increase in number of lost-updates and of truly difficult data management. As in scheduling
schemes, also conflict management techniques cover the spectrum between syntactic and
semantic approaches. Syntactic conflict detection finds conflicts through the use of the
happens-before [Lamport78, Raynal96] relationship. This means that every group of
concurrent operations will be flagged as in conflict. Semantic conflict detection policies on the
other hand use semantic information about the replicated objects to determine if there is in fact
a conflict. This method, although not as efficient as the syntactic conflict detection, can benefit
a lot from the lack of false conflicts.

Once a conflict has been detected, it is necessary to resolve it. In the resolution of conflicts,
the objective is to rewrite or abort operations in order to remove conflicts and it can be either
manual or automatic. Manually resolving conflicts is not much of a challenge since it simply
presents two versions of the replicated object and let the user decide the final version. As for
automatic resolution of conflicts, there are several methods to handle this: an interesting one is
the Bayou [Terry95] example, which attaches to each operation a precondition and a merge
procedure. Then, before applying an operation, if the precondition is being violated, the merge
procedure is executed and the necessary fix-ups preformed. Although this can be an appealing
approach, studies showed that writing these merge procedures is truly difficult in most
situations.

Repeatedly, a problem with conflict management is to determine when an operation is
stable, that is, when its outcome result is no longer in a tentative state. This knowledge is
useful for applications because, once an operation gets stable (committed) it can be removed
from logs. In this context, commitment protocols play an important role. Some of these

Vector-Field Consistency for Cooperative Work 7

protocols apply what is generally called agreement in background; this solution however is
based on vector clocks and equivalent structures and so do not scale well. Another much more
complex solution is to apply a consensus algorithm to agree on the order in which operations
are committed [Çetintemel03].

Propagation Strategies and Topologies: pushing vs. pulling & fixed vs. ad-hoc

The propagation of updates can be analyzed in terms of the communication topology and
degree of synchrony. When dealing with fixed topologies, solutions can be extremely efficient,
however, if the network is not structured or it changes dynamically the best solutions rely on
epidemic propagation algorithms. Regarding the degree of synchrony, there are pull-based
systems, i.e. systems in which each replica requests some set of the remaining replicas for
their most recent updates, and push-based systems, i.e. systems in which each replica
proactively sends their own updates to other replicas. Although this depends on each case, in
most scenarios the quicker the propagation, the lower the conflict rate is.

Conclusions

A few conclusions can be extracted from this section: First, Single-Master systems are good
for read-intensive or single-writer applications. Also, Multi-Master State-Transfer systems are
fairly simple and have low memory requirements and so they’re adequate for most replicated
systems. Additionally, their bandwidth needs do not increase with the rate of updates since
they can be easily merged into one. These systems have the disadvantage of not dealing well
with conflict resolution because of their all or nothing update approach. The problems with
semantically rich conflict resolution can be solved using Multi-Master Operation-Transfer
systems, although there is a price to pay in terms of algorithmic complexity and log space
overhead.

Next, a review of the principal characteristics of the two major semantic scheduling

schemes is made in sections 3.1.3 and 3.1.4. The first, the most mature of these techniques, is
Operational Transformation. Then, Operation Commutativity, a younger but very promising
technique.

Finally, two types of mixed approaches are presented: in section 3.1.5, an approach that
offers the possibility of bounding consistency in a continuous spectrum between pessimistic
and optimistic consistency; in section 3.1.6, a combination of the transfer-based and the
operation-based approach, in order to achieve more efficient representations.

3.1.3. Operational Transformation
Operational transformation is a semantic scheduling technique originally designed for
consistency maintenance in group editors. These systems have very specific constraints,
namely short response times and support for free and concurrent editing (similar to Google

Docs & Spreadsheets), which can be fulfilled by the use of this technique.
The OT approach, pioneered by the Grove [Ellis89] system in the late 80’s, consisted in the

principle that an update should by immediately executed in the local replica after its creation
and only then propagated to the remaining replicas. Then the remote replicas transform the
operation right before its execution without needing to reorder the previous operations.

Grove made the contribution of identifying two inconsistency problems that would
happen if operations were executed in remote locations without a previous transformation step
and as soon as they arrive: divergence and causality-violation. First, considering that
operations are not commutative between then, if executed in different orders, the final editing

8 João Filipe Ferreira da Costa

result will be different. This is the divergence problem. To understand the second problem, out
of causal order execution, one can imagine the situation were replicas transmit their operations
without synchronization. In this case, since operations are executed immediately after arrival,
the execution order might not respect the natural causal order.

Grove then defined two correctness criteria to solve the previously identified consistency
problems: (1) convergence property: all generated operations have been executed at all sites;
(2) precedence property: if one operation Oa causally precedes another operation Ob, then at
each site the execution of Oa happens before the execution of Ob. Grove system has two main
components: the state-vector time stamping scheme for guaranteeing (2); and what became
known as the distributed OPerational Transformation (dOPT) algorithm for ensuring (1).
With the dOPT algorithm, every operation that obeys to the first criteria is transformed against
an already executed operation which is independent with the first. This transformation should
be done in such way that every site that executes the same set of operations produces the same
end state.

Later, REDUCE [Sun96] identified a third inconsistency problem, called intention

violation, which consists on the execution of an operation that, if executed after another
concurrent operation, may not change the content as expected by the user. This problem may
seem similar to the divergence problem but, as proven by its solution, it is not. In fact, the
divergence problem can be solved just by employing a serialization protocol, but the intention
violation problem cannot. This happens because, even though replicas are consistent, the final
state might not reflect the users’ expectations. Considering the intention violation problem,
REDUCE defined the subsequent consistency model, which is commonly called CCI

consistency model:

A cooperative editing system is consistent if it always maintains the following properties:

• Convergence: when the same set of operations has been executed at all sites, all
copies of the shared document are identical.

• Causality-preservation: for any pair of operations Oa and Ob, if Oa→Ob, then Oa
is executed before Ob at all sites.

• Intention-preservation: for any operation O, the effects of executing O at all sites
are the same as the intention of O, and the effect of executing O does not change
the effects of independent operations.

In opposition to Grove, in the REDUCE approach an undo/do/redo scheme is used for
achieving convergence. As for intention-preservation, a new operation transform algorithm
was applied, the Generic Operational Transformation (GOT) control algorithm. This
consistency model and its implementation successfully solved the scenario in which Grove
didn’t work.

An optimization to the GOT algorithm by the authors of Grove and REDUCE, called GOT

Optimized (GOTO), can be found in [Ellis89]. This algorithm allows a similar approach to the
one used in REDUCE but without the need for the undo/do/redo scheme. Also, by performing
transformations on both the creation and execution contexts, this algorithm is able to reduce
the number of transformations.

Since the appearance of the Grove and REDUCE systems, many other algorithms,
optimizations and even scenarios of application were presented for Operational
Transformation. Numerous systems, such as Jupiter [Nichols95], TreeOPT [Ignat03], CoWord

Vector-Field Consistency for Cooperative Work 9

[Sun04, Xia04], MOT2 [Cart07], UNO [Weiss08] and FEW [Bento06] successfully applied
this technique especially in the field consistency maintenance. An interesting extension to the
original Operational Transformation scheme, which was designed by CoWord, is the addition
of support for the update primitive (originally, all user alterations were translated to sets of
insert and delete primitives). In MOT2, the OT approach was successfully ported to the P2P
environment. In fact, with MOT2 any site can reconcile its copy at any time with any other
site that owns a copy of the object while achieving overall convergence of copies. Finally,
UNO not just ports OT to the P2P environment, it also proposes a new extension to support
the undoing of any applied operation.

3.1.4 Operation Commutativity
In the cooperative editing environment, it’s natural that replicas diverge if they don’t execute
operations in the same order. To address the problem of replica converge there are several
techniques. One of them is the previously presented Operational Transformation (section
3.1.3) but, as said in [Preguiça09], OT is too “complex and error-prone”. An alternative
solution, and the one in focus in this section, is Operation Commutativity, the condition that
every pair of operations is in commutative relation.

Operation Commutativity aims to the automatic convergence of replicas, i.e. convergence
without the need of any complex concurrency control (e.g. lock or serialization). To achieve
automatic convergence, it is sufficient the use of a Commutative Replicated Data Type
(CRDT), as it was baptized [Shapiro07].

The CRDT approach considers that a document is formed as a sequence of atoms each
univocally described by an identifier that does never change during the life span of a
document. An atom can be any non editable element like a character or a graphics file. The
identifiers’ space must be dense and their total order must reflect the order of appearance of
atoms in the document. These requirements suggest that rational or real numbers could be
used as identifiers, however, they would require infinite precision which is not viable.

The TreeDoc [Shapiro07, Preguiça09] is an implementation of the identifier’s structure
based on binary trees that represent the document elements/atoms. The total order of those
elements can be translated from walking the tree in infix order, which means that the
identifiers can be obtained from the tree paths. Since binary trees cannot by themselves
support concurrent edits, (major) nodes in the identification tree can contain several mini-

nodes to represent those edits. These structures must be identified inside the major-node by a
disambiguator which may be either a unique disambiguator (UDIS: <siteid, sitecounter>) or a
simple site disambiguator (SDIS: siteid). Even though the first may seem inappropriate since it
has a greater overhead, the latter imposes the use of tombstones, which can only be safely
deleted when all sites are alive [Saito05]. To fully understand some of the former concepts a
more careful reading of [Shapiro07, Preguiça09] is advised. The proposed TreeDoc algorithm
for generating new identifiers can be improved by combining it with algorithms to balance the
identifier tree.

Another replication mechanism that was developed earlier is presented in [Roh06].
Although the solution is similar with the CRDT approach, it relies on tombstones and vector
clocks and so it has problems to scale to massive collaboration environments. Additionally,
this solution has the problematic issue of being destructive and losing work. Thus, it cannot be
applied to cooperative environments.

One more system that implements operation commutativity is the Wooky [Weiss07] system
which was based on the Woot [Oster06] framework (Section 3.2.2). Even though this system
was developed independently from TreeDoc, they have many similarities. In fact, Wook also
bases its design in the idea of creating non-destructive operations with unambiguous

10 João Filipe Ferreira da Costa

identifiers that live as long as the document does. One significant difference between these
two approaches is the way Woot structures the documents and identifiers: a linear structure
stores elements in their order of appearance in the document, each one indentified by <siteid,
sitecounter>. Even more, Woot does not allow the removal of the identifiers of deleted elements.
This results in a constant growth of the supporting data-structure.

The same authors that created Woot [Oster06] and Wooky [Weiss07] later developed the
Logoot [Weiss09] model. The objective of this model is to ensure CCI consistency (see
section 3.1.3) and scalability both in number of users and updates so it can be adapted to
massive collaboration environments (e.g. over a P2P network). In consequence, one key
design goal of this model is not to be tied to tombstones because of their scalability and
performance problems. Like the previous examples of TreeDoc and Woot, this model is based
on non-mutable and totally ordered identifiers [Weiss09]. Since the identifiers are totally
ordered, they can be removed without affecting the order or the remaining identifiers.

3.1.5 Continuous Consistency Models
Designers of replicated systems conventionally choose between strong and optimistic
consistency models. Although sometimes, neither the performance overheads imposed by
strong consistency neither the lack of limits for inconsistency are acceptable to applications. In
such cases, it’s appropriate to explore the semantic space between these two alternatives. The
fundamental idea behind these continuous consistency models is that this space is a continuum
parameterized by the distance between replicas. This distance is zero for strong consistency
and infinite for optimistic consistency. The distance measure can be used to provide a per-
replica consistency based on the expected amount of conflicting updates.

Leverage of the consistency space continuum allows systems to correctly balance
applications availability and consistency. This balance is affected by factors like application
workload, read/write ratios, probability of simultaneous writes, network latency, bandwidth,
error rates, etc. Some of the work developed in this field is based on bounding consistency
along a single dimension, e.g.: “maximum time without being made consistent”; “maximum

number of uncommitted updates” [Krishnakumar94]. Even though studying single dimension
consistency bounding may be interesting, this section will focus in more comprehensive
models [Yu00, Santos07, Barreto09] with greater expressive power.

The TACT framework

In [Yu00] is presented a middleware called TACT, which enables applications to quantify
their consistency requirements. Once those requirements are defined, the TACT framework
only lets one operation proceed locally if the consistency bounds are not currently being
violated. Otherwise, TACT blocks the operation and synchronizes with the remaining replicas
until the fulfillment of the pre-defined consistency requirements.

With TACT, applications need to specify their conits, i.e. the physical or logical unit of
consistency. For example, in an airline reservation service, the conit could be an individual
flight, or a block of seats or even a single seat. Defining the granularity of conits depends
solely on the application necessities. The quantification of divergence boundaries is made on a
per-replica basis through the use of three metrics, Numerical Error, Order Error, and
Staleness. The first metric, Numerical Error bounds the difference between the local value of
the conit and the value of the “final image”, i.e. the image in which all tentative updates of all
replicas have been applied. The implementation of this metric can be tricky since, if
application conits don’t represent a numerical value, a numeric representation (a weight) must
be specified. Also, this metric relies on the cooperation of all replicas and thus, cannot be

Vector-Field Consistency for Cooperative Work 11

dynamically changed without a consensus like protocol. On the other hand, Order Error can
be controlled using only local data, since it bounds the maximum number of tentative writes at
a replica. In other words, it bounds the number of local writes that may still be rolled backed.
Finally, Staleness is the maximum value of time between the last seen local write and the
current time. To bound this metric each replica holds a real-time vector, in which each entry
corresponds to the real time passed since the last seen update from each replica.

This model enables the definition of per-replica consistency bounds, which allows systems
to greatly adapt to their consistency requirements. For instance, one replica with limited
network access may relax its consistency limits. Oppositely, in a replica with faster links it
may be viable to impose a stronger consistency. Another interesting application of TACT is
the routing of clients to different replicas (with different divergence bounds) according to their
profile. Balancing consistency to meet each replica needs [Yu00, Yu06] can have serious
impacts in system performances. In fact, most times, applications can have significant
performance improvements without compromising correction by slightly relaxing consistency.

The Vector-Field Consistency model

Like the previously presented TACT framework, Vector Field Consistency (VFC)
[Santos07] is a consistency model that enables replicas to define their consistency
requirements in a continuous consistency spectrum. Other than simply bounding divergence
on a per-replica basis, VFC allows more powerful consistency enforcement policies. For
example, using VFC, the maximum allowed difference between two replicas can be
dynamically changed during the execution of an application.

Indeed, the novelty of the VFC model is that it combines divergence bounding with the
notion of locality-awareness to improve the availability and user experience while effectively
reducing bandwidth usage. To understand how locality-awareness affects this model, the
concept of pivot must be introduced. Pivots roughly correspond to each user’s observation
points within the data and their position (w.r.t. some set of coordinates) is expected to be
volatile. Also, consistency between replicas should strengthen as the distance between their
pivots shortens. To define these mutable divergence bounds, around pivots there are several
concentric ring-shaped consistency zones with increasing distance (radius) and decreasing
consistency requirements (increasing divergence bounds). Then, in each zone, like in the
TACT framework, programmers use a 3-dimensional vector: time, sequence, value. These
boundaries should be specified in a way that does not compromise the user’s experience. In
other words, all the required information is presented to users with enough quality and they
cannot perceive much difference in their use of the applications.

The VFC model is extremely flexible with regard to the possibility of specifying different
consistency boundaries. This flexibility allows VFC to be used in a wide variety of systems
with very different consistency enforcement policies. Moreover, VFC is simple and intuitive
in such way that developers can easily express and parameterize their consistency
requirements in accordance with the application requirements. Also, VFC effectively reduces
the network bandwidth requirements by selectively choosing which updates are more
important to which replicas and delaying less important ones, possibly omitting some
superseded by later updates.

In comparison with VFC, the TACT framework can enforce the same consistency scenarios
but, since it does not support locality-awareness, it cannot be applied to scenarios where
consistency depends on the notion of the user’s position within the data.

Although Vector-Field Consistency was initially design to fit the environment of
distributed game development, the concepts of pivots, consistency zones and distance between

12 João Filipe Ferreira da Costa

replicas are sufficiently general to be easily applied to other distributed environments like
cooperative work tools based on shared data.

Data-aware Connectivity

The interest about the concept of data-aware connectivity system [Barreto09] is the use it
makes of a continuous consistency model. The continuous consistency model is used to
determine the quality of a replicated object. Then, unlike in the previously presented works,
using the ascertained current value of quality, the system regulates connectivity to enforce the
divergence/quality bounds. Only when all connections were explored without success it
forbids access to the replica.

This way, the connectivity costs can decrease because only the exactly required connections
will be used to achieve the imposed quality, which can be very useful in environments with
great constraints like mobile environments.

These systems have two key components: the quality monitor to estimate the quality of
each available replicated object; the connectivity regulator to enforce a certain level of replica
quality. Quality is influenced, among other criteria by its freshness, consistency and possibility

of rapid commitment, which are represented by a group of variables: (1) time since the last
synchronization from each replica; (2) number of local tentative updates; (3) commit weight of
currently inaccessible replicas; (4) number of known concurrent updates; and (5) recent update
activity by other replicas to the object. The first (1) variable represents how fresh the replica
is. The second (2) can be used to determine consistency. The remaining (3-5) determine the
probability of a quick and successful update.

Another important issue about being up to the system to determine replica quality is the fact
that these metrics, although intuitive to the attentive user, are not easy to evaluate by the
human user. Thus, it is less error-prone to let the system deal with connectivity issues and
provide the user an indicative value for the quality of replica so he can decide if he wants to
perform a certain task.

3.1.6 Efficient Update Representations
The definition of updates has two well-known solutions: state-transfer and operation-transfer.
While the first can be very easily and transparently adapted to existing commercial solutions,
the second solution promises high concurrency and lower conflict rates. The idea of mixing
the two solutions to get a transparent and yet highly available middleware for distributed
systems can be very attractive.

The proposal of Chunks [Muthitacharoen01, Barreto05] and Semantic Chunks [Veiga05] is
to exploit content similarity with the intention of reducing the bandwidth and memory

requirements and in the case of semantic chunks the amount of update-conflicts due to false-
sharing.

Chunks were implemented in the LBFS [Muthitacharoen01] and later in the Haddock-FS
[Barreto05] with the primary objective of seriously reducing the occupied memory and
bandwidth. To accomplish this goal, an application transparent middleware was developed,
which takes advantage of cross-file and cross-version similarities. In these systems, every file
is partitioned in several parts called chunks, which, in order to be resilient to insertions and
deletions within the file, are divided by a content-based approach. By applying the SHA-1
[Eastlake01] function to each chunk, they can be unambiguously identified. Using these
unique identifiers replicas can then create a chunk repository to reduce memory. Also, by
previously exchanging these identifiers, replicas can determine exactly which chunks must be
transferred, thus reducing data sent over the network. Due to the great network and bandwidth

Vector-Field Consistency for Cooperative Work 13

reductions achieved, the use of chunks allows distributed file systems to be ported to scenarios
of slow or wide-area networks.

Semantic-Chunks on the other hand, are semantically richer than Chunks. Since they can be
independently considered for consistency issues, an increase in concurrency and a reduction
(in number and cost) of update conflicts is expected. The Semantic-Chunks System consists in
a middleware in between the OS/VM and the Office Applications that stores the semantic
structure of the documents requested by those applications. These semantic structures
(semantic-chunks) are aggregations of either lower-level semantic-chunks or chunks of data.
This way, it is possible to dynamically obtain the documents as their sub-regions are required
by the system or as new updates are submitted. Whether the data chunks are paragraphs,
sentences or even characters, it is not defined. This decision can even be made dynamically so
the system can adapt to various consistency requirements. The semantic-chunks middleware is
completely transparent to the above applications.

3.2. Cooperative Work Tools

Although the design of cooperative software is an ancient and well-studied field, being a
comprehensive and somewhat, fairly subjective area, naturally it is not one of much
consensus. To address this issue, this section will start with an overview of the positive and
negative aspects of cooperative writing [Tammaro97, Noël04] as well the desired properties of
good cooperative writing tools [Grudin88, Noël04]. Later, the concept of CSCW and their core
issues will be introduced [Greif88, Grudin88, Bannon91, Rodden91, Rama06]. Finally, some
of the most relevant distributed document editors and replicated wiki systems will be
examined (section 3.2.1 and 3.2.2).

Cooperative Writing

The process of writing an article, a review, a book or even a simple draft may be long and
complex. To ease the workload and consequently reduce the time consumed by writing tasks
and achieve better results, writers tend to group together. Also, sometimes is natural that the
work chores, like participation in reporting committees or in a research cooperative project,
involve projects of joint writing.

If any cooperative face-to-face project is difficult, due to the problems of team
management, a cooperative writing project is even more since it usually involves people in
remote locations working together in an almost independent way. In these scenarios, the lack
of communication and acknowledgement of other writers’ changes, can easily lead to
problematic events like writing the same thing more than once and accidentally deleted
contents.

Nonetheless, the cooperative writing has very encouraging benefits, namely: reducing task

completion time; reducing errors; combining different viewpoints and skills; and obtaining an

accurate document [Tammaro97, Noël04]. Also, writers tend to feel more involved with the
outcome of the project and thus, contributing with more time and effort to the writing process.

14 João Filipe Ferreira da Costa

Cooperative Writing Tools: What users want?

Although, as discussed, group editing has many great benefits, cooperative writing tools are
nowadays still used only in a small part of cooperative writing projects. Most collaborative
writers use simple personal word processors [Noël04].

This lack of usage of group writing tools is in part due to the idea that they difficult the
cooperative tasks instead of helping, which can be in fact true because systems tend to be
designed without taking in consideration how groups really collaborate. Also, experienced
users tend to be extremely reluctant about changing their writing software.

To mitigate the existing inertia in changing from non-cooperative to cooperative tools, a
suggestion is, instead of developing a cooperative writing editor, to integrate cooperation
features into the already existing and utilized software. On the other hand, some authors
suggest that adding cooperation features to the already huge set of features offered by these
editors, would create such a mess that they would become useless [Noël04].

Enquired users [Noël04] said that the cooperative features they would like to see in their
writing tools were: easy perception of recent modifications; easy addition of notes (distinct
from normal text); incorporated communication channels; and text locking functions.
Curiously, on the opposing side, some users completely refused the idea of using a
collaborative writing tool: “The system is not nearly as important as the people with whom one

writes. (…) I think a phone, a fax, or email are perfectly suitable”.
As we can see, investigators have not yet come to a conclusion about what should be a

cooperative writing tool. There are already suggestions about interesting features but there are
still no so many good examples of successful tools.

Computer Supported Cooperative Work (CSCW)

The idea of CSCW [Greif88] was initially introduced by Irene Greif and Paul Cashman in
1984 to refer to the set of concerns about supporting multiple individuals working together

with computer systems.
Nowadays, the term of CSCW is somewhat a confusing term. In [Bannon91] a simple

analysis to the words of the acronym can explain the wide-coverage of this field. The
expression cooperative work refers to multiple persons working together to produce a product
or service. On the other hand, the second term, computer supported, does not limit so much
the forms of interaction and organization. In result, CSCW is now a huge field that generically
refers to the understanding of the way people work in groups and the associated network
technologies, hardware, software, services and techniques.

Fig. 2: Time/Space Matrix

Vector-Field Consistency for Cooperative Work 15

As CSCW is a broad field, it may be beneficial to focus in just some part. Well, a term
similar to the CSCW (some authors even considered them to be the same) is Groupware.
Groupware is more focused on the enabling technologies which allow work in group, rather
than the psychological, social, and organizational impact [Rama06]. From now on the term
CSCW will be referring to the same as Groupware, unless when addressing some specifics of
one of them.

Due to the great variety of CSCW systems, to help distinguish the ones that matter from
those that do not. An interesting division can be made by considering two key characteristics:
space and time (Fig. 2). The first is about the form of interaction, i.e. if systems work
synchronously or asynchronously. The second is about the geographical nature of the users,
i.e. if working groups are co-located or remotely located. Using these distinction criteria,
CSCW systems can be roughly divided in: Message Systems, Computer Conferencing,
Meeting Rooms and Co-Authoring and Argumentation Systems (these are the designations
presented in the ‘91 Survey of CSCW System [Rodden91]). However, nowadays this division
does not create disjoint groups because, has systems evolved, so did their original
characteristics.

Message Systems are an evolution from the electronic mail systems, from which they
inherit the message exchange paradigm for cooperative work. Like in electronic email,
message systems work asynchronously and remotely. The main difference between these
systems and their ancestors is the evolution from a simple exchange of text messages to richer
and structured message objects with specific attributes.

A Computer Conferencing system is a collection of conferences/conversations, each with a
group of interested members and (desirably) a single topic. Also, usually each user can know
what is new in each conversation he follows. Computer Conferencing started as simple
asynchronous systems with shared textual information. They later evolved to synchronous
systems to deal with real-time cooperative scenarios like crisis management. They also
evolved to the so called multi-media conferencing systems, which due to network bandwidth
improvements were able to integrate audio, text and video in the previous scheme.

Meeting Rooms are a special form of cooperative working paradigm where the participants
work in a synchronous way and are co-located in a room equipped with information display
technology and a workstation per member. Most of these systems were created for the
proposed of decision making and for this reason they often incorporate statistical and analytic
decision models. One interesting development was a multi-user interface with similar views
for every participant. These solutions come although with a series of problems, like the
distraction caused by the display of other participants’ activity and the high bandwidth
requirements of such scenarios.

The objective behind Co-Authoring and Argumentation Systems [Xia04, Veiga05, Weiss07,
Oster09] is to support the development of co-authored documents. The idea is to have each
author working on a portion of the whole document in an asynchronous manner independently

of their physical proximity. This model of cooperation can be highly improved if dealing with
structured documents since they permit easier isolation of user changes and conflict resolving.
Also, as this field of investigation matured, it became obvious that the initial solutions where
every user accessed a shared storage system did not work and decentralized solutions were
established. In consequence the notion of private and master views/contexts appeared.

Although the proposed classes of systems were intended to divide systems, in most cases
systems do not belong uniquely to one class. In fact, the most common situation is that these
cooperative work systems combine a variety of characteristics and functionalities from each of
the classes presented.

16 João Filipe Ferreira da Costa

In the next sections some interesting CSCW systems related to text edition will be
introduced. In section 3.2.1, simple document edition systems will be analyzed. Later, the
section 3.2.2 will rather focus on distributed wiki systems. Finally, in section 3.2.3 we will
discuss the importance of intra and inter-document distance in cooperative writing tools.

3.2.1. Distributed Document Editors

The Transparent Adaptation approach: CoWord

Single-user computer applications (text editors, graphics drawing tools, word processors,
spreadsheets, presentation tools, web design tools, etc.) are widely present in our daily lives
and work. Thus, since the concept of cooperative work is raising its visibility, it is natural to
think about adding cooperation support to these applications.

Although the existing cooperation techniques were vastly studied by researchers, they were
only applied to prototypes. Hence, it still remains to be determined the true applicability of
such solutions in daily used mature applications. In [Xia04] the authors propose how this
leveraging between mature single-user application and state-of-the-art cooperative techniques
can be carried out.

The continuous improve of current cooperative prototypes to achieve the same richer
environment provided by single-user applications is not a good solution as users will not likely
be willing to learn and use a new application just because of some less frequently-used
functionalities [Grudin94]. On the other hand, modifying existent single-user applications to
support cooperative features may not be possible, not because of the implementation efforts,
but because most of them are closed-source. Additionally, separating single-user
functionalities from cooperative issues may be advantageous.

The solution proposed in [Xia04], called transparent adaptation, is to provide applications
with cooperative abilities without changing their source-code. The goal is to have multiple
users work on their normal single-user applications in an unconstrained cooperation, which
means that users access data in a concurrent and freely way. Ensuring that users can be
performing changes in the same region or adjacent areas, without using complex merging
schemes, is resolved by the Operational Transformational technique.

To implement the transparent adaptation approach, below the single-user applications two
new middleware layers must be created: (1) the Operational Transformation Layer to provide
eventual consistency guarantees; (2) the Adaptation Layer to translate the linear operations
performed in the application into simple primitive operations perceivable by the OT Layer.

To increase system modularity, reduce design complexity and promote component
reusability, the application specific functionalities and the cooperation capabilities were
completely separated. Indeed, the OT Layer is generic and application independent. This way,
only the Adaptation Layer must be written in accordance to the single-user application; the
bottom-most layer is the same for every application.

The transparent adaptation technique was successfully used to create CoWord and
CoPowerPoint, the cooperative versions of MS Word and MS Power Point. However, this
solution can only work in applications with a suitable API which can be used to intercept and
replay user input events, and whose data and operational models are adaptable to the
underlying OT technique. If not, implementing the Adaptation Layer either will not be so
straightforward or it will even be impossible. Additionally, this solution does not provide any
kind of awareness and so users may not be able to easily coordinate themselves.

Vector-Field Consistency for Cooperative Work 17

The FEW file system

The Files EveryWhere [Bento06] is a distributed file system for mobile computing that
provides high availability, good performance and low energy consumption. It works with a
generic operational transformation reconciliation strategy combined with an epidemic

dissemination algorithm. This means that users will work asynchronously and concurrently
without the need to perform any conflict resolution task. On the other side, the reconciliation
mechanism must be adapted to the specifics of each file type.

Updates in the FEW-FS are propagated using first a best-effort propagation system that
accelerates convergence and then, to guarantee eventual convergence between replicas, they
perform periodic pair wise epidemic propagation sessions. In these sessions, replicas send and
receive al the unseen updates regardless of their origin.

To merge concurrent updates from different users in order to achieve a common final state
in every replica, FEW first translate updates into semantically-rich operations. To do this
translation it uses a type-specific program, which compares the previous and the new version
of the file. Afterwards, the inferred set of operations is propagated to the remaining replica
(using either of the previously mentioned strategies). When an operation arrives to a certain
replica, it is integrated employing the generic operational transformation algorithm (the
GOTO [Sun98] algorithm in this case).

The reconciliation method presented in [Bento06] is suitable only for text files. However,
the solution can be adapted to other types of files. This approach, allows maintaining multiple
versions for each line as users modify them concurrently, much like the CVS approach. Yet, it
allows the merging of multiple versions to be postponed and so to continue the modifications
even if they include modifying the lines with multiple versions. This way, there are no lost
updates and the user’s intentions are preserved since operations are not automatically merged.

Additionally to the presented method, the authors propose also two solutions to deal with
files regardless of their content. The first consists in choosing one of the versions for all
replicas. The second solution will keep all versions originated by concurrent updates so that
the user can later access and eventually merge them.

3.2.2. Distributed Wikis

The Wooki

The increase popularity and importance of wiki systems in the daily life of Internet users
and mainly of institutions (academic, research, non-governmental organizations, etc.) and
corporations unfolds a series of critical issues related to availability. In fact, nowadays, most
popular wikis are designed in a purely centralized infrastructure. This means that availability
can be compromised in case of failure, heavy load or offline access. If, on the other hand,
wikis were replicated in a P2P network there would not be any problems with fault tolerance
or load balancing. Additionally, even the hardware costs could be divided between all the
peers.

As the solution of replicating wikis effectively handles the problems of the centralized
version, it arises the problem of maintaining consistency. The Woot [Oster06], overview in
section 3.1.4, algorithm can be used to deal with this consistency problem. This algorithm is
improved and incorporated in a fully functional P2P wiki system called Wooki [Weiss07].
Additionally, to solve the update propagation problem which is not covered in [Oster06], the
wooki system uses a probabilistic dissemination algorithm combined with an anti-entropy

algorithm for managing failures or disconnected sites. Also introduced with wooki is an

18 João Filipe Ferreira da Costa

improved version of the woot algorithm called Wooto [Weiss07], which achieves better
performance and has smaller memory requirements.

In wooki, as usually in wiki pages, users make all their changes to the page and only then
save them. Subsequently, a diff algorithm is used to translate these modifications in wooto
operations (using the delete and insert primitives). Then, operations are immediately executed
locally and broadcasted using the lightweight probabilistic broadcast (lpbcastI) [Eugster03].
This algorithm ensures dissemination of messages to all connected nodes. To deal with offline
operations, an anti-entropy algorithm was used. This means that sites periodically send
missing updates to randomly selected neighbors. Sometimes, if a site stays offline too long,
anti-entropy recovery might not be possible. To solve this situation, wooki sites can update
themselves from their neighbors in a state-transfer manner.

DistriWiki

As said before, Wikis are growing in importance over the Internet. They are one of the best
solutions for cooperative publishing [Morris07]. However, the read-only approach of Web
sites that dominates the Internet lead to the establishment of Wikis as centralized services,
which does not articulate well with their distributed nature.

In [Morris07], the authors propose that Wikis, in order to comply with their distributed
usage paradigm, should be implemented over a peer-to-peer infrastructure. The presented
prototype, a peer-to-peer wiki called DistriWiki provides the same set of functionalities as
classic wiki systems but without the reliability problems of centralized solutions.

The work of DistriWiki identified five important features of peer-to-peer wikis: redundant

decentralization; unique identification of documents; efficient retrieval of documents;
usability; compatibility with wiki concepts. This means that P2P wikis should distribute data
across peers, which should be able to freely change the content of the distributed data. Also,
users should still be able to search and retrieve documents independently from the failure of
any peer. Finally, the tools should have a similar user interface and similar concepts and
semantics as current wiki systems.

One problem with the completely decentralized solution is how to handle conflicts
motivated by concurrent changes. Unfortunately, automatic conflict handling was not covered
by DistriWiki, which simply leaves for users to handle such conflicts.

UniWiki

Current peer-to-peer systems are mostly used for distributing quasi-immutable content, thus
providing high data availability and good performance. On the other hand there are little
solutions for ensuring both scalability and consistency in the case of highly dynamic content.
The architecture presented in [Oster09] is suitable for systems that need to store huge amounts

of data, make use of P2P networks, does not have any single point of failure and can handle
concurrent updates ensuring eventual consistency.

This architecture was used to create a peer-to-peer wiki called UniWiki (Universal Wiki),
which relies on distributed hash tables (DHT) and optimistic replication [Saito05]. The
normal structure of DHTs, which were created for storing actual data, was slightly modified to
store operations in each node so it could fit the imposed consistency requirement. To ensure
eventual convergence of data, like in Wooky [Weiss07], the Woot [Oster06] algorithm was
used. In order to avoid having every node storing the entire set of wiki pages, each of them is
responsible for only a well defined chunk of the content. The defined limits of these chunks
can change dynamically in case of arrival or departure of nodes. Another important
architectural detail is the separation of the DHT storage system from the wiki clients. To allow

Vector-Field Consistency for Cooperative Work 19

this separation, wiki front-ends handle client requests and either transform them in Woot
operations (update request) or retrieve the wiki content rendered into HTML (page view
request). This allows the system to be transparently integrated with other existing wiki
engines (e.g. MediaWiki)6. To support the integration, the system intercepts wiki calls using
aspect oriented programming so that the distributed storage system is used. The extensive
description of the interceptors can be seen in [Oster09].

3.2.3 Intra and Inter-document Relationship
The provide locality-awareness in Cooperative Work Tools, whether in a document editor,
wiki, spreadsheet editor, presentations builder, etc., it is of the most importance to know the
semantic organization of the data under edition. For example, if one user is editing a chapter,
he will want to know if another user starts editing that same chapter. One will be even more
interested in knowing if another user starts editing the same section one is editing and even
more if it is the same paragraph.

However, this concept of distance between users working concurrently based on the
semantic structure of the data being edited must be enhanced if we consider some types of
files. For example, it is normal in a HTML or Wiki page to have links to regions inside the
same or other pages. Also, in spreadsheets formulas almost always refer to cells placed in the
same or other sheets or even in another file.

This intra and inter-document references can shorten the natural semantic distance between
regions and systems that aim to provide locality-awareness must consider them depending or
their context.

There is already some work in this field. In the wiki environment, there are several systems,
called semantic wikis [Buffa06, Völkel06, Kuhn08, Rahhal08]¸ which aim to subtract from
wiki pages relationships between data within pages and among pages. The objectives of
semantic wikis are however different since they aim for the exportation of the wiki-based
knowledge to databases, ontologies, etc. Another example of reference management is the
treatment of dangling references in the web [Kappe95, Lawrence01, Veiga03], in which links
are considered to ensure referential integrity in the web.

4 Architecture

This section starts with an explanation of how some of the core concepts of the Vector Field

Consistency algorithm, namely pivot, distance and consistency zone, will be adapted to the
environment of document-based cooperative work. Then, section 4.2, by means of an
architectural view, will describe the organization of user nodes, their responsibilities and
composition. Finally, in section 4.3 we present two issues being considered to integrate the
solution.

4.1 Adapting VFC Concepts: pivots, distance and consistency zones

As said before, in VFC, pivots roughly correspond to each user’s observation points. In
VFC4CW, a user’s pivot corresponds to the place in the document semantics where the user is

editing. Depending on the defined granularity, a user’s pivot could be defined by the page,

6 http://www.mediawiki.org/

20 João Filipe Ferreira da Costa

section and paragraph which the user is currently editing. To extend this concept to best fit the
writing process characteristics, other points of interest can be defined. In this section, they will
both be referred to only as pivots.

Each user has its own set of pivots which should influence consistency among other users.
More specifically, consistency should weaken as the distance between users’ observation
points grows. In VFC4CW, this distance is defined as the distance between the semantic

regions being edited and other points of interest. Distance should represent how important a
certain block of content is to the work being done.

To enforce different consistency levels, around each user’s location we define several
consistency zones. A consistency zone corresponds to a region of a document with a well
defined distance from a user location. This distance is zero for the region immediately
containing a pivot and increases as we move away from that location. In Fig. 3 we can see
several consistency zones around pivots with weaker consistency bounds (represented by
thinner lines) as we move far from those locations.

There are numerous regions marked as consistency zones in Fig. 3. In this example we
choose to mark the most relevant regions that surround a pivot, but even those are just
examples. Relevant regions may change depending on the type of content being edited.

4.2 Architectural components

Every node (application) in a VFC4CW system is equal in terms of implementation, operating
broadly as peers. However, some of them will assume special roles in the system as nodes
churn and as points of edition change. In Fig. 4, it is presented a possible configuration of
system nodes in terms of their role. As we can see, there are two servers, two replicas and six
clients. How these nodes with different roles interact and what is their purpose is the subject
under discussion in this section.

Clients: As we can conclude from the example of Fig. 4, every node in the system is a

client. Clients correspond to the edition applications run by users. They can be explicitly
adapted applications or just applications deployed on top of a generic middleware VFC4CW
layer. As far as is concerned by the VFC4CW system clients asynchronously edit their
documents.

Fig. 3: Consistency zones in the VFC4CW model

Vector-Field Consistency for Cooperative Work 21

Servers: Each document under edition has an assigned server which is responsible for
monitoring the edition activity and propagating the necessary updates to enforce different
consistency levels imposed by the defined consistency zones. It may also be in its duties to
warn clients when another client gets close to their pivots.

Such role is assigned dynamically to one of the clients holding and editing the document.
Although it is not rigid, the server role may have a more permanent nature, i.e. for the whole
life of the document or as long as the document is being edited. Alternatively, this role may be
hand over to other nodes.

Replicas: Replicas are nominated by document servers and their only propose is to make
the system tolerant to server faults. They are not active replicas in the sense that they only
receive and store updates forwarded by servers. If the server for a document fails, one of their
replicas is appointed as the new server.

Nodes in the VFC4CW system can assume any role (client, server and replica) and even more
than one at the same time, regarding different documents. On the other hand, they must be
transparent to the basic user, which is only interested in the cooperative development of his
work. Thus, the architecture must incorporate the server and replica capabilities without force
the user to interact with any application other then the typical one. To meet these requirements
we propose the layered architecture seen in Fig. 4.

Application Enhancement Layer: This layer, which matches the application semantics,

translates the user operations into the corresponding updates comprehensible by the VFC4CW
consistency protocol. More, it will be responsible for extracting the information about the user
location, either by extending the edition tool (if possible) or by analyzing the modifications in
the files using a diff algorithm. Also, it may provide extra functionalities to warn the user
about concurrent edits.

VFC4CW Cooperation Protocol Layer: This generic layer will implement the VFC4CW
protocol for the various roles. It will manage all the updates, which means that it will have the
ability to delay or hurry their propagation. This layer should be highly portable whichever the
working environment.

4.3 Other architectural details

As studied in the related work section there are two types of definition of operations. Although
the original VFC algorithm was implemented as a state-transfer system, it can be perfectly
adapted to support the operation-transfer approach. Nevertheless it should be advantageous if
there are cases of long disconnection periods to support mixed approaches.

Fig. 4: Main components and main architecture

22 João Filipe Ferreira da Costa

To avoid problems with conflict handling and lost updates, which can be a burden to users,
it may be interesting to incorporate semantic-scheduling approaches, namely operational
transformation and operation commutativity.

5 Evaluation

As said before this work will result in the integration of the VFC4CW algorithm in a
cooperative work tool. To determine if the new algorithm and this integration is in fact a
success as we expect, we will perform three forms of evaluation: qualitative, quantitative and
comparative.

The qualitative evaluation will assess if VFC4CW is transparent to users and what are the

benefits of the integration. The VFC4CW model should:
• Provide cooperation capabilities to the usual tools while maintaining the properties and

interaction patterns that users expect;
• Fit the model of cooperation without disturbing the user activities;
• Be sufficiently generic to be applied to different cooperative work scenarios and tools;

To perform the quantitative evaluation we will analyze a series of criteria to evaluate:
• Bandwidth and memory requirements

o Number of exchanged messages;
o Savings in bandwidth and memory;
o Selection of updates.

• Performance of the algorithm
o Time to propagate updates;
o Time to replicate an entire document;
o Time to obtain a document;
o Delay imposed to the application use.

• Effectiveness of the algorithm
o Number of lost updates;
o Number of detected and removed conflicts.

• Reliability in presence of node failure
o How many and which nodes can fail at the same time (before the system

stabilizes);
Additionally the evaluation process allows making conclusions about whether the model

and implemented algorithms are suitable to other environments, like mobile scenarios where
there are a series of resource limitations (memory, bandwidth) or web scenarios where there
can be a greater number of users simultaneously editing a document.

The comparative evaluation will consist in a comparison of some of the obtained

quantitative and qualitative results with analogous results from other tools with similar
purposes.

Vector-Field Consistency for Cooperative Work 23

6 Conclusions

In this paper we have presented VFC4CW, a continuous consistency model which results from
the adaptation of the VFC model to the scenario of cooperative work. The VFC model, other
than providing a continuum between strong and weak consistency, is combined with the
notion of locality awareness.

First, we overviewed the state of the art of two important fields: consistency maintenance in

distributed systems and cooperative work tools. Then, we proposed adaptations to best fit the
VFC consistency model to the new scenario of cooperative work, namely document based-
cooperative work. This adaptation implies porting the original concepts of user’s location
(pivots), distance between pivots and consistency zone to a new reality. To implement this
novel model, we have presented an architecture based on a generic middleware layer, to
enforce the VFC4CW protocol, and on an application enhancement layer, adapted to the
applications’ specifics. A number of criteria were presented for a future analysis of an
implementation of this work.

In the future, we will integrate the VFC4CW model with an already established cooperative
work tool and later evaluated it.

References

[Applet99] APPELT, W. 1999. WWW Based Collaboration with the BSCW System. In Proceedings of
the 26th Conference on Current Trends in theory and Practice of informatics on theory and Practice of
informatics

[Bannon91] BANNON, L. J. and SCHMIDT, K. 1991. CSCW: four characters in search of a context. In
Studies in Computer Supported Cooperative Work: theory, Practice and Design, J. M. Bowers and S.
D. Benford, Eds. North-Holland Human Factors In Information Technology Series, vol. 8. North-
Holland Publishing Co., Amsterdam, The Netherlands, 3-16.

[Barreto05] BARRETO, J. and FERREIRA, P. 2005. A highly available replicated file system for
resource-constrained windows ce .net devices. In 3rd International Conference on .NET
Technologies.

[Barreto09] ARRETO, J., GARCIA, J., VEIGA, L., and FERREIRA, P. 2009. Data-aware connectivity
in mobile replicated systems. In Proceedings of the Eighth ACM international Workshop on Data
Engineering For Wireless and Mobile Access.

[Bento06] BENTO, M. and PREGUIÇA, N. 2006. Operational transformation based reconciliation in the
FEW File System. In Proceedings of the The Eighth International Workshop on Collaborative Editing
Systems - integrated in ACM CSCW 2006

[Bernstein86] BERNSTEIN, P. A., HADZILACOS, V., and GOODMAN, N. 1986 Concurrency Control
and Recovery in Database Systems. Addison-Wesley Longman Publishing Co., Inc.

[Buffa06] BUFFA, M. and GANDON, F. 2006. SweetWiki: semantic web enabled technologies in Wiki.
In Proceedings of the 2006 international Symposium on Wikis.

[Cart07] CART, M. and FERRIE, J. 2007. Asynchronous reconciliation based on operational
transformation for P2P collaborative environments. In Proceedings of the 2007 international
Conference on Collaborative Computing: Networking, Applications and Worksharing.

[Çetintemel03] ÇETINTEMEL, U., KELEHER, P. J., BHATTACHARJEE, B., and FRANKLIN, M. J.
2003. Deno: A Decentralized, Peer-to-Peer Object-Replication System for Weakly Connected
Environments. IEEE Trans. Comput. 52, 7 (Jul. 2003), 943-959.

[Dietterich94] DIETTERICH, D. J. 1994. DEC data distributor: for data replication and data
warehousing. SIGMOD Rec. 23, 2 (Jun. 1994), 468.

[Eastlake01] EASTLAKE, D. and JONES, P. 2001 US Secure Hash Algorithm 1 (Sha1).

24 João Filipe Ferreira da Costa

[Ellis89] ELLIS, C. A. and GIBBS, S. J. 1989. Concurrency control in groupware systems. SIGMOD
Rec. 18, 2 (Jun. 1989), 399-407.

[Eugster03] EUGSTER, P. T., GUERRAOUI, R., HANDURUKANDE, S. B., KOUZNETSOV, P., and
KERMARREC, A. 2003. Lightweight probabilistic broadcast. ACM Trans. Comput. Syst.

[Greif88] GREIF, I. 1988. Computer-Supported Cooperative Work: a Book of Readings. Morgan
Kaufmann Publishers Inc. 1988.

[Grudin88] GRUDIN, J. 1988. Why CSCW applications fail: problems in the design and evaluation of
organizational interfaces. In Proceedings of the 1988 ACM Conference on Computer-Supported
Cooperative Work.

[Grudin94] GRUDIN, J. 1994. Groupware and social dynamics: eight challenges for developers.
Commun. ACM 37, 1 (Jan. 1994), 92-105.

[Ignat03] IGNAT, C. and NORRIE, M. C. 2003. Customizable collaborative editor relying on treeOPT
algorithm. In Proceedings of the Eighth Conference on European Conference on Computer Supported
Cooperative Work.

[Kappe95] KAPPE, F. 1995. A Scalable Architecture for Maintaining Referential Integrity in Distributed
Information Systems. J. UCS, 1(2): 84-104, Feb. 1995.

[Krishnakumar94] KRISHNAKUMAR, N. and BERNSTEIN, A. J. 1994. Bounded ignorance: a
technique for increasing concurrency in a replicated system. ACM Trans. Database Syst. 19, 4 (Dec.
1994), 586-625.

[Kuhn08] KUHN, T. 2008. AceWiki: A Natural and Expressive Semantic Wiki. Proc. of Semantic Web
User Interaction at CHI 2008: Exploring HCI Challenges, CEUR Workshop Proceedings, 2008

[Lamport78] LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 7 (Jul. 1978), 558-565.

[Lawrence01] LAWRENCE, S., PENNOCK, D. M., FLAKE, G. W., KROVETZ, R., COETZEE, F. M.,
GLOVER, E., NIELSEN, F. Å., KRUGER, A., and GILES, C. L. 2001. Persistence of Web
References in Scientific Research. Computer 34, 2 (Feb. 2001), 26-31.

[Morris07] MORRIS, J. C. 2007. DistriWiki:: a distributed peer-to-peer wiki network. In Proceedings of
the 2007 international Symposium on Wikis.

[Muthitacharoen01] MUTHITACHAROEN, A., CHEN, B., and MAZIÈRES, D. 2001. A low-
bandwidth network file system. In Proceedings of the Eighteenth ACM Symposium on Operating
Systems Principles.

[Nichols95] NICHOLS, D. A., CURTIS, P., DIXON, M., and LAMPING, J. 1995. High-latency, low-
bandwidth windowing in the Jupiter collaboration system. In Proceedings of the 8th Annual ACM
Symposium on User interface and Software Technology.

[Noël04] NOËL, S. and ROBERT, J. 2004. Empirical Study on Collaborative Writing: What Do Co-
authors Do, Use, and Like?. In Comput. Supported Coop. Work.

[Oster09] OSTER, G., MOLLI, P., DUMITRIU, S., and MONDEJAR, R. 2009. UniWiki: A
Collaborative P2P System for Distributed Wiki Applications. In Proceedings of the 2009 18th IEEE
international Workshops on Enabling Technologies: infrastructures For Collaborative Enterprises.

[Oster06] OSTER, G., URSO, P., MOLLI, P., and IMINE, A. 2006. Data consistency for P2P
collaborative editing. In Proceedings of the 2006 20th Anniversary Conference on Computer
Supported Cooperative Work.

[Preguiça09] PREGUIÇA, N., MARQUES, J. M., SHAPIRO, M., and LETIA, M. 2009. A Commutative
Replicated Data Type for Cooperative Editing. In Proceedings of the 2009 29th IEEE international
Conference on Distributed Computing Systems.

[Rahhal08] RAHHAL, C., SKAF-MOLLI, H. and MOLLI, P. 2008. Swooki: A peer-to-peer semantic
wiki. In The 3rd Workshop: 'The Wiki Way of Semantics'-SemWiki, co-located with the 5th Annual
European Semantic Web Conference (ESWC), Tenerife, Spain. (2008)

[Rama06] RAMA, J. and BISHOP, J. 2006. A survey and comparison of CSCW groupware applications.
In Proceedings of the 2006 Annual Research Conference of the South African institute of Computer
Scientists and information Technologists on IT Research in Developing Countries.

[Raynal96] RAYNAL, M. and SINGHAL, M. 1996. Logical Time: Capturing Causality in Distributed
Systems. Computer 29, 2 (Feb. 1996), 49-56.

Vector-Field Consistency for Cooperative Work 25

[Rodden91] RODDEN, T. 1991. A survey of CSCW systems. Interacting with Computers 3, 3 (1991)
319-353.

[Roh06] ROH, H.-G., KIM, J.-S. and LEE, J. 2006. How to design optimistic operations for peer-to-peer
replication. In Int. Conf. on Computer Sc. and Informatics (JCIS/CSI).

[Saito05] SAITO, Y. and SHAPIRO, M. 2005. Optimistic replication. ACM Comput. Surv. 37, 1 (Mar.
2005), 42-81.

[Santos07] SANTOS, N. VEIGA, L., and FERREIRA, P. 2007. Vector-field consistency for ad-hoc
gaming. In Proceedings of the ACM/IFIP/USENIX 2007 international Conference on Middleware.

[Satyanarayanan90] SATYANARAYANAN, M., KISTLER, J. J., KUMAR, P., OKASAKI, M. E.,
SIEGEL, E. H., and STEERE, D. C. 1990. Coda: A Highly Available File System for a Distributed
Workstation Environment. IEEE Trans. Comput. 39, 4 (Apr. 1990), 447-459.

[Shapiro07] SHAPIRO, M. and PREGUIÇA, N. 2007. Designing a commutative replicated data type. In
Institut National de la Recherche en Informatique et Automatique, Rocquencourt, France, Rapport de
recherche RR-6320, Oct. 2007.

[Sun98] SUN, C. and ELLIS, C. 1998. Operational transformation in real-time group editors: issues,
algorithms, and achievements. In Proceedings of the 1998 ACM Conference on Computer Supported
Cooperative Work.

[Sun96] SUN, C., YANG, Y., ZHANG, Y. and CHEN, D. 1996. A consistency model and supporting
schemes for real-time cooperative editing systems. In Proceedings of the 19th Australasian Computer
Science Conference.

[Sun04] SUN, D., XIA, S., SUN, C., and CHEN, D. 2004. Operational transformation for collaborative
word processing. In Proceedings of the 2004 ACM Conference on Computer Supported Cooperative
Work.

[Tammaro97] TAMMARO, S. G., MOSIER, J. N., GOODWIN, N. C., and SPITZ, G. 1997.
Collaborative Writing Is Hard to Support: A Field Study of Collaborative Writing. In Comput.
Supported Coop. Work.

[Terry95] TERRY, D. B., THEIMER, M. M., PETERSEN, K., DEMERS, A. J., SPREITZER, M. J., and
HAUSER, C. H. 1995. Managing update conflicts in Bayou, a weakly connected replicated storage
system. In Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles.

[Veiga03] VEIGA, L. and FERREIRA, P. 2003. RepWeb: replicated Web with referential integrity. In
Proceedings of the 2003 ACM Symposium on Applied Computing.

[Veiga05] VEIGA, L. and FERREIRA, P. 2005. Semantic-Chunks a middleware for ubiquitous
cooperative work. In Proceedings of the 4th Workshop on Reflective and Adaptive Middleware
Systems.

[Völkel06] VÖLKEL, M., KRÖTZSCH, M., VRANDECIC, D., HALLER, H., and STUDER, R. 2006.
Semantic Wikipedia. In Proceedings of the 15th international Conference on World Wide Web.

[Weiss07] WEISS, S., URSO, P. and MOLLI, P. 2007. Wooki: A p2p wiki-based collaborative writing
tool. In Web Information Systems Engineering, Nancy, France, December 2007. Springer.

[Weiss08] WEISS, S., URSO, P. and MOLLI, P. 2008. An undo framework for p2p collaborative
editing. In CollaborateCom, Orlando, USA, November 2008.

[Weiss09] WEISS, S., URSO, P., and MOLLI, P. 2009. Logoot: A Scalable Optimistic Replication
Algorithm for Collaborative Editing on P2P Networks. In Proceedings of the 2009 29th IEEE
international Conference on Distributed Computing Systems.

[Xia04] XIA, S., SUN, D., SUN, C., CHEN, D., and SHEN, H. 2004. Leveraging single-user
applications for multi-user collaboration: the coword approach. In Proceedings of the 2004 ACM
Conference on Computer Supported Cooperative Work.

[Yu00] YU, H. and VAHDAT, A. 2000. Design and evaluation of a continuous consistency model for
replicated services. In Proceedings of the 4th Conference on Symposium on Operating System Design
& Implementation - Volume 4.

[Yu06] YU, H. and VAHDAT, A. 2006. The costs and limits of availability for replicated services. ACM
Trans. Comput. Syst. 24, 1 (Feb. 2006), 70-113.

