
1

browserCloud.js
A federated community cloud served by a P2P overlay

network on top of the web platform

David Dias Email: mail@daviddias.me
Luı́s Veiga Email: luis.veiga@inesc-id.pt

Técnico Lisboa, University of Lisbon
Lisbon, Portugal, Avenida Rovisco Pais, 1 1049-001

Abstract—Grid Computing fundamental basis is to use idle resources in
order to maximize their efficiency. This approach quickly grew into non
Grid environments, leveraging volunteered shared resources, giving the
birth of Public Computing. Today, we face the challenge of how to create
a simple and effective way for people to participate in such community
efforts and even more importantly, how to reduce the friction of adoption
by the developers and researchers to use and provide these resources for
their applications. This thesis explores and proposes novel ways to enable
end user machines to communicate, using recent Web technologies such
as WebRTC.

Keywords—Cloud Computing, Peer-to-peer, Voluntary Computing, De-
centralized, Javascript, WebRTC.

I. INTRODUCTION

In the information communications technology landscape, today,
user generated data has been growing at a large pace, with the
introduction of social networks, search engines, Internet of Things,
which led to innovation on home and vehicle automation. The storage,
transfer, and carry out of processing and analysis of all this data brings
the need for considerable new breakthroughs, enabling us to optimize
systems towards a better and enhanced experience. However, how to
use the information available to achieve these breakthroughs has been
one of the main challenges since then.

Currently addressing these issues in part, Cloud Computing has
revolutionized the computing landscape due to key advantages to
developers/users over pre-existing computing paradigms, the main
reasons are:
• Virtually unlimited scalability of resources, avoiding disruptive

infrastructure replacements.
• Utility-inspired pay-as-you-go and self-service purchasing

model, minimizing capital expenditure.
• Virtualization-enabled seamless usage and easier programming

interfaces.
• Simple, portable internet service based interfaces, straightfor-

ward for non expert users, enabling adoption and use of cloud
services without any prior training.

Grid computing had offered before a solution for high CPU bound
computations, however it has high entry barriers, being necessary
to have a large infrastructure, even if just to execute small or
medium size computing jobs. Cloud computing solves this by offering
a solution “pay-as-you-go”, which transformed computing into an
utility.

Still, even though we are able to integrate several Cloud providers
into an open software stack, Cloud computing relies nowadays on
centralized architectures, resorting to data centers, using mainly the
Client-Server model. In this work, we pursue a shift in this paradigm,
bridging the worlds of decentralized communications with efficient
resource discovery capabilities, in a platform that is ubiquitous and
powerful, the Web Platform.

A. Problem Statement

There is a large untapped source of volunteered shared resources
that can be used as a cheaper alternative to large computing platforms.

1) Current Shortcomings: We have identified several issues with
current solutions, these are:

• Typical resource sharing networks do not offer an interface for
a user to act as a consumer and contributor at the same time.

• Interoperability is not a prime concern.
• There is a high level of entrance cost for a user to contribute

to a given resource sharing network.
• Load balancing strategies for volunteer computing networks

are based on centralized control, often not using the resources
available efficiently and effectively.

• Centralized Computing platforms have scalability problems as
the network and resource usage grows.

B. Research Proposal

To accomplish this, we propose a new approach to abandon
the classic centralized Cloud Computing paradigm, towards a com-
mon, dynamic. This, by means of a fully decentralized architecture,
federating freely ad-hoc distributed and heterogeneous resources,
with instant effective resource usage and progress. Additional goals
may include: arbitration, service-level agreements, resource handover,
compatibility and maximization of host’s and user’s criteria, and cost-
and carbon-efficiency models.

This work will address extending the Web Platform with tech-
nologies such as: WebRTC, Emscripten, Javascript and IndexedDB
to create a structured peer-to-peer overlay network, federating ad-
hoc personal resources into a geo-distributed cloud infrastructure,
representing the definition made by C.Shirky of what an peer-to-peer
means:

“An application is peer-to-peer if it aggregates resources at the
networks edge, and those resources can be anything. It can be content,
it can be cycles, it can be storage space, it can be human presence.”,
C.Shirky 1

C. Structure and Roadmap

We start by presenting in Chapter 2, the state of the art for the
technologies and areas of study relevant for he proposed work, which
are: Cloud computing and Open Source Cloud Platforms (at 2.1),
Volunteered resource sharing (at 2.2) and Resource sharing using the
Web platform (at 2.3). In Chapter 3, we present thed architecture
and respective software stack, moving to Implementation details in
Chapter 4 and system evaluation present on Chapter 5.

D. Publications, Presentations and References

We witness a new thread in Javascript, Node.js, WebRTC and
essencially in the Web Open Source communities to move to a model
where contributions to the ecosystem are measured by their ability to
be used by other projects, reviewed and studied from their internals
and easy to use. We have fully adhered to and adopted this mindset
since the beginning of the development of browserCloud.js, taking
the project to the community and collecting feedback early and often,
getting other developers excited to use the platform. In this process,
we’ve achieved:

• Talk at Data Terra Nemo2, P2P Conf in Berlin, Germany.
• Talk delivered at OpoJS, Oporto, Portugal.The video of this

talk was later published3

• WebRTC Weekly Issue #60 mention, the number one
WebRTC newsletter with more than 1000 subscribers
(https://webrtcweekly.com/issue/webrtc-weekly-issue-60/).

• Number one Top article in EchoJS for 3 days in a row and
Top-5 for 7 days. (http://www.echojs.com/news/14009)

1Clay Shirky’s Internet Writings - http://www.shirky.com
2http://dtn.is/
3https://www.youtube.com/watch?v=fNQGGGE zI



2

II. RELATED WORK

The lack of applications portability in Cloud Computing has been
identified as a major issue by growing companies, known as ‘lock-in
syndrome’, becoming one of the main factors when opting, or not,
for a Cloud Provider, the industry realized this issue and started what
is known as OpenStack4.

OpenStack is an open source cloud computing platform initiative
founded by Rackspace Hosting and NASA. It has grown to be de facto
standard of massively scalable open source cloud operating system.
There is an underlying illusion that is the fact that you still have to use
OpenStack in order to have portability, it is just a more generalized
and free version of the ‘lock-in syndrome’. Other solutions are:

• Eucalyptus - is a free and open source software to build
Amazon Web Services Cloud like architectures for a private
and/or hybrid Clouds. From the three solutions described,
Eucalyptus is the one that is more deeply entangled with the
concept of a normal Cloud.

• IEEE Intercloud - pushes forward a new Cloud Computing
design pattern, with the possibility to federate several clouds
operated by enterprise or other providers, increasing the scala-
bility and portability of applications.

• pkgcloud - is an open source standard library that abstracts
differences between several cloud providers, by offering a
unified vocabulary for services like storage, compute, DNS,
load balancers.

One interesting aspect that we want to remark is that the more
recent solutions look for interoperability through abstraction and not
by enforcing a specific stack.

Another trend in Cloud Computing are the Community Clouds,
where computing resources might be shared and traded through
the available network or through a Community Network, where
individuals can build their own data links, this is also known as
“bottom-up networking”. CONFINE [6] is an European effort that
has the goal to federate existing community networks, creating an
experimental testbed for research on community owned local IP
networks. From this project, resulted Community-Lab,5 a federation
between guifi.net, AWMN and FunkFeuer (community network from
Vienna and Graz, Austria).

Volunteered resource sharing networks enable the cooperation
between individuals to solve higher degree computational problems,
by sharing idle resources that otherwise would be wasted. The type
of computations performed in this Application-level networks (ALN),
are possible thanks to the definition of the problem in meta-heuristics,
describing it with as laws of nature [3]. This process creates small
individual sets of units of computation, known as ‘bag of tasks’, easy
to distribute through several machines in and executed in parallel.

In order to increase the flexibility of the jobs executed by the
volunteered resources, the concept of Gridlet [2] [7] appears as an
unit of workload, combining the data with the logic needed to perform
the computation in one package.

One of the main focuses with the proposed work, is to take
advantage of the more recent developments of the Web platform to
make the intended design viable, the system depends on very lower
level components such as:

• High dynamic runtime for ongoing updates to the platform
and specific assets for job execution, using JavaScript [4],
an interpreted language with an high dynamic runtime, has
proven to be the right candidate for a modular Web Platform,
enabling applications to evolve continuously over time, by

4http://www.openstack.org
5http://community-lab.org

simply changing the pieces that were updated. HTTP2.0 [10]
also plays a important role towards this goal with differential
updates, binary framing and prioritization of data frames.

• Close-to-native performance for highly CPU-bound jobs. This
is achieve through Emscripten [12], a LLVM(Low Level
Virtual Machine) to JavaScript compiler, enabled native per-
formance on Web apps by compiling any language that can
be converted to LLVM bytecode, for example C/C++, into
JavaScript.

• Peer-to-peer interconnectivity with WebRTC6, a technology
being developed by Google, Mozilla and Opera, with the goal
of enabling Real-Time Communications in the browser via a
JavaScript API.

• Scalable storage and fast indexing with ‘level.js’, an efficient
way to store larger amounts of data in the browser machine
persistent storage, its implementation works as an abstraction
on top of the leveldown API on top of IndexedDB7.

Previous attempts on cycle sharing through web platform:
The first research of browser-based distributed cycle sharing was
performed by Juan-J. Merelo, et. al., which introduced a Distributed
Computation on Ruby on Rails framework [5]. The system used a
client-server architecture in which clients, using a browser would
connect to a endpoint, where they would download the jobs to
be executed and sent back the results. In order to increase the
performance of this system, a new system [3] of browser-based
distributed cycle sharing was creating using Node.js as a backend for
very intensive Input/Output operations [11], with the goal of increased
efficiency, this new system uses normal webpages (blogs, news sites,
social networks) to host the client code that will connect with the
backend in order to retrieve and execute the jobs, while the user is
using the webpage, this concept is known as parasitic computing [1],
where the user gets to contribute with his resources without having to
know exactly how, however since it is Javascript code running on the
client, any user has access to what is being processed and evaluate if
it presents any risk to the machine.

Analysis and discussion: The concept of Gridlet, akin to those
seen as well in state of the art databases such as Joyent’s Manta,8

which bring the computation to/with the data, reducing the possibility
of a network bottleneck and increases the flexibility to use the
platform for new type of jobs, will very important. To enable this
new Cloud platform on using browsers, it is important to understand
how to elastically scale storage and job execution, as in [8], but in
peer-to-peer networks: therefore a study of the current algorithms and
its capabilities was needed. Lastly, we are seeing the Web Platform
rapidly changing, and enabling new possibilities with peer-to-peer
technology e.g. WebRTC; otherwise, it would not be possible to create
browserCloud.js.

III. ARCHITECTURE

browserCloud.js proposes a mechanism to find, gather and uti-
lize idle resources present in a P2P overlay network, in which its
participants will be joining and connecting to each other through a
rendezvous point, as represented in Figure 1. For a given peer, all that
the peer needs to know is that once part of this network, it can submit
a job which will be partitioned and distributed across a number of
peers available, being responsible for later aggregating the results and
delivering them to the user which summoned that job.

A pratical use case for browserCloud.js is high CPU bound jobs and
capable to run in parallel, e.g: image processing, video compressing,

6WebRTC - http://www.webrtc.org/
7IndexedDB - http://www.w3.org/TR/IndexedDB/
8http://www.joyent.com/products/manta



3

Fig. 1. browserCloud.js Overview

data manipulation, map and reduce functions, etc. These parallel tasks
are divided by the peers available in the network, leveraging the
parallelism to obtain a speed up. browserCloud.js was architectured
to meet the following requirements:

• Membership management - The system has to enable peers
to join and leave a current network of browserCloud.js peers
or a subset of it.

• Message routing - Messages are be routed between peers,
having each peer knowing a subset of the network, guaranteeing
in full coverage in this manner.

• Job scheduling and results aggregation - The discovery of
computational resources must be performed using a distributed
approach, peers interact between each other to send tasks and
retrieve the results for the peer executing the job.

• Support dynamic runtime - Provide flexibility for jobs being
executed.

• Reduced entrance cost to enable greater adoption - Simple
APIs design, abstracting the complexity in favor of greater
extendability.

• Enable integration and compliance tests - Automate the
process of verifying browserCloudjs integrity and functionality.

A. Distributed Architecture

The overview of the distributed architecture can be seen in Figure 2.

Fig. 2. browserCloud.js Distributed Architecture Overview

1) Entities: There are two different kind of actors in the system:
• browser - The points on our network that will be able to issue

jobs, execute tasks and route messages.
• rendezvous point - The only centralized component in this

architecture, its purpose is for the clients to have a way to
connect to and join the overlay network.

2) Interaction Protocols: In a browserCloud.js infrastructure, we
have three main interaction patterns, the first being when a peer
joins or leaves the network, which also we can call membership
management, something that in traditionally P2P networks would
simply mean an exchange of a IP:Port pair, but in a P2P browser

network, a RTCPeerConnection has to be established and kept alive,
meaning that an handshaking protocol must be performed. The second
pattern is message routing between peers, this has been designed
with inspiration on the Chord [9],routing algorithm, studied on the
related work. The third interaction demonstrates how to levarage the
computer cycles available in the network to process CPU bound jobs.

Peer joins and leaves: A peer join compromisses of the follow-
ing steps:

• 1 - Registration - When a peer is ready to join the network, it
performs the registration action to the custom browserCloud.js
signalling server, the server replies with a confirmation and
a unique ID for this peer to occupy in the network. We can
observe this interaction in Figure 3.

• 2 - New peer available - As peers join the network, other
peers present need to be notified to establish or update their
connections to the new best candidates, so that the routing of
messages (explained in the next subsection), remains efficient.
For each peer join, a notification with a finger update can be
sent to 1 or more peers present, as seen in Figure 4.

• 3 - Connection establishment between two peers - Composed
by two substeps, the first being the SDP offer creation through a
technique called ”hole punching”, where a browser uses one of
the WebRTC API to traverse through NAT to obtain its public
IP, which is crucial information when two browsers need to
establish a direction connection, Figure 5. The second step is
the exchange of these SDP offers between browsers and that
has to be performed by a centralized service; in browserCloud.js
we developed a custom signalling server that handles that part,
as seen in Figure 6.

A peer leave is a simpler and organic process, once a peer leaves the
network, the RTCPeerConnections objects are closed and destroyed,
notifying automatically the peers that have to update their finger
tables.

Fig. 3. Registration of a peer, signaling itself as available to be part of the
P2P network

Fig. 4. A peer is notified to update his finger table

Fig. 5. Hole punching through NAT to obtain a public IP and create a SDP
offer



4

Fig. 6. Establishment of a RTCPeerConnection through the custom Signalling
Server

Message routing: For message routing, we designed an adap-
tation of the Chord routing algorithm studied in the Related Work
section. The ID namespace available in our DHT consists of 48 bit
IDs (Figure 7), however, for demonstration purposes, we will explain
using a 3 bit ID namespace.

Fig. 7. How the ID namespace is visualized in the DHT

In Figure 8, we have a DHT composed of 4 different peers, with
IDs 0, 1, 3 and 6. Each one of these peers will be responsible for
a segment of the DHT, in another words what this means is that
every message that is destined to their segment, will be delivered to
respective peer responsable. A peer is responsible for a segment of
IDs greater than the peer that is its predecessor and lesser or equal
than its own ID, represented in Figure 9. When a peer enters in the
network, its ID is generated through a crop of a SHA-1 hash from a
random generated number, creating a natural uniform distribution.

Fig. 8. Example of a DHT with 4 peers for case study

Fig. 9. Responsability interval for each Peer

In order for messages to find its correct destination, each peer has
to know at minimum the peer that is next to it on the DHT, also called
”successor” (Figure 10). Messages will be forward until they reach
the peer which compromisses the responsability of being responsible
for that message ID.

Fig. 10. Minimum number of connections for messages to be routed properly

As specified earlier in the document, we want to achieve a good
and stable efficiency when it comes to routing messages inside the
DHT as the network grows. To achieve that, we use fingers. A finger
is a direct connection to another peer in the network (Figure 11), that
was picked following a specific distribution, each peer will have 1 to
N fingers, where N is the number of bits of the IDs (for this example,
N = 3). A finger is always the peer responsible for the ”start” value of
the interval (see Figure 12 for reference and formula) and a message
will be routed to that finger if it falls inside the interval.

Fig. 11. Example of peer with ID = 0 fingers

Fig. 12. Peer with ID=0 finger table

The number of fingers and the fingers we use for a given instance
of browserCloud.js are configurable. The reason behind this design
decision was that RTCPeerConnections have a significant memory
cost, so we have to be considerate in the number of data channels
we keep open. In order to give greater flexibility to the developer, we
allow the option of picking how many rows of the finger table will be
filled by the developer creating a browserCloud.js application. This
is also perfect since WebRTC is still a working draft and there might
be good developments in resource consumption.

B. Resource Management

Leveraging the browser’s dynamic runtime was a feature we pursue
from the beginning of the design for browserCloud.js.

1) Job Execution: A job consists in the partition of tasks which
are enriched, with both task code and data, and sent to other peers
to be executed. These tasks, which can be represented as functions
(job assets), can be defined in runtime, therefore providing a greater
flexibility to the developer that is using this system to run the
distributed job they want. We can describe the work performed to
schedule a job, by the following algorithm:

• 1. A user submits a job



5

• 2. The job is divided in smaller computing units, called tasks,
each task compromisses of a segment of the data that is going
to be processed and the transformation which is going to be
applied, that is, a function.

• 3. These tasks and data partitions are created
• 4. The peer will request the network for other peers availability,

the user has the capability to specify how many peers should
be used to process this job. This option is given since different
jobs might benefit of more or less partition, depending on the
data set.

• 5. The peer who submitted the job (the peer that is controlled by
the user submitting the job) will receive the individual results
for each task as they are ready and transmitted. Once all of the
results are received, they are aggregated and delivered to the
user.

C. Architecture of the Software stack

We can observe a overview of this architecture in Figure 13.

Fig. 13. Software layers at the peer level

1) Communication layer: The communication layer is responsible
for routing messages between peers and establish a connection with
the rendezvous point to perform a peer join/leave.

2) Service router: The Service router establishes a protocol for
modules like the job scheduler to interact with the network of peers,
it uses an event driven model, where modules can register listeners
to events that happen on the network or send messages.

3) Job scheduler: The Job scheduler benefits the API of the Service
router to implement its logic.

D. API design

For the user of browserCloud.js, a simple API was created to per-
form: peer join, message listening and job scheduling as demonstrated
by the following code (which should be interpreted as pseudo-code
since the API might change with the release of new versions):

1) API Usage: Peer join

// browserCloud.js browser module name is webrtc-explorer.

var Explorer = require(’webrtc-explorer’);

var config = {signalingURL: ’<signalling server URL>’};

var peer = new Explorer(config);
peer.events.on(’registered’, function(data) {

console.log(’registered with Id:’, data.peerId);
});
peer.events.on(’ready’, function() {

console.log(’ready to send messages’);
});

peer.register();

Listen for messages

peer.events.on(’message’, function(envelope) {
console.log(envelope);

});

Execute a job
var browserProcess = require(’webrtc-explorer-browser-process’);

var config = {signalingURL: ’http://localhost:9000’};
// Make this browser available to execute tasks and
// also prepared to issue jobs to the network
browserProcess.participate(config);

var start = function() {
var d = [0,1,2,3,4,5,6,7,8,9,10]; // simple data input
var t = function(a) {return a+1;}; // e.g of a task (
var n = 2; // number of peers we are
// requesting the network to execute our job
browserProcess.execute(d, t, n, function done(result) {

console.log(’Received the final result: ’, result);
});

};

E. Testing framework requirement

When it comes to testing to test a decentralized browser app or
library, the focus stops being how a browser implements a specific
behaviour, but how the decentralized network handles node joins and
leaves, and whether nodes are effectively communicating between
each other. For this scenario, we have a specific set of requirements
for the framework, these are:

• Have N browsers available, where 1<=N<=virtually unlimited
• Serve a custom web page for the desired test
• Instruct browsers on demand
• Gather information and evaluate the state as a whole
1) browserCloudjs quality test workflow: In order to evaluate that

a browserCloudjs instance is working as desired, we have designed
the following workflow, which can also be seen in Figure 14:

• 1 - A Web Server is started by the Control Center, this endpoint
will be serving the necessary static assets (e,g .html, .css and
.js files) that will contain our browserCloudjs module, so that
when a browser loads the page through this endpoints, has a
way to run browserCloudjs.

• 2 - The number of required browsers for the test being executed,
are spawned. In our example in Figure 14, we see that number
is 2.

• 3 - Once the browser loads the web page containing the
browserCloudjs module, the Control Center starts sending com-
mands to each browser to execute.

• 4 - Since the messages and data transferred between browsers
happens in a side channel, browsers report to the Control Center
which events were triggered.

• 5 - Once all the commands were executed, the Control Center
assesses the order in which these events happened and asserts
if the behavior was the expected.

Fig. 14. Normal execution of a browserCloudjs test

2) browserCloudjs quality test assessment: browserCloudjs tests
are not linear, a message can be routed between any two browsers
through several combinations, depending on the current size of
the network and the respective IDs of those browsers, which will
influence how their finger table looks like.



6

In Figure 15, we have an example of two browsers communicating
between each other. We can see that some of the browsers between
them will have the responsibility to forward the message, while others,
will be idle.

Fig. 15. Possible timeline of events for an request from browser A to browser
D and the consequent reply

IV. IMPLEMENTATION

Every code artifact was developed following the Unix philosophy,
every module attempts to do at most one thing and one thing well,
creating small, maintainable and powerful abstractions.

A. Browser module

The browser module is the agent that sits inside our browser
nodes, implementing all the communication protocols designed for
the browserCloud.js platform and exposing a developer API to send
and receive messages. Divided into 4 components:

• channel manager - responsible to leverage the websockets con-
nection with the signalling server and abstracts the necessary
work to open new RTCPeerConnections with other peers.

• finger table manager - where the information about a specific
peer finger table lives.

• router - the routing logic to deliver the messages on the most
efficient way. It uses the finger table manager to understand
what is the most efficient way to rout messages.

• interface - developer exposed interface.

B. Signalling server

The Signalling Server offers a HTTP and Web Sockets API and
serves as a rendezvous point for SDP data exchange between browsers
so they can establish a RTCPeerConnection.

C. Testing framework - piri-piri

The testing framework implementation, which we named ”piri-
piri”, encapsulates the necessary logic described on section 3.5.

D. Visualize the network state

Using D3JS9, we have developed an application that grabs the
state of the browserCloud.js network and shows a live graphical
representation, as seen on Figure 16, where each node is represented
by a dot and its ID and the arcs being the connections established
between the nodes in the network.

E. Ray Tracing module

To perform the parallel CPU bound tests, we have developed a
module that works in Node.js and in the browser to perform Ray
Tracing Tasks.

9http://d3js.org

Fig. 16. Visualization of a browserCloud.js network

V. EVALUATION

In this chapter, we go through our qualitative and quantitative
evaluation of browserCloudjs system, comparing it to our initial goals
and expectations.

A. Qualitative assessment

In a qualitative perspective, browserCloudjs performs successfully
the following:

• Efficient resource discovery through peer-to-peer routing over
a structured overlay network, using a DHT.

• Remove the need for centralized indexes or points of control.
There is still a need of a rendezvous point to enable new peer
joins, however the data transmited, computed and stored inside
the network is peers responsability.

• Enable every machine equiped with a WebRTC enabled browser
to be part of a browserCloudjs instance. In 2013, the number
of WebRTC capable devices already exceed one billion10

• Enable peers to both participate and contribute to a job and at
the same time submiting and requesting the network to process
their own.

• browserCloudjs’ Job Scheduler is job agnostic, this means that
different types of jobs can be executed on demand without any
previous configuration or preparation.

• browserCloudjs solves the decentralized communication prob-
lem between browsers in a scalable way, giving the opportunity
for new scenarios to be developed on top of it through its
modular and pluggable approach.

We have developed a Demo video of browserCloudjs working, this
video can be seen at https://www.youtube.com/watch?v=kjwIjoENCR
.

B. Quantitative assessment

In this subsection we evaluate browserCloud.js via real executions
on top of increasing number of browsers executing locally, to assess
the limits of current Javascript engines on typical desktop machines,
and with micro-benchmarks to determine the speedups that can be
achieved in distributed executions with one browser per individual
desktop machine.

1) The setup: In order to assess the potential of the proposed sys-
tem, we have built a ray-tracing application, adapted from algorithms
available, written in full vanilla JavaScript, that can be run on any
typical modern browser engine. This algorithm allows us to stress-test
the CPU, and the possibility to obtain advantages through processing
parallelism. We need this to understand whether the expected speeds
up resulting from distributing the tasks through the browserCloud.js

10Google I/O presentation in 2013 - https://bloggeek.me/webrtc-next-
billion/



7

peers network, are not hindered by loosing efficiency due to message
routing on the overlay Network.

The setup used during the tests was a system running Chrome
version 39 on a Intel Processor Code i7 2.3Ghz with 16Gb of RAM.
The STUN server used was provided by Google.

2) Goals: Following our motivation to build browserCloudjs in
the first place, that is, to provide a way to take advantage of the
volunteer computing paradigm, using the idle resources available on
user machines, leveraging the capabilities that offered to us by the
Web Platform, we set ouselves with some goals to proove if our
solution is viable, through:

• Measuring the time lapsed for a single browser to compute a
CPU bound job and several browsers to compute that same job,
but in parallel.

• Measuring the RTT time between any of two browsers in the
network and evaluate as routing efficiency evolves with the
increase in number of browser

• Assessing if there are significant speedups
3) Results: We have perfomed tests in order to assess:
• Time elapsed during a distributed ray-tracing job, checking for

how it changed when we increased the number of browsers and
the level of granularity in which we divided the job. Seen in
Figures 17 , 18 , 19 and 20.

• How much time each ray-tracing task takes. Seen in Figure 21.
• What is the average round trip time between any of two

browsers in a 10 browser network. Observed in Figure 22.

Fig. 17. Time elapsed on a ray-tracing job divided in 25 computing units

Fig. 18. Time elapsed on a ray-tracing job divided in 2500 computing units

4) Analysis: The standard ray-tracing job using the algorithm
developed, running in a single browser takes as median 23610.434ms
to complete. As we can see in Figures 18 and 20, our system excels in
delivering faster results by dividing the job up to 2500 computational
units (or tasks) and requesting from the browsers available in the
network to compute those (i.e., a rectangle of the resulting output

Fig. 19. Time elapsed on a ray-tracing job divided in 25 computing units
(with induced web RTT delay)

Fig. 20. Time elapsed on a ray-tracing job divided in 2500 computing units
(with induced web RTT delay)

Fig. 21. Average time for a task execution for a job fragmented in 2500
computing units

Fig. 22. Average Round Trip Time between an two nodes in a 10 browser
network

image). This is expected as ray-tracing is a known case of an
embarrassingly parallel application.

One fact interesting to note is that we obtained much better results
by reducing the granularity of which ray-tracing job was divided into,
as we can see on Figures 17 and 19. This happens due to two factors:
a) the first is that since we have a lower number of tasks to be run
by other browsers, we reduce the message routing overhead between
nodes (i.e., resource discovery does not take so long); b) the second



8

factor is that since this system was tested using a single machine and a
networked simulated delay. When the number of tasks is too large, the
workers in the browser are in fact competing for CPU resources (to
execute tasks and to forward messages among them). This creates a
scenario, where more nodes/workers actually make the system slower,
since this is a much more strict and resource constrained scenario,
than a real example with browsers executing in different machines.

In a real world example, the actual execution time would be
bounded by:

jobTime = slowestDelayFromResourceDiscovery +
timeOfExecutingSlowestTask +
slowestDelayFromResultReply(1)

with full parallelism, where in our test scenario we have:

jobTime =
∑

DelayFromResourceDiscovery +
(T imeOfExecuting N Tasks on M Resources) +∑

DelayFromResultReply(2)

where N=2500 and M=8 hardware threads, therefore contention for
CPU becomes higher with more nodes (browsers) as more messaging
is taking place, besides the parallelized computation.

In a real world scenario, with more browsers from more machines,
the total execution time (makespan) of a ray-tracing job would
be closer to that described by Equation 1. It would be influenced
by the maximum round trip time between any two nodes (so that
the information for every task can be received and processed by
another node), plus the time it would take to execute the most
of CPU intensive task (e.g., the rectangle in the frame that has
the more complex geometry and light reflections to be processed).
Figures 21 and 22 show what is the average task length and RTT
between any two nodes, being the maximum for the first 61ms and
the second 11174ms, creating a total of 11235ms (or 11.296s overall).
This is a significant increase of efficiency, comparing to the sequential
execution and also to the previous single-machine experiments.

It is important to note that in Figure 21, we can see several task
execution lengths due to the complexity of each task, with more
or less light reflections. With this microbenchmark we see that the
execution time of each task, without any resource contention (1 node
= 1 browser per machine), the task duration has an even lower upper
bound (lower than 5s). This would entail the upper bound of total
task execution time to be under 5061 ms (around just 5s), with a
theoretical speedup of about 4.6 times (take into account that we
would be using 2500 nodes then, so speedups are not perfectly linear
due to communication overhead, as expected).

5) Inference: As we have discussed in the previous subsections,
we did managed to reach significant speedup between 2 and close to
5 times for our experiment, using only volunteer resources, that is a
reduction between 50% and 76%.

When distributing a job through a multiple node network, one of the
aspects we observed was that we can influence overall efficiency by
adjusting how much resources we are going to take from the network
to process the job, in this case, how much browsers. We also can
influence it by deciding how much fine-grained each task it will be:
the smaller the computation unit, the more we can distribute tasks
through the network, with a natural trade-off of adding more task
generation and messaging overhead, with diminishing returns when
more and more, and smaller tasks are created.

VI. CONCLUSIONS

When it came to architecture decisions, we knew that we wanted
to built browserCloudjs on top of the most recent web technologies

and on top of the Web Platform, the most ubiquitous platform. There
were two reasons behind this decision, the first being longevity, is
quite popular and it is still an emerging platform, meaning that our
assumptions of ubiquity will previal; the second reason was developer
adoption, JavaScript is the ”lingua franca” of the web, meaning that it
will be common for a developer to know how to code with JavaScripts
APIs.

Going after a decentralized model was also something we saw as a
potential key factor for the browserCloudjs platform, structured peer-
2-peer networks scale well with demand, while centralized networks
have a number of significant challenges once a certain threshold
of users is reached. WebRTC, the technology enabling browsers to
communicate in a peer-2-peer way, is in great part responsible for
this platform success.

With browserCloudjs, we achieved in bulk, mainly two great
milestones:

• The first browser based DHT - browserCloudjs offers for the
first time in browser history a fully functional DHT, performing
resource decentralized resource discovery on the browser.

• The first peer-2-peer browser computing platform - the
research of using browsers to leverage the idle computer
cycles have been in the literature for a while, however, always
following the centralized/BOINC model. browserCloudjs offers
the first peer-2-peer browser computing framework with proven
speedups.

We have found this thesis to be a source of hard work and
enthusiasm, a great opportunity to research and interact with bleeding
edge technologies and also, interact with the developer communities
that are pushing the web forward.

REFERENCES

[1] a L Barabási, V W Freeh, H Jeong, and J B Brockman. Parasitic
computing. Nature, 412(6850):894–7, August 2001.

[2] F Costa, JN Silva, L Veiga, and Paulo Ferreira. Large-scale volunteer
computing over the Internet. Internet Services and Applications, pages
1–18, 2012.

[3] Jerzy Duda and W Dubacz. Distributed evolutionary computing system
based on web browsers with javascript. Applied Parallel and Scientific
Computing, 2013.

[4] S Ecma. ECMA-262 ECMAScript Language Specification, 2009.
[5] Juan-j Merelo, Antonio Mora-garcı́a, Juan Lupión, and Fernando Tricas.

Browser-based Distributed Evolutionary Computation : Performance
and Scaling Behavior Categories and Subject Descriptors. pages 2851–
2858, 2007.

[6] Leandro Navarro. Experimental research on community networks.
Technical report, 2012.

[7] Luis Veiga, Rodrigo Rodrigues and Paulo Ferreira. GiGi : An Ocean
of Gridlets on a Grid-for-the-Masses . 2007.

[8] João Nuno Silva, Luı́s Veiga, and Paulo Ferreira. A2HAautomatic and
adaptive host allocation in utility computing for bag-of-tasks. Journal
of Internet Services and Applications, 2(2):171–185, August 2011.

[9] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, Hari Bal-
akrishnan Ý, and Hari Balakrishnan. Chord : A Scalable Peer-to-peer
Lookup Service for Internet. pages 149–160, 2001.

[10] M Thomson and A Melnikov. Hypertext Transfer Protocol version 2.0
draft-ietf-httpbis-http2-09. 2013.

[11] Stefan Tilkov and Steve Vinoski Verivue. Node.js : Using JavaScript
to Build High-Performance Network Programs. 2010.

[12] Alon Zakai. Emscripten: an llvm-to-javascript compiler. In Proceedings
of the ACM international conference companion on Object oriented
programming systems languages and applications companion. ACM,
2011.


