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Abstract. With millions of computers connected to the Internet, and more coming online each day,
how can we ignore such a massive pool of resources? Through distributed computing, namely resource
sharing and discovery, we are able to harness all those resources and computing power. Therefore,
the aim of this report is to construct an efficient and scalable resource discovery mechanism, capable
of searching not only for physical resources (e.g. CPU, Memory, etc.), but also services (e.g. facial
recognition, high-resolution rendering, etc.) and applications (e.g. ffmpeg video encoder, programming
language compilers, etc.) installed on computers connected to the same Peer-to-Peer Grid network. This
will be done in a novel way that consists of combining all resource information into attenuated Bloom
filters by following naming rules and using namespaces. The research performed here shows that various
systems tackled this problem by focusing on each resource type in isolation. This process consisted of
analyzing P2P, Grid, and Cycle Sharing systems that either provide (physical) resource discovery or
service discovery. Efficient forms to represent data were also researched in order to minimize storage
and transmission costs which impact system efficiency and scalability. This report also presents the
performance metrics that will be used to evaluate the system w.r.t. our objectives. Such metrics consist
of testing the system by simulating typical usage scenarios, in various network configurations, whilst
analyzing the number of messages and hops (among others), along with the effect of fine tuning Bloom
filter parameters. Only once the system is implemented and evaluated will we be able to determine if
our objectives were met, even though the architecture proposed here was designed with efficiency and
scalability in mind.

1 Introduction

There are millions of computers connected to the Internet in today’s age1. The number of people inter-
connected around the globe by this medium is growing every day as mobile devices such as laptops, netbooks,
PDAs, and smartphones go online. Not only are there more and more computers online, but their computing
capacity is also increasing rapidly.

Distributed computing on such a large scale cannot be ignored. With so many computers all connected to
the same network, with increasingly larger capacities, the most logical thing to do is to find a way to harness
these resources. As such, resource sharing has become immensely popular and has led to the development of
Grid and Peer-to-Peer (P2P) infrastructures.

The most popular form of resource sharing across the Internet is File Sharing via Peer-to-Peer applica-
tions. Peer-to-Peer traffic is responsible for roughly 50%-90% of all Internet traffic2. Bittorrent represents
around 50-75% of P2P traffic, which is roughly 25-65% of Internet traffic. A lot of work has been done in
this area to create robust and scalable systems, capable of tolerating a large number of users. P2P infrastas-
tructures can be divided into two major categories: unstructured and structured. Unstructured systems like
Gnutella [1] and Freenet [2] do not perform any organization of nodes, as opposed to structured systems, such
as Chord [3], Pastry [4], CAN [5], and Kademlia [6], which maintain nodes in an organized structure to speed
up message routing. Nevertheless, systems in both categories have something in common: they operate in a
decentralized manner with volunteered computers that belong to, and are administered by, different owners,
unlike Grid infrastructures where administration is federated.

Grid computing has emerged in scientific and commercial communities to perform large-scale compu-
tations in a parallel manner. Infrastructures have been built in order to harness the power of many inter-
connected computers with the objective of performing extremely expensive computations. Normally, these
clusters of computers and the network are either centrally or hierarchically managed by the institutions that
run them, and can be dispersed around the globe.

Rather than buy clusters of computers, as it is normally done in institutional grids, why not take advan-
tage of the fact that there are already many computers and game consoles connected to the Internet while
1 http://www.internetworldstats.com
2 http://torrentfreak.com/bittorrent-dominates-internet-traffic-070901
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idle. This is precisely what Cycle Sharing or Cycle Stealing systems do. Large computation intensive tasks
are divided into smaller ones and are distributed to computers during idle periods. Results are then collected
at a central server for analysis. Users volunteer their computers during idle times to a cause they believe in,
such as SETI@Home [7].

In the literature [8–11] it is said that Grid and Peer-to-Peer systems will eventually converge. As Grids
increase in size, they will tend towards P2P systems, and as P2P systems become more complex, they will
tend towards Grids.

In this fashion, GINGER [12] (Grid Infrastructure for Non-Grid EnviRonments), or simply GiGi, is a
P2P Grid infrastructure that fuses three approaches (grid infrastructures, distributed cycle sharing, and de-
centralized P2P architectures) into one. GiGi’s objective is to bring a Grid processing infrastructure to home-
users, i.e. a “grid-for-the-masses” (e.g. achieve faster video compression, face recognition in pictures/movies,
high-res rendering, molecular modeling, chemical reaction simulation, etc.).

The common theme between these different systems is that users have a task that they want to accomplish:
share files in P2P file sharing systems; perform scientific calculations in Grids; or perform CPU intensive
tasks over a massive amount of idle home user computers in Cycle Sharing systems. The requirements to
perform each of these tasks can range from almost no requirements (file sharing), to simple requirements
(idle CPU), to complex requirements (free CPU with X much RAM, with at least Y much storage space,
and with application Z installed). Tasks can be run over a large number of distributed computers sharing
their resources and, in order to do that, the resources need to be discoverable. Not only do they need to
be discoverable, but they also need to be matched against the requirements of user tasks. This is where
Resource and Service Discovery protocols come in, for without them, these systems would be rendered
almost useless for computation. Having a good resource discovery mechanism can make or break a system.
Therefore, this paper presents the ongoing work towards an efficient and scalable discovery protocol of
resources, applications, and services for possible inclusion in the GINGER project.

The rest of the paper is structured as follows. In Section 2 we present the objectives of this work. Section
3 contains the analysis of the state of the art, describing related works. We then present the proposed
architecture to be implemented in Section 4, along with the proposed methodology to be used to evaluate
the system in Section 5. Section 6 concludes this paper offering final remarks.

2 Objectives

The overall aim of this work is to enhance the resource discovery mechanism present in the GINGER
project, making it more complete and decentralized. In other words, this work constitutes the development
of a discovery method that not only searches for basic resources such as CPU, memory, and bandwidth, but
also for applications, services, and libraries that are installed in each of the nodes that form the P2P Grid.
This system should also be scalable and adapt to a large number of nodes, and be as efficient as possible in
terms of space occupied in each node and size of transmitted messages over the network.

Specifically, the objectives of this work are to:

1. Analyze previous resource and service discovery methods in Peer-to-Peer, Grid, and Cycle Sharing sys-
tems.

2. Assess various methods used to represent information in an efficient manner.
3. Develop a resource, service, and application discovery mechanism to improve the current discovery mech-

anism used in GINGER.
4. Construct a system that is scalable (adapt to a highly dynamic node population) and efficient (in terms

of storage, number of network messages, and message size).
5. Evaluate the proposed discovery mechanism in a simulated environment.

Objectives 1 and 2 will form the core of the Related Work review and will involve the analysis of discovery
methods used in different types of systems along with their performance, along with the assessment of various
techniques to help reduce the storage and data transmission costs of resource, service, and application
information.

Objectives 3 and 4 are the bulk of this work. A new discovery mechanism will be implemented in order to:
enhance resource discovery in GINGER, making it more complete (find resources, services, applications, and
libraries); decentralized (without resorting to super-peers); efficient (in terms of occupied space and network
message length); and scalable.

Finally, with Objective 5, the system will be evaluated in a simulator and will be compared to other
discovery mechanisms. Results will then be analyzed with regards to the satisfaction of aforementioned
objectives.
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3 Related Work

The main objective of this work is to create a resource discovery mechanism capable of searching for
physical resources (e.g. CPU, memory, storage, etc.) and services (e.g. facial recognition, high-resolution
rendering, etc.) offered by volunteered computers in a network, as well as installed applications (e.g. ffmpeg
video encoder) or libraries (e.g. Boost C++ library). Previous work has focused on each of the aforementioned
types of resources in isolation. Therefore, Section 3.1 will discuss the various systems that make use of resource
discovery mechanisms that search either for physical computer resources or for computer files, and Section
3.2 will present the various systems that enable the location of various types of services offered by computers
in a network. But, for all of these systems to work, we need to store information about the various resources
each computer has and transfer it over the network. Thus, Section 3.3 deals with the many ways data can be
stored and transmitted, emphasizing efficiency. Finally, Section 3.4 will conclude the related work analysis
and also present an overview of the analyzed works.

3.1 Resource Discovery

Resource discovery [13] consists of performing a search for resources, either hardware or software, offered
by many computers connected to a network. In this section, we will consider resources to be either physical
(e.g. CPU, memory, bandwidth, etc.) or virtual (e.g. computer files). There are many uses for such a discovery
mechanism: applications can locate files shared by many users, powerful computers with specific requirements
can be searched for in order to perform large-scale parallel computations, and idle computers with enough
storage and CPU cycles to perform large computationally intensive tasks can be found.

Therefore, in this section we will consider Peer-to-Peer systems used by file sharing applications and
by resource discovery mechanisms for Grid environments (Section 3.1.1); traditional Grid systems that are
not based on Peer-to-Peer models used by scientific and commercial communities (Section 3.1.2); and Cycle
Sharing systems used for academic and scientific projects (Section 3.1.3).

3.1.1 Peer-to-Peer

Peer-to-peer systems [8,13–15] are characterized by the principle that every component in the system is
equal. There are no servers and no clients; each component acts as both, and are normally referred to as
servents (from the words server and client), peers, or nodes. P2P systems can be split into two main cate-
gories based on the way they organize connections to their neighbors, namely unstructured and structured.
We can further define a third category: hybrid, which attempts to merge the best from unstructured and
structured systems into one.

3.1.1.1 Unstructured

In unstructured systems, nodes are randomly connected to a fixed number of neighbors. There is no
information about the location of resources (e.g. files) and, therefore, these systems need to use searching
techniques that contact other peers in the network, like flooding, to perform lookups. Flooding [1, 16] is
extremely inefficient and is the reason why unstructured systems do not scale well. Several methods have
been proposed to address this situation such as: random walks [17], iterative deepening [1,18], probabilistic
forwarding [18, 19], learning-based [17, 18, 20], and heuristic-based [2]. Even though the lack of structure in
these systems may lead to inefficient searching, it has the advantage of being able to adapt to a very transient
node population, in which nodes join and leave at a high rate.

3.1.1.1.1 Napster

Napster [21] was the first massively popular P2P system used for file distribution, namely MP3 files. We
are considering this system for historical reasons, as it is very different from the unstructured P2P systems
of today. It relies on a central directory server that maintains a mapping of clients to the audio files they
share. Searches are performed on behalf of the clients, resulting in the peer-node’s address that contains the
requested song. The client that initiated the search then connects directly to the node with the desired file
and starts the transfer.

The central directory server was only used to map users to files and to facilitate the searching of audio
files, while the actual transfer was done between nodes (thus considered as being a Peer-to-Peer system).
There are a few major problems to using a centralized architecture. The first has to do with scalability issues.
As the number of users increase, the directory server becomes a bottleneck. Although, Napster allowed the
addition of various directory servers to help alleviate the server, making it more scalable. Another problem
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is that the central index server is a single point of failure. By bringing it down, either by a Denial-of-Service
attack or by legal measures (as was the case with Napster), the whole system is disrupted and becomes
unusable.

3.1.1.1.2 Gnutella

After Napster’s demise, Gnutella [1] was the next major P2P network, with 1.18 million computers
connected to it as of June 20053. It is a totally decentralized system and a classical example of an unstructured
P2P network, where the exchanged resources are files. As each node was connected to a small number of
neighbors, file search queries were propagated to each one, i.e. it used basic breadth-first flooding with
iterative deepening (Figure 1). Using iterative deepening limited the flooding depth by assigning a Time-To-
Live to queries that started from 1 and continued until depth D, or until a certain number of results were
returned. Thus, nodes closest to the originating node were queried first, and depending on the number of
results, more and more nodes were queried. This made the network unscalable, for the amount of needed
bandwidth grew exponentially as the number of searched nodes increased. Saturation was a big problem,
especially with low capacity nodes as they were rendered useless, causing enormous delays and making the
search mechanism completely unreliable. On top of all this, frequent peer disconnects, also known as churn,
never allowed the network to stabilize (40% of nodes leave the network in less than 4 hours [22]). Another
problem was that the depth D chosen for termination made it impossible for a node to find resources from
nodes further than D hops away, so this technique really only works well with popular and well-replicated
files.

Fig. 1. Flooding in Gnutella

3.1.1.1.3 Freenet

Freenet [2] is a third generation4 Peer-to-Peer system, with the goal of providing “uncensorable and
secure global information storage” [2]. It uses a decentralized architecture and enables users to anonymously
publish and retrieve files. Not relying on a central server is important for this system because it avoids having
a single point of failure - even if one or more nodes are taken down, by say a government, a corporation, or
others, it will still be able to survive and function. It is different from normal file sharing applications, as it
only allows users to insert files (and not remove them) into the network, which in turn will be replicated to
a number of other nodes. This way, the file will still be accessible even if the original node that submitted
the file goes offline, thus providing high reliability. Rather than using flooding for searching like Gnutella,
making the system unscalable, it is based on heuristics, i.e. the solution is not guaranteed to be optimal, but
a good one is usually found in a reasonable amount of time. More specifically, Freenet uses a steepest-ascent
hill-climbing search [8]: all neighboring nodes are compared and the search query is forwarded to the node
that is the closest to the target. If the search path results in a dead-end or a loop it uses backtracking and
tries another path of nodes.

3 http://www.slyck.com/news.php?story=814
4 http://www.ucalgary.ca/it/help/articles/security/awareness/p2p#generation
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3.1.1.1.4 Iamnitchi et al.

Iamnitchi et al. [17] propose a fully decentralized Peer-to-Peer architecture for Grid Resource Discovery.
Participants are called Virtual Organizations (VO) and can be individuals (like an ordinary P2P system)
or institutions (like an institutional grid). Each VO publishes resource information to one or more local
servers that participate in the network, called peers or nodes. Resource discovery in this system assumes
that a node answers if a request matches locally, otherwise it uses a request propagation technique; those
requests have a TTL and stop when it reaches zero; and that the formation of neighboring nodes is random,
as typical in an unstructured system. Four propagation strategies are proposed, with trade-offs between the
amount of storage space used in each node and the search performance: random walk, learning-based,
best-neighbor, learning-based + best-neighbor.

The random walk strategy is the simplest: the request is forwarded to a randomly chosen node. The
learning-based technique forwards search queries to nodes that have answered similar requests in the past
by keeping track of previously answered queries by other nodes. If no previous information has been recorded,
then the random walk strategy is used. The best-neighbor method also records answers from other nodes,
but ignores the type of answered requests. Queries are then forwarded to the node who answered the largest
number of requests. Finally, the last strategy is the combination of learning-based strategy and best-
neighbor. It is identical to the learning-based algorithm, except that when no previous information is
available, the request is forwarded based on the best-neighbor strategy.

Experimental results showed that the learning-based strategy was the best all-round. It is performance
boost is due to the exploitation of similarities between requests by using a possibly large cache. It starts out
slowly, but once the cache starts to be filled, performance improves drastically. The more expensive version of
the algorithm (learning-based + best-neighbor) turned out to be unpredictable with regards to performance.
The best-neighbor strategy performed best in an environment where requests were distributed evenly over
participating nodes. Finally, Random walks proved to be the least efficient, but has the advantage of not
needing additional storage space in each peer to record historic information.

3.1.1.1.5 Filali et al.

In [16] Filali et al. propose a P2P resource discovery mechanism for Grids, with the goal of improving an
existing system described in [23] by addressing the following limitations: only one resource could be managed
(CPU) without a precise description, resources were booked for an unlimited amount of time, and resource
discovery was based mainly on flooding. Nodes are divided into two categories: Grant nodes and Requester
nodes. Grant nodes offer resources that can be used; Requester nodes search for resources and use them.
All nodes are also relay nodes. Grant messages received by nodes are stored in a cache that is periodically
cleansed for expired messages. Two types of transport mechanisms are used: flooding when no information
is available, and the cache. Request messages are compared to the local cache for matching grant messages.
If found, the node acts as a relay and propagates the request to the last node that transmitted the grant
message; if not, the query is broadcasted to all neighbors.

Experimental results show that the system is more efficient than basic flooding and random walks with
regards to request success rate and network overhead. This is explained by the use of a cache that forwards
messages to peers closer to the node with the requested resources, until it is eventually found.

3.1.1.1.6 Liu et al.

Liu et al. [20] propose a system for resource discovery that mimics human behaviour in social networks,
i.e. ask acquaintances for knowledge on a desired resource or service (e.g. a good mechanic). It exploits
the small world phenomenon observed by Stanley Milgram, hypothesizing that everyone in the world can
be reached through a short chain of social acquaintances. Although unstructured networks are resilient in
a dynamic environment, current search methods either require too much overhead or generate too much
network traffic. To combat this, each node listens to requests and records successful ones in its knowledge
index, which is basically a cache that uses a Least-Recently-Used policy. By using a knowledge index, nodes
learn from previous requests making future searches more focused as interest groups are formed automatically
based on previous search results, without extra overhead or explicit interest declaration.

Resource searches are split into two phases and are performed in the following way. First, the node looks
at its own knowledge index for peers directly related to the search topic in question. This phase has a high
probability of failing due to lack of information, especially for recently connected peers. When the first phase
fails, the second phase searches for nodes that are sharing content in the same interest area (found from
the Open Directory Categories5) of the query from the knowledge index. In case of failure, the request is
forwarded randomly to a node.
5 http://dmoz.org
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The knowledge index is a vital part of the system in terms of performance. It does not require any
significant processing overhead as the node just observes the successes and failures of searches, and updates
the knowledge index accordingly. Plus it can also reduce network traffic as the routing algorithm tries to
leverage the knowledge index as much as possible. Although, these benefits come with the cost of additional
memory usage.

3.1.1.2 Structured

Structured systems address the scalability problems originally faced by unstructured systems, by employ-
ing a rigid organization of its nodes. These systems are designated as Distributed Hash Tables (DHTs) and
provide a mapping between an identifier and its content. Exact-match queries are routed efficiently due to
the tight control over network topology and file locations. Range queries can still be supported with these
types of systems [24], but one cannot say the same about non-exact queries because of the way routing is
performed in relation to network’s structure. Another disadvantage to using such a rigid structure is the
required overhead to maintain it in a highly dynamic node population.

3.1.1.2.1 Chord

Chord [3] is the first structured Peer-to-Peer system to be proposed by Stoica et al. It provides a routing
and location infrastructure, so it is not a resource discovery system per se, but it can be used to implement
one. File identifiers (a.k.a. Keys) are mapped onto node identifiers. Files and peers are mapped with the
same hash function to a m-bit key space. Data location can be implemented on top of Chord by identifying
data items as keys and storing the pair (key, data item) at the node whose identifier maps to the data item
key. Nodes in Chord are ordered in a circle and packets can only be forwarded in one direction: clockwise.
A key k is assigned to the node whose identifier is bigger or equal to k in the identifier space. For routing
to work, peers are connected to (and have knowledge of) their successor and predecessor in the ring. In its
most basic form, routing between Chord nodes can be performed by forwarding messages to their successor
until the requested key is found, but is highly inefficient. To speed up the key lookup process, each node uses
a finger table with m entries, which maintains a connection, for node n, to the first peer on the circle that
succeeds (n + 2k−1) mod 2m, for 1 ≤ k ≤ m, as exemplified in Figure 2a. This lookup process emulates a
binary search, thus requiring only O(logN) messages and steps (Figure 2b). Periodic stabilization messages
are used to maintain Chord’s rigid structure. When a node joins the network, it removes the keys it is
responsible for from its successor. When it leaves, the node’s successor becomes responsible for its keys. For
robustness, each node keeps r successors: if a successor does not respond, it can be substituted for on in
the successor list. Therefore, as long as the nodes in the successor list do not fail simultaneously, the Chord
network will not be disrupted. In theory, each peer is responsible for an equal number of keys with a high
probability due to the use of consistent hashing, thus achieving load balancing, with regards to the number
of files stored at each node.
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Fig. 2. (a) Example finger table for node 8. (b) Routing of query for key 54 using the finger table to speedup lookup.
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3.1.1.2.2 CAN

Content Addressable Network (CAN) [5] is another routing and location infrastructure. It uses a virtual
d-dimensional coordinate space to store (key, value) pairs. Each node is responsible for a zone, which is a
segment of the coordinate space. This space is divided equally between all participating nodes. Therefore,
peers only connect to nodes responsible for neighboring zones, i.e. each node has O(d) neighbors. Keys are
mapped deterministically onto a point in the coordinate space, and the (key,value) pair is stored at the node
responsible for the zone in which the point falls under. To retrieve an entry, the same deterministic function
has to be applied. If the resulting coordinate does not fall into a neighboring node’s zone, the request is
then routed from node-to-node until the node that is responsible for the target zone is reached. Intuitively,
routing is performed by following a straight line through the Cartesian space from source to destination
coordinates, as can be seen in Figure 3. When a node joins the network, it randomly chooses a coordinate
space and joins the node covering it. That zone is then split in half and the surrounding nodes are notified of
the new node. On departure, the zone and entries are explicitly handed over to one of the neighbors. If any
neighboring node fails, CAN initiates a controlled take over mechanism. If many nodes of a failed node also
fail, then an expanding ring search mechanism is used to identify any functioning nodes outside the failure
region. Thus, peer arrivals and departures have a localized effect as only O(d) other peers are affected. As is,
CAN does not support replication, but it can easily be added by using more than one hash function, which
will reduce the lookup cost and provide fault tolerance in case of ungraceful departures.

B E

A

C

D

0 1 2
0

1

2

1.50

P

Fig. 3. Example CAN coordinate space of [0,2]x[0,2]. Nodes B, C, and D are node A’s neighbors. Query for key that
maps to (1.3, 0.3), starting from node A, is routed first through B and then finally to E, which is responsible for that
zone.

3.1.1.2.3 Andrzejak and Xu

Andrzejak and Xu [24] propose an extension of CAN that allows it to support range attribute queries.
The system is intended for usage in a Grid environment where resources tend to be highly dynamic and
queries usually need to specify ranges. Each resource has a set of attributes and depending on the attribute’s
type, the system can either use a standard DHT or the CAN extension. The former is used when attribute
has a limited number of values, while the latter is used when attributes have continuous values. Location
of multi-attribute requests is performed by consulting the appropriate DHTs and then concatenating the
results at the end. Only a subset of nodes in the Grid system participate in the extended CAN network. Each
of those nodes are called an Interval Keeper (IK) and are responsible for a sub-interval of the attribute’s
value. This sub-interval of the attribute’s value is the interval of the IK. Each server in the Grid reports
values to the IK with the corresponding interval. An interesting property of this extension is that if a range
is split into two sub-ranges, then those zones together form the primary range. This also means that nearby
ranges translate to nearby zones. The authors also propose three strategies for propagating range queries
and methods to reduce communication overhead during attribute updates, which are frequent in a Grid
environment. These strategies were tested using simulations of synthetic and real-life workloads. The results
show they were effective in meeting the system’s goals: scalability, availability, and communication-efficiency.
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3.1.1.2.4 Schmidt et al.

Schmidt et al. [25] propose a system that supports multi-attribute queries in a single one-dimensional
DHT by using a space filling curve which maps all possible dimensions onto one. Attribute values are mapped
onto nodes whose ID is generated by interleaving the binary representation of the attribute’s values. For
example, a resource containing three attributes with values (3,2,1) is represented in binary as (11,10,01). The
interleaving process is done by taking the first number from each attribute’s binary representation (the most
significant bit) and join them to construct the first part of the ID. The second part of the ID is generated
by taking the least significant bit from each attribute’s binary representation and also joining them. Thus,
(3,2,1) will be mapped to the node whose ID = 110101. Range queries are constructed in the same way,
except that it uses some “wild card” bits. For example, searching for a resource attribute with values (2,
1, 0-3), with binary representation (10, 01, 00 - 11), is represented as 10*01*. They are resolved like point
queries, with the only difference being that when an undefined bit is found, the query is then propagated
to more than one node. Notice that ranges can only start from powers of two; same goes with range query
sizes. Requests are forwarded to nodes with an ID that has a larger common prefix with the query than the
current node. Thus, for example, the originating node’s ID that starts with 0 (searching for 10*01*) will first
propagate the query to any node in the form 1*****. Then, that node sends the query to any peer with ID
in the form 10****. That node, in turn, forwards the query to two nodes: one with the ID 100*** and the
other with ID 101*** and so on. But doing this means that the more wild cards are present in a query, the
more nodes are contacted, effectively reducing the performance of the system. Another interesting fact about
this system is that there is no bottleneck at the lookup root node, which is common in tree-like structures,
because any node whose ID’s first bit is equal to the query’s first bit can be used as a root node, i.e. there
is no single root node.

3.1.1.2.5 Ratnasamy et al.

Ratnasamy et al. [26] describe a distributed data structure that supports range queries over DHTs,
called a Prefix Hash Tree (PHT). As locality between ranges are not maintained, another overlay is used
on top of a Distributed Hash Table to allow efficient range query resolution. This system is agnostic to
the underlying DHT routing algorithm. Data items are stored at the PHT node with the longest matching
prefix between node label and the item being inserted. Each node has a maximum limit of data items it
can store; once exceeded, it “splits” into two child vertices and the data items are partitioned between its
children depending on their prefixes. Therefore, the system only starts with one root node. As data items
are inserted, it starts growing as node as recursively “split.” Resources are stored in their own PHT for
every attribute they contain, which means that all attributes are actually stored in the common DHT. The
PHT structure is distributed across the DHT by hashing the labels of PHT vertices. This is done by using a
uniform hash function with the attribute name, lower attribute value range, and higher attribute value range
as parameters. For example, the PHT node responsible for attribute A from x to y is mapped to the DHT
node whose ID = hash(A, x, y). Lookups are performed by recursively dividing the attribute value range in
half, until the smallest range that contains the whole query range is found. Then, a normal DHT lookup is
used to find the node responsible for that range. Once located, that node then broadcasts a message to all
children in its subtree to retrieve the desired items. Notice that the root node is not a bottleneck as access
to individual nodes does not need to traverse the root node. Multi-attribute queries are simply resolved in
parallel, consulting different PHTs depending on the attribute in question, but results in as many messages
as there are attributes. Results are then merged at the node where the query originated from.

3.1.1.2.6 Marzolla et al.

Marzolla et al. [27] describe a system based on routing indexes for Grid resource discovery. Nodes are
organized into a tree-structured overlay. Each node manages its own resource information and also keeps a
compact representation of resources from children nodes in bitmap indexes. Each resource attribute is stored
in its own bitmap and they are used to route queries to a node that might be able to satisfy the request.
The attribute value space is divided into k sub intervals and are stored in a k-sized bitmap. All entries are
set to 0, except for the one corresponding to the sub interval that contains the actual value of the attribute
in question, as can be seen in Figure 4 with nodes B and C. To obtain a compact representation of resources
for a subtree, one need only apply the bitwise OR operator on all bitmaps belonging to the same attribute,
local to each child node (node A in Figure 4).

Multi-attribute queries are handled by dividing them into separate sub-queries: one for each attribute.
They are then first matched against the local indexes, and then against the routing indexes that contains the
information about other nodes. The query is then forwarded to the neighbor whose bitmap indexes satisfy
all sub-queries.
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As the objective of this system is to perform resource discovery in a Grid environment, it has to address
the issue of attribute values changing over time due to resource utilization. Thus, the bitmap indexes need
to be updated overtime, although care must be taken as to not inundate the network with update messages.
Therefore, bitmap indexes are calculated periodically as resources consumption changes. Only if the index
changes from the previous one are the neighboring nodes notified of the alteration.

Simulation results show that the system scales well. This is due to two reasons: query propagation only
routes messages to a small number of neighboring nodes, effectively avoiding flooding; and the update method
involves a constant number of peers, regardless of network size.

A
0 1 1 0

1000 2000 3000 40000

B
0 1 0 0

1000 2000 3000 40000

C
0 0 1 0

1000 2000 3000 40000

Fig. 4. Example bitmap indexes, as used in [27], to represent CPU Speed (in MHz) in nodes B and C, along with
aggregated information (bitwise OR) in parent node A.

3.1.1.3 Hybrid

Finally, hybrid systems try to address the disadvantages of both structured and unstructured systems,
while still trying to retain their benefits. Systems like Pastry (Section 3.1.1.3.1) and Kademlia (Section
3.1.1.3.2) will be considered hybrid systems, even though they tend more towards structured systems than
unstructured, because their similar structure is less “rigid” compared to that of Chord (Section 3.1.1.2.1)
and CAN (Section 3.1.1.2.2). In Chord and CAN, all neighboring connections are strictly defined and only
one node contains the value for a key; as opposed to Pastry and Kademlia where any peer belonging to a
defined subspace can act as a contact for the values in that subspace. We shall also consider P2P systems that
employ super-peers or clustering as being hybrid, for the nodes that are chosen as the leader of a group form
another overlay between themselves to increase routing performance. In contrast to Pastry and Kademlia,
these systems tend more towards unstructured P2P systems than structured.

3.1.1.3.1 Pastry

Pastry [4] is a scalable, distributed object location and routing infrastructure, allowing the creation
of various types of peer-to-peer Internet applications. Each peer has a unique 128-bit identifier (nodeId),
indicating its position in the circular ID space. It is randomly assigned when a peer joins the network, thus
adjacent nodes, with high probability, are diverse in terms of geography, ownership, jurisdiction, etc. The
objective of this system is not only to efficiently route messages to nodes, but also to take into account
network locality by using a proximity metric (e.g. IP routing hops or geographic distance). Messages can be
routed in a tree-like fashion or, if that fails, using a ring approach (similar to Chord described in Section
3.1.1.2.1). To support these routing procedures, each node needs to maintain some state: a routing table and
a leaf set. It also keeps a neighbor set which is used to maintain locality properties. The routing table is used
by the tree-routing method. Each level n in the routing table refers to a node that shares a n digit prefix with
the local node, but where the n + 1th digit is different. The leaf set is used to perform ring like searching.
One half of the set contains the nodes whose IDs are smaller and numerically closest to the current nodeId,
while the other half contains the bigger and numerically closer node IDs. As long as no more than half of
the nodes in the leaf set fail simultaneously, Pastry will continue to function. The neighbor set contains the
IP addresses of the nodes that are closest, with regards to the proximity metric (e.g. round-trip time), to
the local node. Message routing is performed by first checking if the key falls in range of the leaf set. If not,
then the routing table is used to find the nodeId that shares a common prefix with the key by at least one
more digit than the local node. If that fails, either the entry is empty or the node died, then the message
is forwarded using a ring approach and is sent to a node (from all tables) whose prefix with the key is just
as long as the current node, but is numerically closer to the key. This routing procedure always converges
because with each step the message is forwarded to the node that is numerically closer to the key than the
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local node. For robustness, a set of k nodes with nodeIds numerically closest to a key contain a replica of
the (key,value) pair. Notice that this means replicas will have sequential IDs; no salt was used to disperse
the replicas among the ID space. Not only does this increase reliability, but also minimizes the distance the
message travels, as the replica that is closest to the local node is chosen first.

3.1.1.3.2 Kademlia

Kademlia [6] is another storage and lookup infrastructure. Its topology is organized using a XOR metric.
Key and nodeIds are assigned in the same 160-bit space. (Key,value) pairs are stored in k nodes whose
IDs are closest to the key, where distance is measured using the XOR metric (distance = key ⊕ nodeId).
Most of Kademlia’s benefits are from using this metric, as it is symmetric. This means that nodes can use
information from lookups to update the routing tables, unlike Chord nodes which cannot learn useful routing
information from the queries they receive. The asymmetry of the metric used by Chord also makes routing
tables rigid, needing a precise node in an interval within the ID space. Kademlia on the other hand can
send a query to any node in the interval, allowing different routes to be selected depending on, for example,
latency. To support the routing process, special lists called k-buckets are used, where k is a system wide
number (e.g. 20). Buckets store information about nodes situated at a particular range from itself: from 2i

to 2i+1 for 0 < i < 160. When a node receives any type of message, it updates the appropriate bucket. This
process is optimized for keeping the longest living nodes in the routing table. k-buckets also provide some
resistance to certain DoS attacks: the network cannot be flooded by new nodes. To locate a node, a single
routing algorithm is used from start to finish. Routing uses the same XOR metric to determine the n closest
nodes to the desired key. This lookup process is recursive, as it consists of picking α nodes closest to the
desired key and asking them (in parallel) to return the n closest nodes they know about. Once results are
obtained, the process starts again and selects another α nodes that are even closer to the desired key than in
the first step. This process continues until the n best nodes have been found. α is a system wide concurrency
parameter, such as 3. If α = 1, then message cost and latency of failure detection resemble that of Chord.
This parameter can be configured and lets users trade bandwidth for better latency and fault recovery. The
lookup process stops immediately when a value is found. The (key,value) pair can additionally be cached at
the nodes closest to the key that were queried but did not contain the pair. This caching method exploits the
unidirectionality of the XOR metric, as all lookups for the same key converge along the same path regardless
of the originating node. Therefore, future queries will likely hit the caches entries before querying the closest
node.

3.1.1.3.3 Mastroianni et al.

Mastroianni et al. [28] propose a resource discovery system in a Grid environment that is based on the
super-peer model. This model tries to strike a balance between the inefficiency and scalability problems
of centralized search, and the load balancing, autonomy, and fault tolerance features of distributed search.
Super-peer nodes act as a server for regular peers. The former tend to be nodes with higher capacity, while the
latter are usually regular or low capacity nodes. Super-peers are interconnected, forming a P2P overlay. This
model exploits the natural tendency of large-scale grids forming into interconnected clusters of computers,
each under their own administrative domain - called Virtual Organizations (VOs). Each VO has one or more
nodes that act as super-peers for the other nodes in the organization, and are responsible for maintaining
metadata about the resources of connected clients, as well as communicating with other VOs. Regular nodes
searching for resources send a query to a local super-peer, which, in turn, scans its local metadata for a match.
If found, a queryHit is generated and sent directly back to the requesting node; if not, the query is forwarded
to a limited number of neighbors. The neighbor selection process uses the best-neighbor technique, i.e. nodes
that have answered the most queries are preferred. Whenever a matching resource is found, a queryHit is
forwarded along the same path back to the requesting node. Additionally, a notification message is sent by
the remote super-peer to the node that has the requested resources. The authors also propose a number
of techniques to decrease network load, reduce response time, and increase the probability of success. Such
technique are, but not limited to: limiting the Time-to-Live of queries, using an additional field in a query
to record the path traveled, and the caching of queries so as to not process duplicate requests.

3.1.1.3.4 XenoSearch

XenoSearch [29] is based on Pastry’s index and routing system and offers support for multi-attribute
queries and range queries, while only being a factor of 3-5 slow than plain Pastry routing. A Pastry ring is
constructed separately for each attribute. Range queries are made possible by exploiting the fact that the
information is conceptually stored in a tree, where the leaves are XenoServers and the interior nodes are
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aggregation points (APs). APs summarize the range of values of the nodes below them in the tree. They are
identified by a key which is stored in the same key space as the attributes. Identifier generation is performed by
creating keys that are prefixes of child node keys. For instance, the AP directly above 10233102 is 10233101,
then 10233110, then 10233100, and so on. This way, just by knowing the key of an AP we can determine the
range of values of leaf-nodes, which gives us the range of values of the leaf-node XenoServer attributes. The
XenoServer node closest to the AP in the key space is responsible for managing the information related to
that AP. Multi-attribute queries are resolved by dividing the query into sub-queries, one per attribute, and
performing a range search in the corresponding Pastry ring. Results are then intersected and the Client is
given a set of possible XenoServers that might be able to satisfy the query’s requirements. The Client still
needs to directly contact the XenoServer with said resources to confirm they are still available. This step
is necessary because information in the system is only periodically updated, therefore the results obtained
from a query may not be up-to-date.

3.1.2 Grids

Grid computing is defined by the combination of computer resources in order to perform a specific task.
These resources are usually distributed geographically and fall under different administrative domains. The
tasks that are usually performed either require lots of CPU processing power, or need to process large amounts
of data, which is common with scientific, technical, or business problems. The divide-and-conquer strategy
is used where large tasks are divided into smaller ones and distributed across many computers, potentially
thousands. Grid computing can be done in a small LAN for, say, a university, or it can function under a
larger network comprised of several smaller interconnected networks that belong to a different institution,
corporation, or university. The computers that provide the resources, either a normal PC or even a super-
computer, are sometimes referred to as metacomputers, while a cluster of these metacomputers are usually
referred to as Virtual Organizations (VOs).

3.1.2.1 Condor

Condor [30] is a specialized workload management system for compute-intensive jobs that can be used
to build Grid-style computing environments that cross administrative boundaries. Resource discovery is
performed using the ClassAd mechanism [31], which is responsible for matching resource requests (jobs) with
resource offers (machines). Agents and resources advertise their characteristics and requirements in classified
advertisements (ClassAds), which declare job or machine requirements and preferences. These ClassAds are
semi-structured data models that consist of uniquely named expressions called attributes. Each attribute has
a name and a corresponding value. Attribute values range from simple types (e.g. integers, floats, strings,
etc.) to richer types (e.g. records, sets, etc.) and conditional operators. As requirements and preferences
can be described in powerful expressions, Condor is able to adapt to nearly any desired policy. Job and
machine advertisements are sent to a dedicated matchmaker server, making resource discovery in this system
centralized. It is responsible for scanning known ClassAds and creating pairs between jobs and machines
that satisfy each others constraints. When new pairs are discovered, the matchmaker server informs both
parties of the match, thus leaving it up to the agent to directly contact and claim the desired resource. The
separation of the matching and claiming phases brings greater flexibility to the system, allowing the resource,
for example, to independently authenticate and authorize the match, or to verify that match constraints are
still satisfied with respect to current conditions.

3.1.2.2 Globus MDS-2

Globus [32] is a toolkit that provides an infrastructure to create Grid systems that exploit diverse ge-
ographically distributed resources in order to form networked virtual supercomputers or metacomputers.
MDS-2 [33] (Meta Directory Service) is a resource discovery mechanism that can be used in Globus. It
makes use of two fundamental components: highly distributed information providers and specialized aggre-
gate directory services. Information providers allow access to information about available resources and is
neutral to Virtual Organizations (VOs). Aggregate directories provide specialized view of resources within a
VO. The information provider speaks two basic protocols: GRid Information Protocol (GRIP) to access in-
formation about entities, and GRid Registration Protocol (GRRP) to notify aggregate directories of resource
availability. These two basic protocols are the building blocks on which this architecture is built on. The
aggregate directory also uses the GRIP and GRRP protocols to obtain information from a set of information
providers and to respond to queries about those entities. Each VO has its own aggregate directory, which
is vital to the scalability of the system. This way, queries for resources from a specific VO can be directed
to the corresponding aggregate directory service. Thus, the scope within which search operations take place
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is limited, without resorting to searches that do not scale well to large numbers of distributed information
providers. Aggregate directories organization can be quite flexible, but the most convenient structure is a
hierarchical one, as it mirrors a typical decomposition of VO administration with multiple site administra-
tors coordinating with the VO service administrator. This organization implies that each aggregate directory
acts as an information provider for all the resources available beneath it using GRIP, while using GRRP to
register with higher-level directories to construct the hierarchy.

3.1.2.3 Legion

Legion [34] is an object-oriented metacomputing environment, intended to connect many thousands,
potentially millions, of hosts ranging from PCs to massively parallel super computers. Machine attributes
are represented in Host Objects, acting as an arbiter for the machine’s capabilities. They also allow the future
reservation of services for scheduling purposes. Jobs are represented as Objects with a set of requirements. The
resource discovery involves a number of components, such as the Host Objects, the actual resource Objects,
the Collection, the Scheduler, and the Enactor; and proceeds as follows. The Collection is populated with
information describing the resources, therefore acting as a repository for information about the state of the
resources comprising the system. This population of information can be done in two ways: using the pull-
model, where the Collection component queries hosts to determine their current state, and the push-model,
where the Host Objects periodically deposit their information into its known Collection(s). The Scheduler
then queries the Collection and, based on the results, computes a mapping of objects to resources. This
mapping is passed along to the Enactor, which attempts to reserve the resources named in the mapping
on Host Objects. Once reserved, the Enactor consults with the Scheduler to either confirm or cancel the
schedule, and in case of an affirmative response, tries to instantiate the resource objects.

3.1.3 Cycle Sharing

Volunteer computing or public-resource computing consists of computer owners from around the globe
donating their computing resources, such as CPU cycles and storage, to one or more projects they believe
in. Most cycle sharing systems have the same basic structure: a client program that runs on the volunteer’s
computer which periodically contacts the project’s servers to request jobs or report back results. The project
servers normally give credit to users when a job is completed successfully, which is then used to measure
how much work the user’s computer has contributed to the project. There are a number of problems that
arise from using volunteered computers, such as their heterogeneity, sporadic availability, as well as not
interfering with their performance during regular use. That is why the client software normally only contacts
the project’s servers when the computer has been idle for some time. Another problem that these systems
must resolve has to do with result correctness, as there is no volunteer accountability because they are
essentially anonymous. Other factors that can affect the correctness of results are computer malfunctions
and the forging of results in order to gain more credit or sabotage the project. To deal with this, the servers
need to send the same job to more than one client and compare all the results. Only if they sufficiently agree,
is credit given to the users that performed the work.

3.1.3.1 BOINC

Berkely Open Infrastructure for Network Computing [35] is a software system that allows scientists to
easily create public-resource computing projects. It supports diverse applications, including ones that have
large storage or communication requirements. The main objective of BOINC can be summarized as giving
scientists access to the enormous processing power of personal computers around the world. A simplified
overview of how the system functions is as follows. A user that wishes to volunteer their PC for a cause, such
as Folding@Home for example, will go to the project’s website and download the BOINC Client. The user
is then able to configure the resource consumption, so as to not disturb during working hours. When the
BOINC Client runs in the designated times, it will contact the project’s central server, which is responsible
for the coordination of various clients by sending them jobs and collecting the results. Saying that BOINC
has a resource discovery mechanism is a bit of a stretch. What it does provide is a flexible framework that
allows the distribution of application executables over a number of platforms. The project administrator can
specify which applications are needed in order to do useful work for the project. Typically, the BOINC Client
just downloads the pre-compiled binaries from the central server and executes them along with the associated
work unit. But there are some users that do not want to run these pre-compiled binaries: security reasons,
because there are no pre-compiled binaries for the user’s platform, or others. For this case, BOINC provides
an anonymous platform mechanism which allows the user to compile the required applications himself, and
specify them in a configuration file. Then, when the BOINC client communicates with the project server, it
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indicates its platform as anonymous and supplies a list of available application versions. The server, in turn,
just sends the work units to be performed, without any pre-compiled binaries.

3.1.3.2 CCOF

In Cluster Computing on the Fly [36], the authors conducted a comprehensive study of resource searching
methods in a highly dynamic P2P environment for locating idle cycles to be consumed by workpile applica-
tions. Workpile applications consume huge amounts of processing power and are embarrassingly parallel, i.e.
nodes performing computations do not need to communicate with each other to accomplish the task. The
problem in cycle sharing systems is that the number of users can be large and consist of a highly dynamic
population. Not only do peers join and leave the network unpredictably, but the amount of variable CPU
cycles change at an extremely rapid rate. CCOF is different to BOINC in that it is more general as users
can be donors, or consumers of idle cycles, or even both. Idle cycle resource information is described using a
profile-based model which is generated automatically by monitoring CPU usage patterns of the user’s PC.
The authors evaluated four scalable search methods: expanding ring, random walks, advertisement-based,
and rendezvous point.

In Expanding Ring search, clients send a query for cycles to their direct neighbors. The neighbor compares
the request against its profile and turns the request down if it cannot be satisfied. If the client determines
there is not enough peers to perform the computation, it resends the query to nodes that are two hops away.
This process continues until the computation can proceed or until the search depth limit is exceeded.

Random Walk search consists of sending the query to k-random neighbors, which in turn forward the
query to another k-random neighbors. The candidate list is then returned to the client.

Advertisement-based search has nodes send their profile to a limited number of neighbors to be cached
when they join the network. Lists of available candidates are selected based on caches profiles, but a client
still needs to contact the host directly to determine if the cycles are still available. If not, it just tries another
peer in the list.

Finally, in the Rendezvous Point search, groups of peers are dynamically selected as Rendezvous Points
in the system to enable efficient query and information gathering. When a node joins the system, they
advertise their profiles to nearby Rendezvous Points. Searching is performed by sending queries to the
nearest Rendezvous Point(s). It is important that these special nodes are selected so that the system is
balanced and, therefore, a sufficient number of Rendezvous Points exist within a short distance to every
peer, which is another problem unto its own.

Simulation results showed that the Rendezvous Point method, compared to the other methods, performed
better under both light and heavy workload conditions. In light workloads, the advertisement-based approach
incurred a high message passing overhead, while in heavy workloads all algorithms showed a significant
increase in message overhead, except Rendezvous Point search which was consistently low.

3.2 Service Discovery Protocols

Service discovery [13] aims to provide a mechanism that enables, without any configuration, the automatic
detection of services provided by devices present in a computer network. This computer network can be a
small, home Local Area Network, or a large, enterprise-scale network at a corporation or university. The types
of services offered by devices in those networks can range from simple tasks, such as printing or the usage of
a projector to display a presentation, to more complex tasks, like facial recognition or video encoding.

3.2.1 SLP

The Service Location Protocol (SLP) [37] is one of the first well known service discovery systems. It is
also a classical example of a centralized system, capable of functioning from LANs to large enterprise-scale
networks. SLP can operate in two different modes: one that can only be used in small networks and another
that can handle a large number of nodes. The first approach is not centralized as messages between nodes
are exchanged via multicast, which is why it cannot be used in a large network due to message flooding.
The second approach is centralized and uses directory agents to handle a large number of queries. Nodes can
assume three different roles: user agents (UAs), service agents (SAs), and directory agents (DAs). Multiple
roles can be combined into a single node if need be. The SA provides services in the network and advertises
them; the DA collects service advertisements and indexes them; and the UA consumes the services provided
by the SAs and can query the DA for new services. Directory agent discovery can be performed either
passively, by detecting multicast advertisements, or actively, by sending SLP requests. If a DA node is
present, then UAs contact them directly via unicast; if not, UAs use multicast to query SAs for services.
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3.2.2 Jini

Sun Microsystem’s Jini framework [38] provides a platform and protocol independent service discovery
system that relies on the Java Virtual Machine (JVM), leveraging Java’s uniformity across platforms. It is
built on top of the Java Remote Method Invocation (Java-RMI) system to handle interactions between nodes,
which enables the system to adapt to network changes and not require any configuration. The Jini discovery
architecture is similar to that of SLP (discussed in Section 3.2.1) and also uses a centralized approach. The
directory agent equivalent from SLP is the lookup server, which collects service advertisements and searches
for specific services on the behalf of clients. Service discovery is performed by first detecting the lookup
server in the network. After that, the Jini agents can then send queries to search for, or publish, service
information. Unlike SLP, the lookup service component is not optional for the system to function and can
be located using multicast discovery messages. Communication between service providers and service users
is done via special Java objects, called proxy objects, that are stored in the lookup server’s directory. Jini is
capable of working in any type of network, requiring only the presence of a JVM, which can be considered a
limitation. Another limitation is that lookup servers are single points of failures due to Jini’s exclusive use
of a centralized architecture.

3.2.3 Goering et al.

Goering et al. [39] propose a service discovery protocol for local ad-hoc networks based on the use of
attenuated Bloom filters. Bloom filters, discussed in more detail in Section 3.3.4, is a hash coding technique
that provides an efficient way to test the membership of a text string in a given set of strings, while using
as little storage space as possible. The only drawback is that there is a small chance a false positive may
occur, i.e. the system claims the string is probably in the set when it really is not. This is not a problem
if the chance of it occurring is small enough. In a worst case scenario, an application will try to contact a
resource that does not exist, but that is not a problem because the application will find out and will just try
to contact another peer. The authors use attenuated Bloom filters which provide a method to locate objects,
giving preference to objects located nearby. It is simply an array of Bloom Filters of depth d, where each row
represents objects at different distances which, in this case, is in term of hops. Each node has an attenuated
Bloom filter for each of its neighbors. When a node receives a query, it will consult them to find a neighbor
that is likely in the direction the requested service can be found. The first level of the attenuated Bloom
filter corresponds to the services that are one hop away, the second to services two hops away, and so forth.
Therefore, the larger the distance from the node, the more services will be contained in the corresponding
attenuated Bloom filter which will increase chance of false positives. In this case, one can think of Bloom
Filters as a way to summarize the information of available services, where more accurate information will be
available closer to the destination. That is why queries are forwarded to a neighbor where the resource can
most likely be found. Query forwarding can be performed three different ways. It can be done in parallel,
where the query is sent in each direction a match is found, although it consumes a lot of bandwidth. It
can be done in a sequential manner, where the query is propagated only to the direction with the best/first
match and traces back in case of failure, but tends to be slow. Finally, a hybrid approach can be used which
combines the best of both worlds: the query is forwarded in parallel to a limited number of best matches
and allow them to trace back when no match is found in order to try another set of best matches. This
system does have a big limitation: only the services located up to d-hops away can be discovered by using
an attenuated Bloom filter of depth d, and no further.

3.2.4 Lv and Cao

Lv and Cao [40] propose another service discovery protocol based on Bloom Filters, but address the
drawback of the system proposed by Goering et al., where services cannot be located further than d-hops
away. The system first tries to use the service discovery method based on Attentuated Bloom Filters, discussed
in Section 3.2.3, as it has the advantage of being able to find local services efficiently. When no service
can be found d-hops away, the system uses another service discovery method proposed by Sailhan and
Issarny [41] (under Global Service Discovery) where nodes that are d-hops away need to cooperate amongst
themselves, possibly relying on nodes acting as gateways to bridge with nodes more than d-hops away.
Therefore, service discovery in this system proceeds as follows. Each node receives the attenuated Bloom
filters from its neighbors and caches them, so there are as many attenuated Bloom filters as there are
neighbors. When a query is received, the node first checks its attenuated Bloom filter to see if the service
exists. If there is a match, it sends a response to the originating node; if not, the node will check the cached
Bloom Filters of its neighbors. If the node has several neighbors, the node that is checked first is the one
with the smallest network branch. If the first does not contain the desired service, it will traceback and query
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the second smallest branch. If there is still no match, then the query is sent to a node d-hops away, where
the discovery process is repeated at that node. This way, the system is still able to discover services that
may be located more than d-hops away. The only problem is that the authors do not mention how to handle
false-positives sometimes given by the Bloom Filters, although one can assume that the system will simply
continue the discovery process when no match was found.

3.3 Efficient Data Representation

This section deals with methods and data structures that help reduce data storage and network trans-
mission costs. This is important in a Peer-to-Peer system because nodes not only have to store information
about other neighboring nodes, but also have to transmit data between themselves. Therefore, it is vital that
storage and transmission overhead is reduced as much as possible in order to increase the scalability of the
system, for if message size is reduced the network will not become saturated as easily.

3.3.1 Compression

Compression techniques [42] can be used to reduce storage and transmission costs by reducing the size
of largely repetitive data. They can be divided into two categories: dictionary based methods and statistical
based methods.

The LZW [43] method is an example of a dictionary based approach to compression, whose main feature
is eliminating the second field of a token. It starts by initializing a dictionary to all the symbols of the
alphabet, which will then be used to encode sequences of 8-bit symbols as fixed-length 12-bit codes. Thus,
the entries from 0 to 255 represent 1-character sequences consisting of the alphabet. Entries 256 through
4095 are then created in the dictionary for sequences encountered in the data as it is being encoded. At each
step of the encoding process, input symbols are gathered into sequences until it finds a combination not yet
present in the dictionary if the next character were to be read. It then outputs the code for the previously
known sequence present in the dictionary, without that character, and then adds the new sequence, this time
with the newly read character, to the dictionary. The decoding process proceeds in the same manner, but
instead of operating on normal text symbols, it works on the codes that were emitted by the encoder. This
is possible due to the fact that the manner the codes are added to the dictionary is determined by the actual
data.

Huffman coding [44] is another data compression algorithm, but uses a statistical based approach rather
than a dictionary. It uses a specific method for choosing the representation for each symbol in the text to be
compressed, which results in a prefix code. This prefix code is a string of bits that represent some symbol,
and whose prefix is never the same as any other bit string that represents another symbol. The prefix code
emitted is shorter for the most common characters and larger for the less common symbols. This is done by
building a binary tree where each node has an associated weight, and the sum of a node’s sibling’s weights
results in the parent node’s weight. The prefix code is obtained by traversing the tree until the desired symbol
is reached, resulting in a binary prefix. The most common symbols will have a bigger weight than the less
common ones, thus the prefix codes for common characters will be short as the depth the algorithm needs
to traverse into the tree is shorter compared to the less popular symbols.

3.3.2 Chunks and Hashing

Transferring large files over a network can consume a lot of time and bandwidth. In such cases, there are
systems that can exploit the similarity between different versions of the same file, as it is not common that
a file changes completely between versions, or even between different files in order to reduce the amount
of data to be transmitted over the network. In general, this is done by dividing a file into fragments and
sending only those fragments that have been modified since the last version stored at the destination node.

Rsync [45] synchronizes files and directories from one location to another over the network while mini-
mizing data transfer by exploiting commonality between files. This technique is usually referred to as delta
encoding and it consists of storing and transmitting data in the form of differences between data. An example
transfer using a simplified version of rsync could proceed as follows. First, the recipient breaks a previous
version of a file into non-overlapping, contiguous, fixed-sized blocks. It then calculates and transmits the
hashes for those blocks. Once the sender receives those hashes, it computes the hashes of all overlapping
block of the file with the same name. If any of those hashes match the ones sent by the recipient, then those
sections are not sent over the network, instead, the recipient is notified of the location to the data in the
previous version of the local file.

The diff [46] Unix utility also operates on differences between files. It takes two versions of the same
files and calculates the difference between them. The program output can then be used by the patch utility
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to transform one file into another. The CVS [47] version control system is another system that uses this
delta encoding technique to bring a users working directory tree up to date.

LBFS [48] is a Low-Bandwidth Network File System that saves bandwidth by exploiting not only the
similarities between different versions of the same file, but also by exploiting similarities between different
files (e.g. auto-save files, sometimes used by text editors, that have different names but whose content is very
much the same). It avoids sending duplicated data when the same data can be found in the client’s cache.
To exploit similarities between different versions and files, the LBFS server divides the files into chunks
and indexes them by calculating their hash value. The client also maintains a database of chunks to help
identify duplicated data. LBFS detects which chunks are already present on client-side, thus avoiding the
transmission of redundant data. The system relies of the extremely low probability of collision of the SHA-1
hash function and assumes chunks with the same hash value are indeed the same chunk. Apart from also
considering similarities between files, LBFS differs yet again from Rsync with regards to file division: LBFS
divides the files into chunks based on their contents rather than on position within a file, by using a technique
called Rabin fingerprints. This technique creates a type of insulation around chunks, as any modifications to
the content in a block will only affect that chunk and not the boundaries of the remaining ones. Therefore,
as chunk boundary positions generally stay the same, except for the places where the content has changes,
the system is more intelligent as to which chunks really have differed and need to be sent to the client, and
which the client already has. The same cannot be said for systems that rely on boundaries based on position,
for any alteration in the beginning of the file may impact the boundaries in the rest of the file, resulting in
many new chunks to be sent over the network, even though the actual content is mostly the same.

3.3.3 Erasure Codes

Erasure codes permit the transformation of a message of k symbols into a larger message with n symbols,
such that the message can be recovered from a subset of the n symbols. Therefore, they can be used to
correct data, up to a certain point, that has been corrupted during its transmission. Erasure codes can also
be used to tolerate failures [49], as is common in storage Peer-to-Peer applications, data grids, and so on. In
general, by taking n data devices and encoding them in m additional data devices, the system will be able
to tolerate up to m failures.

[50] describes a replication protocol, called Reperasure, for a peer-to-peer storage system with the primary
objective of ensuring data availability and, secondarily, to speed up the access of data from many clients.
Although, the authors are only interested in P2P systems that will guarantee the retrieval of an existing
object, such as Chord (Section 3.1.1.2.1), CAN (Section 3.1.1.2.2), Pastry (Section 3.1.1.3.1), or any other
DHT. They also assume nodes belong to a well-defined administration domain, unlike other systems such
as Gnutella (Section 3.1.1.1.2) and Freenet (Section 3.1.1.1.3), where nodes are volunteered from owners.
Therefore, system dynamism assumed is not as dramatic, but they still consider the fact that nodes can fail
unexpectedly. Traditionally, replication can be performed by generating multiple full replicas and distributing
them over failure-independent and geographically dispersed nodes. But in this system, the authors consider
there to be, logically, one single copy. This copy is then divided into many blocks, known as data blocks, and
is distributed across the nodes in the underlying DHT. The check blocks, which are the additional blocks
that were encoded using an erasure code, are also stored in the DHT along with the data blocks. The storage
space needed to host all these blocks is much smaller than having to distribute and store full replicas. An
additional benefit can be achieved if access to a sufficient number of blocks is done in parallel, which will
increase performance and make more efficient use of the network and storage bandwidth. The novelty of this
system is that we can logically consider the DHT as a super-reliable disk with very high I/O bandwidth.

3.3.4 Bloom Filters

Bloom Filters [51] are a probabilistic data structure capable of storing a list of items to conduct member-
ship tests with very little storage space. Because of this, not only do they reduce storage overhead, but they
can also be transferred over a network without incurring too much transmission overhead. This comes at
the price of a small false positive rate (items not in the set have a small constant probability of being listed
as in the set), but no false negatives are possible (items that were never in the set will not mistakingly be
listed as such). Bloom filters have been applied in a variety of systems [52], such as dictionaries, databases,
and network applications.

A Bloom filter representing a set S = {x1, x2, ..., xn} of n elements is stored in an array of m bits
all initially set to 0. It must also use k different hash functions, each of which map some element to one
position in the m bit array. Because Bloom filters are implemented as bit arrays, the union of two sets can
be computed by performing the OR operation between the two, while their approximate intersections can
be computing using the AND operation. Insertion is performed by passing the element through each of the
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k different hash functions and setting the resulting position in the m bit array to one. To test whether an
element is in the set or not, it has to be passed through all hash functions and if all the resulting positions
in the array are set to one, then the element hash a high probability of being in the set. If any position has
the value zero, then we know for definite that it is not in the set (no false negatives). The small false positive
rate arises from the fact that when querying for an element that is not in the set, some hash functions may
result in positions that were already used (have the value one) for a previously inserted item. Therefore,
the more elements are inserted into the Bloom filter, the higher the chance of a query resulting in a false
positive. Another shortcoming is the inability to remove an element from the Bloom filter, as simply setting
the positions given by the k hash functions to zero have the side effect of removing other elements as well.

The inability of removing entries from a standard Bloom filter can be solved by using a counting
Bloom filter [53]. The way it works is, instead of using a bit array to represent the Bloom filter, it uses a
small counter. When an element is inserted, the counters at the positions given by the k hash functions are
incremented; deletion is supported by decrementing the corresponding counters. In order to avoid counter
overflow, a large enough counter needs to be chosen. One possible solution is to leave the counter at its
maximum value when it overflows. But, one needs to take care because, later on, it may cause a false
negative if the counter reaches 0 when it should be non-zero.

In [54], Mitzenmacher shows that using a larger, but sparser, bloom filter can have the same false positive
rate with a smaller number of transmitted bits. Or, alternatively, the transmission of the same number of bits
can be used to improve the false positive rate, or even another suitable tradeoff between the two. Therefore,
compressed Bloom filters can be used to reduce the number of bits to broadcast, the false positive rate,
and/or the computation per lookup. As mentioned in [54], counting Bloom filters can also benefit from
compression.

Almeida et al. [55] proposed another variant of Bloom filters: rather than needing to calculate the ideal
size of a Bloom filter to have a certain false positive rate which cannot increase in size as more elements are
inserted, scalable Bloom filters can be used that are able to dynamically adapt to the number of stored
items, while retaining a minimum false positive rate. This is achieved by using a sequence of standard Bloom
filters, each with increasing capacity and a tighter false positive rate. Therefore, one only needs to determine
the desired minimum false positive probability regardless of the number of elements to be inserted. This also
avoids the waste of space as one does not need to be conservative with regards to the size of the Bloom filter
because scalable Bloom filters are automatically adjusted.

Attenuated Bloom filters (already discussed in Section 3.2.3) were proposed in [56] to optimize location
performance, especially for objects that are located near the searching node. It uses an array of Bloom filters
with depth d, where each row i, for 1 ≤ i ≤ d, corresponds to the information stored at nodes i hops away. As
the depth increases the more information will be stored in that Bloom filter row, making the respective filter
more attenuated and resulting in a higher probability of false positives. Therefore, information closest to the
node is more accurate, and becomes less so as the distance between nodes increases. The major advantage
of this technique is that it permits us to efficiently locate objects, with a certain false positive rate, up to
d hops away, using little storage space, as Bloom filters themselves are space efficient. The disadvantage is
that it only lets us search information about nodes up to d hops away.

3.4 Concluding Remarks

In this section we discussed the state of the art of Peer-to-Peer (Table 1), Grid, and Cycle Sharing systems
(Table 2) that perform resource discovery. We also analyzed a few service discovery protocols (Table 3) and
various forms to represent data in an efficient manner (Table 4).

Notice that many of the systems discussed in the P2P Resource Discovery subsection are related to
resource discovery in Grid environments. This reinforces the idea presented in the Introduction of this work
that as Grid systems grow in size they will tend toward P2P systems in order to support a larger and more
transient node population. To add to this argument is the fact that Cycle Sharing systems, which can be
considered a subset of Grid computing where the only resource that matters is CPU cycles, also utilize P2P
technology, enabling them to harness the power of many volunteered computers connected to the Internet.
As the overall objective of the GINGER (a.k.a. GiGi) project [12] is to create a “grid-for-the-masses” and
bring Grid computing to home users connected to the Internet, it only makes sense for us to create a
P2P resource discovery mechanism to be able to support a vast amount of users. Because of GiGi’s usage
scenarios, not only does the discovery mechanism have to support the location of physical resources, but also
the services, applications, and libraries installed in each user’s computers. Each of the systems presented in
this section handled these problems in isolation: systems in Section 3.1 only handled the discovery of physical
computer resources and files, while systems in Section 3.2 only deal with the discovery of services. None of
them attempted to aggregate all that information into one system to allow the discovery of various types of
resources. This is precisely what the architecture proposed in this report will do.
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For any discovery mechanism to work, we need to be able to store and transmit resource information. That
is why we assessed various forms to efficiently represent data. Compression provides us with a way to reduce
the size of data at the cost of CPU usage. As compression techniques yield higher compression rates with data
that has a lot of repetition, we will not gain any advantage because there is very little redundant data when
storing resource information. Another disadvantage would be the constant compressing and decompressing
of information when receiving and sending queries, which are already small in size. The small query size is
also a reason that Chunks and Hashing techniques are not really applicable here, as the major advantage
they bring is reducing the amount of data needed to transfer large files by exploiting cross-file similarities.
Erasure codes can be used as forward error correction codes, which permit the reconstruction of the original
message using a subset of encoded symbols. This same technique can be used to provide replication of files
without creating full-replicas and thus reducing the required storage space. None of these usage cases are
applicable to the discovery of resources where queries are small and are always different. Finally, Bloom
filters, the last technique that was assessed, are highly applicable for what we want to do. They allow us to
perform membership tests in an efficient manner, while requiring very little storage space. This does come
at a price though: the possibility of a false positive occurring. But, as long as it can be mitigated, Bloom
filters can help improve the efficiency of the system, in terms of performance, required storage space, and
size of transmitted data. Because we are able to mitigate the occurrence of a false positive by requiring an
additional hop, we find that Bloom filters will help us accomplish our goals of efficiency and scalability.

System Centralization Type Routing Search Type

Napster Centralized Unstructured Centralized Knowledge Index

Gnutella Decentralized Unstructured Flooding Uninformed

Freenet Decentralized Unstructured Flooding Informed

Iamnitchi et al. Decentralized Unstructured Flooding Informed + Uninformed

Filali et al. Decentralized Unstructured Flooding Uninformed + Cache

Liu et al. Decentralized Unstructured Flooding Knowledge Index + Uninformed

Chord Decentralized Structured DHT Exact-match

CAN Decentralized Structured DHT Exact-match

Andrzejak and Xu Decentralized Structured DHT Exact-match + Range

Schmidt et al. Decentralized Structured DHT Exact-match + Multi-attribute

Ratnasamy et al. Decentralized Structured DHT Exact-match + Range + Multi-attribute

Marzolla et al. Decentralized Structured Tree Informed

Pastry Decentralized Hybrid DHT Exact-match

Kademlia Decentralized Hybrid DHT Exact-match

Mastroianni et al. Partially Centralized Hybrid Flooding (Super-peer) Informed

XenoSearch Decentralized Hybrid DHT Exact-match + Range + Multi-attribute

Table 1. Overview of P2P Systems

System Organization Administration Technology Scale Provider Provider Connectivity

Condor Centralized Federated Grid LAN Institution Stable

Globus MDS-2 Centralized Federated Grid LAN Institution Stable

Legion Centralized Federated Grid LAN Institution Stable

BOINC Distributed Centralized P2P + Grid Internet Volunteer Unstable

CCOF Distributed Centralized P2P + Grid Internet Volunteer Unstable

Table 2. Overview of Grid and Cycle Sharing Systems

4 Proposed Architecture

The objective of this work is to enhance the resource discovery mechanism in GINGER [12] (Grid
Infrastructure for Non-Grid EnviRonments), also known as GiGi, by making it completely decentralized
and more complete. This completeness regards the system’s ability to discover, not only basic resources (e.g.
CPU, Bandwidth, Memory, etc.), but also specific installed applications and services. Because GiGi can be
used in many different ways (“grid-for-the-masses”), it has to be flexible enough to run different types of jobs
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System Architecture Scale Search Type

SLP Client-Server Enterprise Directory

Jini Client-Server Enterprise Directory

Goering et al. P2P Ad-hoc Network Informed

Lv and Cao P2P Ad-hoc Network Informed

Table 3. Overview of Service Discovery Protocols

Compression Reduce data size via an encoding process which takes advantage of
redundant information.

Chunks and Hashing Divide files into chunks and hash them in order to determine which
chunks a client already has and only send the ones that differ.

Erasure Codes Encode a message into a few symbols which can then be used later on
to reconstruct the original message when there are pieces missing from
the received message.

Bloom Filters Space-efficient probabilistic data structure that is used to efficiently
test whether an element is a member in a set, with the possibility of a
false-positive occurring.

Table 4. Summary of Efficient Data Representation techniques

normally performed by home-users. Each job has a set of minimum requirements in order to be completed.
Thus, the discovery of resources (e.g. CPU, memory, storage, etc.), services (e.g. face recognition, high-res
rendering, etc.), and applications (e.g. video encoders, simulators, etc.) is a critical component that needs
to be as efficient as possible. For, if it is not efficient, it will not be used. After all, if the main objective of
GiGi is to bring more computing power via parallelization of tasks to home-users and resource discovery is
slow, then it has failed.

This Section, therefore, contains my proposal for a resource, application, and service discovery mechanism
and is divided as follows. Section 4.1 presents the context in which the architecture I propose here should
be taken into. Section 4.2 will present an overview of the proposed discovery mechanism, along with a
description of how it will function. Finally, naming conventions and rules used for resources, applications,
and services are discussed in Section 4.4, along with how resource insertion and querying will be performed.

4.1 General Overview

In its most abstract form, the Ginger [12] project can be thought of as a system where a user can submit
a job and then later on retrieve those results, as can be seen in Figure 5. This job is divided into smaller
tasks (called Gridlets), which are then distributed over many volunteered computers that are interconnected
in a Peer-to-Peer overlay. Each of these jobs have a set of requirements that need to be met in order to
be executed. Such requirements may include things like: a CPU of at least 2GHz, version 2.3 of the video
encoding application ffmpeg, and at least 50 GBs of free storage space. This is where the work presented in
this paper comes into play. It will provide a mechanism to search for computers, connected in a P2P network,
that satisfy the requirements needed to perform a specified task.

4.2 Architecture Overview

The discovery mechanism I propose in this work takes the form of an unstructured peer-to-peer network,
i.e. nodes are randomly connected to a fixed number of other nodes. Using an unstructured P2P model
permits us to handle a very dynamic peer population with high churn rates, but it also means that messages
will not be routed as efficiently as in, say, a structured system. To combat this limitation, I also propose the
usage of attenuated Bloom filters in order to speed up resource location. Bloom filters were chosen because
they allow us to efficiently perform membership tests in a space efficient manner, plus, the effect of false
positives can be mitigated by requiring an extra step for confirmation.

The proposed resource discovery mechanism will work as follows. Each node in the network will keep a
cached version of the attenuated Bloom filters of their neighbors. This information is then combined into
one single attenuated Bloom filter by calculating the union of each Bloom filter at the same depth from all
neighbors. For instance, say node A receives the following attenuated Bloom filters from its neighbors with
depth d = 2: (00011, 10000) and (11001, 00001). To combine the information, the OR operation is performed
for each depth. So, for d = 1, the resulting information is 11011, and for d = 2 it is 10001. The consequence



20 Raoul Felix

P2P
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Network

1. Submit Job 2. Receive Results

Fig. 5. General overview of a system where resource discovery is necessary. This image represents the Ginger archi-
tecture in its most abstract form.

of using an attenuated Bloom filter is that a node will only have access to a summary of services available
up to d = 2 hops away. This can be seen in Figure 6, assuming a maximum depth of 2, where node A
only has information about nodes up to 2 hops away, i.e. node A is unaware of the resources, services, and
applications present in nodes 1, 2, 3, 4, 5, 6, and beyond. A solution for this problem is discussed further in
Section 4.2.1.

4.2.1 Peer Discovery

If a query’s requirements cannot be satisfied by nodes within the attenuated Bloom filter’s depth d limit,
the system will forward the query to a node that is d+ 1 hops away and restart the search. But to do this, a
node needs to know about other peers that are out of its range. Therefore, I propose a random walk strategy
where a peer discovery query is sent randomly to w nodes, in search for nodes that are l hops away. When the
query reaches nodes l hops away, they reply directly to the originating node providing enough information
to be contacted (e.g. IP address). The pseudo-code for this procedure can be seen in Algorithm 1.

Algorithm 1 Pseudo-code to be executed when a Peer Discovery Query is received
this query.l← this query.l − 1
if this query.l 6= 0 then

random nodes← select this query.w random nodes from neighbor list
for each random nodes as node do

node.send(this query)
end for

else
this query.originator.send(IP )

end if

For example, in Figure 6, suppose node A cannot satisfy a query with the resource information it has
about nodes up to d = 2 hops away. It needs to be aware of at least some nodes more than d+ 1 hops away
in order to restart the query at one of those nodes. To do this, assuming w = 2 and l = d + 1 = 3, node A
sends a peer discovery query (blue dashed lines with arrows) to w = 2 randomly selected nodes: C and D.
When they get the query, they decrement l by one and check if it is 0. This is not the case, so they randomly
select another w neighbors and resend the query. In node C’s case, the nodes that were chosen are nodes
I and II (which are 2 hops away from A). This continues until nodes receive a peer discovery query with
l = 1, which in Figure 6 are nodes 1, 2, 3, 4, and 6. After decrementing l and verifying l = 0, according
to Algorithm 1, the nodes will send a reply with contact information directly to the node that originated
the query (green dotted lines with hollow triangle tip): node A. Now that node A knows that nodes 1, 3, 4,
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Fig. 6. Example architecture overview of network from node A’s perspective. Nodes are enclosed in circles with
increasing depth, meaning they are depth hops away from node A. To help distinguish between nodes at different
distances the following visual aids were used: connection line thickness varies from thick (closer) to thin (further
away), and nodes at different hops away from node A have their own shape and naming scheme. More specifically,
nodes 1 hop away have alphabetic names and are octagons; nodes 2 hops away have roman numerals as names and
are hexagons; and nodes 3 hops away have arabic numbers as names and are diamonds. Blue dashed lines with
arrow tips show how node A finds peers that are out of reach of the attenuated Bloom filter (assuming depth = 2),
which is explained in Section 4.2.1. Green dotted lines with hollow triangles represent peers responding node A’s peer
discovery query.
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5, and 6 are more than d = 2 hops away, it can restart a query at any one of them when its requirements
cannot be satisfied with peers up to d hops.

4.3 Resource, Service, and Application Discovery

End
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Fig. 7. Flowchart illustrating resource, service, and application discovery explained in Section 4.3

The discovery of resources, applications, and services (illustrated as a flowchart in Figure 7) will be
performed in the following way. When a node receives a query, it will check its own information to see if
it can satisfy the requirements. If it does, a reply is sent directly to the node that originated the query. If
not, it goes through its aggregated attenuated Bloom filter, which contains the combined information from
its neighbors attenuated Bloom filters. This way, we can quickly determine if the query cannot be satisfied
with nodes up to d hops away, in which case it will be sent directly to a node d + 1 hops away to restart
the search. If the query can be satisfied with nodes at most d hops away, the node then needs to determine
the direction to send the query in so it can be resolved. This is done by checking all the cached attenuated
Bloom filters of its neighbors to determine which one has the requested resources. If found, it then forwards
the query to that neighbor. If not, then it is because the aggregated attenuated Bloom filter returned a false
positive, which is mitigated by simply sending the query to a node more than d+ 1 hops away so it can be
resolved.

For example, in Figure 6, if node A were to receive a query, it would start by looking at its own resources,
services, and applications. If it cannot satisfy the requirements, then node A consults its aggregated attenu-
ated Bloom filter, to see if the query can be satisfied with nodes up to 2 hops away, assuming an attenuated
Bloom filter with depth d = 2. In other words, it would quickly determine if either of the nodes B, C, D, I,
II, III, IV, or V contain the resources needed to satisfy the query. If none of them do, then node A needs
to forward the query to one of the nodes more than d + 1 hops away: node 1, 2, 3, 4, 5, or 6. However, if
the query can be satisfied within d = 2 hops, then node A needs to determine if it must forward the query
to either node B, node C, or node D. This is done by checking the cached attenuated Bloom filter of those
nodes. The discovery process continues until the query reaches the node that can satisfy all the requirements
in the query.

4.4 Resource Representation

Information about resources, applications, and services that each node offer are represented inside a
Bloom filter. But, because a Bloom filter is only capable of performing membership tests given a key, we
need to store information about those resources in the actual key. For example, say a node has a CPU of
3GHz, we cannot simply store the name “CPU” in the Bloom filter, as the only information we can extract
from that is that a node has a CPU. We need to add information about the actual resource (e.g. its value:
3000MHz) to the key that is inserted in the Bloom filter for it to be useful.

Therefore, I propose a naming convention for the keys that are inserted into a Bloom filter. It will use
namespaces to differentiate between resources and their values, which will also help with the searching of
resources (discussed in Section 4.4.1). The naming convention will use a 3-level namespace, each separated
using the colon (“:”) as a delimiter, and will follow the following rules:

– Level 1: Name of the Resource, Service, or Application (e.g. CPU, ffmpeg, etc)
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– Level 2: Type of the Resource, Service, or Application (e.g. MHz, version, etc.)
– Level 3: Actual value of the Resource, Service, or Application

For instance, if we wanted to store the fact that a node has a CPU of 3 GHz, the key we would insert
into the Bloom filter would be: “CPU:GHz:3”. Or, if a node has the application ffmpeg version 2.3 installed,
the key would look like: “ffmpeg:version:2.3”. But, for different nodes to be able to communicate with each
other and search for the same resources, the naming of resources, services, and applications need to be the
same between all of them. An ontology could be used, but that is out of the scope of this work. For the time
being, the system will allow the names of these different resources to be specified in a configuration file, and
we will assume that all nodes that take part in the system use the same configuration files so as to use the
same names.

4.4.1 Resource Insertion and Querying

However, just following a naming convention will not suffice for the discovery of resources. We also need
to take into account the values used for each resource. If we do not restrict the possible values, we would need
to employ a brute force strategy when querying for resources, trying each value combination and testing the
Bloom filter. For example, to find a node that at least contains a CPU of 2.6 GHz, we would need to test for
values such as 2.6, 2.7, 2.8, 2.9, 3.0, etc., which is highly inefficient. To speed this up, we define a minimum,
maximum, and a quantum for each resource value type (which are also specified in a configuration file). The
minimum (resp. maximum) is the smallest (resp. largest) value that the resource will have encoded in the
Bloom filter. The quantum defines how the value space, from minimum to maximum, will be divided. When
a resource is inserted into the Bloom filter, it is first inserted with the key that corresponds to its range, and
then with all the other keys that correspond to ranges smaller than the resource’s value.

For example, if we define minimum = 0, maximum = 4000, and quantum = 1000 for CPU values in
MHz, then the range of values is divided into the following segments: ]0, 1000]; ]1000, 2000]; ]2000, 3000];
and ]3000, 4000]. This can be seen in Table 5b. If a CPU of 999MHz were to be inserted into the Bloom
filter, it would need to be inserted under the value 1000: “CPU:MHz:1000”. If a CPU of 2600 MHz were to
be inserted, then it would need to be inserted under the values 3000, 2000, and 1000, which results in the
following keys: “CPU:MHz:3000”, “CPU:MHz:2000”, and “CPU:MHz:1000”.

Now, when querying a Bloom filter for a value, the range the value falls under needs to be determined for
the specified resource and checked. For instance, if a query requires a CPU of at least 2600 MHz, we would
only need to perform one exact match query using the range the value in the requirements belongs to, which
in this case is 3000 (2600 ⊂]2000, 3000]). Therefore, we only need to test the key “CPU:MHz:3000” against a
Bloom filter because processors with a faster CPU will also be registered under this key. This strategy avoids
the brute-force approach and efficiently speeds up the querying process. However, one needs to take care
when specifying the quantum value due to precision problems. In this example, a CPU of at least 2600 MHz
is required, but testing the Bloom filter with key “CPU:MHz:3000” can result in CPUs that belong to the
interval ]2000, 2599], thus not satisfying the requirements. In a real-world system, using a quantum = 200
would probably be more suitable, giving enough precision without requiring too much overhead. This, and
using a key one quantum higher than the required resource value will ensure query satisfaction.

Computer CPU (MHz)

P1 999

P2 1333

P3 2000

P4 2600

P5 3006

Computer
CPU:MHz:1000 CPU:MHz:2000 CPU:MHz:3000 CPU:MHz:4000

]0, 1000] ]1000, 2000] ]2000, 3000] ]3000, 4000]

P1 X
P2 X X
P3 X X X
P4 X X X
P5 X X X X

(a) (b)

Table 5. Example (used in Section 4.4.1) showing the keys that need to be used when inserting the CPU resource
values into a Bloom filter.

5 Proposed Evaluation Methodology

The system presented in this report will be evaluated in a simulator, namely PeerSim [57]. The objective
of this work is to create not only an efficient resource, service, and application discovery system for a Peer-
to-Peer Grid, but also a scalable one.
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To evaluate the system I propose simulating the discovery of resources, services, and applications of
typical application usage scenarios, namely a ray tracing execution, video transcoding, and, possibly, Monte
Carlo simulations. Each simulation will be in function of input size and the number of gridlets, which will
influence the number of queries with requirements for the system to resolve. For each execution the following
metrics will be analysed:

– Percentage of satisfied requests;
– Total number and size of messages sent;
– Average number of hops per query;
– Time taken to resolve a query;
– Size of data each node stores in order to perform resource discovery;
– Number of failures due to peer disconnects or unavailability of resources/services.

These tests will be performed using different overlay dimensions, from a small overlay of less than a
hundred nodes to a large one with thousands of nodes. The number of nodes that are able to actually satisfy
requests will also vary.

Due to the fact that the architecture presented in this report makes use of Bloom filters, which will affect
the efficiency of resource discovery, I also propose to analyze the influence of the false positive rate and the
effect it has on Bloom filter size used for storage and transmission, the effect false positives have on resource
discovery efficiency and number of hops, and how the depth of attenuated Bloom filters affects resource
discovery.

6 Conclusion

The number of users connected to the Internet keeps on growing. All these interconnected computer
resources can be combined to provide huge amounts of computing power. Nowadays, with the evolution of
computers and software, average home users start requiring and wishing for better and faster computers.
With GiGi [12], these home users can take advantage of Grid computing, which before was only available to
scientific and corporate communities. Tasks that would usually take a lot of time, such as audio and video
compression, signal processing related to multimedia content (e.g. photo, video, and audio enhancement),
intensive calculus for content generation (e.g. ray-tracing, fractal generation), among others, can now be
sped up by parallelizing and distributing them over many computers. However, for GiGi to do this, it needs
to be able to locate computer resources that are able to satisfy task prerequisites.

Therefore, this report presents an architecture for a scalable discovery mechanism that will not only be
able to locate physical resources, but also services and applications installed in computers connected to a P2P
Grid, to be included in the GiGi project. The overall aim of this work is to create a decentralized discovery
mechanism, capable of discovering a variety of resources and services in an efficient and scalable manner.
Various performance metrics have been proposed to evaluate the system in order to reach a conclusion with
regards to efficiency and scalability. This report also presents an analysis of previous discovery methods
present in P2P, Grid, and Cycle Sharing systems, along with various forms to represent information that
will be stored in, and transmitted by, each node in the network.

The architecture presented in this work was created taking into account the various objectives we wish
to accomplish with the system. Only once this discovery mechanism has been implemented and evaluated
will we be able to offer concluding remarks with regards to the satisfaction of our objectives.
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