
CAP Theorem:

Revision of its Related Consistency Models

Francesc D. Muñoz-Escoı́1, Rubén de Juan-Marı́n1,
J. R. González de Mendı́vil2, José M. Bernabéu-Aubán1

1Instituto Universitario Mixto Tecnológico de Informática
Universitat Politècnica de València

46022 Valencia (Spain)

2Depto. de Ingenierı́a Matemática e Informática
Universidad Pública de Navarra

31006 Pamplona (Spain)

{fmunyoz,rjuan,josep}@iti.upv.es, mendivil@unavarra.es

Technical Report TR-IUMTI-SIDI-2017/002

Fr
an

ce
sc

D
.M

uñ
oz

-E
sc

oı́
et

al
.:

C
A

P
Th

eo
re

m
:

R
ev

is
io

n
of

its
R

el
at

ed
C

on
si

st
en

cy
M

od
el

s
T

R
-I

U
M

T
I-

SI
D

I-
20

17
/0

02

CAP Theorem: Revision of its Related Consistency Models

Francesc D. Muñoz-Escoı́1, Rubén de Juan-Marı́n1,
J. R. González de Mendı́vil2, José M. Bernabéu-Aubán1

1Instituto Universitario Mixto Tecnológico de Informática
Universitat Politècnica de València

46022 Valencia (Spain)

2Depto. de Ingenierı́a Matemática e Informática
Universidad Pública de Navarra

31006 Pamplona (Spain)

Technical Report TR-IUMTI-SIDI-2017/002

e-mail: {fmunyoz,rjuan,josep}@iti.upv.es, mendivil@unavarra.es

July 2017

Abstract

The CAP theorem states that only two of these properties can be simultaneously guaranteed in a
distributed service: (i) consistency, (ii) availability, and (iii) network partition tolerance. This theorem
was stated and proven assuming that “consistency” refers to atomic consistency. However, multiple
memory consistency models exist and atomic consistency is in one of the edges of that spectrum: the
strongest one. Many distributed services deployed in cloud platforms should be highly available and
scalable. Network partitions may arise in those deployments and should be tolerated. One way of dealing
with CAP constraints consists in relaxing consistency. Therefore, it is interesting to explore which is the
set of consistency models that are not supported in an available and partition-tolerant service (CAP-
constrained models). Other weaker consistency models could be maintained when scalable services are
deployed in partitionable systems (CAP-free models). Three contributions arise: (1) multiple other CAP-
constrained models are identified, (2) a borderline between CAP-constrained and CAP-free models is set,
and (3) a more accurate hierarchy of consistency models depending on their strength is built.

1 Introduction
Scalable distributed services try to maintain their service continuity in all situations. When they are geo-
replicated, a trade-off exists among three properties: replica consistency (C), service availability (A) and
network partition-tolerance (P). Only two of those three properties can be simultaneously guaranteed. Such
trade-off was suggested (Davidson et al, 1985) long time ago [16], thoroughly explained by Fox and Brewer
[22] in 1999 and proved by Gilbert and Lynch [23] in 2002. However, the compromise between strongly
consistent actions, availability and tolerance to network partitions was already implicit in Johnson and
Thomas (1975) [28] and justified by Birman and Friedman [10] in 1996.

Service availability and network partition tolerance are dichotomies. They are either respected or not.
Service availability means that every client request that reaches a service instance should be answered in
a reasonable time. A service is partition-tolerant if once a network partition arises, dividing the service
instances in two (or more) disjoint sets unable to communicate with each other, all those disjoint sets may
go on. On the other hand, service replica consistency admits a gradation of consistency levels. In spite of
this, when we simply refer to “consistency” we understand that it means atomic consistency [37]; i.e., that

1

all instances are able to maintain the same values for each variable at the same time, providing a behaviour
equivalent to that of a single copy. This led Gilbert and Lynch to assume that kind of consistency in their
proof of the CAP theorem [23].

With the advent of cloud computing, it is easy to develop and deploy highly scalable distributed services
[46]. Those applications usually provide world-wide services: they are deployed in multiple datacentres
and this implies that network partition tolerance is a must for those services. Thus, those services regularly
prioritise availability when they should deal with the constraints of the CAP theorem, and consistency
is the property being sacrificed. However, that sacrifice should not be complete. Brewer [11] explains
that network partitions are rare, even for world-wide geo-replicated services. If services demand partition
tolerance and availability, their consistency may be still quite strong most of the time, relaxing it when any
temporary network partition arises.

Therefore, it seems interesting to explore which levels of consistency are strong enough to be directly
implied by the CAP constraints; i.e., those CAP-constrained models are not supported when the network
becomes partitioned. Two questions arise in this scope: (1) Does CAP affect only to atomic consistency
or are there any other “CAP-constrained” models? (2) If there were any other models, where could we
set the border between CAP-constrained and CAP-free models (i.e., those that may be supported while
both availability and network partition tolerance are guaranteed)? Although some partial answers to these
questions have been given in previous papers [44, 50, 6], let us provide a new and revised answer to them
in the following sections.

2 System Model
We assume a distributed system S = (ProcessIds,Network,Ob jectIds). S is partially synchronous and
consists of: (1) a set of processes ProcessIds, (2) intercommunicated through a set of links called Network,
and (3) a set of objects Ob jectIds. Processes in ProcessIds may fail. Scalable distributed services may
be deployed in S. Those distributed services consist of multiple elements, implemented as a set of objects
Ob jectIds. Objects may be replicated in order to improve their availability. In those cases, their instances
are deployed in ProcessIds using a replication protocol and respecting some replica consistency model.

A function Connects : P(ProcessIds)×P(Network)→ {true, f alse,unde f} is also needed. It is
called as Connects(P,N) using a subset of processes P and an internal network N returns true when the
internal network N can be used by every process in P, false if none of the processes of P may send their
messages using N and undef otherwise.

Network might fail by becoming divided and generating a temporary network partition. In those cases
S is partitioned in a set of K network components such that:

•
⋃

i∈K Si ⊂ S, where Si = (ProcessIdsi,Networki,Ob jectIds)

• ProcessIds =
⋃

i∈K ProcessIdsi

• ∀i, j ∈ K, i 6= j : ProcessIdsi
⋂

ProcessIds j = /0

•
⋃

i∈K Networki ⊂ Network

• ∀i, j ∈ K, i 6= j : Connects(ProcessIdsi,Network j) = f alse

• ∀i ∈ K : Connects(ProcessIdsi,Networki) = true

This means that when Network is partitioned, multiple disjoint network components Si = (ProcessIdsi,
Networki,Ob jectIds) exist. Processes located in different components cannot communicate with each
other. However, processes in the same component intercommunicate without problems.

3 Finding a Consistency Borderline
The first question from the introduction was already partially answered by Birman and Friedman [10],
since their proof did not rely on atomic consistency. Instead of this, they proved the following result: in a

2

partitioned network “no set of processes that implement a service in a responsive way can execute strongly
non commutative actions concurrently”. The term “in a responsive way” is a synonym for “available”. On
the other hand, “strongly non commutative actions” refers in that paper to a serial execution of a set of
operations. This is the main requirement: considering all replicated objects managed by a set of servers,
all replicas should agree on a given sequence of operations. Moreover, that sequence, when restricted to a
given process, should be consistent with the local execution of that process. Those are the two conditions
that define sequential consistency [36]. Therefore, considering [10] there are at least two different CAP-
constrained models: atomic and sequential.

Birman and Friedman [10] gave another hint related to CAP: one way to relax consistency in order to
maintain availability in partitioned systems is to rely on commutative operations. Commutative operations
allow temporary divergences among isolated components. Once the network partition disappears and con-
nectivity is resumed, those operations must be applied in all other components to reach convergence. But
this was not a new result; that fact was already explained in the first papers proposing replication protocols
for systems that could become partitioned, as [18], or that tried to improve their performance combining
commutativity with a multi-master approach and relaxing the total order of their updates. The latter was
already suggested by Alsberg and Day (1976) as a protocol variant in [3].

Commutative (i.e., conflict-free) operations provide the key to answer our second question. In order
to break the CAP constraints we need some kinds of operations or consistency that admit continuity even
when not all processes in that system can be reached. If there were any consistency models allowing such
behaviour, they would be CAP-free. A hint to answer this question was provided by Attiya and Friedman
in [5]. They identified “fast” consistency models: those that may complete both read and write operations
faster than the network delay; i.e., without contacting other processes. This means that the updates caused
by a write operation will be known by the other replicas once the write has already returned control to its
invoker.

At a glance, writer processes in fast consistency models do not require any kind of synchronisation with
the remaining processes. Once the write is locally completed, such operation is considered as terminated.
Its delivery time in the remaining processes is unimportant since the local value order at its writer may be
different to the value order in the other processes. This means that there is no single global value order in
those models. On the other hand, non-fast models usually require communication with other processes for
achieving consensus on a unique global value order.

When network partitions arise or processes may fail, the FLP [21] impossibility result states that no
consensus is possible among the participating processes. Therefore, every consistency model requiring
consensus will not be attainable in a partitionable distributed system. With a similar base, Pascual-Miret
et al [50] have proved that the constraints of the CAP theorem apply to all data consistency models requiring
a global agreement on the order of writes to each variable. Due to this, the atomic, sequential, processor
[24] and cache [24] models are CAP-constrained, while FIFO [41] and causal [1] consistencies, among
others, are CAP-free. Although that result points out at least four CAP-constrained models, extending the
original CAP theorem, it is not yet an accurate and complete answer for the second question outlined in
the introduction of this paper. In [50], only server-centric [55] models have been considered, but there are
other types of consistency models that could be analysed.

Let us take the survey of Viotti and Vukolić [61] on non-transactional distributed data consistency
models as a basis to refine the current answer draft. To this end, the rest of this section is structured as
follows. Section 3.1 outlines the consistency specification framework used in [61]. Section 3.2 defines what
is a CAP-constrained model. Section 3.3 presents all consistency models identified in [61] and summarises
their properties. Later, Section 3.4 analyses which other consistency models are CAP-constrained. With
the latter, a more accurate frontier between the CAP-constrained and CAP-free sets of models is defined.

3.1 Specification Framework
Viotti and Vukolić propose a framework for specifying a large set of distributed (non-transactional) data
consistency models in [61]. Such framework is based on that presented by Burckhardt et al in [13]. Since
the CAP theorem involves software services deployed in distributed systems, it makes sense to consider
those consistency models in this scope. Let us summarise the main elements of that framework. Additional
details may be found in [61].

3

As it has been mentioned in Section 2, services consist of processes and objects, whose identifiers
belong to the ProcessIds and ObjectIds sets, respectively. The values that can be maintained in objects
belong to the Values set. Those processes interact with the existing objects invoking their operations,
whose types belong to the OpTypes set. The real-time domain is represented by the Time set.

Operation calls are represented using (proc,type,obj,ival,oval,stime,rtime) tuples, where:

• proc ∈ ProcessIds is the identifier of the process that invokes the operation.

• type ∈ OpTypes is the operation type; e.g., wr for writes and rd for reads.

• obj ∈ ObjectIds is the identifier of the object being invoked.

• ival ∈ Values ∪{t} is the operation input value, or t in case of a read operation.

• oval ∈ Values ∪{t,∇} is the operation output value, or t in case of a write or ∇ if the operation
does not return.

• stime ∈ Time is the operation invocation time.

• rtime ∈ Time is the operation return time.

A history H is a set of operations. A history contains all operations invoked in an execution. H |wr
(respectively, H |rd) denotes the set of write (respectively, read) operations in a history H. Formally, H |wr=
{op ∈ H : op.type = wr}.

The following relations on elements of a history are needed:

• rb (returns-before) is a partial order on H based on real-time precedence: rb ≡ {(a,b) : a,b ∈ H ∧
a.rtime < b.stime}.

• ss (same-session) is an equivalence relation on H that groups the operations invoked by the same
process: ss≡ {(a,b) : a,b ∈ H ∧a.proc = b.proc}.

• so (session order) is a partial order defined as: so≡ rb∩ ss.

• ob (same-object) is an equivalence relation on H that groups the operations invoked on the same
object: ob≡ {(a,b) : a,b ∈ H ∧a.ob j = b.ob j}.

• concur is a symmetric binary relation that includes all pairs of real-time concurrent operations in-
voked on the same object: concur ≡ ob\ rb.

Moreover, there are other specification aspects to be considered.
To begin with, the concur relation is complemented with the function Concur : H → 2H that denotes

the set of write operations concurrent with a given operation: Concur(a)≡ {b ∈ H |wr: (a,b) ∈ concur}.
Binary relation projections are denoted as specified in the following example: rel |wr→rd identifies all

pairs of operations in relation rel that consist of a write and a read operation.
H/≈rel denotes the set of equivalence classes determined by relation rel, and rel−1 denotes the inverse

relation of rel.
An abstract execution is defined as A = (H,vis,ar) and is built on a history H, complemented with two

relations vis and ar on elements of H, where:

• vis (visibility) is an acyclic relation that accounts for the propagation of write operations; i.e., when
(a,b) ∈ vis then the effects of a are visible to the process that invokes b.

Two write operations are invisible to each other when they are not ordered by vis.

• ar (arbitration) is a total order on operations of the history that specifies how conflicts due to con-
current and invisible operations are resolved in that abstract execution A in order to comply with
its intended consistency models. It is a total order because A defines an abstract single sequence of
operations.

4

Additionally, the happens-before (hb) partial order is defined as the transitive closure of the union of so
and vis; i.e., hb≡ (so∪ vis)+.

The context C of an operation op in an abstract execution A is defined as: C = cxt(A,op)≡A |op,vis−1(op),vis,ar.
For each replicated data type, a function F specifies the set of intended return values of an operation

op ∈ H in relation to its context: F (op,cxt(A,op)). With F , the return value consistency is defined as:
RVAL(F) ≡ ∀op ∈ H : op.oval ∈F (op,cxt(A,op)). This predicate guarantees that the return value of
any given operation in an execution belongs to the set of its intended return values.

In order to provide an example of F function, a= prec(b) may be defined as the unique latest operation
preceding b in ar, such that a ∈ H |wr ∩vis−1(b). That is, prec(b) is the last write visible to b according to
the ar order. With this, a read/write register may be taken as our reference replicated data type, whose F
function is: Freg(op,cxt(A,op)) = prec(op).ival. This means that the output value of a read operation on
a register should return the input value of its preceding write operation.

Finally, let us use A |=P in order to state that the consistency predicate P is true for abstract execution
A. With this, given history H and A as its set of all possible abstract executions on H, we may say that
history H satisfies some consistency predicates P1, . . .Pn if it can be extended to some abstract execution
that satisfies them all: H |= P1 ∧ . . .∧Pn ⇔ ∃A ∈ A : H (A) = H ∧A |= P1 ∧ . . .∧Pn, where H (A)
denotes H, assuming that A = (H,vis,ar).

3.2 CAP-related Definitions
The goal of this paper consists in delimiting the frontier between two sets of consistency models called
CAP-constrained and CAP-free. Those concepts have been informally introduced in the previous sections.
Their definitions are presented hereafter.

Definition 1 (CAP-free consistency model). A consistency model CM is CAP-free if these two conditions
are respected while a network partition happens in the system:

1. All correct processes remain available; i.e., all they go on processing object operations.

2. The global executions generated by all processes still comply with the consistency predicates that
define CM.

If a consistency model is not CAP-free, then it is CAP-constrained. Therefore:

Definition 2 (CAP-constrained consistency model). A consistency model CM is CAP-constrained if one of
these two conditions is held while a network partition happens in the system:

1. If all correct processes remain available, processing object operations, then at least one of the pred-
icates that define CM will not be respected; i.e., CM is no longer respected.

2. If CM is respected then its predicates are only maintained by a connected major subset of the live
processes. All other processes may still remain alive, but they will be unavailable. This means that
those other processes are prevented from executing object operations while the network remains
partitioned; i.e., they are kept stopped and from the point of view of CM they have left the system.

3.3 Distributed Consistency Models
Viotti and Vukolić [61] distinguish ten different groups of consistency models: (1) linearisability and other
strong models, (2) weak and eventual consistency, (3) PRAM and sequential consistency, (4) session guar-
antees, (5) causal models, (6) staleness-based models, (7) fork-based models, (8) composite and tunable
models, (9) per-object models, and (10) synchronised models. The latter (synchronised models) are only
described in [61] for completeness since they only make sense in multiprocessor computers but not in a
distributed system with message-based communication. Additionally, the models contained in the eighth
group cannot be specified with the proposed set of consistency predicates. Because of this, no relationship
with the models contained in the other groups can be established for them. We will not consider those two
groups hereafter.

5

In order to summarise the specification of the other eight groups, a set of consistency predicates should
be specified before. Table 1 provides those specifications. With them, those groups of models may be
defined as described in the following sections.

We informally use the “→” (weaker than) partial order to relate consistency models. Thus, when a
model A is weaker than another model B, such fact will be represented as A→ B. This means that the set
of executions that comply with B is a proper subset of the set of executions complying with A.

3.3.1 Linearisability and other Strong Models

According to Burckhardt et al [13] linearisability [26] may be specified as:
LINEARISABILITY(F)≡ SINGLEORDER ∧ REALTIME ∧ RVAL(F)
Viotti and Vukolić [61] state that linearisability is equivalent to atomic consistency [37] for read-write

registers. Lamport defined in [37] safe and regular registers, besides atomic ones. Those two models are
slightly weaker than atomic consistency. When no concurrent reads and writes arise in an execution, both
safe and regular registers read the last written value, as atomic registers do. However when read and write
concurrent actions exist, a safe register may return any value as a result of a read action, while a regular
register may return the value of the last complete write or any of the values being written by concurrent
writes.

Those models can be specified as follows:
REGULAR(F)≡ SINGLEORDER ∧ REALTIMEWRITES ∧ RVAL(F)
SAFE(F)≡ SINGLEORDER ∧ REALTIMEWRITES ∧ SEQRVAL(F)
SEQRVAL(F) is a weaker property than RVAL(F), since it drops read action determinism in case of

concurrent writes. REALTIMEWRITES is weaker than REALTIME since it reduces the set of returns-before
pairs of actions to be considered by the ar relation. Thus, the already presented models may be ordered as:
SAFE→ REGULAR→ LINEARISABILITY.

3.3.2 Weak and Eventual Consistency

Viotti and Vukolić [61] consider that the weak consistency corresponds to a model where no consistency
property is respected in executions. Therefore, such model is respected even when no synchronisation
effort is made by the processors sharing or replicating a set of objects.

Eventual consistency [18, 56, 51, 62] is slightly stronger than the weak model and, under its umbrella,
we could place many of the first systems that tried to overcome the constraints imposed by network par-
titions on the availability and consistency of data [28, 3]. This consistency requires that replicas converge
to identical copies in the absence of new updates. A formal definition of eventual consistency is given
by Burckhardt et al [13] as: EVENTUALCONSISTENCY(F)≡ EVENTUALVISIBILITY ∧ NOCIRCULAR-
CAUSALITY ∧ RVAL(F).

Shapiro et al [54] define a complementary property for eventual consistency, called strong convergence
(already specified in Table 1): all correct replicas that have applied the same write operations have equiv-
alent states. This does not compel processes to apply those write operations in the same order. The name
of the resulting consistency is strong eventual consistency and can be specified as: STRONGEVENTUAL-
CONSISTENCY(F)≡ EVENTUALCONSISTENCY(F)∧ STRONGCONVERGENCE.

With these specifications, the relationships between the models in this group and those in the previous
group may be shown as follows:

WEAK→ SAFE
WEAK→ EVENTUALCONSISTENCY→ STRONGEVENTUALCONSISTENCY→ LINEARISABILITY

3.3.3 PRAM and Sequential Consistency

The third group of consistency models is based on Pipeline RAM consistency [41], also known as PRAM
or FIFO consistency. PRAM requires that all processes see write operations issued by a given process
in the same order as they were applied by that process. On the other hand, processes have freedom for
interleaving the writes generated by other processes.

PRAM may be defined as: PRAM ≡ so⊆ vis.

6

Another model stricter than PRAM is the sequential [36] one. In sequential consistency, all opera-
tions are serialised in the same order by all replicas, and the order of writes generated by each process
is respected. Thus, its definition is: SEQUENTIALCONSISTENCY(F) ≡ SINGLEORDER ∧ PRAM ∧
RVAL(F).

Since PRAM is weaker than REALTIME, the following relations exist:
WEAK→ PRAM→ SEQUENTIALCONSISTENCY→ LINEARISABILITY

3.3.4 Session Guarantees

Session guarantees were proposed by Terry et al [56]. They characterise client sessions using four comple-
mentary guarantees:

• Monotonic reads (MR) require that successive reads requested by a given process reflect a non-
decreasing set of writes. This means that when a process has read a value v from an object, any
subsequent read operation will not return any value written before v. Therefore, its specification
demands that the transitive closure of vis and so is included in vis. Formally: MONOTONICREADS
≡ ∀a ∈ H,∀b,c ∈ H |rd : (a,b) ∈ vis∧ (b,c) ∈ so⇒ (a,c) ∈ vis.

• Read-your-writes (RYW) requires that a read from a process P can only be served by replicas that
have already applied all writes previously invoked by P. Formally: READYOURWRITES ≡ ∀a ∈
H |wr,∀b ∈ H |rd : (a,b) ∈ so⇒ (a,b) ∈ vis.

• Monotonic writes (MW) demands that a write can be only served in a replica if that replica has al-
ready performed all previous writes in the same session. Formally: MONOTONICWRITES ≡ ∀a,b ∈
H |wr: (a,b) ∈ so⇒ (a,b) ∈ ar.

• Writes-follow-reads (WFR) ensures that writes made in a session are ordered after any writes made
by any process on any object whose effects were seen by previous reads in the same session. For-
mally: WRITESFOLLOWREADS ≡ ∀a,c ∈ H |wr,∀b ∈ H |rd : (a,b) ∈ vis∧ (b,c) ∈ so⇒ (a,c) ∈ ar.

This formal specification of session guarantees has been proposed by Viotti and Vukolić [61]. In it,
those conditions assume that processes are regular servers. The original specification [56] given by Terry
et al was a bit different, since the effects of each condition should apply to the actions of each client
process. That difference makes the original session guarantees much stronger than those shown here, but
incomparable to other consistency models. Due to this incomparability constraint, let us go on using the
specification from Viotti and Vukolić.

Thus, the relationships between session guarantees and the consistency models defined in the previous
sections can be summarised as follows [61]:

WEAK→ MONOTONICREADS→ PRAM
WEAK→ MONOTONICWRITES→ PRAM,SAFE
WEAK→ READYOURWRITES→ PRAM,SAFE
WEAK→WRITESFOLLOWREADS→ SEQUENTIAL

3.3.5 Causal Models

Causal consistency models are based on the happens-before relation defined by Lamport [35]. Thus, two
operations a and b are potentially causally related (a→ b) when: (i) a and b have been executed by the same
process in that order, or (ii) b is a read that returns the value written in a, or (iii) they are related by the tran-
sitive closure of (i) and (ii). The specification of causal consistency was proposed by Ahamad et al [1] and
that consistency may be defined as: CAUSALITY(F)≡ CAUSALVISIBILITY ∧ CAUSALARBITRATION ∧
RVAL(F).

Lloyd et al [42] strengthened causal consistency requiring that all replicas should reach an agreement
in case of write conflicts; i.e., in case of concurrent writes on the same objects. The resulting model is
called convergent causal consistency, although it is also known as causal+. Formally: CAUSAL+(F) ≡
CAUSALITY(F)∧ STRONGCONVERGENCE.

7

Also in 2011, Mahajan et al [44] proposed another way for strengthening causal consistency: the real-
time causal model. In the latter, according to Viotti and Vukolić, causally concurrent write operations that
do not overlap in real time should be applied following their real-time order. Thus, the formal specification
of this model is [61]: REALTIMECAUSALITY(F)≡ CAUSALITY(F)∧ REALTIME.

However, the original specification given in [44] is a bit more relaxed than that. Instead of REALTIME,
Mahajan et al propose this condition:

NOBACKWARDTIME ≡ ∀a,b ∈ H : a.rtime < b.stime⇒ (b,a) 6∈ vis
They only require that vis does not contradict rb, but do not force all operation pairs in rb be in vis.

Thus, when (a,b) ∈ rb∧ (a,b) 6∈ hb∧ (b,a) 6∈ hb then a and b may still be considered concurrent.
Since NOBACKWARDTIME does not imply STRONGCONVERGENCE (nor the opposite), the causal+

and real-time causal models are incomparable. Thus, the following relations exist within the models con-
tained in this group and among them and the models already presented in previous sections:

CAUSALITY→ CAUSAL+
CAUSALITY→ REALTIMECAUSALITY
WRITESFOLLOWREADS→ CAUSALITY
PRAM→ CAUSALITY
CAUSAL+→ SEQUENTIAL
REALTIMECAUSALITY→ LINEARISABILITY

3.3.6 Staleness-based Models

Staleness-based models allow read operations to return stale written values. They provide stronger guar-
antees than eventual consistency, allowing efficient implementations much faster than linearisable consis-
tency. Two general metrics are used for measuring staleness: real time and data object versions.

A first type of time-related staleness was introduced by Terry et al [57] in their proposal of prefix
consistency. In it, readers observe an ordered sequence of writes that may not contain the effects of the
most recent write operations. Thus, it ensures agreement on order but does not provide any guarantee on
recency. Taking this model as a base, Viotti and Vukolić [61] propose two complementary consistency
models, depending on their level of recency being maintained: prefix sequential and prefix linearisable.
Formally:

PREFIXSEQUENTIAL(F)≡ SINGLEORDER ∧ MONOTONICWRITES ∧ RVAL(F)
PREFIXLINEARISABLE(F)≡ SINGLEORDER ∧ REALTIMEWW ∧ RVAL(F)
Viotti and Vukolić [61] define the TIMEDVISIBILITY(∆) predicate (shown in Table 1) for specifying

a second type of real-time-based staleness. With it, they provide a short specification for both the timed
causal [58] and timed serial [59, 60] consistencies defined by Torres-Rojas et al. Those models allow a
parametrised degree ∆ of staleness on the causal and sequential models. This means that a write operation
should be visible to every process in the system in ∆ time units. Since both the original causal and sequen-
tial models do not place any bound on write propagation time nor read staleness, both are strengthened
with that addition. As a result, timed causal is closer to sequential consistency than the original causal
model, while timed serial is closer to linearisability than the original sequential model. They are formally
defined, respectively, as follows:

TIMEDCAUSALITY(F ,∆)≡ CAUSALITY(F)∧ TIMEDVISIBILITY(∆)
TIMEDSERIAL(F ,∆)≡ SINGLEORDER ∧ TIMEDVISIBILITY(∆)∧ RVAL(F)
Aiyer et al [2] propose a set of version-based staleness-tolerant consistency models. Those models

are called K-safe, K-regular and K-atomic (or K-linearisability). They take as a base the safe, regular
and atomic register-based models defined by Lamport [37], allowing reads that do not overlap concurrent
writes to return one of the latest K written values. Thus, these models need the SINGLEORDER predicate
for totally ordering the write operations but tolerate stale reads using other more relaxed predicates to
complement it. For instance, a formal specification of K-linearisability is:

K-LINEARISABILITY(F ,K)≡ SINGLEORDER ∧ REALTIMEWW ∧K-REALTIMEREADS(K)∧ RVAL(F)

8

3.3.7 Fork-based Models

Services whose deployment demands the usage of outsourced storage risk to find arbitrary [38] failures that
may compromise their execution. Thus, systems that deal with untrusted storage may provide linearisabil-
ity when the storage behaves correctly, but degrade to weaker consistency models when the storage shows
a Byzantine [38] fault. Fork-based [45] consistency tries to model such behaviour.

Mazières and Shasha [45] proposed the first fork (or fork-linearisable) consistency protocol in 2002.
In it, the system ensures that when the storage causes the visible histories of two processes to differ (even
in only one operation), they may never again read each other’s writes without the server being exposed as
faulty. Formally:

FORKLINEARISABILITY(F)≡ PRAM ∧ REALTIME ∧ NOJOIN ∧ RVAL(F)
Several relaxations of that model were proposed thereafter. For instance, Oprea and Reiter [48] re-

quired that whenever an operation becomes visible to several processes, all they share the same history of
operations occurring before that operation. The resulting model, fork-sequential, is defined as follows[61]:

FORKSEQUENTIAL(F)≡ PRAM ∧ NOJOIN ∧ RVAL(F)
A second relaxation is the fork∗ [40] model proposed by Li and Mazières. In fork∗ consistency, forked

groups of processes may observe at most one common operation issued by a given correct process. For-
mally:

FORK∗(F)≡ READYOURWRITES ∧ REALTIME ∧ ATMOSTONEJOIN ∧ RVAL(F)

3.3.8 Per-object Models

Per-object orderings allow for more efficient implementations than global orderings, although their result-
ing consistency is also more relaxed than the latter. There have been multiple consistency models that
consider a per-object ordering.

To begin with, slow memory was defined by Hutto and Ahamad [27] as a weaker variant of the PRAM
model. Thus, in the slow model all processes see the writes of a given process to a given object in the same
order. It may be qualified as a “per-object PRAM” [61]. Formally:

PEROBJECTPRAM / SLOW ≡ (so∩ob)⊆ vis
A model slightly stronger is cache consistency, defined by Goodman [24]. Cache consistency requires

agreement on the sequence of writes applied to each object, complemented with the slow model semantics.
Viotti and Vukolić refer to this model as “per-object sequential”, providing this formal definition for it:

PEROBJECTSEQUENTIAL(F)≡ PEROBJECTSINGLEORDER ∧ PEROBJECTPRAM ∧ RVAL(F)
Finally, Goodman also defined a model stronger than cache: the processor [24] one. It encompasses

the requirements of both PRAM and cache consistencies. Therefore:
PROCESSORCONSISTENCY(F)≡ PEROBJECTSINGLEORDER ∧ PRAM ∧ RVAL(F)

3.4 Analysis of Consistency Models
Figure 1 summarises the “weaker than” (→ , defined in Section 3.3.1) relationships among consistency
models. Those relations were already identified by Viotti and Vukolić [61].

Let us take the definitions of all those consistency models as a base for analysing which of them require
any kind of coordination that will be broken in case of a network partition. Those models certainly are
CAP-constrained since they will require any kind of consensus among the participating processes. This
analysis is presented in Section 3.4.1. Its results identify a larger set of CAP-constrained models than in
other related work [50]. However, Section 3.4.2 goes on in this analysis looking for other conditions that
are not related with consensus and cannot be either attained in an available and partitioned system. Finally,
Section 3.4.3 looks for other inter-model relations that were not identified in [61].

3.4.1 Starting Point: Linearisability

Gilbert and Lynch [23] proved the CAP theorem assuming that its consistency referred to linearisability
[26]. Let us start revising the definition of linearisability given in Section 3.3.1, with the goal of identifying
which of its conditions cannot be respected in a partitioned and available system:

LINEARISABILITY(F)≡ SINGLEORDER ∧ REALTIME ∧ RVAL(F)

9

Table 1: Definition of basic consistency predicates.
Predicate Definition
RVAL(F) ∀op ∈ H : op.oval ∈F (op,cxt(A,op))
SINGLEORDER ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : vis = ar \ (H ′×H)
REALTIME rb⊆ ar
REALTIMEWRITES rb |wr→op⊆ ar
SEQRVAL(F) ∀op ∈ H : Concur(op) = /0⇒ op.oval ∈F (op,cxt(A,op))
EVENTUALVISIBILITY ∀a ∈ H,∀[f] ∈ H/≈ss:| {b ∈ [f] : (a,b) ∈ rb∧ (a,b) 6∈ vis} |< ∞

NOCIRCULARCAUSALITY acyclic(hb)
STRONGCONVERGENCE ∀a,b ∈ H |rd : vis−1(a) |wr= vis−1(b) |wr⇒ a.oval = b.oval
CAUSALVISIBILITY hb⊆ vis
CAUSALARBITRATION hb⊆ ar
TIMEDVISIBILITY(∆) ∀a ∈ H |wr,∀b ∈ H,∀t ∈ Time : a.rtime = t ∧b.stime = t +∆

⇒ (a,b) ∈ vis
REALTIMEWW rb |wr→wr⊆ ar
K-REALTIMEREADS(K) ∀a ∈ H |wr,∀b ∈ H |rd ,∀PW ⊆ H |wr,∀pw ∈ PW :| PW |< K∧

(a, pw) ∈ ar∧ (pw,b) ∈ rb∧ (a,b) ∈ rb⇒ (a,b) ∈ ar
NOJOIN ∀ai,bi,a j,b j ∈ H : ai 6≈ss a j ∧ (ai,a j) ∈ ar \ vis∧ai �so bi∧

a j �so b j⇒ (bi,b j),(b j,bi) 6∈ vis
ATMOSTONEJOIN ∀ai,a j ∈ H : ai 6≈ss a j ∧ (ai,a j) ∈ ar \ vis⇒| {bi ∈ H : ai �so bi∧

(∃b j ∈ H : a j �so b j ∧ (bi,b j) ∈ vis)} |≤ 1∧ | {b j ∈ H : a j �so b j
∧(∃bi ∈ H : ai �so bi∧ (b j,bi) ∈ vis)} |≤ 1

PEROBJECTSINGLEORDER ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : vis∩ob = ar∩ob\ (H ′×H)

Linearisability

RegularTimed serial

Sequential Safe

Processor

Fork sequential

Fork*

Causal Cache

PRAM (FIFO)

Slow memory Eventual

Fork linearisable

Timed causal

Causal+ K−Regular

Weak

WFR MRRYW MW

Real−time causal Prefix sequential

Strong eventual

K−Safe

K−Linearisability

Prefix linearisable

Figure 1: Strength-based partial ordering of consistency models.

10

RVAL(F) is needed for defining the appropriateness of the return value in an operation call based on
its context found in that execution. The other two predicates mean the following (Table 1):

• SINGLEORDER: ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : vis = ar \ (H ′×H). This predicate states that the
visibility relation (vis) being used in the model coincides with the arbitration relation (ar), discarding
the still incomplete operations. The arbitration relation sets a total order on the concurrent or invisible
operations. As a result of this, SINGLEORDER compels every process to observe the same order of
written values.

In case of network partitions, such agreement will not be possible because of the FLP impossibil-
ity result [21]. Thus, a system S = (P,N,O) is partitioned into multiple subsystems Si = (Pi,Ni,O)
where i∈K. Besides, ∀i, j ∈K, i 6= j : Connects(Pi,N j) = f alse. This means that all write operations
applied in Pi become invisible (i.e., they are not brought in their vis relation) for every other Pj with
i 6= j. The goal of the ar relation is to bring order to those invisible operations. However, since com-
munication between processes in Pi and Pj remains impossible while the network is partitioned, and
both Pi and Pj are available to their respective clients, the vis = ar \ (H ′×H) condition that defines
SINGLEORDER cannot be ensured, since the already completed writes in a network component can-
not be known by the processes belonging to other network components. Moreover, once the partition
is healed, there will be no way of complying with such a condition, either: what has been arbitrated
up to that point cannot be undone.

• REALTIME: rb ⊆ ar. This predicate requires that all the operations already ordered by the returns-
before (rb) relation are considered by the arbitration relation (ar). Since rb is built considering real
time, rb is able to order the operations executed by different processes, even when they are placed
in different network components in case of a partition or their operations have accessed different
objects.

As in the previous case, this REALTIME predicate cannot be maintained in two different system
subgroups S1 and S2 when the network becomes partitioned. What is being ordered in one of those
subgroups according to rb cannot be known nor enforced in the other subgroup.

Those predicates have been used in the definition of other consistency models. According to the ar-
guments that we have presented above, those other models will not be able to comply with the CAP con-
straints. Let us revise which they are:

• SINGLEORDER: linearisability, regular, safe, sequential, prefix sequential, prefix linearisable, timed
serial, k-linearisability, k-regular and k-safe.

Besides, the PEROBJECTSINGLEORDER predicate also requires consensus on a single order, but
constrained per each existing object. Thus, it is more relaxed than SINGLEORDER, but it is not
attainable in a partitioned system. That second predicate is needed in the definition of these models:
cache and processor.

• REALTIME (or its variants REALTIMEWRITES, REALTIMEWW): linearisability, regular, safe, pre-
fix linearisable, k-linearisability, fork linearisability, and fork∗.

Therefore, according to this first step related with the SINGLEORDER and REALTIME predicates, a
preliminary borderline between CAP-constrained and CAP-free models could be set as depicted in Figure
2.

3.4.2 Exploring the Frontier

Let us continue our analysis revising which are the predicates that define the set CCC (CAP-constrained
candidates) of strongest models that do not need the SINGLEORDER or REALTIME conditions in their spec-
ifications. In this scope, “strongest” refers to those models that: (1) are not tagged yet as CAP-constrained,
(2) are directly related as “weaker than” a CAP-constrained model, and (3) do not have any other CAP-free
model stronger than them. According to Figure 2, these CCC models are: strong eventual, fork sequential,
causal+, timed causal and real-time causal. If any of these models was also CAP-constrained, we would

11

Fork sequential

Causal

PRAM (FIFO)

Slow memory Eventual

Fork*

Fork linearisable

Sequential

Regular

Linearisability

Processor

Cache

Timed causal

Causal+ K−Regular

Weak

Strong eventualK−Safe

WFR MW MR

K−Linearisability

Prefix linearisable

Prefix sequential

RYW

Real−time causal

LEGEND

CAP−free model

CAP−constrained modelTimed serial

Safe

Figure 2: CAP-constrained and CAP-free consistency models considering SINGLEORDER and REALTIME.

continue our analysis studying the other new candidates generated by its inclusion in the CAP-constrained
set. On the other hand, if no CCC model is identified as CAP-constrained in this stage, the other models
more relaxed than those in CCC will not be CAP-constrained either.

The defining predicates for the currently identified CCC models are:

• STRONGCONVERGENCE: ∀a,b ∈ H |rd : vis−1(a) |wr= vis−1(b) |wr⇒ a.oval = b.oval. It is used in
the strong eventual and causal+ models.

STRONGCONVERGENCE requires that correct replicas that have delivered the same updates have
equivalent state [54]. Its definition is based on the vis−1 relation and this implies that it only considers
updates already delivered at the involved reader processes. Therefore, if the effects of a write cannot
be delivered yet to other processes due to a network partition, STRONGCONVERGENCE does not set
any requirement on those other processes. However, once network connectivity is restored, the write
operations being applied need to ensure convergence. Shapiro et al [54] provide several examples of
conflict-free replicated data types (CRDTs) that are strongly convergent and, therefore, are available
while the network remains partitioned.

Therefore, STRONGCONVERGENCE does not imply that the models it takes part of will be CAP-
constrained.

• EVENTUALVISIBILITY: ∀a ∈H,∀[f] ∈H/≈ss:| {b ∈ [f] : (a,b) ∈ rb∧ (a,b) 6∈ vis} |< ∞. It is used
in the strong eventual model.

This property states that the amount of write events whose effects are not yet placed in the visibility
relation cannot increase without limit. In other words, all write events should be eventually known
by the other processes.

Regarding the CAP constraints, EVENTUALVISIBILITY only demands that network partitions be
eventually repaired. As a result, it cannot be a CAP-constrained predicate.

• NOCIRCULARCAUSALITY: acyclic(hb). It is used in the strong eventual model.

This property complements EVENTUALVISIBILITY in order to define eventual consistency. NOCIR-
CULARCAUSALITY restricts the eventual propagation and visibility of write operations, requiring
that –once known by other processes– the effects of a write operation do not introduce any cycle in
the happens-before relation.

According to Burckhardt [12] this predicate was introduced in his specification of basic eventual
consistency in order to avoid the circular causality [12] (also known as thin air [13]) anomaly that

12

may be generated by some compiler optimisations for shared memory multiprocessors. In processes
running at different computers that propagate write operations using messages, such an anomaly
cannot happen.

• NOBACKWARDTIME (∀a,b ∈ H : (a,b) ∈ rb⇒ (b,a) 6∈ vis). This predicate is used in the real-time
causal model. It precludes the operations ordered by the returns-before relation to be considered
in opposite order in the visibility relation. Visibility requires value propagation. NOBACKWARD-
TIME is easy to ensure while no network partition happens in a system, since many causally con-
sistent systems already guarantee this [44]. On the other hand, while the network is partitioned,
the rb-ordered operations in each network component are not known in the other components and
are concurrent with the operations executed in those other components. Thus, when the network
recovers connectivity, each component may forward its written values to the other components, re-
ceiving those written in them. Such value exchange must be controlled considering the constraints
imposed by this NOBACKWARDTIME predicate. An accurate support of NOBACKWARDTIME for
applying that exchange of object values requires precise operation timestamping. This might seem
difficult to implement, but there have been systems that supported that kind of timestamping for
implementing interconnectable causal communication [29, 30, 47], solving a similar problem [17].
Thus, it is feasible. Besides, a trivial implementation that does not propagate any missed written
value to the other components will not violate NOBACKWARDTIME (nor CAUSALVISIBILITY or
CAUSALARBITRATION, since hb does not include pairs where each operation has been executed in
a different network component). Therefore, NOBACKWARDTIME is a CAP-free predicate, since it
can be easily respected in a partitionable system.

• CAUSALVISIBILITY (hb⊆ vis) and CAUSALARBITRATION (hb⊆ ar). These properties are used in
the causal+, real-time causal and timed causal models and both compose the definition of the causal
consistency model.

The happens-before (hb) relation is based on local execution order or on the order of write propaga-
tion events (i.e., write→ read) between processes. CAUSALVISIBILITY and CAUSALARBITRATION
state, respectively, that the partial order being set by hb is maintained in the vis and ar relations. If
a network partition divides the system network, write propagations cannot occur between disjoint
network components. Therefore, all write events happening at disjoint components will be consid-
ered concurrent according to the hb relation and they will be considered correct and accepted in the
resulting history. Because of this, both predicates can be used without problems in CAP-free models.

• TIMEDVISIBILITY(∆): ∀a ∈H |wr,∀b ∈H,∀t ∈ Time : a.rtime = t ∧b.stime = t +∆⇒ (a,b) ∈ vis.
It is used in the timed causal model.

The TIMEDVISIBILITY(∆) predicate requires that if a write operation a is executed by a process at
time t, that written value will be visible at all other processes at time t +∆.

In case of partitions, what has been written in a network component cannot be transmitted to the
remaining network components. TIMEDVISIBILITY(∆) will not be respected if the network remains
partitioned for an interval longer than ∆.

Therefore, TIMEDVISIBILITY(∆) is a CAP-constrained predicate when network partitions last longer
than ∆. On the other hand, it could be CAP-free with ∆=∞, since in that case the timed causal model
becomes equivalent to the causal one.

• PRAM: so⊆ vis. It is needed in the fork sequential model.

The PRAM predicate states that the session order (so) relation is maintained by the visibility (vis)
relation. This means that the values written by each process should be considered by all the remaining
processes in that writing order. However, no constraint is placed on the mixing of writes generated
by different processes. Therefore, so only demands that the local writing order will be eventually
known by the other processes. There is no timeliness requirement in PRAM. As a result of this,
network partitions do not prevent PRAM from being respected. Once the partition failure is healed,
each writer may propagate its writes in FIFO order to the processes contained in the other network
components. Thus, PRAM is a CAP-free predicate.

13

• NOJOIN: ∀ai,bi,a j,b j ∈H : ai 6≈ss a j ∧ (ai,a j) ∈ ar \vis∧ai �so bi∧a j �so b j⇒ (bi,b j),(b j,bi) 6∈
vis. It is needed in the fork sequential model.

The NOJOIN predicate provides the key characteristic of the fork models: once the execution of
two processes has become forked because of an arbitrary failure, their forked executions will not be
joined (i.e., merged) again.

Thus, NOJOIN is a divergence predicate and its compliance will not be impeded by network parti-
tions. Therefore, it is a CAP-free predicate.

Fork sequential

Causal

PRAM (FIFO)

Slow memory Eventual

Fork*

Fork linearisable

Sequential

Regular

Linearisability

Processor

Causal+ K−Regular

Weak

Strong eventual

Timed causal

Cache K−Safe

Prefix sequential

Prefix linearisable

K−Linearisability

MRMWRYWWFR

Real−time causal

LEGEND

CAP−constrained model

CAP−free model

Timed serial

Safe

Figure 3: CAP-constrained vs CAP-free borderline.

This analysis has shown that the TIMEDVISIBILITY predicate forces its user models to be CAP-
constrained. As a result of this, the timed causal model is also CAP-constrained. Figure 2 shows that timed
causal is directly stronger than causal and there is no other more relaxed model directly related with timed
causal. The causal model consists of the CAUSALVISIBILITY and CAUSALARBITRATION predicates.
Both have been analysed above, showing that they are CAP-free. Due to this, no other CAP-constrained
model may be found and this analysis should end here. Thus, the borderline between CAP-constrained and
CAP-free models is finally set as depicted in Figure 3.

3.4.3 Other Inter-Model Relations

Although Figure 2 shows some “weaker than” relations between models according to what was presented
in [61], there are some others that have not been represented yet in that diagram. The characterisation of
distributed consistency models given in [61] and those presented by the proposers of each model may be
used to depict several missing relationships, as shown in Figure 4 and explained hereafter.

Indeed, Viotti and Vukolić [61] show others in their paper, without formally deriving them from the
predicates that define each model. For instance, they include the fork-join causal [43] (FJC) and bounded
fork-join causal (BFJC) [44] models, but no formal specification is given for them. FJC maintains causal
consistency among correct processes, and inconsistent writes generated by a Byzantine process are consid-
ered as concurrent writes generated by virtual processes. Viotti and Vukolić [61] justify that FJC consis-
tency is weaker than causal and BFJC is weaker than fork and stronger than FJC. Additionally, Mahajan
et al [44] prove that BFJC is CAP-free and this implies that FJC is CAP-free, too.

Another example of this kind affects the family of probabilistic bounded staleness (PBS) [7] consis-
tency models proposed by Bailis et al. It consists of three models: PBS k-staleness, PBS t-visibility and
PBS (k,t)-staleness. They are intended for quorum-based eventually consistent datastores. The first de-
scribes a probabilistic model that restricts the staleness of read values. The second limits probabilistically

14

Causal

PRAM (FIFO)

Slow memory

Fork*

Fork linearisable

Sequential

Regular

Linearisability

Processor

Causal+

Weak

Timed causal Prefix sequential

Prefix linearisable

MRMWRYWWFR

K−Linearisability

K−Safe

K−Regular

Cache

Eventual

Strong eventual

Fork sequential

FJC

BFJC

Real−time causal

LEGEND

CAP−constrained model

CAP−free model

Timed serial

Safe

Figure 4: Revised “weaker than” (→) relationships among models.

the time needed by written values to become visible. The third one combines the other two. Viotti and
Vukolić [61] state that PBS k-staleness, depending on its parameter k, may be weaker than or equivalent
to k-linearisability, while PBS t-visibility is a probabilistic weakening of TIMEDVISIBILITY(∆). Their
place around the CAP-constrained vs CAP-free frontier depends on the values of their parameters, and this
avoids their inclusion in Figure 4. They are generally configured as eventually consistent models, and this
implies CAP-free models. However, PBS k-staleness when configured as non-stale becomes k-linear and,
as such, is CAP-constrained.

As Brewer states in [11] “because partitions are rare, there is little reason to forfeit C (consistency)
or A (availability) when the system is not partitioned”. This means that a strong model is needed while
the network shows no connectivity problem and such consistency should be only relaxed when a network
partition arises. Dynamically configurable models, able to relax their consistency, as those proposed in
the PBS family seem to be an adequate solution to this problem. There have been several other models
[4, 34, 20, 63, 33, 52, 32, 53, 39, 14, 19, 9, 8, 25] of this kind, that are analysed by Viotti and Vukolić [61]
in its eighth group: composable and tunable models. We refer the reader to [61] for a short description and
comparison of them. Many of those models admit configurations in both parts of our identified frontier.

Eventual consistency was defined with the goal of breaking the constraints of the CAP theorem [6].
Thus, it is one of the best known representatives of the CAP-free set of models. It is interesting to relate it
with CAP-constrained models. Intuitively, it may be weaker than all of them. Indeed, even strong eventual
[54] consistency seems to be weaker than many of them. Let us consider that relationship.

Section 3.4.1 showed that SINGLEORDER sets an agreement on the order of writes for all participating
processes. At a glance, that condition satisfies the requirements of the STRONGCONVERGENCE predi-
cate. The latter demands that once the same set of write operations is applied by two processes, their
states converge [54] and any reads in those processes on the same object return the same value. SIN-
GLEORDER guarantees that such set of writes is seen in the same order by those processes. Therefore,
all executions respecting SINGLEORDER comply with STRONGCONVERGENCE and, additionally, they
also trivially comply with EVENTUALVISIBILITY and NOCIRCULARCAUSALITY, since SINGLEORDER
requires that all completed writes are visible to all participating processes (this implies EVENTUALVIS-
IBILITY) and its agreed order avoids cycles in the hb relation (i.e., NOCIRCULARCAUSALITY). Thus,
executions complying with SINGLEORDER are strongly eventual. On the contrary, there are some strongly
eventual executions that do not respect SINGLEORDER [54]; e.g., those based on commutative write op-
erations that are applied in different order in two different processes: they converge without following the

15

same write-order in every process. With this, it can be stated that every model based on SINGLEORDER is
strictly stronger than strong eventual consistency.

Indeed, what has been said about SINGLEORDER also applies to PEROBJECTSINGLEORDER. There-
fore, the strong eventual model is weaker than prefix sequential and cache. K-safe, K-regular and K-
linearisable consistencies respect SINGLEORDER but they also extend the set of values that may be re-
turned by read operations, relaxing the resulting consistency, as shown in Figure 4. Although every replica
applies the same sequence of writes and their states converge, subsequent read operations may return any
of the most K-recent values. Because of this, there is no guarantee that reads executed on different replicas
that have applied the same set of write operations return the same value (i.e., STRONGCONVERGENCE
is not respected). Thus, K-safe, K-regular and K-linearisable consistencies are incomparable with strong
eventual consistency.

Besides, the timed causal model is also incomparable with the strong eventual model. Let us consider
two executions in order to show this. Let us start with a timed causal execution. It consists of two write
operations assigning different values to the same object that occur at the same real-time instant in two
different processes p1 and p2. Such writes are locally observable in both processes at that time and need
some interval (shorter than ∆) for being transmitted to the other process. When they are delivered, they
are accepted and read by the other process. As a result of this, both p1 and p2 have received the same set
of values on the same object, but their respective reads have returned different values at the end of this
execution. Therefore, this execution does not respect STRONGCONVERGENCE and this example means
that timed causal seems to be weaker than strong eventual.

But we may also find a strongly eventual execution that is not timed causal. The system takes ∆ = 2 in
order to manage timed causal consistency. Let us consider an execution consisting of two write operations
on the same object from p1 and p2. Process p1 writes value v1 and one time unit later p2 receives and reads
that value before writing value v2. Once this is made, the network is partitioned and remains partitioned
3 time units. Later on, connectivity is resumed, and value v2 is propagated and delivered to p1. Thus,
now both processes know about the values written by the other and both agree that the final value is v2,
complying with the STRONGCONVERGENCE condition. However, in this case, TIMEDVISIBILITY(2) has
not been held due to the temporary network partition. Then, this execution is not timed causal but it is
strong eventual. Therefore, both models are incomparable.

Recently, Attiya et al [6] have formally proved that observable causal consistency (a model slightly
stronger than causal) is the strongest eventual (i.e., CAP-free and non-inherently convergent) model that
can be supported by either multi-value registers or observed-remove sets in a partitionable system, assum-
ing that read operations do not modify the state and messages are generated only following an operation. It
is incomparable with the real-time causal model [6] since both take different mechanisms to reach conver-
gence. That result confirms the validity of our identified frontier between CAP-constrained and CAP-free
models, at least on what regards to placing causal consistency in the strongest subset of the CAP-free
domain.

4 Related Work
The identification of the set of consistency models affected by the CAP theorem has been implicitly under-
taken by several recent papers that have looked for the strongest consistency to be supported in available
and partition-tolerant systems [42, 44, 6]. Those papers have taken as a base causal consistency, adding
some conditions in order to strengthen it, generating in that way the causal+ [42], real-time causal [44] and
observable causal [6] models. Those models are incomparable to each other and they define the strongest
subset of models in the CAP-free set.

Another “classical” approach to implement available and partition-tolerant services is based on eventual
consistency. The term eventual consistency was probably first used in the Clearinghouse system [18] and
in the Lotus/Iris Notes CSCW (computer-supported cooperative work) project [31], in 1987 and 1988,
respectively. However, such kind of consistency was already explained and used in other previous papers,
being the works from Johnson and Thomas [28, 15] (1975) and Alsberg and Day [3] (1976) the first ones
we are aware of.

Thus, both causal and eventual consistencies belong to the CAP-free set of models. Causal consistency

16

does not demand consensus on a common order of writes, while eventual consistency relaxes the recency
of the values being read since it uses lazy write propagation. Intuitively, this suggests that CAP-constrained
models are those requiring either consensus on a global write-order (impossible to attain in a partitionable
system due to the FLP impossibility result [21]) or a close to immediate recency on the values read (broken
when the latest values have been written in another network component while the network is partitioned).
The consistency specification framework proposed by Burckhardt et al [13, 12] provides an excellent basis
for specifying consistency models. With it, it is easy to specify both safety and liveness conditions. Viotti
and Vukolić [61] have already used that framework for surveying distributed consistency models. Our work
complements their survey looking for the CAP-constrained to CAP-free frontier considering value-order
consensus and read recency criteria. Thus, the current classification extends other previous work focused
on setting a partial frontier based on value-order consensus [50, 49].

A complete frontier is not easy to set. Indeed, Viotti and Vukolić show some of the existing weaker-than
relations among models and, regarding the eventual and strong eventual models, they only state that strong
eventual is weaker than linearisability. However, we have shown that strong eventual is weaker than cache
consistency (and all other models stronger than cache), although it is not weaker than all CAP-constrained
models; e.g., it is incomparable with fork∗, timed causal and K-safe, and these three are CAP-constrained.

There are a good set of composable and tunable consistency models [4, 34, 20, 63, 33, 52, 32, 53, 7, 39,
14, 19, 9, 8, 25] whose implementation protocols simultaneously support both CAP-constrained and CAP-
free consistencies. Thus, that seems to be the best approach to overcome the limitations imposed by the
CAP theorem on the consistency of highly available distributed services since they may relax consistency
while the network remains partitioned or easily determine which service activities may remain blocked or
partially inconsistent while partitions arise. Additionally, they support and provide quite a strong consis-
tency while the network remains connected.

5 Conclusions
We have revised which distributed consistency models, besides linearisability, are directly affected by the
CAP theorem constraints on consistency. This study has shown that there are many other models (e.g.,
fork linearisable, timed serial, regular, sequential, prefix linearisable, safe, fork∗, timed causal, proces-
sor, cache, k-linearisable,...) that cannot be ensured in available and partition-tolerant distributed services.
Therefore, the strongest classical data-centric consistency to be supported by those services in case of
network partitions is the causal one that may be complemented with other conditions in order to provide
stronger semantics in a partitionable system, building in this way the causal+, real-time causal and ob-
servable causal models. Many other CAP-free models have been also identified. Thus, a more precise
frontier between CAP-constrained and CAP-free models has been set in this paper, providing a good basis
for classifying any newly proposed models from now on.

References
[1] Ahamad M, Burns JE, Hutto PW, Neiger G (1991) Causal memory. In: 5th International Workshop on Distributed

Algorithms and Graphs (WDAG), Delphi, Greece, pp 9–30, DOI 10.1007/BFb0022435

[2] Aiyer AS, Alvisi L, Bazzi RA (2005) On the availability of non-strict quorum systems. In: 19th International
Conference on Distributed Computing (DISC), Cracow, Poland, pp 48–62, DOI 10.1007/11561927 6

[3] Alsberg P, Day JD (1976) A principle for resilient sharing of distributed resources. In: 2nd International Confer-
ence on Software Engineering (ICSE), San Francisco, CA, USA, pp 562–570

[4] Attiya H, Friedman R (1992) A correctness condition for high-performance multiprocessors. In: 24th Annual
ACM Symposium on Theory of Computing (STOC), Victoria, British Columbia, Canada, pp 679–690, DOI
10.1145/129712.129778

[5] Attiya H, Friedman R (1996) Limitations of fast consistency conditions for distributed shared memories. Inf
Process Lett 57(5):243–248, DOI 10.1016/0020-0190(96)00007-5

17

[6] Attiya H, Ellen F, Morrison A (2017) Limitations of highly-available eventually-consistent data stores. IEEE
Trans Parallel Distrib Syst 28(1):141–155, DOI 10.1109/TPDS.2016.2556669

[7] Bailis P, Venkataraman S, Franklin MJ, Hellerstein JM, Stoica I (2012) Probabilistically bounded staleness for
practical partial quorums. PVLDB 5(8):776–787

[8] Balegas V, Duarte S, Ferreira C, Rodrigues R, Preguiça NM, Najafzadeh M, Shapiro M (2015) Putting consis-
tency back into eventual consistency. In: 10th European Conference on Computer Systems (EuroSys), Bordeaux,
France, pp 6:1–6:16, DOI 10.1145/2741948.2741972

[9] Bessani AN, Mendes R, Oliveira T, Neves NF, Correia M, Pasin M, Verı́ssimo P (2014) SCFS: A shared cloud-
backed file system. In: USENIX Annual Technical Conference (ATC), Philadelphia, PA, USA, pp 169–180

[10] Birman KP, Friedman R (1996) Trading consistency for availability in distributed systems. Tech. rep., 96-1579,
Dept. of Comput. Sc., Cornell University, Ithaca, NY, USA

[11] Brewer EA (2012) CAP twelve years later: How the “rules” have changed. IEEE Computer 45(2):23–29, DOI
10.1109/MC.2012.37

[12] Burckhardt S (2014) Principles of eventual consistency. Foundations and Trends in Programming Languages
1(1-2):1–150, DOI 10.1561/2500000011

[13] Burckhardt S, Gotsman A, Yang H, Zawirski M (2014) Replicated data types: specification, verification, optimal-
ity. In: 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
San Diego, CA, USA, pp 271–284, DOI 10.1145/2535838.2535848

[14] Chihoub H, Ibrahim S, Antoniu G, Pérez-Hernández MS (2012) Harmony: Towards automated self-adaptive
consistency in cloud storage. In: IEEE International Conference on Cluster Computing (CLUSTER), Beijing,
China, pp 293–301, DOI 10.1109/CLUSTER.2012.56

[15] Cosell BS, Johnson PR, Malman JH, Schantz RE, Sussman J, Thomas RH, Walden DC (1975) An operational
system for computer resource sharing. In: 5th ACM Symposium on Operating System Principles (SOSP), The
University of Texas at Austin, Austin, Texas, USA, pp 75–81

[16] Davidson SB, Garcı́a-Molina H, Skeen D (1985) Consistency in partitioned networks. ACM Comput Surv
17(3):341–370, DOI 10.1145/5505.5508

[17] de Juan-Marı́n R, Decker H, Armendáriz-Íñigo JE, Bernabéu-Aubán JM, Muñoz-Escoı́ FD (2016) Scalability
approaches for causal multicast: A survey. Computing 98(9):923–947, DOI 10.1007/s00607-015-0479-0

[18] Demers AJ, Greene DH, Hauser C, Irish W, Larson J, Shenker S, Sturgis HE, Swinehart DC, Terry DB (1987)
Epidemic algorithms for replicated database maintenance. In: 6th ACM Symposium on Principles of Distributed
Computing (PODC), Vancouver, British Columbia, Canada, pp 1–12, DOI 10.1145/41840.41841

[19] Dobre D, Viotti P, Vukolić M (2014) Hybris: Robust hybrid cloud storage. In: ACM Symposium on Cloud
Computing (SoCC), Seattle, WA, USA, pp 12:1–12:14, DOI 10.1145/2670979.2670991

[20] Fekete A, Gupta D, Luchangco V, Lynch NA, Shvartsman AA (1996) Eventually-serializable data services. In:
15th ACM Symposium on Principles of Distributed Computing (PODC), Philadelphia, PA, USA, pp 300–309

[21] Fischer MJ, Lynch NA, Paterson M (1985) Impossibility of distributed consensus with one faulty process. J ACM
32(2):374–382, DOI 10.1145/3149.214121

[22] Fox A, Brewer EA (1999) Harvest, yield and scalable tolerant systems. In: 7th Workshop on Hot Topics in
Operating Systems (HotOS), Rio Rico, Arizona, USA, pp 174–178, DOI 10.1109/HOTOS.1999.798396

[23] Gilbert S, Lynch N (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant web
services. SIGACT News 33(2):51–59, DOI 10.1145/564585.564601

[24] Goodman JR (1989) Cache consistency and sequential consistency. Tech. rep., Number 61, IEEE Scalable Co-
herent Interface Working Group

[25] Gotsman A, Yang H, Ferreira C, Najafzadeh M, Shapiro M (2016) ’cause I’m strong enough: reasoning about
consistency choices in distributed systems. In: 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), St. Petersburg, FL, USA, pp 371–384, DOI 10.1145/2837614.2837625

18

[26] Herlihy M, Wing JM (1990) Linearizability: A correctness condition for concurrent objects. ACM Trans Program
Lang Syst 12(3):463–492, DOI 10.1145/78969.78972

[27] Hutto PW, Ahamad M (1990) Slow memory: Weakening consistency to enchance concurrency in distributed
shared memories. In: 10th International Conference on Distributed Computing Systems (ICDCS), Paris,France,
pp 302–309, DOI 10.1109/ICDCS.1990.89297

[28] Johnson PR, Thomas RH (1975) The maintenance of duplicate databases. RFC 677, Network Working Group,
Internet Engineering Task Force

[29] Kawanami S, Enokido T, Takizawa M (2004) A group communication protocol for scalable causal ordering. In:
18th International Conference on Advanced Information Networking and Applications (AINA), Fukuoka, Japan,
pp 296–302

[30] Kawanami S, Nishimura T, Enokido T, Takizawa M (2005) A scalable group communication protocol with global
clock. In: 19th International Conference on Advanced Information Networking and Applications (AINA), Taipei,
Taiwan, pp 625–630, DOI 10.1109/AINA.2005.58

[31] Kawell L Jr, Beckhardt S, Halvorsen T, Ozzie R, Greif I (1988) Replicated document management in a group
communication system. In: ACM Conference on Computer-Supported Cooperative Work (CSCW), Portland,
Oregon, USA, pp 395–, DOI 10.1145/62266.1024798

[32] Kraska T, Hentschel M, Alonso G, Kossmann D (2009) Consistency rationing in the cloud: Pay only when it
matters. PVLDB 2(1):253–264

[33] Krishnamurthy S, Sanders WH, Cukier M (2002) An adaptive framework for tunable consistency and timeliness
using replication. In: International Conference on Dependable Systems and Networks (DSN), Bethesda, MD,
USA, pp 17–26, DOI 10.1109/DSN.2002.1028882

[34] Ladin R, Liskov B, Shrira L, Ghemawat S (1992) Providing high availability using lazy replication. ACM T
Comput Syst 10(4):360–391, DOI 10.1145/138873.138877

[35] Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. Commun ACM 21(7):558–
565, DOI 10.1145/359545.359563

[36] Lamport L (1979) How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE
T Comput 28(9):690–691, DOI 10.1109/TC.1979.1675439

[37] Lamport L (1986) On interprocess communication. Part II: algorithms. Distrib Comput 1(2):86–101, DOI 10.
1007/BF01786228

[38] Lamport L, Shostak RE, Pease MC (1982) The byzantine generals problem. ACM Trans Program Lang Syst
4(3):382–401, DOI 10.1145/357172.357176

[39] Li C, Porto D, Clement A, Gehrke J, Preguiça NM, Rodrigues R (2012) Making geo-replicated systems fast as
possible, consistent when necessary. In: 10th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), Hollywood, CA, USA, pp 265–278

[40] Li J, Mazières D (2007) Beyond one-third faulty replicas in byzantine fault tolerant systems. In: 4th Symposium
on Networked Systems Design and Implementation (NSDI), Cambridge, Massachusetts, USA, pp 131–144

[41] Lipton RJ, Sandberg JS (1988) PRAM: A scalable shared memory. Tech. rep., CS-TR-180-88, Princeton Univer-
sity, USA

[42] Lloyd W, Freedman MJ, Kaminsky M, Andersen DG (2011) Don’t settle for eventual: scalable causal consistency
for wide-area storage with COPS. In: 23rd ACM Symposium on Operating Systems Principles (SOSP), Cascais,
Portugal, pp 401–416, DOI 10.1145/2043556.2043593

[43] Mahajan P, Setty STV, Lee S, Clement A, Alvisi L, Dahlin M, Walfish M (2010) Depot: Cloud storage with min-
imal trust. In: 9th USENIX Symposium on Operating Systems Design and Implementation, (OSDI), Vancouver,
BC, Canada, pp 307–322

[44] Mahajan P, Alvisi L, Dahlin M (2011) Consistency, availability and covergence. Tech. rep., UTCS TR-11-22,
Dept. of Computer Science, The University of Texas at Austin, USA

19

[45] Mazières D, Shasha DE (2002) Building secure file systems out of byantine storage. In: 21st Annual ACM
Symposium on Principles of Distributed Computing (PODC), Monterrey, California, USA, pp 108–117, DOI
10.1145/571825.571840

[46] Muñoz-Escoı́ FD, Bernabéu-Aubán JM (2017) A survey on elasticity management in PaaS systems. Computing
99(7):617–656, DOI 10.1007/s00607-016-0507-8

[47] Nishimura T, Hayashibara N, Takizawa M, Enokido T (2005) Causally ordered delivery with global clock in
hierarchical group. In: 14th International Conference on Parallel and Distributed Systems (ICPADS), Fukuoka,
Japan, pp 560–564, DOI 10.1109/ICPADS.2005.105

[48] Oprea A, Reiter MK (2006) On consistency of encrypted files. In: 20th International Symposium on Distributed
Computing (DISC), Stockholm, Sweden, pp 254–268, DOI 10.1007/11864219 18

[49] Pascual-Miret L, Muñoz-Escoı́ FD (2016) Replica divergence in data-centric consistency models. In: 27th In-
ternational Workshop on Database and Expert Systems Applications (DEXA Workshops), Porto, Portugal, pp
109–112, DOI 10.1109/DEXA.2016.035

[50] Pascual-Miret L, González de Mendı́vil JR, Bernabéu-Aubán JM, Muñoz-Escoı́ FD (2015) Widening CAP con-
sistency. Tech. rep., IUMTI-SIDI-2015/03, Inst. Univ. Mixto Tecnológico de Informática, Univ. Politècnica de
València, Spain

[51] Saito Y, Shapiro M (2005) Optimistic replication. ACM Comput Surv 37(1):42–81, DOI 10.1145/1057977.
1057980

[52] Santos N, Veiga L, Ferreira P (2007) Vector-field consistency for ad-hoc gaming. In: ACM/IFIP/USENIX 8th
International Middleware Conference, Newport Beach, CA, USA, pp 80–100, DOI 10.1007/978-3-540-76778-7
5

[53] Serafini M, Dobre D, Majuntke M, Bokor P, Suri N (2010) Eventually linearizable shared objects. In: 29th
Annual ACM Symposium on Principles of Distributed Computing (PODC), Zurich, Switzerland, pp 95–104,
DOI 10.1145/1835698.1835723

[54] Shapiro M, Preguiça NM, Baquero C, Zawirski M (2011) Conflict-free replicated data types. In: 13th Interna-
tional Symposium on Stabilization, Safety, and Security of Distributed Systems (SSS), Grenoble, France, pp
386–400, DOI 10.1007/978-3-642-24550-3 29

[55] Tanenbaum AS, van Steen M (2007) Distributed Systems - Principles and Paradigms, 2nd Edition. Pearson Edu-
cation, ISBN: 978-0-13-239227-3

[56] Terry DB, Demers AJ, Petersen K, Spreitzer M, Theimer M, Welch BB (1994) Session guarantees for weakly
consistent replicated data. In: 3rd International Conference on Parallel and Distributed Information Systems
(PDIS), Austin, Texas, USA, pp 140–149, DOI 10.1109/PDIS.1994.331722

[57] Terry DB, Theimer M, Petersen K, Demers AJ, Spreitzer M, Hauser C (1995) Managing update conflicts in
Bayou, a weakly connected replicated storage system. In: 15th ACM Symposium on Operating System Principles
(SOSP), Copper Mountain Resort, Colorado, USA, pp 172–183, DOI 10.1145/224056.224070

[58] Torres-Rojas FJ, Meneses E (2005) Convergence through a weak consistency model: Timed causal consistency.
CLEI Electron J 8(2):2:1–2:10

[59] Torres-Rojas FJ, Ahamad M, Raynal M (1999) Timed consistency for shared distributed objects. In: 18th Annual
ACM Symposium on Principles of Distributed Computing (PODC), Atlanta, Georgia, USA, pp 163–172, DOI
10.1145/301308.301350

[60] Torres-Rojas FJ, Ahamad M, Raynal M (2002) Real-time based strong consistency for distributed objects. Com-
put Syst Sci Eng 17(2):133–142

[61] Viotti P, Vukolić M (2016) Consistency in non-transactional distributed storage systems. ACM Comput Surv
49(1):19:1–19:34, DOI 10.1145/2926965

[62] Vogels W (2009) Eventually consistent. Commun ACM 52(1):40–44, DOI 10.1145/1435417.1435432

[63] Yu H, Vahdat A (2002) Design and evaluation of a conit-based continuous consistency model for replicated
services. ACM Trans Comput Syst 20(3):239–282

20

