
Resource Discovery In Semi-structured P2P Networks for
CPU Cycle-Sharing

[Extended Abstract]

João Pedro Gomes Neves
Instituto Superior Técnico
MEIC - Alameda 55384

jpgn@ist.utl.pt

ABSTRACT
Today, there is a number of projects that attempt to take
advantage of the excess CPU cycles existing in machines con-
nected to the Internet. However, these projects are mainly
focused in providing distributed code execution for large
scale research projects and do not make it possible for nor-
mal users, which contribute their cycles for those projects,
to use the same infrastructure to execute common desktop
applications for their own benefit.

In the context of this problem, this dissertation studies and
proposes resource discovery mechanisms, as well as Peer-
to-Peer network topologies that allow the creation of a dis-
tributed resource sharing system. This solution is part of
the GINGER project, which aims to offer a resource shar-
ing network capable of interacting with the many existing
desktop applications without the need to modify them, us-
ing techniques found in institutional Grid networks, resource
sharing systems as the ones mentioned above and the pop-
ular Peer-to-Peer file sharing networks.

1. INTRODUCTION
Over the last two decades and following Moore’s Law, the
available computing power throughout the world shifted from
large mainframes and supercomputers to the ever increasing
number of personal computers connected to the Internet, as
these became more powerful at a very fast rate. However,
most of the computing power offered by these machines is
wasted on idle processes, and as personal computers grow
more powerful this trend tends to increase.

To use this untapped resource, several projects like BOINC[1]
and SETI@Home[2] emerged, giving research institutes the
ability to perform massive computations without having to
acquire or maintain an expensive grid environment. Through
these projects ordinary computers could contribute their un-
used CPU cycles to scientific research by downloading work
units from each project’s servers, perform the necessary cal-

culations and uploading the obtained results.

Although these projects approach their desired goals, they
fail to meaningfully give back to their contributors, as peo-
ple who contribute with CPU cycles for these projects are
unable to use those same resources for their own benefit.

The approach followed by BOINC and SETI@Home has
some disadvantages, however, including the fact it requires
users (in this case, researchers) to be able to compile cus-
tom versions of the applications whose work they wish to
distribute and as such is not an option for most end-users.
Additionally, as previously mentioned, the computing power
supplied by the contributors is still in the hands of a very
small number of institutions, and users cannot tap those
same resources to accomplish tasks that matter to them, as
ordinary PC users.

On GINGER[11], the authors propose a peer-to-peer based
infrastructure for CPU cycle sharing based on the concept
of Gridlets, which allow for the use of unmodified applica-
tions on the data to be processed, and as such enables every
user not only to contribute by helping other users on their
computations but also allows them to submit their own work
to the environment, in a mutualistic manner. Such an ap-
proach requires each node in the network to be able to locate
the required resources for the work it needs to do in an effi-
cient and scalable manner, but empowers each user with the
ability to use the available cycles to perform everyday tasks
which would usually require very large amounts of comput-
ing power or time.

The resource discovery problem in institutional Grid infras-
tructures and distributed cycle sharing projects such as the
ones mentioned above is relatively well known and several
centralized solutions have been proposed. On a fully de-
centralized peer-to-peer architecture, however, this problem
is further amplified by the lack of global knowledge of the
nodes composing the network, and a scalable solution for
the general case is difficult to achieve.

Beyond the issue of discovering resources like CPU and disk
storage, it is also necessary to tackle the problem of discov-
ering services, which may be provided by a software applica-
tion present in a system, or physically through the machine
itself (e.g. a network printer).



1.1 Contributions
This work introduces a resource discovery mechanism for
P2P networks based on the Pastry overlay, more specifically
in the context of the GINGER platform. It aims to evalu-
ate several resource discovery mechanisms to be used on the
GINGER platform.

A resource in this system can be any of the following: CPU
power and availability, memory capacity, disk capacity, net-
work bandwidth, installed applications, services, peripher-
als, users and others that may apply.

The chosen mechanism should ideally be:

1. Scalable: The overall efficiency should not decrease
significantly with a larger network;

2. Complete: If the resource to be discovered exists, it
shall be discovered;

3. Efficient: The overhead caused by the discovery pro-
tocol should not disrupt the normal functioning of the
network;

4. Flexible: We aim to support multi-attribute ranged
queries, as it is necessary on such a heterogeneous en-
vironment.

2. RELATED WORK
Several articles and projects have been produced on the
topic of resource and service discovery on institutional grids,
cycle-sharing desktop grids and peer-to-peer networks. In
this section, some of this work is presented and discussed.

We will focus on a few aspects of each system that are rel-
evant for their study in general and worthy of note in the
scope of this project. The most important aspects pertain
to overall system architecture and resource discovery.

All these types of infrastructure have their own merits and
demerits and have been subject to extensive study in or-
der to provide clues on how they can be combined to take
advantage of the best features each system has to offer[10].

2.1 Institutional Grids
Grid computing is used to describe a technique that utilizes
the resources of several computers simultaneously in order
to solve complex problems which typically require very large
amounts of computation power due to either the nature of
the problem or the sheer volume of data that needs to be
analyzed.

Institutional grid networks have been the main form of dis-
tributed computing platforms available worldwide, mainly
to large research or academic centers.

Grid network environments are usually centrally controlled
by a single entity, which makes these environments implic-
itly trusted, and as such, less vulnerable to malicious use.
This allows for a simpler or non-existent result validation
procedure.

2.2 Desktop Grids
Cycle-sharing desktop grid networks are built using regular
desktop computers, whose idle CPU cycles are often vol-
untarily donated by regular computer users. These cycles
are often used to perform distributed computations on very
large data sets for research purposes.

BOINC, with over half a million active computers providing
an average of over 1400 TeraFLOPS of computing as of the
time of this writing, is a clear proof that users are willing
to provide their idle cycles and that there is an enormous
amount of processing yet to be exploited worldwide. The
emergence of the use of GPUs for massively parallel pro-
cessing is expected to greatly increase the total throughput
of this kind of grid.

2.3 Peer-to-Peer Networks
Peer-to-peer (P2P) networks have become one of the driv-
ing forces of widespread online content production and con-
sumption worldwide. Unlike traditional client-server net-
works, P2P networks enable cooperation between users with-
out the existence of centralized, third-party authorities and
effectively removing the need for costly infrastructure as well
as eliminating the single point of failure present in tradi-
tional systems.

In a P2P network, as its name implies, every client can also
act as a server without requiring any additional configura-
tion or special setup. Peer coordination in a P2P network
is essentially free and can be achieved in an autonomous
manner, without the need for special peers in the network,
although in some cases it is desirable to have a number of
peers empowered with extra capabilities for the purposes
of coordination, commonly known as super-peers or ultra-
peers.

The decentralized and distributed nature of P2P networks
makes them highly resilient to the common issues affecting
traditional centralized systems. In particular, P2P nodes
are highly resilient to Denial-of-Service attacks, distributed
or otherwise, and typically enjoy increased efficiency with a
greater number of peers present in the system at any given
time.

Some peer-to-peer networks organize their nodes according
to a given topology, usually distinct from the underlying
physical topology, in order to better achieve their goals in
terms of robustness, performance and scalability.

A type of peer-to-peer network designed to solve this prob-
lem can be a Distributed Hash Table or DHT, where nodes
are responsible for a subset of all the keys in the network’s
key space and cooperate to provide scalable and efficient key
location.

Well known DHTs include Pastry[6] and Chord[9], which or-
ganize the nodes in a logical ring and route requests through
other nodes in the ring.

P2P networks on the whole comprise a large part of all In-
ternet traffic and as such have proved to be scalable, with
room for future growth.



3. ARCHITECTURE
One of the goals of GINGER as a platform is to obtain
the benefits of Grid-like computing infrastructures with the
flexibility of P2P networks in order to enable its use by the
masses. For this, it is important to determine a good P2P
overlay topology, as the resource discovery mechanisms de-
pend on this topology, as opposed to the underlying physical
networks.

The main goal should be a system that obtains the best
nodes available for a given work unit based on a number of
criteria such as available bandwidth, processing power and
so on.

3.1 System Architecture
This project is based on the GINGER platform, shown in
Figure 1.

Figure 1: Ginger architecture

GINGER is a middleware platform running on top of a semi-
structured P2P overlay network whose basic work unit is a
Gridlet. A Gridlet contains information regarding the data
workload as well as the transformations required to be ap-
plied on it. Each Gridlet also contains the cost associated
with performing those transformations to the data and op-
tionally the actual code that performs them.

The Gridlet application model is divided into three stages:
Gridlet creation, Gridlet processing and Gridlet-result ag-
gregation. In gPastry, no Gridlet processing is done at this
level, as it is irrelevant for the problem at hand. Also, Gri-
dlets are simplified and only contain information regarding
the required resources (application and other requirements)
for the Gridlet to be processed.

Whenever a node needs to submit work to the network, the
input data is chunked into one or more Gridlets that will
then be routed throughout the P2P overlay for processing.
When the necessary transformations are computed, the re-
sults are packaged in special result Gridlets, which can either

be sent directly to the origin or become stored throughout
the overlay for later retrieval using a distributed storage sys-
tem such as PAST[7] or, alternatively, a distributed caching
system as the one described in Squirrel[4].

As shown in the above figure, GINGER is composed of four
layers:

Application Adaptation layer. The Application Adapta-
tion layer is responsible for the interaction with the unmod-
ified desktop applications, in order to launch them and feed
the data received from gridlets, as well as collecting the re-
sulting data from the transformations performed on the orig-
inal data by the application.

Gridlet Management layer. On the Gridlet Management
layer, files and data are partitioned into the corresponding
gridlets and received gridlet-results are reassembled into re-
sult files as those that the application would produce if ran
locally on a single machine.

Overlay Management layer. The Overlay Management
layer is, as its name implies, responsible for maintaining
the overlay network in order to exchange gridlets with other
nodes. This layer only maintains the logical structure that
forms a node’s information about that overlay however, and
all actual network data transfer and communication is han-
dled by the Communication Services layer.

This layer holds all the information regarding the overlay
and transparently performs resource discovery in order to
locate the resources required by the upper layers. Both
super-peers and regular peers maintain a common subset
of information, including known super- peers and their own
capacity, with super-peers maintaining extra information re-
garding the availability of all applications its child peers
have registered with it, as well as the aggregate capacities
announced by other super-peers regarding the applications
which fall under the application family that super-peer is
responsible for.

Communication Services layer. As previously mentioned,
the Communication Services layer’s function is simply one
of performing data transfer throughout the network. It per-
forms no routing or other type of computation in order to
determine an incoming or outgoing message’s destination
and leaves that function to the Overlay Management layer.

The major focus of this work is on the Overlay Manage-
ment layer, as it is the layer responsible for maintaining the
overlay and performing discovery, as explained above.

3.2 Overlay network topology
The overlay network used in gPastry is based upon the Pas-
try[6] overlay, as it presents a robust P2P overlay, while us-
ing a number of modifications to accommodate our resource
discovery protocol, which will be detailed across the next
sections.



The immediate concerns when designing the architecture for
this work were to both minimize the number of messages
that need to be exchanged between nodes in the network,
to avoid flooding, as well as attempt to provide enough cov-
erage such that the required resources will be found when
they are needed, if they are present in the network.

In order to accomplish this, nodes in the network are di-
vided into two sets: regular nodes and super-peer nodes.
This closely follows Gnutella’s approach using “ultrapeers”
for data file indexing, as well as CCOF’s rendezvous points.

Super-peer nodes perform every function a regular node
does and, additionally, they maintain and share high-level
information regarding other nodes in the network. As such,
super-peers are not distinct from regular nodes but perform
additional tasks with regards to overlay management when
compared with the remaining nodes in the overlay.

The overall layout of the nodes is displayed in Figure 2.
For reference, note that the overlay network does not need
to connect nodes in any particular order for super-peers to
exist. Repeated links between nodes are omitted in this
figure. Let us explore super-peers in more detail in the fol-
lowing section.

Figure 2: Node organization in the network. “SP”
indicates a super- peer, while “P” indicates a regular
peer.

Super-peers. Super-peers form a ring amongst themselves
to allow faster communication and avoid hopping messages
through the overlay network. They share information about
the availability of applications among their child nodes and
act as resource brokers, sharing their child nodes’ resources
with each other when such is needed (for instance, when a
super-peer’s children cannot perform the work required for
a given gridlet, it requests work from another super-peer
which whose children have enough availability to perform
the task).

Regular nodes, in turn, are “clustered” around these super-
peers and use them to perform service discovery and gridlet

requests to other nodes in the network. Every node is as-
signed to a single super-peer, determined from all known
super-peers through the Pastry proximity metric it is then
referred to as that node’s primary super- peer. The use of
the proximity metric was chosen because it explicitly rep-
resents the degree of proximity between two given nodes in
the overlay, as defined by the basic Pastry protocol.

Despite being assigned to a single super-peer, every node
possesses a list of existing super-peers in order to choose a
new super-peer in case of failure of the existing one.

Super-peers election is performed in a way that attempts
to balance the ratio of super-peers to regular nodes and
make sure no nodes are orphaned, i.e. left without knowing
any super-peers. Nodes will periodically check the number
of super-peers they know; if this number is below a cer-
tain threshold, those nodes can select themselves to become
super-peers with a given probability. This probability has to
be kept low enough so that the number of super-peers can-
not grow too large at any given point in time, but such that
allows a fairly rapid expansion of the number of super-peers
in case of shortage.

3.3 Resource Discovery
Applications are the main resource taken into consideration
in gPastry and the resource discovery mechanism focuses
mostly on finding nodes which have the given application
installed.

In order to structure information regarding applications through-
out the overlay, using the topology described in the previous
section, two pieces of information are kept about each ap-
plication: the family hash and the application hash.

The family hash is used to describe the family or class of
applications any given application belongs to. In the con-
text of gPastry, the family hash is a hash of the canonical
name of an application, which in this case is, for instance,
the URL of the application’s main web page online (e.g.
for the Python application, the canonical name would be
“www.python.org”). This family hash is used to aggregate
information regarding all nodes with an application belong-
ing to that family in the same super- peer, in a way that
will be described further in this section.

The application hash, on the other hand, describes a spe-
cific combination of application name and version and is
used to determine, in a given super-peer containing informa-
tion about a given application family, which nodes possess
a specific application installed in the system. For instance,
considering the Python application family example, there
could be a number of distinct application versions described
uniquely by this hash such as Python 2.6 and Python 3.0.

This distinction using the application’s version is important
for dealing with cases where different versions of a given ap-
plication are incompatible with each other and thus cannot
be used to perform work on the same set of data, or the user
requires functionality present only in a specific (or more re-
cent) version. Note that although only the version number
is used in the given examples, different “versions” can be
easily created for applications running in different operating



systems as well.

As described previously, there are a number of super-peer
nodes whose purpose is to aggregate information regarding
the installed applications. These super-peers are “responsi-
ble” for one or more application families, which means they
aggregate the high-level information on all current super-
peers regarding those application families.

In particular, each of these super-peers maintains a table
containing other super-peers’ aggregate availability for a given
application inside the family they are responsible for as well
as the availability of every child node (including themselves)
for each application those nodes register when joining the
network, even if that application falls outside the family
it owns. However, regarding the capacity available under
other super- peers for those families, each super-peer only
maintains the aggregate available capacity, with no informa-
tion about what specific nodes under that super-peer possess
the application or their individual capacity. Furthermore,
super-peers do not store such information about applica-
tions whose family is not of their responsibility when this
information does not belong to one of its direct child nodes.

Responsibility is determined according to the application’s
family hash, which is mapped into the super-peers’ set of
keys. If a super-peer’s node ID is larger (according to the
Pastry proximity metric) than the key given by the family
hash, which belongs to the same key space, then the super-
peer is responsible for that family. This is done in order to
evenly distribute the application family’s key space among
all super-peers and avoid overloading any given one. When-
ever a new super-peer joins the ring, every super-peer adds
it to its super-peer lists and if the new super-peer should be-
come the one responsible for an already existing application
family, the super-peer containing that information sends it
to the joining super-peer. Super-peers can be responsible for
multiple families, as long as the family hash is lower than
their own node ID but not lower than any other super-peers’
node ID.

When submitting a Gridlet, nodes send it to their super-
peer who, according to the information aggregated from his
child nodes and other super-peers, distributes the workload
of that given Gridlet in the following manner:

• The super-peer forwards the Gridlet to all its child
nodes which have the required application and capac-
ity;

• If more nodes are needed, the super-peer contacts the
super-peer deemed responsible for that application fam-
ily by forwarding the Gridlet. Otherwise the Gridlet
is dispatched and the super-peer does nothing else;

• Upon receiving the request from another super-peer,
the super- peer responsible for that application family
checks the capacity table for another super-peer pos-
sessing enough child nodes to fulfill the request and
forwards the Gridlet to it.

• If no other super-peers exist that can fulfill the request,
the responsible super-peer simply replies immediately
with a message.

Node capacity is determined by a number of different factors,
such as CPU power, total memory and bandwidth. When a
node’s capacity changes (due to work in progress or external
factors, such as a local user interacting with the system), its
new capacity is sent to its corresponding super-peer.

Upon receiving this information, the super-peer updates its
internal aggregated capacity for the applications which this
particular node provides and, if the new aggregate capac-
ity is different enough (configurable for increments of, for
instance, 10, 100, etc.) from the previous value it had trans-
mitted to the super-peer responsible for that application, it
sends an update message to that super-peer in order to up-
date the value that super-peer is keeping.

The use of this type of asynchronous, on-demand commu-
nication instead of either having synchronous updates or
sending updates every time a node updates its availability,
is done in order to prevent flooding the network with mes-
sages regarding relatively insignificant changes to the overall
availability of a given application.

Additionally, upon joining the network a node sends all the
information regarding its installed applications to its newly
determined super-peer, which then updates its aggregate ca-
pacity for each application registered by the new node and
if the change in capacity for a given application is significant
enough it then updates the super-peer responsible for that
application, as in the previous situation.

3.4 Data Structures
gPastry builds on top of Pastry overlay and as such, a num-
ber of data structures used in Pastry are found unmodified
in this work. These data structures include the basic node
state information in the form of three separate structures:
routing table, leaf set and neighborhood set. Addi-
tionally, a number of new data structures were developed to
support super-peer information as well as available resource
information.

To complement and enhance Pastry in order to support the
desirable new features for gPastry, a number of data struc-
tures were developed to hold and organize new information.

The most relevant data structures pertain to storing infor-
mation about existing super-peers, as well as resources and
their availability. These structures are described in the fol-
lowing sections.

Super-peer information. Nodes must maintain some in-
formation about existing super-peers in order to advertise
their resources and become available for remote computa-
tion. To do so, nodes store a sorted circular list of known,
live super-peers. This list is centered on the closest super-
peer according to the Pastry proximity metric and is sorted
by proximity to the current node. This particular super-peer
is designed as the primary super-peer for that node and is
used as the main point of communication between the node
and the remaining overlay for purposes of resource discovery.

Whenever a new super-peer is discovered, or one joins or
leaves the network, this list is updated accordingly. The



closest super-peer is designated as the primary super-peer
and is used as the primary choice for resource advertise-
ment and lookup functionality. This allows to minimize the
number of hops necessary to communicate with a super-peer
to obtain information, thus preserving Pastry’s performance
characteristics. A super-peer’s primary super-peer is always
itself per the proximity metric. This introduces no inconsis-
tencies, and does not preclude super-peers from submitting
Gridlets themselves; they will follow the exact same protocol
as other peers.

Resource availability information. Resource availability
information is maintained only by super-peers and func-
tions as a distributed index where super-peers can lookup
resources both inside and outside their node group with dif-
ferent levels of detail. Super-peers maintain resource avail-
ability for each node under their respective groups, namely
which applications are available among the many nodes, the
actual nodes that possess them and their current availabil-
ity. This allows the super-peers to pick the most available
nodes for a given Gridlet.

In order to locate resources outside of their group, how-
ever, super- peers maintain only the aggregate availability of
other super-peers’ groups for the applications they advertise
amongst themselves. This allows not only to locate more re-
sources for a known application outside a super-peer’s group
in case of saturation, but also allows to discover nodes which
can provide different resources which are do not exist in the
current group. In order to minimize the amount of infor-
mation each super-peer has to maintain, super-peers only
exchange this information with the super-peers responsible
for the relevant application families.

For instance, if a super-peer A gains or loses capacity related
to an application X in a given family F, only the super-peer
responsible for family F is informed of those changes and
records the appropriate information. Other super- peers are
not informed as the information is not relevant for the ap-
plication families they are responsible for.

4. IMPLEMENTATION
For the implementation of gPastry, the chosen tools were
Java 6 SE and the PeerSim[5] P2P network simulation plat-
form version 1.0.3. Since PeerSim only provides a protocol-
independent simulation platform, the entire code base that
implements the Pastry protocol was written from the ground
up for the purposes of this project.

Using this platform as opposed to use others such as FreeP-
astry[3], which already implements Pastry, allows greater
flexibility if the need to change the underlying protocol would
arise, at the cost of extra development effort. PeerSim is de-
veloped for the Java platform, and all development for it is
done in Java as well.

4.1 The PeerSim platform
PeerSim has two basic types of simulator: an event-driven
simulator, where progress is done by acting on events trig-
gered by reception of messages sent from one node to the
next, and a cycle-driven simulator, which allows to act on
the simulation at intervals.

Both of these simulators can be integrated seamlessly to
take advantage of the benefits inherent to each type of sim-
ulator. For the purpose of this work, this was the followed
approach, using the event- driven simulator for most of the
simulation as well as attempting to increase the realism of
the simulation, and using the cycle-driven simulator to allow
for easier execution of periodic functions on the nodes.

For this work, a few controls have been developed. They
allow for the manipulation of the simulated network in run
time and are important for the evaluation of gPastry.

PeerSim allows for the control of communications on the
simulated overlay at the transport level through classes in
the peersim.transport package. For the purpose of this
work, the UniformRandomTransport was the one selected,
which implements a transport layer which reliably delivers
messages with a random delay, drawn from the interval de-
fined in the configuration file using a uniform distribution.
This simulates an environment where packet losses do not
occur and/or can be corrected by retransmitting packets
with delay (typical in real world applications where TCP
is usually favored in detriment of UDP as the underlying
transport protocol).

Additionally, we can select a wiring structure for the over-
lay. This defines a low-level topology which emulates the
way nodes would be physically connected to each other in
a real-world situation. PeerSim allows for the selection of
several wiring methods (implemented through PeerSim con-
trols that are executed upon initialization). The Internet is,
at its core, a semi-structured network where most nodes are
interconnected indirectly through other nodes, with a vari-
able number of hops between them. As such, the control
selected to wire the nodes in the network was the peer-

sim.dynamics.WireKOut control, which randomly connects
nodes among each other. The out degree k of the nodes
can be passed as a parameter to this control through the
PeerSim configuration file.

4.2 GINGER implementation
The GINGER platform was partially implemented as part of
gPastry, with some of the layers, like the Application Adap-
tation layer, being implemented only as stubs, for they were
not relevant for the purpose of this work. The implemented
layers will be described in a bottom-up approach.

Communication Service. The Communication Service layer,
abstracts the actual communication with other nodes in the
overlay. Most of the implementation details are further ab-
stracted into the PastryProtocol class, for ease of imple-
mentation within the PeerSim platform.

This class provides the following methods: route, which
routes the message through the overlay; routeMyMsgDirect,
which sends a message directly to a given node, bypassing
the routing mechanism; deliver, which processes an incom-
ing message at a higher level than the one provided by the
PastryProtocol class.

The routing methods wrap the corresponding methods present



in the PastryProtocol class, which provide the required
functionality. This is because of implementation details im-
posed by the PeerSim platform which are not relevant for
the work at hand.

Overlay Management. The Overlay Management layer is
implemented in the OverlayManager class and performs the
essential functions for maintaining overlay information, as
well as performing resource discovery through the protocols
developed for gPastry.

This layer contains, per node, the relevant information re-
quired to route messages to other nodes, as well as informa-
tion regarding existing super-peers. Message routing is per-
formed using the Pastry routing mechanism and as such this
layer must maintain the relevant data structures, namely the
routing table, leaf set and neighborhood set inherited from
Pastry.

In order to locate resources according to the protocol we
developed, the Overlay Management layer must maintain
additional data structures, described later.

Gridlet Management. Gridlet creation happens at this level,
with the data received from the Application Adaptation
layer, described previously. Upon Gridlet reception on the
Overlay Management layer, it is forwarded through to the
Gridlet Management layer, where it is processed. If the node
currently has enough capacity to process the Gridlet, it is
passed on to the Application Adaptation layer. If not, it can
be forwarded to a different node.

Gridlets arriving for processing are forwarded to the Ap-
plication Adaptation layer which will later return the data
required for the creation of a Gridlet Result containing the
result of transforming the Gridlet data on through the re-
quired application, which is cached for later forwarding to
the initiating node.

Application Adaptation. The Application Adaptation layer
was implemented only as a stub, playing no role in this work,
as its purpose is to seamlessly integrate with the applications
needed for Gridlet data processing.

This layer passes the Gridlet’s data to the application af-
ter performing whatever transformations are needed on that
data in order for the application to work correctly and re-
ceives the resulting output data. This output data should
then be passed on to the Gridlet Management layer, where
a new result Gridlet is created. For the purposes of this
project, we can assume the Gridlet result is a simple trans-
position of the input data, such as an arithmetic operation
or hash code.

4.3 gPastry implementation
For gPastry, Pastry was implemented according to the orig-
inal Pastry paper[6] and as mentioned previously is realized
in the PastryProtocol class. Messages arriving on a node
are processed through the processEvent method, which dis-

patches messages to the route method for the message to
be actually routed (or delivered in this node, according to
the Pastry routing algorithm) if the node has already joined
the network.

If the message is to be delivered to the current node, it is
then dispatched to the deliver method, which will forward
it to the CommunicationService class, which implements
GINGER’s Communication Service layer.

A node joins the network through the join method. An
overloaded method is provided for the first node to join the
network in order to simplify the process. Whenever a node
sends a message to another, the route message dispatches
that message using the Pastry routing protocol. The un-
derlying mechanism for message transmission is provided by
PeerSim through the send method, which in this case is
wrapped in another method with the same name to simplify
development.

Messages. Messages used in this implementation of Pastry
form the basis of all messages exchanged in the network,
from gPastry’s point of view.
The base class is RawMessage, which defines the base meth-
ods and fields all messages should share.

Due to PeerSim constraints, messages are sent as Java ob-
jects. Nonetheless, these objects could easily be transposed
into a generic, language-independent format for real-world
use.

Upon joining the network, a node A sends a PastryJoinRe-

quest message whose destination node is also A to its boot-
strap node B. B then routes the message through the net-
work using the original Pastry protocol. Every node through
which the message passes through will reply to A with a Pas-

tryJoinReply message containing the corresponding routing
table node, as per the original Pastry initialization protocol
so that A can build its initial state.

Gridlet messages add a number of extra fields to accommo-
date for the additional information they must carry. These
fields contain the application hash, the application family
hash as derived from the provided canonical name, its re-
quired availability and any input data that should be pro-
cessed by the application at the destination node. As with
other messages, the Gridlet message is implemented as a
Java object for the purposes of this specific implementation,
but can easily be translated into more appropriate formats
for real-world use.

The basic format for a Gridlet is shown in Figure 3.

4.4 Super-peer implementation
Pastry does not contemplate different types of nodes and as
such is not completely adequate for the proposed architec-
ture. On top of the base Pastry overlay, a super-class of
nodes was added to perform the work of super-peers.

Super-peers are, as previously mentioned, a subset of all
nodes in the network. As such, they share a common code
base in the form of the PastryProtocol class.



Figure 3: Structure of a Gridlet.

In order to implement super-peers, nodes already possess
fields for handling the additional information. This ap-
proach was chosen instead of simply using the Java language
inheritance mechanism due to issues found with the Peer-
Sim platform, which, at the time this work was being im-
plemented, did not properly support subclasses as PeerSim
protocol implementations.

With this approach, what distinguishes regular nodes from
super-peer nodes is the isSuperPeer boolean flag and the
presence of an instance of the SuperPeerInfo class in the
spInfo field inside a node, which encapsulates all informa-
tion the super-peer possesses.

This class contains the following mappings, from which a
super-peer can obtain the information necessary to deter-
mine where sufficient nodes exist to process the currently
received Gridlet:

• A mapping from application hashes to a map contain-
ing all known nodes with that application installed and
their current capacity;

• A mapping of all currently known super-peers to their
respective aggregate capacities.

When a Gridlet G is received by a super-peer X from one of
its child-nodes and reaches the overlay management layer,
it is processed through the gridletReceived method in the
following manner: The super-peer determines which super-
peer is responsible for the application family to which the
Gridlet refers to.

In the case X is the super-peer responsible for that given
application family, it attempts to obtain child-nodes which
can perform work on G and forwards it to at most three of
those children.

Replicating work on multiple children decreases the chance
for a Gridlet never to be worked upon due to the node pro-
cessing it leaving the network at any time and can also yield

better performance than the simpler case of assigning the
Gridlet to a single node in the case the chosen node would
suddenly have reduced capacity due to external intervention
(e.g. a user begins locally using the node for intensive appli-
cations). This follows the work of Silva et al on Workqueues
with Replication (WQR)[8]. Note that if a given super-peer
has an application whose family hash is the one that super-
peer is responsible for, the super-peer is a child node of itself.

There can be the case where there are no children nodes
fit to perform work on the Gridlet X received. In that case,
X looks up the other super-peers it is aware of and their
respective aggregate capacity for the required application.

If X is not responsible for G, then it determines the super-
peer Y by looking up in the remaining known super- peer
lists and forwards the Gridlet to Y, which repeats this pro-
cess until the Gridlet is forwarded to the correct child nodes
and processed.

4.5 Resource representation
Existing applications are described through simple XML
files. These contain information describing the application,
such as its name, canonical name, version and executable
location (unused in this work).

These descriptions are read and parsed into a specific inter-
nal data structure. For the purpose of this work, the loca-

tion field is not considered, but could be used by GINGER’s
Application Adaptation layer to launch the required applica-
tion. This information is local to each node and super-peers
are not required to store all this information, and instead
only store the hashes obtained from this description, which
are generated by the peers who wish to register this appli-
cation.

The use of XML for the application description allows for
a greater flexibility on the level of detail by which each ap-
plication is described. If an application’s minimum runtime
requirements are known beforehand, these could also be in-
cluded in specific elements.

5. EVALUATION
In order to evaluate gPastry, a number of objective metrics
were defined that will allow to determine the performance
of the system under different conditions.

As the nature of this work relies on gathering data on a
sufficiently large peer-to-peer environment which is not pos-
sible to achieve in real-world conditions without an already
existing, widespread implementation of the system, all met-
rics were measured through the use of the PeerSim simulator
and its network observation capabilities.

In a peer-to-peer environment, there are a number of im-
portant metrics that allow us to evaluate its overall perfor-
mance and establish comparisons between different systems.

First and foremost, one must evaluate the load the protocol
has on the network. This can be done by measuring the
amount of messages traded between nodes as part of the
protocol. This allows us to have an idea of the impact the
gPastry protocol has in the overall network performance, as



well as determine which parts can be improved to avoid con-
gestion and flooding.

Secondly, it is useful to measure the amount of messages
that actually reach their destination within a certain num-
ber of hops. This allows to measure the overall efficiency of
the overlay. Measuring this, as well as the ratio of requests
that do not find an appropriate node, is of interest in deter-
mining the resource discovery protocol’s efficiency in various
scenarios, such as one with resource scarcity or excess.

Additionally, we measured the average number of hops re-
quired to discover a resource through the sending of a Gri-
dlet, as well as the average number of hops spent in super-
peer redirections in order for the Gridlet to reach an appro-
priate node.

It would be of interest to compare the results with other al-
gorithms and protocols such as random-walk, but this could
not be done in time for this dissertation due to the need of
implementing those protocols.

The work done on gPastry was evaluated by using the Peer-
Sim P2P network simulator. PeerSim allows for the creation
of “controls”, which can act as entities external to the entire
network, thus providing them with global knowledge about
the network and it’s constituent parts.

Since the tests are being processed in a simulated environ-
ment, all time units refer to the number of simulation cycles
processed. For this work, we use a number of 500000 cycles.
In each cycle, nodes can send or messages with low proba-
bility. However, the total number of messages will still be
extremely large due to the duration of the simulation.

In effect, in each case, the key points to test were:

• Effectiveness - Whether the desired resources were lo-
cated in a limited number of hops;

• Efficiency - Number of messages necessary to locate the
desired resources, as well as number of hops required
for a Gridlet to reach the appropriate destination;

Effectiveness. In order to evaluate the effectiveness of the
protocol we analyze the ratio between the total number of
Gridlets that were sent by the peers and the number of those
Gridlets that actually reached a node where they were pro-
cessed at various points in the simulation.

In this simulation through Figure 4 we see that initially,
when nodes are still joining the network, a large number of
Gridlets do not find any appropriate node in the allotted
number of hops. However, as more nodes join the network
and register their availability in super-peers, the amount of
Gridlets that successfully locate the required resources in-
creases, stabilizing at different points in the various cases.
Efficiency stabilizes more rapidly with larger numbers of
nodes, as expected since there is a greater number of super-
peers and a larger number of peers from which resources can
be tapped. The number of super-peers existing in the net-

Figure 4: Resource discovery effectiveness

work grow slowly, in the end accounting for less than 1% of
the total number of peers.

N Super-peers Gridlets Successful
1000 27 125498 111693
5000 63 637298 598677
10000 109 1374089 1277902

Table 1: Effectiveness statistics

Efficiency. In order to evaluate gPastry with regards to ef-
ficiency, we have to look at the number of messages required
to locate resources, as well as the number of hops Gridlets
must take throughout the overlay in order to locate them.
The results presented next show that, even with the intro-
duction of super-peers, the number of hops necessary for a
Gridlet to reach its destination is not significantly impacted.

There is a number of hops spent in super-peer redirection,
but it levels rapidly as the number of super-peers stabilizes
and they become known amongst themselves as to become
nearly insignificant. This is due to the fact that in all cases,
the number of super-peers is small enough that they tend to
be known among each other fairly rapidly through the use of
PastrySuperQuery messages. The average amount of hops
for each test can be seen in Figure 5. The number of mes-
sages exchanged throughout the simulation is shown to be
fairly high and there is much space for improvement, espe-
cially in regards to the amount of messages spent in querying
for super-peers and the subsequent replies. The results are
illustrated in Figure 6.

These messages alone account for more than 10% of all traffic
in the network, which is overwhelmingly high for messages
whose only function is to keep nodes informed of the current
super-peers. The basic messages inherited from the Pastry
overlay do not significantly impact the protocol, as they ac-
count for about 5% of the entire amount in the current tests,
a number that should be lesser in a real world environment
where the overlay does not come up entirely at the same
time.



Figure 5: Number of hops for Gridlets

Figure 6: Number of messages exchanged, by type

6. CONCLUSION
In this work, a resource discovery model for Peer-to-Peer
networks in the context of CPU cycle sharing was presented.
As the available computational capacity available online grows
as a consequence of Moore’s Law and the expansion of broad-
band access, new protocols that allow users to exploit these
resources in their everyday tasks grow ever more important.
Through the use of systems such as GINGER, popular ap-
plications can transparently increase their perceived perfor-
mance by leveraging the massively parallel computing power
available throughout the world.

The obtained results show that the approach followed in the
development of this system works and that resource discov-
ery in P2P environments can be achieved efficiently through
the use of a hierarchical topology with super-peers, an ap-
proach that is already well known from existing file-sharing
Peer-to-Peer applications such as Gnutella. The amount of
messages exchanged using the protocol in this work were
clearly sub-optimal, but we believe this is more due to the
current implementation, which tends to send far more mes-
sages than those required for the purposes of maintenance,
than to the actual protocol.

The amount of information to be stored in each peer can
become significant after large periods of time but intelli-

gent management of such information, added to the fact
that many peers only remain connected for relatively small
amounts of time minimize this problem. Overall, the over-
head imposed by maintaining the additional information is
compensated by the improvements this protocol brings in
the area of resource discovery.

7. REFERENCES
[1] D. P. Anderson. Boinc: A system for public-resource

computing and storage. In GRID ’04: Proceedings of
the 5th IEEE/ACM International Workshop on Grid
Computing, pages 4–10, Washington, DC, USA, 2004.
IEEE Computer Society.

[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,
and D. Werthimer. Seti@home: an experiment in
public-resource computing. Commun. ACM,
45(11):56–61, 2002.

[3] P. D. et al. FreePastry. http://www.freepastry.org.

[4] S. Iyer, A. I. T. Rowstron, and P. Druschel. Squirrel:
a decentralized peer-to-peer web cache. In PODC,
pages 213–222, 2002.

[5] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris.
The Peersim simulator. http://peersim.sf.net.

[6] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location and routing for
large-scale peer-to-peer systems. In Lecture Notes in
Computer Science, pages 329–350, 2001.

[7] A. I. T. Rowstron and P. Druschel. Storage
management and caching in past, a large-scale,
persistent peer-to-peer storage utility. In SOSP, pages
188–201, 2001.

[8] D. P. D. Silva, W. Cirne, F. V. Brasileiro, and
C. Grande. Trading cycles for information: Using
replication to schedule bag-of-tasks applications on
computational grids. In Applications on
Computational Grids, in Proc of Euro-Par 2003, pages
169–180, 2003.

[9] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for
internet applications. IEEE Transactions on
Networking, 11, February 2003.

[10] D. Talia and P. Trunfio. Toward a synergy between
p2p and grids. IEEE Internet Computing, 7:96, 94–95,
2003.

[11] L. Veiga, R. Rodrigues, and P. Ferreira. Gigi: An
ocean of gridlets on a ”grid-for-the-masses”. Cluster
Computing and the Grid, 2007. CCGRID 2007.
Seventh IEEE International Symposium on, pages
783–788, May 2007.


