
Fault Tolerance in Ginger

João Paulino
joaopaulino@ist.utl.pt

Instituto Superior Técnico
INESC-ID

Abstract. The use of several machines to speed-up the execution of long running
tasks has firstly emerged in institutional environments. Grid Computing systems
schedule jobs to be executed in idle workstations owned by one or multiple in-
stitutions. During the 90’s with the growth of the Internet came the possibility of
using the spare cycles of personal computers owned by the general public (Public
Computing). However, the great majority of the deployed systems focus on the
execution of research applications and only allow their users to donate CPU cy-
cles to a given cause (e.g., Seti@home client enables the general public to analyse
radio signal for SETI). Ginger (Grid Infrastructure for Non Grid EnviRonments)
proposes a system that enables common users to directly exchange processing
power among themselves in order to speed-up the execution of common appli-
cations (e.g., video compression, photo-processing, ray-tracing). This third party
execution environment is characterized by highly transient participants and pos-
sibly less reliable hardware. This work explores checkpoint restart mechanisms
and result verification techniques to improve fault tolerance in Ginger.

Keywords: fault tolerance, result verification, checkpoint restart

1 Introduction

The execution of long running applications has always been a problem. Even with the
latest developments of faster hardware, the execution of many long running algorithms
is still infeasible by common computers, for it would take months or even years. Even
though super-computers could speed up these executions to days or weeks, almost no
one can afford them. The idea of executing these in several machines was firstly ex-
plored in networks or clusters of workstations [37, 4], using dozens of dedicated ho-
mogeneous machines locally interconnected. Later, grid computing systems explored
the opportunistic use of hundreds of heterogeneous machines owned by institutions.
Most recently, with public computing systems [3, 21] it became possible to harvest
spare CPU cycles present in thousands of machines owned by the general public. Many
public computing projects have been successful, and shown that the general public is
willing to donate their CPU cycles to global causes. However, no project has success-
fully enabled the users to speed up their long running applications. Ginger proposes to
fill this gap by merging grid computing, peer-to-peer and public computing.



1.1 Grid Computing

Grid computing aims at providing a virtual super-computer with increased capabilities
at a low cost. These systems are composed by well managed hardware (e.g., work-
stations) owned by multiple institutions geographically distributed around the Globe.
Mutka and Livny [29] studied the patterns of activity of institutional workstations and
observed that they are idle up to 70% of the time. Grid computing makes good use
of these idle cycles providing a high performance execution environment with no per-
ceptive additional costs. Projects like Globus [17] and MyGrid [10] have studied the
implementation of grid infrastructures that provide high-level meta-computing services
enabling the efficient development of applications. The Condor project [23] takes ad-
vantage of CPU cycles present in idle workstations to speed up the work on the busiest
ones.

1.2 Peer-to-peer

Peer-to-peer systems do not have a widely accepted definition. Many definitions can be
found, Clay Shirky [36] wrote:

“An application is peer-to-peer if it aggregates resources at the network’s edge,
and those resources can be anything. It can be content, it can be cycles, it can
be storage space, it can be human presence.”

Therefore, peer-to-peer systems are used to share resources like memory, CPU, storage,
bandwidth and even human presence between peers located at the edges of the Internet.
The majority of the definitions agree on this point, the hot topic of discussion is the
architecture. Considering the Client Server model entities, the client and the server, we
can define a peer saying that it implements the functionalities of both client and server.
In some systems, the peers rely on a central server for support services (e.g., bootstrap-
ping) or even for some basic operation functions (e.g., indexing and searching). Some
authors argue that there can be some central entity, though the sharing of resources
must be done directly between peers, others argue that in peer-to-peer there is no cen-
tral entity whatsoever. Apart from the definition, peer-to-peer systems are characterized
by their scalability, their ability to adapt to failures and their capability of accommo-
dating highly transient node populations while maintaining acceptable connectivity and
performance.

1.3 Public Computing

Public computing stems from the fact that the World’s computing power and disk space
is no longer exclusively concentrated in supercomputer centres and machine rooms.
Instead, it is distributed in the hundreds of millions of personal computers and game
consoles belonging to the general public. By combining ideas from grid computing and
peer-to-peer systems it is possible to take advantage of idle resources of personal com-
puters. Public computing emerged in the mid-90’s with projects like distributed.net [11]
and GIMPS [18]. While grid makes use of machines that 1) are managed by IT profes-
sionals, 2) have up-times of 24 hours per day and 3) are trustful, public computing faces

2



issues of malicious behaviour, highly transient populations and users without enough
IT know-how. These issues make public computing a whole new challenge.

Public computing projects so far focus on mankind-related causes: Seti@home [3]
analyses radio signal trying to find evidence of extraterrestrial life; Folding@home [21]
searches for the cures of diseases like cancer, Parkinson’s, Alzheimer’s, etc. studying
how proteins fold; distributed.net [11] solves brute-force cryptographic challenges ex-
posing vulnerabilities; GIMPS [18] searches Mersenne prime numbers.

In order to motivate public to donate their spare cycles to such causes these projects
usually have public ranking tables or in some cases money prizes. Public computing
projects have attracted great attention from the general public, communities have been
created around the projects showing that the volunteers are willing to actively partici-
pate in these projects. David P. Anderson [1] claims that it is expected that in the future
many more research projects will take advantage of volunteer execution and people
will have to choose which projects are worth to consume their cycles, these choices can
condition the evolutionary path of science in a democratic way.

Nonetheless, none of the high-performance computing systems developed so far
enables the general public to run their common desktop applications faster.

1.4 GINGER (Grid Infrastructure for Non Grid EnviRonments or GiGi)

GINGER [40] proposed a network of favours where every peer is able to submit his
work-units to be executed on other peers and execute work-units submitted by other
peers as well. GiGi combines institutional grid infrastructures, distributed cycle sharing
and decentralized Peer-to-peer architectures. GiGi is able to run unmodified common
desktop applications, however not all applications are fit for distributed computing:

“To be amenable to public computing, a task must be divisible into independent
pieces whose ratio of computation to data is high (otherwise the cost of Internet
data transfer may exceed the cost of doing the computation centrally).” [1]

In order to be able to run an interesting variety of applications GiGi proposes the con-
cept of Gridlet, a semantics-aware unit of workload division and computation off-load
(basically the data, and the code or a reference to it). Therefore, GiGi is expected to run
applications like audio and video compression, signal processing related to multimedia
content (e.g., photo, video and audio enhancement, motion tracking), content adapta-
tion (e.g., transcoding), and intensive calculus for content generation (e.g., ray-tracing,
fractal generation).

The rest of this report is structured as follows. The next section describes the objectives
of this work in the area of fault tolerance of GiGi. Section 3 makes an overview of the
work done in the area. Section 4 proposes a fault tolerant solution. Section 5 explains
how the work will be evaluated. Section 6 concludes.

2 Objectives

This work intents to provide fault-tolerance in Ginger. It will explore: techniques for
verification and validation of the returned results; checkpointing mechanisms to mini-

3



mize the loss of already performed work when a peer fails; and mechanisms to monitor
the evolution of submitted jobs.

2.1 Result Verification and Validation

The returned results may be wrong due to malicious/cheating behaviour or due to the
occurrence of a fault. In order to discard bad results, every received result must be
checked. Two techniques will be implemented to confirm the received results: valida-
tion1(testing if the result makes sense) and verification2 (testing if it is the accurate
result of that specific job). Beside the results, the claims of costs should also be vali-
dated.

Result validation confirms if the result is in the expected format. If it is not a previous
result or just random bytes. This light technique will be able to discard some bad results
with very low effort. Though, it is a very limited technique. The validated results should
be further verified.

Result verification is a more expensive technique that will ensure that a result is the
correct for that execution. This is usually implemented using voting quorums, requiring
the redundant execution of every work unit. Even though it is not very efficient, it is
quite effective when not dealing with malicious collectives.

2.2 Checkpointing

The majority of the deployed high performance computing systems implement check-
point restart mechanisms. Checkpointing is the process of saving a running application
state to stable storage (e.g., to a file in the local disk). This file can be used later to
resume the application’s execution if a failure occurs. This fault tolerance mechanism
is used to minimize the loss of results of already performed execution when a peer fails,
allowing the execution to be continued from the point where it was saved.

In GiGi we want to keep track of the progress of a gridlet. If a peer to whom a gridlet
has been submitted fails it is desirable a minimal loss of the already performed work.
Therefore, the checkpointing mechanism shall be able to resume the execution from the
last checkpoint. It is possible that the failed peer does not return, in that case it should
be possible to resume the work in another peer. This is possible if the checkpoint file is
saved outside the failing peer (e.g., a central server, the submitting peer, a set of peers).

GiGi applications are deterministic and do not communicate. Therefore, distributed
checkpointing mechanisms and log mechanisms are not needed. Nevertheless, these
mechanisms are described in the related work, for completeness.

1 Validation - finding or testing the truth of something
2 Verification - additional proof that something that was believed (fact, hypothesis or theory) is

correct

4



2.3 Progress Monitoring

As an extension of the checkpointing system, we must be able to monitor the progress
of the submitted gridlets. This can be useful for the user to know how much of the job
has already been performed and may even enable the user to preview the results.

3 Related Work

This section presents the state of the art of this work’s central topics. The next subsec-
tion describes peer-to-peer [33, 7, 5] and cycle-sharing [3, 21] technologies, section 3.2
describes how result verification is done in public computing systems and section 3.3
explains the checkpointing solutions [39, 15, 26] that are currently used.

3.1 Peer-to-Peer & Cycle Sharing

Peer-to-peer and Cycle-sharing systems have been merged enabling Public computing.

3.1.1 Peer-to-peer. Peer-to-peer lacks a consensual formal definition. Common users
understand peer-to-peer as the genre of applications that allow them to be part of com-
munities that cooperate by exchanging files. Their perception is biased by the most pop-
ular peer-to-peer systems deployed over the Internet so far. Projects like Napster [30]
and KaZaA [20] have successfully enabled users to exchange files among themselves.
More generally peer-to-peer can be defined as the genre of systems that take advantage
of the resources (i.e., content, CPU cycles, storage space, human presence) located in
the edges of a network (i.e., end user machines). These systems are composed by thou-
sands of volatile participants. Peer-to-peer systems are capable of accommodating this
transient population with minimal impact on the core business of the system (i.e., the
exchange of resources). The sum of all the resources present in these systems often sur-
passes the resources owned by any institution. Therefore, the correct aggregation and
use of these resources can unleash an enormous potential.

3.1.2 Peer-to-peer Applications. Peer-to-peer systems fall into one or more of follow-
ing application categories: Distributed Computing, Content Sharing, Collaboration.

Distributed Computing Systems are characterized by taking advantage of computing
power at the edges of the network to speed up the execution of CPU intensive tasks.
In order to prevent the user’s frustration due to a lack of computational power these
applications may run as low priority processes or only when the computer is idle (act-
ing like screen-savers [2]). All distributed computing systems work under the same
assumptions: a computationally expensive task is divisible into smaller independent
work-units; once these work-units have been executed, their results can be aggregated
producing the result of the initial task. Obviously, only some computational tasks are
appropriate to this model of execution and even if they are, they may not have a visi-
ble speed-up. Examples of these are Seti@Home [3], GIMPS [18], distributed.net [11],
Folding@home [21], etc.

5



Content Sharing Systems are the most popular peer-to-peer systems. These systems
appeared as means to circumvent the servers inability to provide large files to multiple
users simultaneously, given their limited bandwidth. Considering a network composed
by thousands of participants, a file can be replicated from dozens to hundreds of times
depending on its popularity. This replication enabled users to download one file from
several users, with no bandwidth bottlenecks. Distributed computing systems enable
their participants to share their files within a community. Though the base service of
some applications is legitimate, the participants have used them mostly to exchange
copyrighted digital media. Some systems like Napster [30] have been shut down by the
authorities for being considered as means for piracy. Though, Napster was an easy target
due to its hybrid decentralized architecture, a pure peer-to-peer system is impossible to
turn off effectively. Examples of these systems are Napster [30], KaZaA [20], Freenet
[9], etc.

Collaboration Systems enable people to interact in real-time. The resource being shared
is human presence. Since human presence is always located at the edges of the network,
all instant messaging and multi-player gaming can be considered peer-to-peer. Instant
messaging, audio/visual communication and on-line gaming are examples of collabo-
ration systems.

3.1.3 Peer-to-peer Architectures. Considering the Client-Server Model, there exist
two entities: the Client, and the Server. The client distinguishes itself from the server
for always being the one that starts the communication. The client requests a resource
to the server and the server replies with the required resource. A peer implements both
the functionalities of client and server (other definitions for peer are node, or servent).
A Peer-to-peer system is composed by a massive amount of interconnected symmet-
ric peers. Nevertheless, some peer-to-peer systems require other entities than the peers
to operate: super-peers or central servers. Considering this entities we can classify the
peer-to-peer systems in terms of their network overlay centralization into: purely de-
centralized, partially centralized and hybrid decentralized architectures.

Purely Decentralized Architectures [40] are composed by peers. Every peer in the net-
work implements the same functionality. Peers communicate directly with each other,
the exchange of resources is done directly between two peers. This is peer-to-peer in
its purest form: completely decentralized without single points of failure. However,
searching can be a problem in these architectures.

Partially Centralized Architectures [20] are composed by peers and super-peers. Super-
peers are peers whom have been assigned to perform additional tasks while maintaining
their basic peer functionalities. They are chosen to become super-peers if they provide
some abundant resource (e.g., bandwidth). The additional tasks are usually aggregation
of knowledge about the system in order to improve performance (e.g., of searching).
The exchange of resources is done directly between peers and super-peers. Since super-
peers can be dynamically assigned, they do not constitute single points of failure or
scalability issues (if a super-peer fails, another peer can be chosen to become a super-
peer).

6



Hybrid Decentralized Architectures [30] are composed by peers and a central server.
The direct exchange of resources is done between peers. The central server performs
complementary, but essential, tasks (e.g., bootstrapping, indexing). Having a central
server also means having a single point of failure and reduced scalability.

Beside these three degrees of centralization, there are other systems whom are con-
sidered by some authors as peer-to-peer systems. Seti@Home [3] is in the barrier that
separates the client server model from the peer-to-peer model. In terms of architecture
its approach resembles client-server since there is no communication or resource trad-
ing between peers. Conceptually, it takes advantages from resources at the edges of the
Internet and therefore shall be considered peer-to-peer. D. Anderson has referred to the
model as "inverted client-server", since the power resides on the edges of the Internet,
the central server only coordinates it. Even though the "power" is decentralized, it does
not fit in the more increased degree of decentralization defined for peer-to-peer systems,
since there is no direct exchange of resources between the peers.

Table 1. Peer-to-peer systems architectural comparison

Model
Client-server

Peer-to-Peer

Inverted
Client-Server

Centralization Centralized Centralized Hybrid Decen-
tralized

Partially Cen-
tralized

Purely Decen-
tralized

Entities Clients and
Server

Peers and
Master Central
Server

Peers and Cen-
tral Server

Peers and
Super-peers

Peers

Communication Between client
and server

Between peer
and server

Between peer
and server;
between peers

between
peers(Super-
peers are also
peers)

between peers

Resource
Provider

Server Peer Peer Peer Peer

Resource User Client Server Peer Peer Peer
Examples Web Browsers

and Web
Servers

SETI@Home Napster KaZaA Freenet, Ginger

Peer-to-peer systems can also be classified having into consideration the way their
network overlay3 is structured. It basically defines the connections that exist among the
peers in a peer-to-peer system. Systems have been built with structured and unstructured
network overlay topologies.

3 The network overlay is the virtual network built on top of the real network

7



Unstructured Systems [20, 30] create their overlay in an ad-hoc manner, not follow-
ing any specific rules. A peer is connected to a bunch of other peers at random. The
placement of content and info is not related to the network overlay. Peer-to-peer is all
about resources, being these resources scattered throughout the peers. We must be able
to locate them. The usual searching mechanisms vary from flooding to other more el-
egant techniques (e.g., random walks, routing indexes). Nevertheless, these techniques
have a limited scope which might become a problem when searching for a rare item,
though they work well for popular content. Unstructured systems are generally more
appropriate for accommodating highly-transient node populations, since the overhead
incurred by a peer that joins or leaves the network is negligible. Napster [30], KaZaA
[20] are examples of unstructured systems.

Structured Systems [34, 38] create an overlay that obeys to strict rules. A node knows
and is known by a clearly defined set of other peers. In these systems, there is a clear
mapping between the identifiers of a node/content and their location in the overlay.
The mapping is done using hash functions, creating a distributed hash table indexing
structure. This indexing allows nodes and contents to be located in the network within
a few steps. Though, the accommodation of highly transient populations can generate a
significant overhead, since the overlay has to be reorganized when a peer joins or leaves
the system. Another disadvantage of these systems is their inability in locating content
when an exact name or identifier cannot be provided. CAN [34] and Chord [38] are
examples of structured systems.

Hybrid Systems combine the previous systems exploring the advantages of both, while
avoiding their drawbacks. Building a system with two separate overlays (one structured
and one unstructured) is possible. Though, this naive approach would generate high
overheads. Pastry [35] and Kademlia [27] have developed more elegant techniques that
conciliate structured and unstructured models.

3.1.4 Examples of Peer-to-peer Systems.

Napster [30] was one of the most popular peer-to-peer content distribution systems.
In this system, all the indexing was stored in a central server. Peers queried the server
for file locations, to further download from. The central server was an issue to scalabil-
ity and constituted a single point of failure. It was shut-down by the authorities for it
constituted a mean for piracy. Though, Napster became historical.

KaZaA [20] is an unstructured content distribution system. Searching is done through
flooding methods. To reduce the network traffic overhead generated by the searching
methods, peers with high bandwidth become super-peers that maintain an index of the
files located in a set of peers with lower bandwidth.

Chord [38] was the first structured peer-to-peer system. Chord maps nodes and content
using the same hash function, positioning them in a ring shaped overlay. Each node is
responsible for maintaining a subset of the contents (or pointers to it), this subset is
based in ranges of the hashes of the identifiers (e.g., between the node identifier and its
successor identifier).

8



Content-Addressable Network (CAN) [34] is another structured peer-to-peer system.
CAN places nodes and content in a virtual n-dimensional Cartesian space. Each node
is responsible for a zone of the space.

Pastry [35] organizes the nodes in a circle according to their node identifiers, like
Chord. It routes a message to the node whose identifier has the longest common prefix.
In addition it maintains a table with the closest peers identifiers and locations.

Kademlia [27] assigns 160 bit identifiers to nodes and content using the SHA-1 func-
tion. The overlay can be seen as a binary tree. Every node knows at least one node in
each of its sub-trees. This enables a node to find any other node in the network.

3.1.5 Cycle-sharing. Cycle sharing systems are distributed systems that execute a long
running application in parallel in order to speed it up. These high performance com-
puting systems are composed by non-dedicated machines. This systems emerged in
institutional environments [23] and were later transposed to public environments [3].
Some problems that were already addressed in the institutional environments had to be
reconfigured to public environments (e.g., resource location). Other issues, like fairness,
trust, incentives and security, are current research topics.

3.1.6 Cycle-sharing Architectures. The majority of the cycle-sharing systems devel-
oped are based on an inverted client-server architecture. In these architectures, there is
no communication between clients. All the clients communicate with a central server
only. These architectures are fit for projects that harness idle cycles of hardware owned
by the general public to perform computation related with global causes. Figure 1 shows
an inverted client-server architecture where a server communicates with a group of het-
erogeneous machines.

Fig. 1. Inverted client-server architecture in cycle-sharing systems.

Cluster Computing On the Fly [25] proposed a complex architecture where users
join communities depending on how they would like to donate their cycles. These com-
munities are transformed into community-based overlay networks. Then, clients form

9



a computer cluster on the fly from these overlays. Figure 2 shows the architecture of
Cluster Computing On the Fly.

Fig. 2. Architecture of Cluster Computing On the Fly.

3.1.7 Examples of Cycle-sharing Systems.

Seti@Home [3] is the most successful public computing project. With the objective
of finding extraterrestrial life, it analyses radio signal. This analysis requires a consid-
erable amount of processing power. This project was not able to afford hardware to
execute this task. As a solution, they developed a client that the public could download.
The client fetches work from the server and returns results to it. Motivated by rank-
ings and communities, the number of participants grew much more than they expected.
Nowadays, they have more processing power than what they need.

BOINC [2] is an infrastructure that allows the development of public computing projects.
Nowadays, Seti@Home uses BOINC. By downloading the BOINC client, the general
public can offer their idle cycles to several projects (e.g., climateprediction.net, Ein-
stein@Home, Spinhenge@home, etc.). Though, to get a new public computing project
working it is necessary to manage a complex server configuration.

Condor [23] organizes a group of machines into a cluster. This cluster is used like a
pool of resources. If a user has a long running task to accomplish it schedules the work
to the idle machines in the pool.

Cluster Computing On the Fly [25] empowers the common users to speed-up their
computations by creating a cluster of computers on the fly.

distributed.net [11] harvests cycles through its client. It uses that processing power to
crack encryption algorithms in a brute force manner (testing every possible combina-
tion). It has cracked RC5-56 bit and RC5-64 bit and is currently working on RC5-72
bit. This project has monetary prizes to attract its users.

10



Great Internet Mersenne Prime Search (GIMPS) [18] searches for Mersenne prime
numbers (i.e., prime numbers that can be written in the format: 2p − 1 ). It also has
monetary prizes to attract users. Participants run a client, that executes and returns work
to the server.

Folding@Home [21] is Stanford University project that studies how proteins fold. This
may reveal cure for yet non-curable diseases. It has accomplished several folding simu-
lations since 2001. To participate, users have to install a client that communicates with
the server.

3.2 Reliable Result Verification and Validation

To speed up the execution of long running algorithms, high performance computing
systems schedule jobs to be executed in other places. Confirming results of third party
executions is a hard task. An exhaustive verification of these results would cause a major
slow down in the system, contradicting its objective.

3.2.1 Bad Results. Wrong results have different origins and objectives. They can be
distinguished into faulty results, malicious results and cheating results.

Faulty Results have no objective, they are originated by faults or byzantine behaviour.
Both usually produce incoherent results and are relatively easy to identify, when com-
pared with results created with malicious motivations.

Single Malicious Results intend to harm the system. They are attacks that explore the
vulnerabilities of the system, causing it to work inappropriately. One job’s bad result
corrupts the whole long running application result.

Collective Malicious Results intend to harm systems that use replication as a mean to
verify their results. To perform these attacks several participants return the same bad
result [12]. This is know as collusion.

Cheating Results are returned by cheating participants to receive credit for the work
they have not performed. The majority of the cycle sharing systems values ranking ta-
bles, and some participants are willing to corrupt their results to go up in those rankings
[28].

3.2.2 Techniques for Identifying Bad Results. Several techniques have been pro-
posed to identify bad results. Techniques vary in their complexity, overhead and effec-
tiveness. Though, no single technique can identify all the four types of bad results we
have defined. However, it has been demonstrated that these techniques combined with
a reputation system can improve the reliability of the results produced by the system
[41].

11



Replication [3] is one of the most effective methods to identify bad results with re-
dundant execution and comparison between results. In these schemes the same job is
performed by N different participants (N being the replication factor). The results are
compared using voting quorums, and if there is a majority the corresponding result is
accepted. Since, it is virtually impossible for a fault or a byzantine behaviour to produce
the same bad result more than once, this technique easily identifies and discards the bad
ones. However, if a group of participants colludes it may be impossible to detect a bad
result. Another disadvantage of redundant execution is the overhead it generates, since
every job is executed at the very least two times. Most of the public computing projects
use replication to verify their results, it is a high price they are willing to pay to ensure
their results are reliable. Seti@Home has a fixed amount of information to be processed
and since they have more computing power than they need, replication is far from be-
ing a problem to them. Projects like Folding@Home have to choose which simulations
should be performed first and which ones will have to wait.

Replication consumes at the very least twice more resources than the ones that are
actually needed to perform the execution in order to produce more believable results.
When there is no collusion, it is virtually capable of identifying all the bad results with
100% certainty.

Hash-Trees [13] defeat cheating participants by forcing them to calculate a binary hash-
tree from their results, and return it with them. The submitting peer only has to execute
a small portion of a job and calculate its hash. Then, when receiving results, the submit-
ting peer compares the hashes and verifies the integrity of the hash-tree. This dissuades
cheating participants because finding the correct hash-tree requires more computation
than actually performing the required computation and producing the correct results.
Figure 3 shows a hash tree where the leafs are partitioned sequential results or the data
we want to check. The hash is calculated using two consecutive parts of the result con-
catenated, starting by the leafs. Once the tree is complete, the submitting peer executes
at random a small portion of the whole work (the selected sample) that corresponds to
a leaf. Then this result is compared to the returned result and the hashes of the whole
tree are checked.

Hash-trees make cheating unworthy. They have a relative low overhead: a small
portion of the work has to be executed locally and the hash tree must be checked.

Quizzes [25] are jobs to whom the result is known by the submitter a priori. Therefore,
it can test the honesty of a participant. Cluster Computing On the Fly proposed two
types of quizzes: stand-alone and embedded quizzes.

Stand-alone quizzes are quizzes disguised as normal jobs. They can test if the ex-
ecuting node executed the job. These quizzes are only useful when associated with a
reputation system that manages the trust levels of the executing peers. Though, the use
of the same quiz more than once can enable malicious peers to identify the quizzes
and to fool the reputation mechanisms. The generation of infinite quizzes with known
results incurs considerable overhead.

Embedded quizzes are smaller quizzes that are placed hidden into a job, the job
result is accepted if the results of the embedded-quizzes match the previously known
ones. Embedded quizzes can be used with or without a reputation system. Though, their

12



Fig. 3. Example of an hash tree.

implementation tends to be complex in most cases. Developing a generic quiz embedder
is a software engineering problem that has not been solved so far.

3.2.3 Reputation Mechanisms. Reputation mechanisms [19, 41] are inherent to se-
curity and not fault-tolerance. So, they are considered out of the scope of this work.
Though, a reputation manager can be built between the result verifier and the scheduler,
being fed by the result verifier it is able to manage the scheduler (e.g., blacklisting,
ranking).

3.3 Checkpoint Restart

Checkpointing is a primordial fault tolerance technique. Long running applications usu-
ally implement checkpointing mechanisms to minimize the loss of already performed
work when a fault occurs. Checkpoint consists in saving a program’s state to stable
storage during fault-free execution. Restart is the ability to resume a program that was
previously checkpointed. In high performance computing systems checkpoint/restart
mechanisms are not only used for fault mitigation, they enable these systems to migrate
the jobs taking the best advantage of the systems present resources (i.e., load balance).
Migration [14] is the resuming of an application that was checkpointed elsewhere (on
another machine).

3.3.1 Implementation Approach. Checkpointing mechanisms can be distinguished by
their implementation approach into Application-level, Library-level and System-level.

Application-level Checkpointing Systems [3, 21] do not use any operating system sup-
port. These are usually more efficient and produce smaller checkpoints. They also have

13



the advantage of being portable4. These checkpointing mechanisms are implemented
within the application code. They require a big programming effort. Checkpointing
support built in the application is the most efficient, because the programmer knows
exactly what must be saved by to enable the application to restart in case of failure.
Though, this approach has some drawbacks: it requires major modifications to appli-
cation’s source code (its implementation is not transparent to the application); the ap-
plication will take checkpoints by itself and there is no way to order the application to
checkpoint if needed; it may be hard, if not impossible, to restart an application that was
not initially designed to support checkpointing; and it is a very exhaustive task to the
programmer. This programming effort can be minimized using pre-processors that add
checkpointing code to the application’s code, though they usually required the program-
mer to state what needs to be saved (e.g., through flagged/annotated code). Though, not
all applications are fit for this approach.

Library-level Checkpointing Systems [31, 24] consist in linking a library with the ap-
plication, creating a layer between the application and the operating system. This layer
has no semantic knowledge of the application and cannot access kernel’s data struc-
tures (e.g., file descriptors), so this layer has to emulate operating system calls. The
major advantage is that a portable generic checkpointing mechanism could be created,
though it is very hard to implement a generic model to checkpoint any application.
This checkpointing method requires none or very few modifications to the applications
source code.

System-level Checkpointing Systems [42] are built as an extension of the operating sys-
tem’s kernel, therefore they are more powerful. They can access kernel’s data structures.
Checkpointing can consist in flushing all the process’s data and control structures to sta-
ble storage. Since these mechanisms are external to the application they do not require
specific knowledge of the application, and they require none or minimal changes to the
application. They have the obvious disadvantage of not being portable and usually more
inefficient than application-level.

3.3.2 Checkpointing Distributed Applications. Various techniques have been pro-
posed that enable the checkpointing of distributed applications. These techniques can
be divided into coordinated checkpointing, uncoordinated checkpointing and message-
induced checkpointing.

Uncoordinated Checkpointing [15] tries to find a match between the checkpoints taken
by each of the processes to create a global checkpoint. Each of the processes can take
checkpoints independently. This is an advantage because not all applications can check-
point at any time. Still, this technique has some drawbacks: there are chances of occur-
ring as domino effect5 [6]; it may create checkpoints that are useless, as they are never
chosen to be part of a global state; and multiple checkpoints must be kept in storage, in
order to choose the one that fits the global checkpoint.

4 Portability is the ability of moving the checkpoint system from one platform to another
5 Domino effect is the impossibility of creating a global checkpoint from the local checkpoints

taken, which may cause the application to restart from the beginning

14



Coordinated Checkpointing [15, 8] makes processes cooperate to create a global con-
sistent checkpoint. This reduces the storage space required to save checkpoints, since
only one checkpoint is persisted at a given time. The major disadvantage of this ap-
proach is the amount of communication required to perform a global consistent check-
point, causing this technique to have scalability problems. The algorithms to perform
coordinated checkpointing vary in its complexity. Easy to implement techniques have
high communication overhead, more complex techniques have been proposed to mini-
mize this overhead, such as: non-blocking checkpoint coordination, synchronized check-
point clocks, and minimal checkpoint coordination.

Communication-induced Checkpointing [15] combines coordinated and uncoordinated
checkpointing methods in order to avoid the domino effect and allow processes to
checkpoint more autonomously. It works by appending checkpointing information to
the application messages (piggy-backing). This checkpoint information is used to de-
termine whether the process must take a checkpoint or not. This method does not re-
quire special coordination messages to be exchanged between the processes, lowering
the communication overhead.

3.3.3 Non-determinism Support. To be able to checkpoint non-deterministic applica-
tions the checkpointing system must implement logging mechanisms. Non-deterministic
events, such as the receipt of a message or user input, must be recorded to the log, so
they can be replayed later if needed.

Pessimistic Message Logging [15] logs each event to stable storage before delivering it
to the application, assuming that a fault may occur between the event and the logging
of that event. The advantages are simplified restart mechanisms and ease to identify the
logged events that can be discarded once a checkpoint has taken place. However, this
produces high overheads.

Optimistic Message Logging [15] logs the event to volatile storage instead of stable
storage. The events are periodically flushed from memory to disk. This greatly reduces
the overheads, however restart mechanisms are complex and events can be lost.

Causal Message Logging [15] tries to take advantage of the previous methods. Events
are stored to volatile storage, but are replicated to other processes or applications. It also
periodically flushes these events to stable storage. This method has a better performance
than the pessimistic and avoid the loss of events of the optimistic. However, events may
be lost due to the failure of several processes or applications.

3.3.4 Checkpointing Enhancements. Checkpointing systems always incur overhead
during fault-free execution. The major source of overhead is the stable storage access.
In order to reduce this overhead some enhancements have been proposed.

15



Concurrent Checkpointing [15] aims at reducing the time a process is blocked due to a
checkpoint operation. While the process is being checkpointed it remains blocked so he
cannot modify its memory. Concurrent checkpointing reduces the time that a process
remains blocked by marking its memory copy-on-write. This allows the process to be
unblocked during the checkpointing.

Incremental Checkpointing [16, 22] avoids rewriting portions of the process state that
did not change between checkpoints. Minimizing the amount of data to be written
lowers the time required to store the checkpoint. After the creation of a checkpoint,
state changes are logged incrementally. It is possible to lower the time interval between
checkpoints or in the extreme not to use it (i.e., propagate the program state changes to
the checkpoint as they occur). This has a constant, but small, overhead. At any time the
checkpoint represents the current state of the application. There is no need for complex
algorithms for estimation of the perfect checkpointing interval, and none of the already
performed work is ever lost.

Diskless Checkpointing [32] uses volatile memory to store checkpoints which provides
decreased storage times. This can be done using the same machine’s memory or using
other machine’s memory. However, the checkpointing data can be lost due to the failure
of a computer. To address this problem, the checkpointing data is periodically copied to
persistent storage or sent over the network to others (replication).

3.3.5 Examples Checkpoint Restart Systems.

Libckpt [31] is a virtually transparent checkpointing mechanism (there is a minimal
amount of the application’s code that has to be modified). It provides a user-level li-
brary that can be linked with user’s applications, providing them with checkpointing
mechanisms. It is not portable, it has been designed to execute on UNIX. Libckpt is
very limited because it cannot access system states maintained by the kernel.

CRAK [42] is a Linux kernel module that implements checkpoint/restart mechanisms.
It requires no modifications to the user’s applications, but requires modifications in
the operating system. Therefore, it is transparent but not portable. It has access to all
kernel states needed to checkpoint an application correctly. Though it is one of the most
complete checkpointing systems, it is far from supporting any application.

4 Architecture

In this section it is described what is expected to be implemented. First, we present an
overall of the architecture of GiGi. Then, we address techniques of result verification
and checkpointing that will be used. And finally, a draft of the fault-tolerant architecture
to be developed is explained.

16



4.1 Architecture of GiGi

GiGi proposed a cycle-sharing system where every peer is able to submit and execute
jobs. GiGi is only attractive if the users are able to run a vast range of popular applica-
tions. Therefore, the system must execute the applications unmodified. To achieve this,
GiGi proposed the concept of a gridlet. A gridlet is composed by the data and the code
(or a pointer to it) to be executed over the data. Figure 4 shows an overall of the GiGi
architecture.

Fig. 4. Architecture of GiGi.

4.2 Result Verification and Validation Techniques

As seen in section 3.2 replication is the most effective technique for result verifica-
tion and validation. To verify the results we will implement replication with different
flavours and inverted quizzes.

4.2.1 Replication with Standard Partitioning. High performance systems partition a
long running task into smaller jobs. Each of the jobs is executed redundantly at different
participants. With this, the same job is executed at least twice. This technique is vulner-
able to colluding participants. They can easily identify the same job is being performed
in more than one of the members of the malicious group and agree to return the same
bad result.

4.2.2 Replication with Overlapped Partitioning. In this form of replication, the jobs
to be executed are never equal. With this it becomes more complex for the colluders in
the group to identify the work that they are doing redundantly. Plus, they will have to
perform at least a part of the job.

17



In order to create different jobs, one long running task has to be partitioned N times
(N being the replication factor) with variable parameters, preferably random. This is
always possible, since the breakdown of a long running is possible to do in different
ways. Figure 5 shows a draft of the same task broken in two different ways. What is
being done is creating more points of comparison.

Fig. 5. Overlapped partitioning with replication factor 2.

Overlapped partitionings can also enable a more relaxed replication technique in
which not all the work is redundantly executed. Figure 6 depicts a technique of parti-
tioning for relaxed replication. This lowers the overhead of replication while maintain-
ing some points of comparison that still enable us to identify bad results.

Fig. 6. Overlapped partitioning for relaxed replication.

4.2.3 Replication with Meshed Partitioning. Meshed partitionings can create even
more comparison points, the overlapped partitioning described above is always imple-
mentable. But for some specific kinds of applications an n-dimensional partitioning is
possible. For example, for a ray tracer we can divide an image into 10 sets of lines in the
first partitioning, and into 10 sets of columns in the second partitioning. For replication
factor 2, overlapped partitioning produces 10 comparisons, while meshed partitioning
produces 100 comparisons. Figure 7 shows a meshed partitioning example for images.

The replication factor is usually odd for ease of determination of majorities. Though,
even replication factors can save effort in the most cases (when there are no errors nor
attacks). In case of a draw a job can be assigned for re-execution on a different peer.

We are also working in a stateless reputation mechanism (using meshed partition-
ings). It would provide means to decide between two different results. This would work
by calculating a ratio using the results of the comparison points. The ratio would be the

18



Fig. 7. Meshed partitioning for images using replication factor 2.

number of equal comparison points divided by the total number of comparison points of
a work unit. When there is no match in a comparison point, the result of the work-unit
with higher ratio would be chosen. Though, this can create some tricky cases and will
needs further research.

4.2.4 Inverted Quizzes. Quizzes are small jobs with known results that are executed
by the participants, these can be divided into stand-alone and embedded quizzes (as
described in section 3.2). Though, quizzes have some drawbacks: they have to be gen-
erated; one quiz must be used only once; they have to be hidden inside a task (this may
be hard to implement).

Inverted quizzes consider the execution of the smallest unit of execution possible
(a sample) in the submitting peer. One sample is chosen randomly for each work unit.
Since this sample is executed locally it is a trusted result. Once the sample is compared
with the corresponding fraction of the result of a work unit, that result can be accepted or
discarded. Figure 8 shows the partitioning of an image into four work units (each work
unit is a set of lines of the whole image). The samples are randomly chosen pixels, one
for each work unit.

Fig. 8. Example of sampling for images using inverted quizzes.

4.2.5 Summary. GiGi will have three levels of verification. Firstly, the results will be
validated in terms of file format and comparison with previous results, this will discard
some result with very low effort; secondly, with replication we will be able to choose

19



the result through voting quorums; and thirdly, the result will be checked using inverted
quizzes. Only if a result passes all these tests it will be accepted. Along with the results,
the claims of costs will also be verified. This will be done by detecting large variations
in these claims.

We will also enable the user to establish the degree of trust he is willing to pay for
the reliability of his results. This will be done by varying the parameters of the previous
techniques (e.g., the replication factor, the number of quizzes/samples per work-unit).

4.3 Checkpointing

At least two techniques will be implemented. Any of the techniques must be portable
and transparent to the applications. One will be a generic technique that will fit any
application and the other will be a result directed technique, that may be more efficient
for some applications.

4.3.1 Generic Checkpointing. This checkpointing mechanism will be a library-level
or a virtual machine with freezing and unfreezing capabilities.

Library level implementations do not have full support over everything that is needed
to perform checkpointing of a vast range of applications. Though, they might be fit for
some applications.

Virtual Machine implementation has some desirable properties, other than checkpoint-
ing, like security of the executing peer. Minimizing the risk of executing code provided
by malicious submitting peers. For matters of checkpointing, the image of a frozen vir-
tual machine is huge, this creates great overhead in the network. This approach can be
enhanced using a technique called Just enough Operating System (JeOS or "juice").
This consists of a minimized operating system that provides only the support needed
by a particular application. As another enhancement, we can checkpoint only the dif-
ferences between the current state and the start-point. The start-point is a checkpoint
created before the launch of any application. The start point must exist in any peer (or
be accessible). Using start-points lowers the overhead on the network. To start a new
job, the start-point is resumed and the application is invoked. To resume a checkpoint,
the differences are propagated to the start-point and then it is resumed.

4.3.2 Result Checkpointing. This technique of checkpointing arises from the genre
of applications that Ginger is fit for. These kinds of applications usually produce final
results and write them to a file (e.g., an image file). These files can be a form of check-
point files if we are able to resume the execution from them. For example, a ray-tracer
has written an image with 13 lines before failing (the image file is the checkpoint file),
then if we are able to resume the ray-tracer in line 13 this is a checkpoint restart mech-
anism. These result files can be monitored, or the file system calls can be intercepted.
Though, some assumptions are being made: the application has mechanisms that allow
the resuming somehow (at least invoking them with different parameters or input files).
However, for the applications, that we are able to do this, the checkpointing mechanisms

20



will be very efficient. These chekpointing files are the result files, and if they are sent
to the submitting peer incrementally, no overhead size is added by the checkpointing
mechanisms. The execution overhead will also be very low.

4.4 Proposed Fault Tolerant Architecture

Figure 9 depicts the architecture to be developed. It show the relevant modules and
their interactions. Each module has a specific function. Not all the modules present
in this architecture are for fault tolerance, some of them will only be bots (i.e., they
will simulate behaviour). The bot modules are the reputation manager and the resource
manager. Next each of the modules is briefly described.

Fig. 9. A draft of the GiGi fault tolerant architecture.

The Partitioner breaks a long running task into small jobs (i.e., gridlets), and sends
them to the scheduler. It also provides partitioning info to the result verifier.

The Scheduler decides which participants will execute which gridlets. It bases its deci-
sion in the information provided by the resource manager and the reputation manager.
It receives gridlets from the partitioner, the checkpointing system and the result verifier.

The Reputation Manager receives information about the correctness of the results re-
ceived from the participants. This information is analysed in order to influence the
Scheduler’s choices.

The Result Verifier compares the received results and checks their correctness. It is
also responsible for aggregating the results; providing information to the Reputation
Manager; and actualize the previewer with final partial results. If needed, it can submit
gridlets to be re-executed.

21



The Checkpointer manages checkpoints and detects failures of participants. It feeds the
Result Verifier and the Previewer with partial results. The previewer can show partial re-
sults enclosed in the checkpoints. Upon participant failure detection, it must be capable
to build a gridlet that consists on the resumption of a task from a previous checkpoint
and submit it to the scheduler

The Previewer lets the user preview the received results (verified and unverified). Pre-
view is better for results like images, for less visual application it can display percent-
ages of progress and other interesting data.

5 Evaluation

The fault-tolerant mechanisms to be developed will further be evaluated. Result Ver-
ification mechanisms and Checkpointing mechanisms will be evaluated separately. In
order to be able to compare the new techniques proposed, standard techniques will also
be implemented. The next subsection describes what will be possible to prove in the
evaluation process.

5.1 Evaluation of the Result Verification Mechanisms.

These mechanisms will be evaluated having into consideration the various types of
faults that have been defined in section 3.2. Faulty, single malicious and cheating results
generate two types of results: totally erroneous and localized errors. Malicious collec-
tives produce the same bad result, totally erroneous and localized results. So two dif-
ferent scenarios will be emulated. Though the result verification may not be completely
reliable (it may eventually accept wrong results, e.g., a valid yet wrong result provided
by a majority of still reputable colluding nodes that nonetheless solved quizzes), we
must ensure that no good results are discarded. The evaluation measurements will fo-
cus on the percentages of bad results accepted.

5.2 Evaluation of the Checkpointing Mechanisms

Checkpointing mechanisms will be evaluated considering their correctness and their
overhead.

Correctness. Correctness is proved if the checkpointing mechanism is able to check-
point and restart jobs no matter at what point the fault occurs. To prove this, faults will
be injected randomly and at specific sensible points of execution. This means correct-
ness will be proven in a faulty environment.

Overhead. The major disadvantage of all the checkpointing systems and techniques is
their overhead. The overhead will be measured in a fault-free environment. Two differ-
ent types of overhead will be measured: the execution time and the checkpoint size. The
checkpoint size is very important because this checkpoints are to be sent through the

22



network. So size is directly related to bandwidth overhead. At least two scenarios will
be executed, and the conclusions will stem from the comparison of the obtained values.
The scenarios are:

Base-line tests will measure the time to perform a given execution in a fault-free envi-
ronment with the checkpointing mechanisms disabled. This will give the base execution
times. The checkpoint size is always zero in this scenario, obviously.

Checkpointing tests will be executed with the checkpointing mechanisms enabled. In
order to compare the different checkpointing mechanisms implemented, several check-
points will be tested. The difference between the time of execution of these tests and the
base tests will give the time execution overhead. The size of the checkpoints generated
during the execution will also be recorded. The size will vary during the executions,
considering the creation of several checkpoints per execution. The size of the check-
point will be the mean of the generated checkpoints. The time execution overhead and
the size of the checkpoints will be compared between the different checkpointing meth-
ods.

6 Conclusions

We have shown that cycle-sharing systems have new challenging issues. Fault tolerance
mechanisms can improve the reliability of these systems. In this work we explored
how can we improve the reliability of the results and how can we ensure progress in
execution in a faulty environment.

For result verification, we have proposed replication with new flavours (overlapped,
meshed and relaxed) and inverted quizzes. Using these techniques with variable param-
eters, we will enable the user to define how much he is willing to pay for the reliability
of his results.

To ensure that the progress of a work unit is not completely lost when a peer fails, we
have proposed two checkpointing techniques: result checkpointing and generic check-
pointing. Result checkpointing, is based in restart mechanisms that use result files as
checkpoint files (this will be efficient but not fit for all applications). Generic check-
pointing will ensure that we are able to checkpoint any application.

23



Bibliography

[1] D. P. Anderson. Public computing: Re-
connecting people to science. 2002.

[2] D. P. Anderson. Boinc: a system for
public-resource computing and storage.
pages 4–10, 2004.

[3] D. P. Anderson, J. Cobb, E. Kor-
pela, M. Lebofsky, and D. Werthimer.
Seti@home: an experiment in public-
resource computing. Commun. ACM,
45(11):56–61, 2002.

[4] T. Anderson, D. Culler, and D. Patter-
son. A case for now (networks of work-
stations, 1995.

[5] S. Androutsellis-Theotokis and
D. Spinellis. A survey of peer-to-
peer content distribution technologies.
ACM Comput. Surv., 36(4):335–371,
2004.

[6] R. Baldoni, J. M. Helary, A. Mostefaoui,
and M. Raynal. On modeling consistent
checkpoints and the domino effect in dis-
tributed systems, 1995.

[7] D. Barkai. Technologies for sharing and
collaborating on the net. Peer-to-Peer
Computing, IEEE International Confer-
ence on, 0:0013, 2001.

[8] K. M. Chandy and L. Lamport. Dis-
tributed snapshots: determining global
states of distributed systems. ACM
Trans. Comput. Syst., 3(1):63–75, Febru-
ary 1985.

[9] I. Clarke, O. Sandberg, B. Wiley, and
T. W. Hong. Freenet: A distributed
anonymous information storage and re-
trieval system. Lecture Notes in Com-
puter Science, 2009:46–??, 2001.

[10] L. B. Costa, L. Feitosa, E. Araujo,
G. Mendes, R. Coelho, W. Cirne, and
D. Fireman. Mygrid: A complete so-
lution for running bag-of-tasks applica-
tions. In In Proc. of the SBRC 2004, Salao
de Ferramentas, 22nd Brazilian Sympo-
sium on Computer Networks, III Special
Tools Session, 2004.

[11] distributed.net. In http://distributed.net/.

[12] J. R. Douceur. The sybil attack. In IPTPS
’01: Revised Papers from the First Inter-
national Workshop on Peer-to-Peer Sys-
tems, pages 251–260, London, UK, 2002.
Springer-Verlag.

[13] W. Du, J. Jia, M. Mangal, and M. Mu-
rugesan. Uncheatable grid computing.
In ICDCS ’04: Proceedings of the 24th
International Conference on Distributed
Computing Systems (ICDCS’04), pages
4–11, 2004.

[14] J. C. e Alexandre Sztajnberg. Introdução
de um mecanismo de checkpointing e mi-
gração em uma infra-estrutura para apli-
cações distribuídas. 2008.

[15] M. Elnozahy, L. Alvisi, Y.-M. Wang, and
D. B. Johnson. A survey of rollback-
recovery protocols in message-passing
systems, 1999.

[16] T. H. Feng and E. A. Lee. Incre-
mental checkpointing with application
to distributed discrete event simulation.
In WSC ’06: Proceedings of the 38th
conference on Winter simulation, pages
1004–1011. Winter Simulation Confer-
ence, 2006.

[17] I. Foster and C. Kesselman. Globus:
A metacomputing infrastructure toolkit.
International Journal of Supercomputer
Applications, 11:115–128, 1996.

[18] GIMPS. Great internet mersenne prime
search. In http://mersenne.org/.

[19] S. D. Kamvar, M. T. Schlosser, and
H. Garcia-Molina. The eigentrust algo-
rithm for reputation management in p2p
networks. In WWW ’03: Proceedings
of the 12th international conference on
World Wide Web, pages 640–651, New
York, NY, USA, 2003. ACM.

[20] Kazaa. In http://www.kazaa.com/.
[21] S. M. Larson, C. D. Snow, M. Shirts, V. S.

P, and V. S. Pande. Folding@home and
genome@home: Using distributed com-
puting to tackle previously intractable
problems in computational biology.

[22] J. L. Lawall and G. Muller. Efficient
incremental checkpointing of java pro-
grams. In DSN ’00: Proceedings of
the 2000 International Conference on
Dependable Systems and Networks (for-



merly FTCS-30 and DCCA-8), pages 61–
70, Washington, DC, USA, 2000. IEEE
Computer Society.

[23] M. Litzkow, M. Livny, and M. Mutka.
Condor - a hunter of idle workstations. In
Proceedings of the 8th International Con-
ference of Distributed Computing Sys-
tems, June 1988.

[24] M. Litzkow, T. Tannenbaum, J. Basney,
and M. Livny. Checkpoint and migra-
tion of UNIX processes in the Condor
distributed processing system. Techni-
cal Report UW-CS-TR-1346, University
of Wisconsin - Madison Computer Sci-
ences Department, April 1997.

[25] V. Lo, D. Zappala, D. Zhou, Y. Liu, and
S. Zhao. Cluster computing on the fly:
P2p scheduling of idle cycles in the inter-
net. In In Proceedings of the IEEE Fourth
International Conference on Peer-to-Peer
Systems, pages 227–236, 2004.

[26] A. Maloney and A. Goscinski. A
survey and review of the current state
of rollback-recovery for cluster sys-
tems. Concurr. Comput. : Pract. Exper.,
21(12):1632–1666, 2009.

[27] P. Maymounkov and D. Mazières.
Kademlia: A peer-to-peer information
system based on the xor metric. pages
53–65, 2002.

[28] D. Molnar. The seti@home problem,
2000.

[29] M. W. Mutka and M. Livny. Profiling
workstations’ available capacity for re-
mote execution. In Performance ’87:
Proceedings of the 12th IFIP WG 7.3 In-
ternational Symposium on Computer Per-
formance Modelling, Measurement and
Evaluation, pages 529–544, 1988.

[30] Napster. In http://free.napster.com/.
[31] J. S. Plank, M. Beck, G. Kingsley, and

K. Li. Libckpt: Transparent checkpoint-
ing under Unix. In Usenix Winter Techni-
cal Conference, pages 213–223, January
1995.

[32] J. S. Plank, K. Li, and M. A. Puen-
ing. Diskless checkpointing. IEEE
Trans. Parallel Distrib. Syst., 9(10):972–
986, 1998.

[33] R. Ranjan, A. Harwood, and R. Buyya.
Peer-to-peer-based resource discovery in
global grids: a tutorial. Communications

Surveys & Tutorials, IEEE, 10(2):6–33,
2008.

[34] S. Ratnasamy, P. Francis, M. Handley,
R. Karp, and S. Schenker. A scalable
content-addressable network. In SIG-
COMM ’01: Proceedings of the 2001
conference on Applications, technologies,
architectures, and protocols for computer
communications, pages 161–172, New
York, NY, USA, 2001. ACM.

[35] A. Rowstron and P. Druschel. Pastry:
Scalable, decentralized object location,
and routing for large-scale peer-to-peer
systems. Lecture Notes in Computer Sci-
ence, 2218:329–??, 2001.

[36] C. Shirky. Clay shirky’s writings about
the internet. In http://www.shirky.com/.

[37] T. Sterling, D. J. Becker, D. Savarese,
J. E. Dorband, U. A. Ranawake, and C. V.
Packer. Beowulf: A parallel workstation
for scientific computation. In In Pro-
ceedings of the 24th International Con-
ference on Parallel Processing, pages 11–
14. CRC Press, 1995.

[38] I. Stoica, R. Morris, D. Karger, M. F.
Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service
for internet applications. In SIGCOMM
’01: Proceedings of the 2001 conference
on Applications, technologies, architec-
tures, and protocols for computer com-
munications, pages 149–160, New York,
NY, USA, 2001. ACM.

[39] M. Treaster. A survey of fault-tolerance
and fault-recovery techniques in paral-
lel systems. ACM Computing Research
Repository (CoRR, 501002:1–11, 2005.

[40] L. Veiga, R. Rodrigues, and P. Ferreira.
Gigi: An ocean of gridlets on a ”grid-for-
the-masses”, December 2006.

[41] S. Zhao, V. Lo, and C. GauthierDickey.
Result verification and trust-based
scheduling in peer-to-peer grids. In P2P
’05: Proceedings of the Fifth IEEE In-
ternational Conference on Peer-to-Peer
Computing, pages 31–38, 2005.

[42] H. Zhong and J. Nieh. Crak: Linux check-
point / restart as a kernel module. Techni-
cal Report CUCS-014-01, Department of
Computer Science. Columbia University.,
November 2002.

25


