
DATA DURABILITY IN

CLOUD STORAGE SYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Asaf Cidon

July 2015

c© Copyright by Asaf Cidon 2015

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Mendel Rosenblum) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Sachin Katti)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Christos Kozyrakis)

Approved for the University Committee on Graduate Studies

iii

iv

Abstract

This dissertation challenges widely held assumptions about data replication in

cloud storage systems. It demonstrates that existing cloud storage techniques are far

from being optimal for guarding against different types of node failure events. The

dissertation provides novel methodologies for analyzing node failures and designing

non-random replication schemes that offer significantly higher durability than existing

techniques, at the same storage cost and cluster performance.

Popular cloud storage systems typically replicate their data on random nodes to

guard against data loss due to node failures. Node failures can be classified into two

categories: independent and correlated node failures. Independent node failures are

typically caused by independent server and hardware failures, and occur hundreds of

times a year in a cluster of thousands of nodes. Correlated node failures are failures

that cause multiple nodes to fail simultaneously and occur a handful of times a year

or less. Examples of correlated failures include recovery following a power outage or

a large-scale network failure.

The conventional wisdom to guard against node failures is to replicate each node’s

data three times within the same cluster, and also geo-replicate the entire cluster to

a separate location to protect against correlated failures.

The dissertation shows that random replication within a cluster is almost guaran-

teed to lose data under common scenarios of correlated node failures. Due to the high

fixed cost of each incident of data loss, many data center operators prefer to mini-

mize the frequency of such events at the expense of losing more data in each event.

The dissertation introduces Copyset Replication, a novel general-purpose replication

technique that significantly reduces the frequency of data loss events within a clus-

ter. It also presents an implementation and evaluation of Copyset Replication on

two open source cloud storage systems, HDFS and RAMCloud, and shows it incurs a

low overhead on all operations. Such systems require that each node’s data be scat-

tered across several nodes for parallel data recovery and access. Copyset Replication

presents a near optimal trade-off between the number of nodes on which the data is

scattered and the probability of data loss. For example, in a 5000-node RAMCloud

cluster under a power outage, Copyset Replication reduces the probability of data

loss from 99.99% to 0.15%. For Facebook’s HDFS cluster, it reduces the probability

from 22.8% to 0.78%.

The dissertation also demonstrates that with any replication scheme (including

Copyset Replication), using two replicas is sufficient for protecting against indepen-

dent node failures within a cluster, while using three replicas is inadequate for pro-

tecting against correlated node failures. Given that in many storage systems the third

or n-th replica was introduced for durability and not for performance, storage systems

can change the placement of the last replica to address correlated failures, which are

the main vulnerability of cloud storage systems.

The dissertation presents Tiered Replication, a replication scheme that splits the

cluster into a primary and backup tier. The first two replicas are stored on the primary

tier and are used to recover data in the case of independent node failures, while the

third replica is stored on the backup tier and is used for correlated failures. The key

insight behind Tiered Replication is that, since the third replicas are rarely read, we

can place the backup tier on separate physical infrastructure or a remote location

without affecting performance. This separation significantly increases the resilience

of the storage system to correlated failures and presents a low cost alternative to

geo-replication of an entire cluster. In addition, the Tiered Replication algorithm

optimally minimizes the probability of data loss under correlated failures. Tiered

Replication can be executed incrementally for each cluster change, which allows it

to supports dynamic environments where nodes join and leave the cluster, and it

facilitates additional data placement constraints required by the storage designer, such

as network and rack awareness. Tiered Replication was implemented on HyperDex,

an open-source cloud storage system, and the dissertation demonstrates that it incurs

a small performance overhead. Tiered Replication improves the cluster-wide MTTF

by a factor of 100,000 in comparison to random replication, without increasing the

amount of storage.

ii

Acknowledgements

iii

When I first visited Stanford as a prospective grad student, I was deliberating

between doing an MBA and a PhD. It initially seemed like a no-brainer: would I prefer

spending long nights partying in exotic locations with circus tigers and fountains of

champagne, or sleepless nights in a dank room alone with a computer and a flickering

table lamp? Being no fan of masochism, I was convinced I would choose the former.

However, after meeting several Stanford professors, I quickly realized that the

opportunity to work with world-class intelligent and creative technologists on cutting-

edge research was simply too hard to resist. I realized that a PhD in Stanford is like

being mentored by Michael Jackson to throw jump shots or Eminem in freestyle rap.

It’s a one-in-a-lifetime opportunity. I haven’t looked backed since.

First, I’d like to thanks my primary advisors, Mendel Rosenblum and Sachin Katti

for providing immense mentorship and support. I have learned valuable life lessons

from you both.

Mendel has an extraordinarily lucid thought process. I could be spending hours

working on a technical problem or positioning a paper, and in the first 5 minutes

of the meeting Mendel would suddenly have a really simple insight that would leave

me dumbfounded at how I could spend so much time over-complicating the topic at

hand. He is incredibly creative and his depth of understanding of computer systems

and technology is truly astonishing. Mendel has also been a personal mentor to me

and I greatly enjoyed his advice and insights on my personal and professional life.

Sachin is hands-down the most creative person I have ever worked with. The fre-

quency and quality of the ideas he produces is amazing. He is also incredibly sharp,

and can grasp and express very broad concepts across very different domains. As a

testament to this, I worked with Sachin on research in physical-level wireless commu-

nications, mobile software and distributed storage systems. Sachin is a pleasure to

interact with on a personal level, and I feel I not only gained an outstanding advisor

and mentor, but also a friend for life.

I was extremely fortunate to work with several other professors during my PhD.

I had the pleasure to work with John Ousterhout on brainstorming and designing

the concept of copysets. I feel like John is a legendary role-model for any computer

scientist and I learned a lot from working with him. I had the pleasure to work with

iv

Christos Kozyrakis in the early stages of my PhD. Christos is extremely smart and

versatile in his research expertise. He is also a very funny and supportive person, and

made the early steps in my PhD much easier and more enjoyable.

One of the greatest pleasures of the PhD program is to work closely with other

incredibly talented students. It’s a humbling experience to sit in the same room with

such sharp colleagues. I worked with Ryan Stutsman and Stephen Rumble on imple-

menting Copyset Replication. Ryan is incredible smart and very funny. I learned a lot

from Ryan about politics and theology and really enjoyed his company. I’m sure he is

an amazing advisor. Steve is a really talented computer systems researcher and pro-

grammer. He is sharp-witted, bright and humble and it was a pleasure working with

him. Diego Ongaro is a great friend and has also been a frequent sounding board for

my ideas. He is one of the best computer systems engineers I have ever met. He is like

a one man software engineering team. I really enjoyed working with Kanthi Nagaraj

on our wireless networking project, Flashback. Kanthi is really smart, hardworking,

cheerful and a delight to work with. Kanthi gave me a crash course on wireless net-

working and programmable radios, which are topics I had almost no background in.

Tomer London is one of my best friends. We were also research partners (and room-

mates) during our first year at Stanford. We started brainstorming research ideas

even before we started grad school, and have been brainstorming startup ideas ever

since. Tomer is incredibly talented, creative and smart.

I also greatly enjoyed collaborating with researchers outside of Stanford during my

PhD. I greatly enjoyed working with Emin Gün Sirer and Robert Escriva from Cornell

on Tiered Replication. It was a great experience working with Pramod Viswanath

from UIUC on the Flashback paper. I learned a lot from the conversations with

Pramod about communications and wireless networking. I had very enjoyable brain-

storming sessions about storage coding and data placement ideas with Rashmi K.

Vinayak from Berkeley.

I want to thank my family and friends. It seems like since the day I was born,

my mom destined me to complete my PhD. Ima, I’m officially off the hook now. A

secret sauce of my PhD was the immense personal support from my dad. Coaching

me about academia, providing suggestions, emotional support, etc. etc. Aba, you

v

provided amazing support in the ups and downs of PhD life. My mom and dad

are the most amazing parents I could ever wish for, and I really think I have had

an unfair advantage in life with such incredible role models. My brother, Eyal is

going to be a much better engineer and computer scientist than I am. His talent and

humbleness are equally stellar. I love you and I have no doubt you will be extremely

successful in whatever path you take. Eugenia, thanks for being incredibly supportive

and being someone I can turn to whenever I have doubts or questions. I’m sure your

dissertation will be way more intelligible and readable than this one. I’d like thank

my grandparents, Savta Batya, Saba Yoske and Savta Rina. You are all inspirational

to me, and I love you immensely.

Many other people have provided support and feedback for my work, includ-

ing Jeff Mehlman, Steven Hong, Joseph Koo, Aditya Gudipati, Manu Bansal, Yan

Michalevsky, Kiran Joshi, Dinesh Bharadia, Rakesh Misra, Aaron Schulman, David

Gal, Lior Gavish, Ed Bugnion, Jacob Leverich, Christina Delimitrou, Daniel Sanchez,

Ankita Kejriwal, Kannan Muthukkaruppan, Venkat Venkataramani, Shankar Pasu-

pathy, Deepak Kenchammana, Robert Chansler, Dhruba Borthakur, Murray Stokely

and Bernard Wong. I also want to thank Tsachy Weissman for supporting me in the

early stages of my PhD and for chairing my oral defense committee.

Throughout my PhD I was supported by the Leonard J. Shustek Stanford Grad-

uate Fellowship.

vi

Contents

Acknowledgements iii

1 Introduction 1

1.1 Introduction . 2

1.2 Contributions . 3

1.2.1 Model for Computing MTTF Across an Entire Cloud Storage

Cluster . 3

1.2.2 Copyset Framework and the Shortcomings of Random Replication 5

1.2.3 Copyset Replication and Tiered Replication 6

1.2.4 The Relationship of Copysets with BIBD 7

1.3 How to Read This Dissertation? . 8

2 A Framework for Replication: Copysets and Scatter Width 9

2.1 Introduction . 10

2.2 The Problem . 14

2.2.1 Definitions . 14

2.2.2 Random Replication . 15

2.3 Intuition . 17

2.3.1 Minimizing the Number of Copysets 18

2.3.2 Scatter Width . 19

2.4 Design . 22

2.4.1 Durability of Copyset Replication 25

2.4.2 Optimality of Copyset Replication 29

vii

2.4.3 Expected Amount of Data Lost 30

2.5 Evaluation . 32

2.5.1 HDFS Implementation . 32

2.5.2 HDFS Evaluation . 33

2.5.3 Implementation of Copyset Replication in RAMCloud 35

2.5.4 Evaluation of Copyset Replication on RAMCloud 36

2.6 Discussion . 38

2.6.1 Copysets and Coding . 38

2.6.2 Graceful Power Downs . 38

2.7 Related Work . 40

2.7.1 Combinatorial Design Theory 40

2.7.2 DHT Systems . 42

2.7.3 Data Center Storage Systems 42

3 The Peculiar Case of the Last Replica 44

3.1 Introduction . 45

3.2 Motivation . 48

3.2.1 Analysis of Independent Node Failures 48

3.2.2 Analysis of Correlated Node Failures 55

3.2.3 The Peculiar Case of the Nth Replica 56

3.3 Design . 59

3.3.1 Analysis of Tiered Replication 63

3.3.2 Dynamic Cluster Changes . 65

3.3.3 Additional Constraints . 66

3.3.4 Analysis of Additional Constraints 67

3.4 Implementation . 69

3.4.1 Performance Benchmarks . 70

3.4.2 Write Latency . 71

3.4.3 Recovery Evaluation . 71

3.5 Related Work . 72

3.6 Appendix . 74

viii

4 Conclusions 75

4.1 Conclusions . 76

Bibliography 78

ix

List of Tables

2.1 Replication schemes of data center storage systems. These parameters

are estimated based on publicly available data [10, 75, 8, 3, 60]. For

simplicity, we fix the HDFS scatter width to 200, since its value varies

depending on the cluster and rack size. 14

2.2 Comparison of recovery time of a 100 GB node on a 39 node cluster.

Recovery time is measured after the moment of failure detection. . . . 33

2.3 The simulated load in a 5000-node HDFS cluster with R = 3, using

Copyset Replication. With Random Replication, the average load is

identical to the maximum load. 34

2.4 Comparison of backup recovery performance on RAMCloud with Copy-

set Replication. Recovery time is measured after the moment of failure

detection. 37

3.1 Probability of simultaneous node failures due to independent node fail-

ures under different cluster sizes. The model uses S = 10, R = 3, an

average node MTTF of 10 years and a node recovery time of 3 minutes. 51

3.2 Tiered Replication algorithm’s variables and helper functions. 59

x

List of Figures

2.1 Computed probability of data loss with R = 3 when 1% of the nodes

do not survive a power outage. The parameters are based on publicly

available sources [75, 8, 10, 60] (see Table 2.1). 11

2.2 Simulation of the data loss probabilities of a RAMCloud cluster, vary-

ing the number of replicas per chunk. 16

2.3 Data loss probability when 1% of the nodes fail simultaneously as a

function of S, using N = 5000, R = 3. 21

2.4 Illustration of the Copyset Replication Permutation phase. 22

2.5 Illustration of the Copyset Replication Replication phase. 23

2.6 Data loss probability of random replication and Copyset Replication

with R = 3, using the parameters from Table 2.1. HDFS has higher

data loss probabilities because it uses a larger scatter width (S = 200). 24

2.7 Data loss probability of random replication and Copyset Replication

in RAMCloud. 25

2.8 Data loss probability of random replication and Copyset Replication

in HDFS. 26

2.9 Data loss probability of random replication and Copyset Replication

in Facebook’s implementation of HDFS. 27

2.10 Data loss probability on Facebook’s HDFS cluster, with a varying per-

centage of the nodes failing simultaneously. 28

2.11 Comparison of the average scatter width ofCopyset Replication to the

optimal scatter width in a 5000-node cluster. 29

2.12 Expected amount of data lost as a percentage of the data in the cluster. 30

xi

3.1 Markov chain of data loss due to independent node failures. Each state

represents the number of nodes that are down simultaneously. 49

3.2 MTTF due to independent and correlated node failures of a cluster

with a scatter width of 10. 52

3.3 MTTF due to independent and correlated node failures of a cluster

with 4000 nodes. 53

3.4 MTTF due to independent and correlated node failures of a cluster

with a scatter width of 10. 61

3.5 MTTF due to independent and correlated node failures of a cluster

with a scatter width of 10. 62

3.6 Adding constraints on Tiered Replication increases the number of copy-

sets, on a cluster with N = 4000, R− 3 and S = 10. 66

3.7 Tiered Replication throughput under YCSB benchmark. Each bar

represents the throughput under a different YCSB workload. 70

3.8 Tiered Replication write latency under YCSB benchmark. 71

xii

Chapter 1

Introduction

1

2 CHAPTER 1. INTRODUCTION

1.1 Introduction

Cloud storage systems are used by web service providers, such as Google, Facebook

and Amazon, to centrally store, process and backup massive amounts of data. These

storage systems store petabytes of data across thousands of servers. Such storage

systems are utilized to store web mail attachments, search engine indexes and social

network profile data.

Unlike traditional storage systems, which guard against data loss by utilizing

expensive fault-tolerant hardware systems, cloud storage systems use a smart dis-

tributed software layer to handle data replication and recovery, across a large number

of inexpensive commodity servers that frequently fail.

The unprecedented scale of these storage systems coupled with the need to tol-

erate frequent commodity server hardware failures, create novel research questions

about how to effectively guard against node failurs. The dissertation provides two

motivating examples for such research questions.

First, cloud storage system operators, such as Yahoo! [75], LinkedIn [10] and

Facebook [8] have noticed that once the cluster scales beyond several thousands of

nodes, large scale correlated failures, such as power outages or large network failures,

are almost guaranteed to cause data loss. This type of data loss incident only occurs

once these storage system reach a scale of thousands of nodes.

Second, cloud storage systems use data replication in order to guard against data

loss. When designing cloud storage systems, many storage designers need to answer

a simple question: how many replicas would be sufficient in order to protect against

data loss? In order to answer this question, we need to understand the underlying

causes of data loss in cloud storage systems, and how the number of replicas and the

placement of the replica would affect the mean time to failure (MTTF) of the entire

storage system.

Motivated by these problems and other common issues encountered by such sys-

tems, this dissertation propose a novel framework for modeling and analyzing node

failures in cloud storage systems. Based on this framework, it provides a design and

implementation of two novel replication techniques, Copyset Replication and Tiered

1.2. CONTRIBUTIONS 3

Replication, that optimally protect against data loss in storage systems that span any

number of nodes.

1.2 Contributions

At a high level, this dissertation demonstrates that widely used replication and data

placement techniques are not tuned to the failure scenarios that occur in modern cloud

storage systems, and provides a framework for analyzing node failures and techniques

that optimally address these failures. The dissertation presents implementations of

these techniques and demonstrates that they offer much higher resilience at the same

or at lower cost than existing replication schemes. The specific contributions of this

dissertation are described below.

1.2.1 Model for Computing MTTF Across an Entire Cloud

Storage Cluster

An important contribution of this dissertation is that it is the first to analyze the

MTTF (Mean Time To Failure) of an entire cloud storage cluster.

In the distributed storage community, node failures are traditionally classified into

two types of failures: independent and correlated node failures [8, 10, 28, 6, 58, 87].

For many years, researchers have been analyzing the MTTF of a single node due

to independent node failures, by analyzing the fault tolerance of disk systems [70,

71, 57, 80, 74, 32, 62, 88, 30]. There is a much more limited body of work on

analyzing correlated failures in a cloud storage setting, with thousands of commodity

servers. There are several prior studies on smaller clusters, consisting of hundreds

of nodes [59, 40, 61, 68, 81, 86], but very few studies on modern web-scale storage

systems. Google researchers have studied the MTTF of a single piece of data in a cloud

storage clustered environment, which is primarily affected by correlated failures [28,

31, 19]. Similarly, LinkedIn released a report about the availability of their HDFS

cluster under correlated and independent node failures [10].

The problem with these prior models is that they only allow storage designers to

4 CHAPTER 1. INTRODUCTION

analyze the MTTF from the point of view of a single node or a single data chunk.

Knowing the MTTF of a single node or chunk does not allow storage designers to

determine the MTTF of an entire cluster. To illustrate the difference between the

MTTF of a single data chunk and the MTTF of an entire cluster, consider the follow-

ing example. Assume a chunk has an MTTF of 100 years. If we have a cluster with

100 chunks across several nodes, the cluster’s MTTF would be 100 years if all the

data chunks fail at the exactly same time. The cluster-wide MTTF could also be 1

year (i.e., 100 times lower), if each chunk fails at different intervals. The cluster-wide

failure model (i.e., the correlation and frequency of node failures), and the placement

of data across the cluster would explain the differences in the cluster-wide MTTF.

This dissertation is the first to provide frameworks for computing the MTTF for

an entire cluster, or in other words, calculating how frequently data loss occurs across

an entire data center with thousands of nodes. It is important for storage designers

to be able to model and understand the MTTF and of an entire cluster, because it

affects the overall reliability and availability of the applications utilizing the storage

system. Some applications may lose availability at every occurance of data loss. In

addition, since each data loss event in a cloud storage system might incur a high

fixed cost, because the data loss incident necessitates manual location and recovery

of data, some storage designers prefer to minimize the overall MTTF of the cluster,

even if each failure incident event may result in a higher average data loss [54].

The dissertation provides a relatively simple model for calculating the cluster-

wide MTTF for both independent and correlated node failures. It shows how the

parameters of the cluster, including the node recovery time, replication technique

and MTTF of each individual machine affect the overall MTTF of the cluster. It also

qualitatively demonstrates why both Google and LinkedIn have found that correlated

node failures are a much greater cause of data loss in cloud storage systems than

independent node failures.

1.2. CONTRIBUTIONS 5

1.2.2 Copyset Framework and the Shortcomings of Random

Replication

Based on the cluster-wide MTTF model, the dissertation demonstrates that data

placement and replication is one of the most important tools for storage system de-

signers to control the cluster-wide MTTF. Prior work has shown that random repli-

cation suffers from a high rate of data loss under correlated failures [3, 75, 10]. The

dissertation provides a framework that helps explain why random replication is prone

to a high probability of data loss, and furthermore shows that random replication,

which is used by an overwhelming majority of cloud storage systems, is a very poor

data placement policy for minimizing cluster-wide MTTF.

The work shows that in order to minimize cluster-wide MTTF, storage system

designers must minimize the number of sets of nodes containing all replicas of data

chunks, or, minimize the number of copysets. This dissertation demonstrates that

the number of copysets is one of the most important factors determining cluster-wide

MTTF. It shows that random replication, or other schemes that uniformly scatter

replicas across the cluster, such as consistent hashing based techniques [41, 79, 47,

20, 18, 67, 65], will produce the maximum number of copysets if the number of chunks

in the storage systems is very high.

The work also introduces the concept of scatter width, which is the number of

candidate nodes that can store each node’s replica. Scatter width is a function of node

recovery time, because it determines how many nodes will participate in recovering

the data of a failed node. This work describes the relationship between copysets

and scatter width, and shows that with random replication the number of copysets

increases as a polynomial function of the scatter width.

The thesis provides a benchmark for the optimal relationship between the number

of copysets and the scatter width, and shows that in optimal schemes the number of

copysets increases as a linear function of the scatter width.

6 CHAPTER 1. INTRODUCTION

1.2.3 Copyset Replication and Tiered Replication

The thesis presents the design of two new practical replication schemes, Copyset Repli-

cation and Tiered Replication, that unlike randomized replication schemes, minimize

the number of copysets for a given scatter width.

Copyset Replication is a novel scheme that allows the storage system designer to

constrain the number of copysets, as a function of the scatter width, within a single

cluster. If the storage system requires increased scatter width, Copyset Replication

will create a new permutation of copysets. The work demonstrates that Copyset

Replication achieves a near-optimal linear relationship between the number of copy-

sets and the scatter width.

Copyset Replication is implemented on two open-source systems, HDFS and

RAMCloud, and the work demonstrates that it causes a minimal overhead on nor-

mal performance, while reducing the probability of data loss under correlated failures

by orders of magnitude. For example, in a 5000-node RAMCloud cluster under a

power outage, Copyset Replication reduces the probability of data loss from 99.99%

to 0.15%. For Facebook’s HDFS cluster, it reduces the probability from 22.8% to

0.78%.

Copyset Replication is only focused on replication within the same cluster and

physical location. However, many storage system designers employ geo-replication as

a technique to further increase the MTTF of the storage system, by replication an

entire cluster’s data to a second, remote cluster [28, 52, 24, 49, 51, 45, 91, 4]. This

effectively doubles the storage system’s storage size.

Tiered Replication is a novel scheme that provides almost the same level of dura-

bility of geo-replication, at a greatly reduced price. The work demonstrates that in

practical settings, the last (typically the third) replica is not necessary for preventing

data loss due to independent node failures, due to the very low probability that in-

dependent node failures will affect several nodes simultaneously. Therefore, the last

replica can be utilized for “geo-replication” of a single replica, or in other words, the

last replica can be placed on a separate or remote data center.

In addition, unlike previous random replication schemes, Tiered Replication also

minimizes the number of copysets per scatter width, by greedily creating unique

1.2. CONTRIBUTIONS 7

replication sets that have very few overlaps. Therefore, by combining light-weight

geo-replication with a minimal number of copysets, Tiered Replication improves the

cluster-wide MTTF by a factor of 100,000 in comparison to random replication and

by a factor of 100 compared to Copyset Replication, without increasing the amount

of storage.

The work presents the implementation of Tiered Replication on HyperDex, an

open-source cloud storage system, and shows that it incurs a minimal overhead on

normal storage operations. In addition, since Tiered Replication relies on an in-

cremental greedy algorithm, it has better support for dynamic cluster changes and

network topology constraints than Copyset Replication.

The idea of leveraging the high MTTF under independent node failures to place

the last replica on a separate storage infrastructure is novel, and unlike traditional

geo-replication does not double the storage cost of the system. This idea can is widely

applicable to a wide variety of storage systems.

1.2.4 The Relationship of Copysets with BIBD

Both Copyset Replication and Tiered Replication provide a linear relationship be-

tween the number of copysets and the scatter width. However, both of these replica-

tion techniques do not provide an optimally minimal number of copysets.

This dissertation is the first to demonstrate that BIBD (Balanced Incomplete

Block Designs), a field of combinatorial theory, can be a potential technique to op-

timally solve the copyset minimization problem (and also optimally minimze the

cluster-wide MTTF) for a given scatter width. BIBD schemes have been used for

a variety of applications in the past, including agriculture experiments [21, 16, 89],

social sciences [85, 26], RAID storage systems [35, 73] and network fabric intercon-

nects [36, 55]. The dissertation shows that finding the minimal number of copysets

for a scatter width that is exactly equal to the number of nodes in the cluster, is

similar to a BIBD scheme with a λ parameter equal to 1.

Since most practical cloud storage systems require a scatter width that is smaller

than the number of nodes in the cluster, existing BIBD schemes do not allow us to

8 CHAPTER 1. INTRODUCTION

construct practical replication techniques. Existing BIBD schemes only provide inte-

ger λ values. Therefore, this dissertation introduces motivation for a new promising

area of potential future theoretical research, of creating BIBD schemes with λ value

that are smaller than 1.

1.3 How to Read This Dissertation?

The chapters in this dissertation are ordered from a pedagogical point of view. It

starts with Copyset Replication (based on work published in Usenix ATC 2013 [14]),

described in Chapter 2, which describes the copyset framework, provides a model for

analyzing correlated failures and introduces Copyset Replication, a simple technique

to minimize the number of copysets for any scatter width. Tiered Replication, de-

scribed in Chapter 3 (based on work published in Usenix ATC 2015 [13]), extends

the failure model for independent node failures, and provides techniques to further

increase the MTTF under correlated failures, by geo-replicating a single replica (in-

stead of an entire cluster). Finally, in Chapter 4, the results of the dissertation are

summarized and the chapter provides an outlook for future work on cloud storage

durability.

Chapter 2

A Framework for Replication:

Copysets and Scatter Width

9

10CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

2.1 Introduction

Random replication is used as a common technique by data center storage systems,

such as Hadoop Distributed File System (HDFS) [75], RAMCloud [60], Google File

System (GFS) [29] and Windows Azure [9] to ensure durability and availability. These

systems partition their data into chunks that are replicated several times (we use R

to denote the replication factor) on randomly selected nodes on different racks. When

a node fails, its data is restored by reading its chunks from their replicated copies.

However, large-scale correlated failures such as cluster power outages, a common

type of data center failure scenario [19, 28, 75, 10], are handled poorly by random repli-

cation. This scenario stresses the availability of the system because a non-negligible

percentage of nodes (0.5%-1%) [75, 10] do not come back to life after power has been

restored. When a large number of nodes do not power up there is a high probability

that all replicas of at least one chunk in the system will not be available.

Figure 2.1 shows that once the size of the cluster scales beyond 300 nodes, this

scenario is nearly guaranteed to cause a data loss event in some of these systems. Such

data loss events have been documented in practice by Yahoo! [75], LinkedIn [10] and

Facebook [8]. Each event reportedly incurs a high fixed cost that is not proportional

to the amount of data lost. This cost is due to the time it takes to locate the

unavailable chunks in backup or recompute the data set that contains these chunks.

In the words of Kannan Muthukkaruppan, Tech Lead of Facebook’s HBase engineering

team: “Even losing a single block of data incurs a high fixed cost, due to the overhead

of locating and recovering the unavailable data. Therefore, given a fixed amount of

unavailable data each year, it is much better to have fewer incidents of data loss

with more data each than more incidents with less data. We would like to optimize

for minimizing the probability of incurring any data loss” [54]. Other data center

operators have reported similar experiences [11].

Another point of view about this trade-off was expressed by Luiz André Barroso,

Google Fellow: “Having a framework that allows a storage system provider to manage

the profile of frequency vs. size of data losses is very useful, as different systems

prefer different policies. For example, some providers might prefer frequent, small

2.1. INTRODUCTION 11

 0 2000 4000 6000 8000 10000
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss when 1% of the nodes fail concurrently

Number of nodes

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

HDFS, Random Replication

RAMCloud, Random Replication

Facebook, Random Replication

Figure 2.1: Computed probability of data loss with R = 3 when 1% of the nodes
do not survive a power outage. The parameters are based on publicly available
sources [75, 8, 10, 60] (see Table 2.1).

losses since they are less likely to tax storage nodes and fabric with spikes in data

reconstruction traffic. Other services may not work well when even a small fraction

of the data is unavailable. Those will prefer to have all or nothing, and would opt for

fewer events even if they come at a larger loss penalty.” [62]

Random replication sits on one end of the trade-off between the frequency of

data loss events and the amount lost at each event. In this dissertation we introduce

Copyset Replication, an alternative general-purpose replication scheme with the same

performance of random replication, which sits at the other end of the spectrum.

Copyset Replication splits the nodes into copysets, which are sets of R nodes.

The replicas of a single chunk can only be stored on one copyset. This means that

data loss events occur only when all the nodes of some copyset fail simultaneously.

The probability of data loss is minimized when each node is a member of exactly

one copyset. For example, assume our system has 9 nodes with R = 3 that are split

12CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

into three copysets: {1, 2, 3}, {4, 5, 6}, {7, 8, 9}. Our system would only lose data if

nodes 1, 2 and 3, nodes 4, 5 and 6 or nodes 7, 8 and 9 fail simultaneously.

In contrast, with random replication and a sufficient number of chunks, any com-

bination of 3 nodes would be a copyset, and any combination of 3 nodes that fail

simultaneously would cause data loss.

The scheme above provides the lowest possible probability of data loss under cor-

related failures, at the expense of the largest amount of data loss per event. However,

the copyset selection above constrains the replication of every chunk to a single copy-

set, and therefore impacts other operational parameters of the system. Notably, when

a single node fails there are only R− 1 other nodes that contain its data. For certain

systems (like HDFS), this limits the node’s recovery time, because there are only

R − 1 other nodes that can be used to restore the lost chunks. This can also create

a high load on a small number of nodes.

To this end, we define the scatter width (S) as the number of nodes that store

copies for each node’s data.

Using a low scatter width may slow recovery time from independent node failures,

while using a high scatter width increases the frequency of data loss from correlated

failures. In the 9-node system example above, the following copyset construction will

yield S = 4: {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9}. In this example,

chunks of node 5 would be replicated either at nodes 4 and 6, or nodes 2 and 8. The

increased scatter width creates more copyset failure opportunities.

The goal of Copyset Replication is to minimize the probability of data loss, given

any scatter width by using the smallest number of copysets. We demonstrate that

Copyset Replication provides a near optimal solution to this problem. We also show

that this problem has been partly explored in a different context in the field of

combinatorial design theory, which was originally used to design agricultural experi-

ments [78].

Copyset Replication transforms the profile of data loss events: assuming a power

outage occurs once a year, it would take on average a 5000-node RAMCloud cluster

625 years to lose data. The system would lose an average of 64 GB (an entire server’s

worth of data) in this rare event. With random replication, data loss events occur

2.1. INTRODUCTION 13

frequently (during every power failure), and several chunks of data are lost in each

event. For example, a 5000-node RAMCloud cluster would lose about 344 MB in

each power outage.

To demonstrate the general applicability of Copyset Replication, we implemented

it on two open source data center storage systems: HDFS and RAMCloud. We show

that Copyset Replication incurs a low overhead on both systems. It reduces the

probability of data loss in RAMCloud from 99.99% to 0.15%. In addition, Copyset

Replication with 3 replicas achieves a lower data loss probability than the random

replication scheme does with 5 replicas. For Facebook’s HDFS deployment, Copyset

Replication reduces the probability of data loss from 22.8% to 0.78%.

The dissertation is split into the following sections. Section 2.2 presents the prob-

lem. Section 2.3 provides the intuition for our solution. Section 3.3 discusses the

design of Copyset Replication. Section 2.5 provides details on the implementation of

Copyset Replication in HDFS and RAMCloud and its performance overhead. Ad-

ditional applications of Copyset Replication are presented in in Section 2.6, while

Section 3.5 analyzes related work.

14CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

System Chunks
per Node

Cluster
Size

Scatter
Width

Replication Scheme

Facebook 10000 1000-5000 10 Random replication on a small
group of nodes, second and
third replica reside on the same
rack

RAMCloud 8000 100-10000 N-1 Random replication across all
nodes

HDFS 10000 100-10000 200 Random replication on a large
group of nodes, second and
third replica reside on the same
rack

Table 2.1: Replication schemes of data center storage systems. These parameters are
estimated based on publicly available data [10, 75, 8, 3, 60]. For simplicity, we fix the
HDFS scatter width to 200, since its value varies depending on the cluster and rack
size.

2.2 The Problem

In this section we examine the replication schemes of three data center storage systems

(RAMCloud, the default HDFS and Facebook’s HDFS), and analyze their vulnera-

bility to data loss under correlated failures.

2.2.1 Definitions

The replication schemes of these systems are defined by several parameters. R is

defined as the number of replicas of each chunk. The default value of R is 3 in these

systems. N is the number of nodes in the system. The three systems we investigate

typically have hundreds to thousands of nodes. We assume nodes are indexed from

1 to N . S is defined as the scatter width. If a system has a scatter width of S, each

node’s data is split uniformly across a group of S other nodes. That is, whenever a

particular node fails, S other nodes can participate in restoring the replicas that were

lost. Table 2.1 contains the parameters of the three systems.

We define a set, as a group of R distinct nodes. A copyset is a set that stores all of

the copies of a chunk. For example, if a chunk is replicated on nodes {7, 12, 15}, then

2.2. THE PROBLEM 15

these nodes form a copyset. We will show that a large number of distinct copysets

increases the probability of losing data under a massive correlated failure. Throughout

the paper, we will investigate the relationship between the number of copysets and

the system’s scatter width.

We define a permutation as an ordered list of all nodes in the cluster. For example,

{4, 1, 3, 6, 2, 7, 5} is a permutation of a cluster with N = 7 nodes.

Finally, random replication is defined as the following algorithm. The first, or

primary replica is placed on a random node from the entire cluster. Assuming the

primary replica is placed on node i, the remaining R−1 secondary replicas are placed

on random machines chosen from nodes {i + 1, i + 2, ..., i + S}. If S = N − 1, the

secondary replicas’ nodes are chosen uniformly from all the nodes in the cluster 1.

2.2.2 Random Replication

The primary reason most large scale storage systems use random replication is that

it is a simple replication technique that provides strong protection against uncorre-

lated failures like individual server or disk failures [75, 28] 2. These failures happen

frequently (thousands of times a year on a large cluster [19, 28, 10]), and are caused

by a variety of reasons, including software, hardware and disk failures. Random repli-

cation across failure domains (e.g., placing the copies of a chunk on different racks)

protects against concurrent failures that happen within a certain domain of nodes,

such as racks or network segments. Such failures are quite common and typically

occur dozens of times a year [19, 28, 10].

However, multiple groups, including researchers from Yahoo! and LinkedIn, have

observed that when clusters with random replication lose power, several chunks of

data become unavailable [75, 10], i.e., all three replicas of these chunks are lost. In

these events, the entire cluster loses power, and typically 0.5-1% of the nodes fail to

1Our definition of random replication is based on Facebook’s design, which selects the replication
candidates from a window of nodes around the primary node.

2For simplicity’s sake, we assume random replication for all three systems, even though the
actual schemes are slightly different (e.g., HDFS replicates the second and third replicas on the
same rack [75].). We have found there is little difference in terms of data loss probabilities between
the different schemes.

16CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss when 1% of the nodes fail concurrently

Number of RAMCloud nodes

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

R=3, Random Replication

R=4, Random Replication

R=5, Random Replication

R=6, Random Replication

Figure 2.2: Simulation of the data loss probabilities of a RAMCloud cluster, varying
the number of replicas per chunk.

reboot [75, 10]. Such failures are not uncommon; they occur once or twice per year

in a given data center [10].

Figure 2.1 shows the probability of losing data in the event of a power outage in the

three systems. The figure shows that RAMCloud and HDFS are almost guaranteed

to lose data in this event, once the cluster size grows beyond a few hundred nodes.

Facebook has a lower data loss probability of about 20% for clusters of 5000 nodes.

Multiple groups have expressed interest in reducing the incidence of data loss, at

the expense of losing a larger amount of data at each incident [54, 11, 62]. For example,

the Facebook HDFS team has modified the default HDFS implementation to constrain

the replication in their deployment to significantly reduce the probability of data loss

at the expense of losing more data during each incident [8, 3]. Facebook’s Tech Lead

of the HBase engineering team has confirmed this point, as cited above [54]. Robert

Chansler, Senior Manager of Hadoop Infrastructure at Linkedin has also confirmed

the importance of addressing this issue: “A power-on restart of HDFS nodes is a real

2.3. INTUITION 17

problem, since it introduces a moment of correlated failure of nodes and the attendant

threat that data becomes unavailable. Due to this issue, our policy is to not turn off

Hadoop clusters. Administrators must understand how to restore the integrity of the

file system as fast as possible, and an option to reduce the number of instances when

data is unavailable–at the cost of increasing the number of blocks recovered at such

instances–can be a useful tool since it lowers the overall total down time”. [11]

The main reason some data center operators prefer to minimize the frequency of

data loss events, is that there is a fixed cost to each incident of data loss that is

not proportional to the amount of data lost in each event. The cost of locating and

retrieving the data from secondary storage can cause a whole data center operations

team to spend a significant amount of time that is unrelated to the amount of data

lost [54]. There are also other fixed costs associated with data loss events. In the

words of Robert Chansler: “In the case of data loss... [frequently] the data may be

recomputed. For re-computation an application typically recomputes its entire data

set whenever any data is lost. This causes a fixed computational cost that is not

proportional with the amount of data lost”. [11]

One trivial alternative for decreasing the probability of data loss is to increase

R. In Figure 2.2 we computed the probability of data loss under different replication

factors in RAMCloud. As we would expect, increasing the replication factor increases

the durability of the system against correlated failures. However, increasing the

replication factor from 3 to 4 does not seem to provide sufficient durability in this

scenario. In order to reliably support thousands of nodes in current systems, the

replication factor would have to be at least 5. Using R = 5 significantly hurts the

system’s performance and almost doubles the cost of storage.

Our goal in this paper is to decrease the probability of data loss under power

outages, without changing the underlying parameters of the system.

2.3 Intuition

If we consider each chunk individually, random replication provides high durability

even in the face of a power outage. For example, suppose we are trying to replicate

18CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

a single chunk three times. We randomly select three different machines to store our

replicas. If a power outage causes 1% of the nodes in the data center to fail, the

probability that the crash caused the exact three machines that store our chunk to

fail is only 0.0001%.

However, assume now that instead of replicating just one chunk, the system repli-

cates millions of chunks (each node has 10,000 chunks or more), and needs to ensure

that every single one of these chunks will survive the failure. Even though each

individual chunk is very safe, in aggregate across the entire cluster, some chunk is

expected to be lost. Figure 2.1 demonstrates this effect: in practical data center

configurations, data loss is nearly guaranteed if any combination of three nodes fail

simultaneously.

We define a copyset as a distinct set of nodes that contain all copies of a given

chunk. Each copyset is a single unit of failure, i.e., when a copyset fails at least one

data chunk is irretrievably lost. Increasing the number of copysets will increase the

probability of data loss under a correlated failure, because there is a higher probability

that the failed nodes will include at least one copyset. With random replication,

almost every new replicated chunk creates a distinct copyset, up to a certain point.

2.3.1 Minimizing the Number of Copysets

In order to minimize the number of copysets a replication scheme can statically as-

sign each node to a single copyset, and constrain the replication to these pre-assigned

copysets. The first or primary replica would be placed randomly on any node (for

load-balancing purposes), and the other secondary replicas would be placed deter-

ministically on the first node’s copyset.

With this scheme, we will only lose data if all the nodes in a copyset fail simulta-

neously. For example, with 5000 nodes, this reduces the data loss probabilities when

1% of the nodes fail simultaneously from 99.99% to 0.15%.

However, the downside of this scheme is that it severely limits the system’s scatter

width. This may cause serious problems for certain storage systems. For example,

if we use this scheme in HDFS with R = 3, each node’s data will only be placed on

2.3. INTUITION 19

two other nodes. This means that in case of a node failure, the system will be able

to recover its data from only two other nodes, which would significantly increase the

recovery time. In addition, such a low scatter width impairs load balancing and may

cause the two nodes to be overloaded with client requests.

2.3.2 Scatter Width

Our challenge is to design replication schemes that minimize the number of copysets

given the required scatter width set by the system designer.

To understand how to generate such schemes, consider the following example.

Assume our storage system has the following parameters: R = 3, N = 9 and S = 4.

If we use random replication, each chunk will be replicated on another node chosen

randomly from a group of S nodes following the first node. E.g., if the primary replica

is placed on node 1, the secondary replica will be randomly placed either on node 2,

3, 4 or 5.

Therefore, if our system has a large number of chunks, it will create 54 distinct

copysets.

In the case of a simultaneous failure of three nodes, the probability of data loss is

the number of copysets divided by the maximum number of sets:

copysets(
N
R

) =
54(
9
3

) = 0.64

Now, examine an alternative scheme using the same parameters. Assume we only

allow our system to replicate its data on the following copysets:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}{1, 4, 7}, {2, 5, 8}, {3, 6, 9}

That is, if the primary replica is placed on node 3, the two secondary replicas can

only be randomly on nodes 1 and 2 or 6 and 9. Note that with this scheme, each

node’s data will be split uniformly on four other nodes.

The new scheme created only 6 copysets. Now, if three nodes fail, the probability

20CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

of data loss is:
copysets

84
= 0.07.

As we increase N , the relative advantage of creating the minimal number of copysets

increases significantly. For example, if we choose a system with N = 5000, R = 3,

S = 10 (like Facebook’s HDFS deployment), we can design a replication scheme that

creates about 8,300 copysets, while random replication would create about 275,000

copysets.

The scheme illustrated above has two important properties that form the basis

for the design of Copyset Replication. First, each copyset overlaps with each other

copyset by at most one node (e.g., the only overlapping node of copysets {4, 5, 6} and

{3, 6, 9} is node 6). This ensures that each copyset increases the scatter width for its

nodes by exactly R − 1. Second, the scheme ensures that the copysets cover all the

nodes equally.

Our scheme creates two permutations, and divides them into copysets. Since each

permutation increases the scatter width by R− 1, the overall scatter width will be:

S = P (R− 1)

Where P is the number of permutations. This scheme will create P
N

R
copysets, which

is equal to:
S

R− 1

N

R
.

The number of copysets created by random replication for values of S <
N

2
is:

N
(

S
R−1

)
. This number is equal to the number of primary replica nodes times R − 1

combinations of secondary replica nodes chosen from a group of S nodes. When S

approaches N , the number of copysets approaches the total number of sets, which is

equal to
(
N
R

)
.

In summary, in a minimal copyset scheme, the number of copysets grows linearly

with S, while random replication creates O(SR−1) copysets. Figure 2.3 demonstrates

the difference in data loss probabilities as a function of S, between random replication

and Copyset Replication, the scheme we develop in the paper.

2.3. INTUITION 21

 50 100 150 200 250 300 350 400 450 500
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Facebook HDFS

Probability of data loss when 1% of the nodes fail concurrently

Scatter Width

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

Random Replication

Copyset Replication

Figure 2.3: Data loss probability when 1% of the nodes fail simultaneously as a
function of S, using N = 5000, R = 3.

22CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

Node	 1	

Permuta(on	 1	

Node	 2	 Node	 3	 Node	 4	 Node	 5	 Node	 6	 Node	 7	 Node	 8	 Node	 9	

Node	 7	 Node	 5	 Node	 1	 Node	 6	 Node	 4	 Node	 9	 Node	 3	 Node	 2	 Node	 8	

Permuta(on	 2	

Node	 9	 Node	 7	 Node	 2	 Node	 3	 Node	 6	 Node	 1	 Node	 4	 Node	 5	 Node	 8	

Copyset	 1	 Copyset	 2	 Copyset	 3	

Copyset	 4	 Copyset	 5	 Copyset	 6	

Permuta(on	 Phase	

Figure 2.4: Illustration of the Copyset Replication Permutation phase.

2.4 Design

In this section we describe the design of a novel replication technique, Copyset Repli-

cation, that provides a near optimal trade-off between the scatter width and the

number of copysets.

As we saw in the previous section, there exist replication schemes that achieve a

linear increase in copysets for a linear increase in S. However, it is not always simple

to design the optimal scheme that creates non-overlapping copysets that cover all the

nodes. In some cases, with specific values of N , R and S, it has even been shown

that no such non-overlapping schemes exist [37, 42]. For a more detailed theoretical

discussion see Section 2.7.1.

Therefore, instead of using an optimal scheme, we propose Copyset Replication,

which is close to optimal in practical settings and very simple to implement. Copyset

Replication randomly generates permutations and splits each permutation into copy-

sets. We will show that as long as S is much smaller then the number of nodes in the

system, this scheme is likely to generate copysets with at most one overlapping node.

2.4. DESIGN 23

Replica(on	 Phase	
Node	 2	
Primary	

Node	 7	 Node	 5	 Node	 1	 Node	 6	 Node	 4	 Node	 9	 Node	 3	 Node	 2	 Node	 8	

Node	 9	 Node	 7	 Node	 2	 Node	 3	 Node	 6	 Node	 1	 Node	 4	 Node	 5	 Node	 8	

Copyset	 1	 Copyset	 2	 Copyset	 3	

Copyset	 4	 Copyset	 5	 Copyset	 6	

Randomly	 pick	 copyset	

Figure 2.5: Illustration of the Copyset Replication Replication phase.

Copyset Replication has two phases: Permutation and Replication. The permu-

tation phase is conducted offline, while the replication phase is executed every time

a chunk needs to be replicated.

Figure 2.4 illustrates the permutation phase. In this phase we create several

permutations, by randomly permuting the nodes in the system. The number of

permutations we create depends on S, and is equal to P =
S

R− 1
. If this number

is not an integer, we choose its ceiling. Each permutation is split consecutively into

copysets, as shown in the illustration. The permutations can be generated completely

randomly, or we can add additional constraints, limiting nodes from the same rack in

the same copyset, or adding network and capacity constraints. In our implementation,

we prevented nodes from the same rack from being placed in the same copyset by

simply reshuffling the permutation until all the constraints were met.

In the replication phase (depicted by Figure 2.5) the system places the replicas on

one of the copysets generated in the permutation phase. The first or primary replica

can be placed on any node of the system, while the other replicas (the secondary

24CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

 0 2000 4000 6000 8000 10000
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss when 1% of the nodes fail concurrently

Number of nodes

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

HDFS, Random Replication

RAMCloud, Random Replication

Facebook, Random Replication

HDFS, Copyset Replication

Facebook, Copyset Replication

RAMCloud, Copyset Replication

Figure 2.6: Data loss probability of random replication and Copyset Replication with
R = 3, using the parameters from Table 2.1. HDFS has higher data loss probabilities
because it uses a larger scatter width (S = 200).

replicas) are placed on the nodes of a randomly chosen copyset that contains the first

node.

Copyset Replication is agnostic to the data placement policy of the first replica.

Different storage systems have certain constraints when choosing their primary replica

nodes. For instance, in HDFS, if the local machine has enough capacity, it stores the

primary replica locally, while RAMCloud uses an algorithm for selecting its primary

replica based on Mitzenmacher’s randomized load balancing [56]. The only require-

ment made by Copyset Replication is that the secondary replicas of a chunk are

always placed on one of the copysets that contains the primary replica’s node. This

constrains the number of copysets created by Copyset Replication.

2.4. DESIGN 25

 2000 4000 6000 8000 10000
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss when 1% of the nodes fail concurrently

Number of RAMCloud nodes

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

R=3, Random Replication

R=4, Random Replication

R=2, Copyset Replication

R=5, Random Replication

R=3, Copyset Replication

Figure 2.7: Data loss probability of random replication and Copyset Replication in
RAMCloud.

2.4.1 Durability of Copyset Replication

Figure 2.6 is the central figure of the paper. It compares the data loss probabilities of

Copyset Replication and random replication using 3 replicas with RAMCloud, HDFS

and Facebook. For HDFS and Facebook, we plotted the same S values for Copyset

Replication and random replication. In the special case of RAMCloud, the recovery

time of nodes is not related to the number of permutations in our scheme, because

disk nodes are recovered from the memory across all the nodes in the cluster and not

from other disks. Therefore, Copyset Replication with with a minimal S = R − 1

(using P = 1) actually provides the same node recovery time as using a larger value

of S. Therefore, we plot the data probabilities for Copyset Replication using P = 1.

We can make several interesting observations. Copyset Replication reduces the

probability of data loss under power outages for RAMCloud and Facebook to close

to zero, but does not improve HDFS as significantly. For a 5000 node cluster under

26CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

 2000 4000 6000 8000 10000
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss when 1% of the nodes fail concurrently

Number of HDFS nodes

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

R=3, Random Replication

R=2, Copyset Replication

R=4, Random Replication

R=3, Copyset Replication

R=5, Random Replication

R=4, Copyset Replication

Figure 2.8: Data loss probability of random replication and Copyset Replication in
HDFS.

2.4. DESIGN 27

 2000 4000 6000 8000 10000
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss when 1% of the nodes fail concurrently

Number of Facebook nodes

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

R=2, Copyset Replication

R=3, Random Replication

R=3, Copyset Replication

R=4, Random Replication

Figure 2.9: Data loss probability of random replication and Copyset Replication in
Facebook’s implementation of HDFS.

28CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

0% 1% 2% 3% 4% 5%
 0%

 20%

 40%

 60%

 80%

100%
Probability of data loss with varying percentage of concurrent failures

Percentage of node failures in a Facebook HDFS cluster

P
ro

b
a
b
ili

ty
 o

f
d
a
ta

 l
o
s
s

10000 Nodes

5000 Nodes

2000 Nodes

1000 Nodes

500 Nodes

Figure 2.10: Data loss probability on Facebook’s HDFS cluster, with a varying per-
centage of the nodes failing simultaneously.

a power outage, Copyset Replication reduces RAMCloud’s probability of data loss

from 99.99% to 0.15%. For Facebook, that probability is reduced from 22.8% to

0.78%. In the case of HDFS, since the scatter width is large (S = 200), Copyset

Replication significantly improves the data loss probability, but not enough so that

the probability of data loss becomes close to zero.

Figures 2.7, 2.8 and 2.9 depict the data loss probabilities of 5000 node RAMCloud,

HDFS and Facebook clusters. We can observe that the reduction of data loss caused

by Copyset Replication is equivalent to increasing the number of replicas. For exam-

ple, in the case of RAMCloud, if the system uses Copyset Replication with 3 replicas,

it has lower data loss probabilities than random replication with 5 replicas. Similarly,

Copyset Replication with 3 replicas has the same the data loss probability as random

replication with 4 replicas in a Facebook cluster.

The typical number of simultaneous failures observed in data centers is 0.5-1%

of the nodes in the cluster [75]. Figure 2.10 depicts the probability of data loss

2.4. DESIGN 29

S

Pe
rc
en
ta
ge
 o
f o
pt
im
al
 s
ca
tt
er
 w
id
th

Figure 2.11: Comparison of the average scatter width ofCopyset Replication to the
optimal scatter width in a 5000-node cluster.

in Facebook’s HDFS system as we increase the percentage of simultaneous failures

much beyond the reported 1%. Note that Facebook commonly operates in the range

of 1000-5000 nodes per cluster (e.g., see Table 2.1). For these cluster sizes Copyset

Replication prevents data loss with a high probability, even in the scenario where 2%

of the nodes fail simultaneously.

2.4.2 Optimality of Copyset Replication

Copyset Replication is not optimal, because it doesn’t guarantee that all of its copy-

sets will have at most one overlapping node. In other words, it doesn’t guarantee

that each node’s data will be replicated across exactly S different nodes. Figure 2.11

depicts a monte-carlo simulation that compares the average scatter width achieved

by Copyset Replication as a function of the maximum S if all the copysets were

non-overlapping for a cluster of 5000 nodes.

30CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Expected lost chunks under concurrent failures

Percentage of RAMCloud nodes that fail concurrently

E
x
p

e
c
te

d
 p

e
rc

e
n

ta
g

e
 o

f
lo

s
t

c
h

u
n

k
s

1000 Nodes, R=3

Figure 2.12: Expected amount of data lost as a percentage of the data in the cluster.

The plot demonstrates that when S is much smaller than N , Copyset Replication

is more than 90% optimal. For RAMCloud and Facebook, which respectively use

S = 2 and S = 10, Copyset Replication is nearly optimal. For HDFS we used

S = 200, and in this case Copyset Replication provides each node an average of 98%

of the optimal bandwidth, which translates to S = 192.

2.4.3 Expected Amount of Data Lost

Copyset Replication trades off the probability of data loss with the amount of data

lost in each incident. The expected amount of data lost remains constant regardless

of the replication policy. Figure 2.12 shows the amount of data lost as a percentage

of the data in the cluster.

Therefore, a system designer that deploys Copyset Replication should expect to

experience much fewer events of data loss. However, each one of these events will lose

a larger amount of data. In the extreme case, if we are using Copyset Replication

with S = 2 like in RAMCloud, we would lose a whole node’s worth of data at every

2.4. DESIGN 31

data loss event.

32CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

2.5 Evaluation

Copyset Replication is a general-purpose, scalable replication scheme that can be

implemented on a wide range of data center storage systems and can be tuned to any

scatter width. In this section, we describe our implementation of Copyset Replication

in HDFS and RAMCloud. We also provide the results of our experiments on the

impact of Copyset Replication on both systems’ performance.

2.5.1 HDFS Implementation

The implementation of Copyset Replication on HDFS was relatively straightforward,

since the existing HDFS replication code is well-abstracted. Copyset Replication is

implemented entirely on the HDFS NameNode, which serves as a central directory

and manages replication for the entire cluster.

The permutation phase of Copyset Replication is run when the cluster is created.

The user specifies the scatter width and the number of nodes in the system. After

all the nodes have been added to the cluster, the NameNode creates the copysets by

randomly permuting the list of nodes. If a generated permutation violates any rack

or network constraints, the algorithm randomly reshuffles a new permutation.

In the replication phase, the primary replica is picked using the default HDFS

replication.

Nodes Joining and Failing

In HDFS nodes can spontaneously join the cluster or crash. Our implementation

needs to deal with both cases.

When a new node joins the cluster, the NameNode randomly creates
S

R− 1
new

copysets that contain it. As long as the scatter width is much smaller than the number

of nodes in the system, this scheme will still be close to optimal (almost all of the

copysets will be non-overlapping). The downside is that some of the other nodes may

have a slightly higher than required scatter width, which creates more copysets than

necessary.

2.5. EVALUATION 33

Replication Recovery
Time (s)

Minimal
Scatter
Width

Average
Scatter
Width

Copysets

Random Replication 600.4 2 4 234
Copyset Replication 642.3 2 4 13

Random Replication 221.7 8 11.3 2145
Copyset Replication 235 8 11.3 77

Random Replication 139 14 17.8 5967
Copyset Replication 176.6 14 17.8 147

Random Replication 108 20 23.9 9867
Copyset Replication 127.7 20 23.9 240

Table 2.2: Comparison of recovery time of a 100 GB node on a 39 node cluster.
Recovery time is measured after the moment of failure detection.

When a node fails, for each of its copysets we replace it with a randomly selected

node. For example, if the original copyset contained nodes {1, 2, 3}, and node 1 failed,

we re-replicate a copy of the data in the original copyset to a new randomly selected

node. As before, as long as the scatter width is significantly smaller than the number

of nodes, this approach creates non-overlapping copysets.

2.5.2 HDFS Evaluation

We evaluated the Copyset Replication implementation on a cluster of 39 HDFS nodes

with 100 GB of SSD storage and a 1 GB ethernet network. Table 2.2 compares the

recovery time of a single node using Copyset Replication and random replication. We

ran each recovery five times.

As we showed in previous sections, Copyset Replication has few overlapping copy-

sets as long as S is significantly smaller than N . However, since our experiment uses

a small value of N , some of the nodes did not have sufficient scatter width due to

a large number of overlapping copysets. In order to address this issue, our Copy-

set Replication implementation generates additional permutations until the system

reached the minimal desired scatter width for all its nodes. The additional permu-

tations created more copysets. We counted the average number of distinct copysets.

34CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

Scatter Width Mean Load 75th % Load 99th % Load Max Load

10 10% 10% 10% 20%
20 5% 5% 5% 10%
50 2% 2% 2% 6%
100 1% 1% 2% 3%
200 0.5% 0.5% 1% 1.5%
500 0.2% 0.2% 0.4% 0.8%

Table 2.3: The simulated load in a 5000-node HDFS cluster with R = 3, using
Copyset Replication. With Random Replication, the average load is identical to the
maximum load.

As the results show, even with the extra permutations, Copyset Replication still has

orders of magnitude fewer copysets than random replication.

To normalize the scatter width between Copyset Replication and random replica-

tion, when we recovered the data with random replication we used the average scatter

width obtained by Copyset Replication.

The results show that Copyset Replication has an overhead of about 5-20% in re-

covery time compared to random replication. This is an artifact of our small cluster

size. The small size of the cluster causes some nodes to be members of more copy-

sets than others, which means they have more data to recover and delay the overall

recovery time. This problem would not occur if we used a realistic large-scale HDFS

cluster (hundreds to thousands of nodes).

Hot Spots

One of the main advantages of random replication is that it can prevent a particular

node from becoming a ‘hot spot’, by scattering its data uniformly across a random

set of nodes. If the primary node gets overwhelmed by read requests, clients can read

its data from the nodes that store the secondary replicas.

We define the load L(i, j) as the percentage of node i’s data that is stored as a

secondary replica in node j. For example, if S = 2 and node 1 replicates all of its

data to nodes 2 and 3, then L(1, 2) = L(1, 3) = 0.5, i.e., node 1’s data is split evenly

between nodes 2 and 3.

2.5. EVALUATION 35

The more we spread the load evenly across the nodes in the system, the more the

system will be immune to hot spots. Note that the load is a function of the scatter

width; if we increase the scatter width, the load will be spread out more evenly. We

expect that the load of the nodes that belong to node i’s copysets will be dfrac1S.

Since Copyset Replication guarantees the same scatter width of random replication, it

should also spread the load uniformly and be immune to hot spots with a sufficiently

high scatter width.

In order to test the load with Copyset Replication, we ran a monte carlo simulation

of data replication in a 5000-node HDFS cluster with R = 3.

Table 2.3 shows the load we measured in our monte carlo experiment. Since we

have a very large number of chunks with random replication, the mean load is almost

identical to the worst-case load. With Copyset Replication, the simulation shows that

the 99th percentile loads are 1-2 times and the maximum loads 1.5-4 times higher

than the mean load. Copyset Replication incurs higher worst-case loads because the

permutation phase can produce some copysets with overlaps.

Therefore, if the system’s goal is to prevent hot spots even in a worst case scenario

with Copyset Replication, the system designer should increase the system’s scatter

width accordingly.

2.5.3 Implementation of Copyset Replication in RAMCloud

The implementation of Copyset Replication on RAMCloud was similar to HDFS,

with a few small differences. Similar to the HDFS implementation, most of the code

was implemented on RAMCloud’s coordinator, which serves as a main directory node

and also assigns nodes to replicas.

In RAMCloud, the main copy of the data is kept in a master server, which keeps

the data in memory. Each master replicates its chunks on three different backup

servers, which store the data persistently on disk.

The Copyset Replication implementation on RAMCloud only supports a minimal

scatter width (S = R− 1 = 2). We chose a minimal scatter width, because it doesn’t

affect RAMCloud’s node recovery times, since the backup data is recovered from the

36CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

master nodes, which are spread across the cluster.

Another difference between the RAMCloud and HDFS implementations is how

we handle new backups joining the cluster and backup failures. Since each node is

a member of a single copyset, if the coordinator doesn’t find three nodes to form a

complete copyset, the new nodes will remain idle until there are enough nodes to form

a copyset.

When a new backup joins the cluster, the coordinator checks whether there are

three backups that are not assigned to a copyset. If there are, the coordinator assigns

these three backups to a copyset.

In order to preserve S = 2, every time a backup node fails, we re-replicate its

entire copyset. Since backups don’t service normal reads and writes, this doesn’t

affect the sytem’s latency. In addition, due to the fact that backups are recovered in

parallel from the masters, re-replicating the entire group doesn’t significantly affect

the recovery latency. However, this approach does increase the disk and network

bandwidth during recovery.

2.5.4 Evaluation of Copyset Replication on RAMCloud

We compared the performance of Copyset Replication with random replication under

three scenarios: normal RAMCloud client operations, a single master recovery and a

single backup recovery.

As expected, we could not measure any overhead of using Copyset Replication

on normal RAMCloud operations. We also found that it does not impact master

recovery, while the overhead of backup recovery was higher as we expected. We

provide the results below.

Master Recovery

One of the main goals of RAMCloud is to fully recover a master in about 1-2 seconds so

that applications experience minimal interruptions. In order to test master recovery,

we ran a cluster with 39 backup nodes and 5 master nodes. We manually crashed one

of the master servers, and measured the time it took RAMCloud to recover its data.

2.5. EVALUATION 37

Replication Recovery Data Recovery Time

Random Replication 1256 MB 0.73 s
Copyset Replication 3648 MB 1.10 s

Table 2.4: Comparison of backup recovery performance on RAMCloud with Copyset
Replication. Recovery time is measured after the moment of failure detection.

We ran this test 100 times, both with Copyset Replication and random replication.

As expected, we didn’t observe any difference in the time it took to recover the master

node in both schemes.

However, when we ran the benchmark again using 10 backups instead of 39, we

observed Copyset Replication took 11% more time to recover the master node than

the random replication scheme. Due to the fact that Copyset Replication divides

backups into groups of three, it only takes advantage of 9 out of the 10 nodes in

the cluster. This overhead occurs only when we use a number of backups that is

not a multiple of three on a very small cluster. Since we assume that RAMCloud is

typically deployed on large scale clusters, the master recovery overhead is negligible.

Backup Recovery

In order to evaluate the overhead of Copyset Replication on backup recovery, we

ran an experiment in which a single backup crashes on a RAMCloud cluster with 39

masters and 72 backups, storing a total of 33 GB of data. Table 2.4 presents the

results. Since masters re-replicate data in parallel, recovery from a backup failure

only takes 51% longer using Copyset Replication, compared to random replication.

As expected, our implementation approximately triples the amount of data that is

re-replicated during recovery. Note that this additional overhead is not inherent to

Copyset Replication, and results from our design choice to strictly preserve a minimal

scatter width at the expense of higher backup recovery overhead.

38CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

2.6 Discussion

This section discusses how coding schemes relate to the number of copysets, and how

Copyset Replication can simplify graceful power downs of storage clusters.

2.6.1 Copysets and Coding

Some storage systems, such as GFS, Azure and HDFS, use coding techniques to

reduce storage costs. These techniques generally do not impact the probability of

data loss due to simultaneous failures.

Codes are typically designed to compress the data rather than increase its dura-

bility. If the coded data is distributed on a very large number of copysets, multiple

simultaneous failures will still cause data loss.

In practice, existing storage system parity code implementations do not signif-

icantly reduce the number of copysets, and therefore do not impact the profile of

data loss. For example, the HDFS-RAID [1, 25] implementation encodes groups of

5 chunks in a RAID 5 and mirroring scheme, which reduces the number of distinct

copysets by a factor of 5. While reducing the number of copysets by a factor of 5

reduces the probability of data loss, Copyset Replication still creates two orders of

magnitude fewer copysets than this scheme. Therefore, HDFS-RAID with random

replication is still very likely lose data in the case of power outages.

2.6.2 Graceful Power Downs

Data center operators periodically need to gracefully power down parts of a cluster [7,

19, 28]. Power downs are used for saving energy in off-peak hours, or to conduct

controlled software and hardware upgrades.

When part of a storage cluster is powered down, it is expected that at least

one replica of each chunk will stay online. However, random replication considerably

complicates controlled power downs, since if we power down a large group of machines,

there is a very high probability that all the replicas of a given chunk will be taken

offline. In fact, these are exactly the same probabilities that we use to calculate data

2.6. DISCUSSION 39

loss. Several previous studies have explored data center power down in depth [48, 34,

83].

If we constrain Copyset Replication to use the minimal number of copysets (i.e.,

use Copyset Replication with S = R − 1), it is simple to conduct controlled cluster

power downs. Since this version of Copyset Replication assigns a single copyset to

each node, as long as one member of each copyset is kept online, we can safely power

down the remaining nodes. For example, a cluster using three replicas with this

version of Copyset Replication can effectively power down two-thirds of the nodes.

40CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

2.7 Related Work

The related work is split into three categories. First, replication schemes that achieve

optimal scatter width are related to a field in mathematics called combinatorial design

theory, which dates back to the 19th century. We will give a brief overview and some

examples of such designs. Second, replica placement has been studied in the context

of DHT systems. Third, several data center storage systems have employed various

solutions to mitigate data loss due to concurrent node failures.

2.7.1 Combinatorial Design Theory

The special case of trying to minimize the number of copysets when S = N − 1 is

related to combinatorial design theory. Combinatorial design theory tries to answer

questions about whether elements of a discrete finite set can be arranged into subsets,

which satisfy certain “balance” properties. The theory has its roots in recreational

mathematical puzzles or brain teasers in the 18th and 19th century. The field emerged

as a formal area of mathematics in the 1930s for the design of agricultural experi-

ments [27]. Stinson provides a comprehensive survey of combinatorial design theory

and its applications. In this subsection we borrow several of the book’s definitions

and examples [78].

The problem of trying to minimize the number of copysets with a scatter width

of S = N − 1 can be expressed a Balanced Incomplete Block Design (BIBD), a type

of combinatorial design. Designs that try to minimize the number of copysets for any

scatter width, such as Copyset Replication, are called unbalanced designs.

A combinatorial design is defined a pair (X,A), such that X is a set of all the

nodes in the system (i.e., X = {1, 2, 3, ..., N}) and A is a collection of nonempty

subsets of X. In our terminology, A is a collection of all the copysets in the system.

Let N , R and λ be positive integers such that N > R ≥ 2. A (N,R, λ) BIBD

satisfies the following properties:

1. |A| = N

2. Each copyset contains exactly R nodes

2.7. RELATED WORK 41

3. Every pair of nodes is contained in exactly λ copysets

When λ = 1, the BIBD provides an optimal design for minimizing the number of

copysets for S = N − 1.

For example, a (7, 3, 1)BIBD is defined as:

X = {1, 2, 3, 4, 5, 6, 7}
A = {123, 145, 167, 246, 257, 347, 356}

Note that each one of the nodes in the example has a recovery bandwidth of 6,

because it appears in exactly three non-overlapping copysets.

Another example is the (9, 3, 1)BIBD:

X = {1, 2, 3, 4, 5, 6, 7, 8, 9}
A = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168,

249, 357}

There are many different methods for constructing new BIBDs. New designs

can be constructed by combining other known designs, using results from graph and

coding theory or in other methods [43]. The Experimental Design Handbook has an

extensive selection of design examples [15].

However, there is no single technique that can produce optimal BIBDs for any

combination of N and R. Moreover, there are many negative results, i.e., researchers

that prove that no optimal designs exists for a certain combination ofN and R [37, 42].

Due to these reasons, and due to the fact that BIBDs do not solve the copyset

minimization problem for any scatter width that is not equal to N − 1, it is not

practical to use BIBDs for creating copysets in data center storage systems. This is

why we chose to utilize Copyset Replication, a non-optimal design based on random

permutations that can accommodate any scatter width. However, BIBDs do serve as

a useful benchmark to measure how optimal Copyset Replication in relationship to

the optimal scheme for specific values of S, and the novel formulation of the problem

for any scatter width is a potentially interesting future research topic.

42CHAPTER 2. A FRAMEWORK FORREPLICATION: COPYSETS AND SCATTERWIDTH

2.7.2 DHT Systems

There are several prior systems that explore the impact of data placement on data

availability in the context of DHT systems.

Chun et al. [12] identify that randomly replicating data across a large “scope”

of nodes increases the probability of data loss under simultaneous failures. They

investigate the effect of different scope sizes using Carbonite, their DHT replication

scheme. Yu et al. [90] analyze the performance of different replication strategies when

a client requests multiple objects from servers that may fail simultaneously. They

propose a DHT replication scheme called “Group”, which constrains the placement

of replicas on certain groups, by placing the secondary replicas in a particular order

based on the key of the primary replica. Similarly, Glacier [33] constrains the random

spread of replicas, by limiting each replica to equidistant points in the keys’ hash

space.

None of these studies focus on the relationship between the probability of data loss

and scatter width, or provide optimal schemes for different scatter width constraints.

2.7.3 Data Center Storage Systems

Facebook’s proprietary HDFS implementation constrains the placement of replicas to

smaller groups, to protect against concurrent failures [8, 3]. Similarly, Sierra randomly

places chunks within constrained groups in order to support flexible node power downs

and data center power proportionality [83]. As we discussed previously, both of these

schemes, which use random replication within a constrained group of nodes, generate

orders of magnitude more copysets than Copyset Replication with the same scatter

width, and hence have a much higher probability of data loss under correlated failures.

Ford et al. from Google [28] analyze different failure loss scenarios on GFS clusters,

and have proposed geo-replication as an effective technique to prevent data loss under

large scale concurrent node failures. Geo-replication across geographically dispersed

sites is a fail-safe way to ensure data durability under a power outage. However, not

all storage providers have the capability to support geo-replication. In addition, even

for data center operators that have geo-replication (like Facebook and LinkedIn),

2.7. RELATED WORK 43

losing data at a single site still incurs a high fixed cost due to the need to locate

or recompute the data. This fixed cost is not proportional to the amount of data

lost [54, 11].

Chapter 3

The Peculiar Case of the Last

Replica

44

3.1. INTRODUCTION 45

3.1 Introduction

Popular cloud storage systems like HDFS [75], GFS [29] and Azure [9] typically

replicate their data three times to guard against data loss. The common architecture

of cloud storage systems is to split each node’s storage into data chunks and replicate

each chunk on three randomly selected nodes.

The conventional wisdom is that replicating chunks three times is essential for

preventing data loss due to node failures. In prior literature, node failure events

are broadly categorized into two types: independent node failures and correlated

node failures [8, 10, 28, 6, 58, 87]. Independent node failures are defined as events

where nodes fail individually and independently in time (e.g., individual disk failure,

kernel crash). Correlated failures are defined as failures where several nodes fail

simultaneously due to a common root cause (e.g., network failure, power outage,

software upgrade). In this dissertation, we are primarily concerned with events that

affect data durability rather than data availability, and are therefore concerned with

node failures that cause permanent data loss, such as hardware and disk failures, in

contrast to transient data availability events, such as software upgrades.

This dissertation questions the assumption that traditional three-way replication

is effective to guard against all data loss events. We show that, while a replication

factor of three or more is essential for protecting against data loss under correlated

failures, a replication factor of two is sufficient to protect against independent node

failures.

We note that, in many storage systems, the third or n-th replica was introduced

mainly for durability and not for read performance [10, 76, 12, 23]. Therefore, we can

leverage the last replica to address correlated failures1, which are the main cause of

data loss for cloud storage systems [28, 58].

We demonstrate that in a storage system where the third replica is only read when

the first two are unavailable (i.e., the third replica is not required for operational

data reads), the third replica would be read almost exclusively during correlated

failure events. In such a system, the third replica’s workload is write-dominated,

1Without loss of generality, this dissertation assumes an architecture where some replicas are
used for performance, and others are used for preventing data loss.

46 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

since it would be written to during every system write, but very infrequently read

from (almost exclusively in the case of a correlated failure).

This property can be leveraged by storage systems to increase durability and

reduce storage costs. Storage systems can split their clusters into two tiers: the pri-

mary tier would contain the first and second copy of each replica, while the backup

tier would contain the backup third replicas. The backup tier would only be used

when data is not available in the primary tier. Since the backup tier’s replicas will

be read infrequently they do not require high performance for read operations. The

relaxed read requirements for the third replica enable system designers to further

increase storage durability, by storing the backup tier on a remote site (e.g., Amazon

S3), which significantly reduces the correlation in failures between nodes in the pri-

mary tier and the backup tier. In addition, the backup tier may also be compressed,

deduplicated or stored on a low-cost storage medium (e.g., tape) to reduce storage

capacity costs.

Existing replication schemes cannot effectively separate the cluster into tiers while

maintaining cluster durability. Random replication, the scheme widely used by pop-

ular cloud storage systems, scatters data uniformly across the cluster and has been

shown to be very susceptible to frequent data loss due to correlated failures [14, 10, 3].

Non-random replication schemes, like Copyset Replication [14], have a significantly

lower probability of data loss under correlated failures. However, Copyset Replica-

tion is not designed to effectively distribute the replicas into storage tiers, does not

support nodes joining and leaving the cluster and does not allow the storage system

designer to add additional placement constraints, such as support chain replication

or requiring replicas to be placed on different network partitions and racks.

We present Tiered Replication, a simple dynamic replication scheme that leverages

the asymmetric workload of the third replica, and can be applied to any cloud storage

system. Tiered Replication allows system designers to divide the cluster into primary

and backup tiers, and its incremental operation supports dynamic cluster changes

(e.g., nodes joining and leaving). In addition, unlike random replication, Tiered

Replication enables system designers to limit the frequency of data loss under corre-

lated failures. Moreover, Tiered Replication can support any data layout constraint,

3.1. INTRODUCTION 47

including support for chain replication [84] and topology-aware data placement.

Tiered Replication is an optimization-based data placement algorithm that places

chunks into the best available replication groups. The insight behind its operation is

to select replication groups that both minimize the probability of data loss under cor-

related failures by reducing the overlap between replication groups, and satisfy data

layout constraints defined by the storage system designer. The storage system with

Tiered Replication achieves an MTTF that is 105 greater than random replication,

and more than 102 greater than Copyset Replication.

We implemented Tiered Replication on HyperDex, an open-source key-value cloud

storage system [23]. Our implementation of Tiered Replication versatile enough to

satisfy constraints on replica assignment and load balancing, including HyperDexs

data layout requirements for chain replication [84]. We analyze the performance

of Tiered Replication on a HyperDex installation on Amazon, where the backup

tier, containing the third replicas, is stored on a separate Amazon availability zone.

We show that Tiered Replication incurs a small performance overhead for normal

operations and preserves the performance of node recovery.

48 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

3.2 Motivation

The common architecture of cloud storage systems like HDFS [10, 75], GFS [29] and

Azure [9] is to split each node’s storage into data chunks and replicate each chunk

on three different randomly selected servers. The widely held view [8, 10] is that

three-way replication protects clusters from two types of failures: independent and

correlated node failures. Independent node failures are failures that affect individual

computers, while correlated node failures are failures related to the hosting infras-

tructure of the data center (e.g., network, ventilation, power) [19, 10].

In this section, we challenge this commonly held view. First, we demonstrate that

it is superfluous to use a replication factor of three to provide data durability against

independent failures, and that two replicas provide sufficient redundancy for this type

of failure. Second, building on previous work [14, 10], we show that random three-way

replication falls short in protecting against correlated failures. These findings provide

motivation for a replication scheme that more efficiently handles independent node

failures and provides stronger durability in the face of correlated failures.

3.2.1 Analysis of Independent Node Failures

Consider a storage system with N nodes and a replication factor R. Independent node

failures are modeled as a Poisson process with an arrival rate of λ. Typical parameters

for storage systems are N = 1, 000 to N = 10, 000 and R = 3 [75, 10, 28, 8].

λ =
N

MTTF
, where MTTF is the mean time to permanent failure of a standard

server and its components. We borrow the working assumption used by Yahoo and

LinkedIn, where about 1% of the nodes in a typical cluster fail independently each

month [10, 75], which equates to an annual MTTF of about 8-10 years. In our model

we use an MTTF of 10 years for a single node. We also assume that the number of

nodes in the system remains constant and that there is always a ready idle server to

replace a failed node.

When a node fails, the cluster re-replicates its data by reading it from one or more

servers that store replicas of the node’s chunks and writing the data into another set

of nodes. The node’s recovery time depends on the number of servers that can be

3.2. MOTIVATION 49

0	 1	

λ	 λ	

μ	 2μ	

2	

λ	

3μ	

i	

λ	

(i+1)μ	

i+1	

λ	

(i+2)μ	

λ	

iμ	

…	 …	

Figure 3.1: Markov chain of data loss due to independent node failures. Each state
represents the number of nodes that are down simultaneously.

read from in parallel to recover its data. Using previously defined terminology [14],

we term scatter width or S as the average number of servers that participate in a

single node’s recovery. For example, if a node’s data has been replicated uniformly

on 10 other nodes, when this node fails, the storage system can re-replicate its data

by reading it from 10 nodes in parallel. Therefore, its scatter width will be equal to

10.

A single node’s recovery time is modeled as an exponential random variable, with

a parameter of µ. For simplicity’s sake, we assume that recovery time is a linear

function of the scatter width, or a linear function of the number of nodes that recover

in parallel. µ =
S

τ
, where τ is the time to recover a full disk over the network. Typical

values for τ are between 1-30 minutes [10, 75, 28]. Throughout the paper we use a

conservative recovery time for a single node of τ = 30 minutes. For a scatter width

of S = 10, which is the value used by Facebook [3], the recovery time will take on

average 3 minutes. Note that there is a practical lower bound to recovery time. Most

systems first make sure the node has permanently failed before they start recovering

the data. For simplicity’s sake, we do not consider scatter widths that cause the

recovery time to drop below 1 minute.

The rate of data loss due to independent node failures is a function of two probabil-

ities. The first is the probability that i nodes in the cluster have failed simultaneously

at a given point in time: Pr(i failed). The second is the probability of loss given i

nodes failed simultaneously: Pr(loss|i failed). In the next two subsections, we show

50 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

how to compute these probabilities, and in the final subsection we show how to derive

the overall rate of failure due to independent node failures.

Probability of i Nodes Failing Simultaneously

We first express Pr(i failed) using a Continuous-time Markov chain, depicted in

Figure 3.1. Each state in the Markov chain represents the number of failed nodes in

a cluster at a given point in time.

The rate of transition between state i and i + 1 is the rate of independent node

failures across the cluster, namely λ. The rate of the reverse transition between state

i and i − 1 is the recovery rate of single node’s data. Since there are i failed nodes,

the recovery rate of a single node is (i) · µ (in other words, as the number of nodes

the cluster is trying to recover increases, the time it takes to recover the first node

decreases). We assume that the number of failed nodes does not affect the rate of

recovery. This assumption holds true as long as the number of failures is relatively

small compared to the total number of nodes, which is true in the case of independent

node failures in a large cluster (we demonstrate this below).

The probability of each state in a Markov chain with N states can always be de-

rived from a set of N linear equations. However, since N is on the order of magnitude

of 1,000 or more, and the number of simultaneous failures due to independent node

failures in practical settings is very small compared to the number of nodes, we de-

rived an approximate closed-form solution that assumes an infinite sized cluster. This

solution is very simple to compute, and we provide the analysis for it in Appendix 3.6.

The probability of i nodes failing simultaneously at a given point in time is:

Pr(i failed) =
ρi

i!
e−ρ

Where ρ =
λ

µ
. We compute the probabilities for different cluster sizes in Table 3.1.

The results show that the probability of two or more simultaneous failures due to

independent node failures is very low.

Now that we have estimated Pr(i failed), we need to estimate Pr(loss|i failed).

3.2. MOTIVATION 51

Number of
Nodes

Pr(2 Failures) Pr(3 Failures) Pr(4 Failures)

1,000 1.8096× 10−8 1.1476× 10−12 5.4586× 10−17

5,000 4.5205× 10−7 1.4334× 10−10 3.4091× 10−14

10,000 1.8065× 10−6 1.1457× 10−9 5.4493× 10−13

50,000 4.4820× 10−5 1.4212× 10−7 3.3800× 10−10

100,000 1.7758× 10−4 1.1262× 10−6 5.3568× 10−9

Table 3.1: Probability of simultaneous node failures due to independent node failures
under different cluster sizes. The model uses S = 10, R = 3, an average node MTTF
of 10 years and a node recovery time of 3 minutes.

Probability of Data Loss Given i Nodes Failed Simultaneously

Previous work has shown how to compute this probability for different types of repli-

cation techniques using simple combinatorics [14]. Replication algorithms map each

chunk to a set of R nodes. A copyset is a set that stores all of the copies of a chunk.

For example, if a chunk is replicated on nodes {7, 12, 15}, then these nodes form a

copyset.

Random replication selects copysets randomly from the entire cluster. Facebook

has implemented its own random replication technique, where theR nodes are selected

from a pre-designated window of nodes. For example, if the first replica is placed on

node 10, the remaining two replicas will randomly be placed on two nodes out of

a window of 10 subsequent nodes (i.e., they will be randomly selected from nodes

{11, ..., 20}) [14, 3].

Unlike these random schemes, Copyset Replication minimizes the number of copy-

sets each node is a member of [14]. To understand the difference between Copyset

Replication and Facebook’s scheme, consider the following example.

Assume our storage system has the following parameters: R = 3, N = 9 and

S = 4. If we use Facebook’s scheme, each chunk will be replicated on another node

chosen randomly from a group of S nodes following the first node. E.g., if the primary

replica is placed on node 1, the secondary replica will be randomly placed either on

node 2, 3, 4 or 5.

Therefore, if our system has a large number of chunks, it will create 54 distinct

52 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Number of Nodes

M
T

T
F

 i
n

 Y
e

a
rs

Copyset Replication, Independent, R = 3

Facebook Random Replication, Independent, R = 3

Random Replication, Independent, R = 3

Copyset Replication, Independent, R = 2

Facebook Replication, Independent, R = 2

Random Replication, Independent, R = 2

Copyset Replication, Correlated, R = 3

Facebook Replication, Correlated, R = 3

Random Replication, Correlated, R = 3

Figure 3.2: MTTF due to independent and correlated node failures of a cluster with
a scatter width of 10.

copysets.

In the case of a simultaneous failure of three nodes, the probability of data loss is

the number of copysets divided by the maximum number of sets:

copysets(
N
R

) =
54(
9
3

) = 0.64

Now, examine an alternative scheme using the same parameters. Assume we only

allow our system to replicate its data on the following copysets:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}{1, 4, 7}, {2, 5, 8}, {3, 6, 9}

That is, if the primary replica is placed on node 3, the two secondary replicas can

only be randomly placed on nodes 1 and 2 or 6 and 9. Note that with this scheme,

each node’s data will be split uniformly on four other nodes. The new scheme creates

3.2. MOTIVATION 53

5 10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

Scatter Width

M
T

T
F

 i
n

 Y
e

a
rs

Copyset Replication, Independent, R = 3

Facebook Random Replication, Independent, R = 3

Copyset Replication, Independent, R = 2

Facebook Random Replication, Independent, R = 2

Copyset Replication, Correlated, R = 3

Facebook Random Replication, Correlated, R = 3

Figure 3.3: MTTF due to independent and correlated node failures of a cluster with
4000 nodes.

only 6 copysets. Now, if three nodes fail, the probability of data loss is:

copysets

84
=

6

84
= 0.07.

Consequently, as we decrease the number of copysets, Pr(loss|i failed) decreases.

Therefore, this probability is significantly lower with Copyset Replication compared

to Facebook’s Random Replication.

Note however, that we decrease the number of copysets, the frequency of data loss

under correlated failures will decrease, but each correlated failure event will incur a

higher number of lost chunks. This is a desirable trade-off for many storage system

designers, where each data loss event incurs a fixed cost [14].

Another design choice that affects the number of copysets is the scatter width.

As we increase the scatter width, or the number of nodes from which a node’s data

can be recovered after its failure, the minimal number of copysets that must be used

54 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

increases.

MTTF Due to Independent Node Failures

We can now compute the rate of loss due to independent node failures, which is:

Rate of Loss =
1

MTTF
= λ

N∑
i=1

Pr(i− 1 failed) · (1− Pr(loss|i failed))·

Pr(loss|i failed)

The equation accounts for all events in which the Markov chain switches from

state i − 1, in which no loss has occurred, to state i, in which data loss occurs. λ is

the transition rate between state i − 1 and i, Pr(i − 1 failed) is the probability of

being in state i− 1, (1− Pr(loss|i failed)) is the probability that there was no data

loss when i − 1 nodes failed and finally Pr(loss|i failed) is the probability of data

loss when i nodes failed.

Note that no data loss can occur when i < R. Therefore, the sum can be computed

from i = R.

In addition, Table 3.1 shows that under practical system parameters, the probabil-

ity of i simultaneous node failures due to independent node failures drops dramatically

as i increases. Therefore:

Rate of Loss =
1

MTTF
≈ λ · Pr(R− 1 failed) · Pr(loss|R failed)

Using this equation, Figure 3.2 depicts the MTTF of data loss under independent

failures for R = 2 and R = 3 with three replication schemes, Random Replication,

Facebook’s Random Replication and Copyset Replication, as a function of the clus-

ter’s size.

It is evident from the figure that Facebook’s Random Replication and Copyset

Replication have much higher MTTF values than Random Replication. The reason

is that they use a much smaller number of copysets than Random Replication, and

therefore their Pr(loss|i failed) is smaller.

3.2. MOTIVATION 55

3.2.2 Analysis of Correlated Node Failures

Correlated failures occur when an infrastructure malfunction causes multiple nodes

to be unavailable for a long period of time. Such failures include power outages that

may affect an entire cluster, network switch malfunctions and rack power failures [10,

19]. Storage system designers can largely avoid data loss related to some of the

common correlated failure scenarios, by placing replicas on different racks or network

segments [28, 8, 10]. However, these techniques only go so far to mitigate data

loss, and storage systems still face unexpected simultaneous failures of nodes that

share replicas. Such data loss events have been documented by multiple data center

operators, such as Yahoo [75], LinkedIn [10] and Facebook [8, 3].

In order to analyze the affect of correlated failures on MTTF, we use the ob-

servation made by LinkedIn and Yahoo, where on average, once a year, 1% of the

nodes do not recover after a cluster-wide power outage. This has been documented

as the most severe cause of data loss due to correlated failures [10, 75]. We compute

the probability of data loss for this event using the same technique used by previous

literature [14].

Figure 3.2 also presents the MTTF of data loss under correlated failures. It is

evident from the graph that the MTTF due to correlated failures for R = 3 is three

orders of magnitude lower than independent failures with R = 2 and six orders of

magnitude lower than independent failures with R = 3, for any replication scheme.

Therefore, our conclusion is that R = 2 is sufficient to protect against indepen-

dent node failures, and that system designers should only focus on further increasing

the MTTF under correlated failures, which is by far the main contributing factor

to data loss. This has been corroborated in studies conducted by Google [28] and

LinkedIn [10].

This also provides further evidence that random replication is much more suscep-

tible to data loss under correlated and independent failures than other replication

schemes. Therefore, in the rest of the paper we compare Tiered Replication only

against Facebook’s Random Replication and Copyset Replication.

Figure 3.3 plots the MTTF for correlated and independent node failures using the

same model as before, as a function of the scatter width. This graph demonstrates

56 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

that Copyset Replication provides a much higher MTTF than Facebook’s Random

Replication scheme.

The figure also shows that increasing the scatter width has an opposite effect on

MTTF for independent and correlated node failures. The MTTF due to indepen-

dent node failures increases as a function of the scatter width, since a higher scatter

width provides faster node recovery times. In contrast, the MTTF due to correlated

node failures decreases as a function of the scatter width, since higher scatter width

produces more copysets.

However, since the MTTF of the system is determined primarily by correlated

failures, we can also conclude that if system designers wish to reduce the probability

of overall data loss events, they should use a small scatter width.

3.2.3 The Peculiar Case of the Nth Replica

This analysis prompted us to investigate whether we can further increase the MTTF

under correlated failures. We assume that the third replica was introduced in most

cases to provide increased durability and not for increased read throughput [10, 76,

12]. This is true especially in storage systems that utilize chain replication, where

the reads will only occur from one end of the chain (from the head or from the

tail) [23, 84, 82].

Therefore, consider a storage system where the third replica is never read unless

the first two replicas have failed. We estimate how frequently the system requires the

use of a third replica, by analyzing the probability of data loss under independent

node failures for a replication factor of two. If a system loses data when it uses two

replicas, it means that if a third replica existed and did not fail, the system would

recover the data from it.

In the independent failure model depicted by Figures 3.2 and 3.3, the third replica

is required in very rare circumstances for Facebook Random Replication and Copyset

Replication, on the order of magnitude of every 105 years. However, this third replica

is essential for protecting against correlated failures.

In order to leverage this property, we can split our storage system into two tiers.

3.2. MOTIVATION 57

The primary tier would contain the first and second replicas of each chunk, while the

backup tier would contain the third replica of each chunk. If possible, failures in the

primary tier will always be recovered using nodes from the primary tier. We only

recover from the backup tier if both the first and second replicas fail simultaneously.

In case the storage system requires more than two nodes for read availability, the

primary tier will contain the number of replicas required for availability, while the

backup tier will contain an additional replica.

Therefore, the backup tier will be mainly read during large scale correlated failures,

which are fairly infrequent (e.g., on the order of once or twice a year), as reported by

various data center operators [10, 75, 8]. Consequently, the backup tier can be viewed

as write dominated storage, since it is written to every time a chunk is changed (e.g.,

thousands of times a second), but only read from a few times a year.

Splitting the cluster into tiers provides multiple advantages. The storage system

designer can significantly reduce the correlation between failures in the primary tier

and the backup tier. This can be achieved by storing the backup tier in a geographi-

cally remote location, or by other means of physical separation such as using different

network and power infrastructure. It has been shown by Google that storing data in a

physical remote location significantly reduces the correlation between failures across

the two sites [28].

Another possible advantage is that the backup tier can be stored more cost-

effectively than the primary tier. For example, the backup tier can be stored on

a cheaper storage medium (e.g., tape, or disk in the case of an SSD based cluster),

its data may be compressed [69, 38, 50, 64, 44], deduplicated [63, 92, 22] or may be

configured in other ways to be optimized for a write dominated workload.

The idea of using geo-replication to reduce the correlation between replicas has

been explored extensively using full cluster geo-replication. However, existing geo-

replication techniques replicate all replicas from the main cluster to a second cluster,

which more than doubles the cost of storage [28, 52].

In this paper, we propose a replication technique, Tiered Replication, that sup-

ports tiered clusters and does not duplicate the entire cluster. Previous random repli-

cation techniques are inadequate, since as we presented in Figure 3.2 they are highly

58 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

susceptible to correlated node failures. Previous non-random techniques like Copyset

Replication do not readily support data topology constraints such as tiered replicas

and fall short in supporting dynamic data center settings when nodes frequently join

and leave the cluster [14].

3.3. DESIGN 59

Name Description

cluster list of all the nodes in the cluster
node the state of a single node
R replication factor (e.g., 3)
cluster.S desired minimum scatter width of all the

nodes in the cluster
node.S the current scatter width of a node
cluster.sort returns a sorted list of the nodes in in-

creasing order of scatter width
cluster.addCopyset(copyset) adds copyset to the list of copysets
cluster.checkTier(copyset) returns false if there is more than one node

from the backup tier, or R nodes from the
primary tier

cluster.didNotAppear(copyset) returns true if each node never appeared
with other nodes in previous copysets

Table 3.2: Tiered Replication algorithm’s variables and helper functions.

3.3 Design

The goal of Tiered Replication is to create copysets (groups of nodes that contain

all copies of a single chunk). When a node replicates its data, it will randomly choose

a copyset that it is a member of, and place the replicas of the chunk on all the nodes

in its copyset. Tiered Replication attempts to minimize the number of copysets while

providing sufficient scatter width (i.e., node recovery bandwidth), while ensuring

that each copyset contains a single node from the backup tier. Tiered Replication

also flexibly accommodates any additional constraints defined by the storage system

designer (e.g., split copysets across racks or network partitions).

Algorithm 1 describes Tiered Replication, while Table 3.2 contains the definitions

used in the algorithm. Tiered Replication continuously creates new copysets until all

nodes are replicated with sufficient scatter width. Each copyset is formed by itera-

tively picking candidate nodes with a minimal scatter width that meet the constraints

of the nodes that are already in the copyset. Algorithm 2 describes the part of the

60 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

Algorithm 1 Tiered Replication
1: while ∃ node ∈ cluster s.t. node.S ¡ cluster.S do
2: for all node ∈ cluster do
3: if node.S ¡ cluster.S then
4: copyset = {node}
5: sorted = cluster.sort
6: for all sortedNode ∈ sorted do
7: copyset = copyset ∪ {sortedNode}
8: if cluster.check(copyset) == false then
9: copyset = copyset - {sortedNode}

10: else if copyset.size == R then
11: cluster.addCopyset(copyset)
12: break
13: end if
14: end for
15: end if
16: end for
17: end while

Algorithm 2 Check Constraints Function
1: function cluster.check(copyset)
2: if cluster.checkTier(copyset) == true AND

cluster.didNotAppear(copyset) AND
... // additional data layout constraints then

3: return true
4: else
5: return false
6: end if
7: end function

3.3. DESIGN 61

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

1

10
2

10
3

10
4

10
5

10
6

Number of Nodes

M
T

T
F

 i
n

 Y
e

a
rs

Copyset Replication, Independent, R = 2

Tiered Replication, Independent, R = 2 + 1

Tiered Replication, Correlated, R = 2 + 1

Copyset Replication, Correlated, R = 3

Figure 3.4: MTTF due to independent and correlated node failures of a cluster with
a scatter width of 10.

62 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

10
3

10
4

10
5

10
6

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

Number of Nodes

M
T

T
F

 i
n

 Y
e

a
rs

Tiered Replication, Independent, R = 3 + 1

Tiered Replication, Correlated, R = 3 + 1

Tiered Replication, Independent, R = 2 + 1

Tiered Replication, Correlated, R = 2 + 1

MTTF of 100 years

Figure 3.5: MTTF due to independent and correlated node failures of a cluster with
a scatter width of 10.

3.3. DESIGN 63

algorithm that checks whether the copyset has met the constraints. The first con-

straint satisfies the tier requirements, i.e., having exactly one node in each copyset

that belongs to the backup tier. The second constraint enforces the minimization

of the number of copysets, by requiring that the nodes in the new copyset do not

appear with each other in previous copysets. This constraint minimizes the number

of copysets, because each new copyset contributes the maximum increase of scatter

width. For more information see [14].

Note that there may be cases when the algorithm does not succeed to find a

copyset that satisfies all the constraints. In this case, the algorithm is run again,

with a relaxed set of constraints (e.g., we can relax the constraint of minimizing the

number of copysets, and allow more overlap between copysets).

3.3.1 Analysis of Tiered Replication

We evaluate the durability of Tiered Replication under independent and correlated

node failures. To measure the MTTF under independent node failures, we use the

same Continuous-time Markov model that we presented in Section 3.2. The results

are presented in Figures 3.4 and 3.5. Note that R = 2 + 1 means we use Tiered

Replication with two replicas in the primary tier and one replica in the backup tier.

Note that in Tiered Replication when a replica fails in the primary tier, if possible,

it is only recovered from other nodes in the primary tier. Therefore, fewer nodes will

participate in recovery, because the backup tier nodes will not be recovered from.

In order to compensate for this effect, system designers that use Tiered Replication

may choose to increase the scatter width. For our analysis we compute the MTTF

using the same scatter width for Tiered Replication and other replication schemes.

Figure 3.4 shows that for S = 10, the MTTF under independent node failures is

higher for Copyset Replication compared to Tiered Replication, because fewer nodes

participate in the recovery of primary replicas and its single-node recovery time is

therefore higher.

Also, note that in Figures 3.4 and 3.5, we assume that for R = 2 + 1, the third

replica is never used to recover from independent node failures. In reality, the backup

64 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

tier is used for any failure of two nodes from the primary tier, and therefore will be

used in the rare case of an independent node failure that simultaneously affects two

nodes in the primary tier that are in the same copyset. Hence, the MTTF under

independent node failures for Tiered Replication is even higher than depicted by the

graphs.

To evaluate the durability of Tiered Replication under correlated failures, we

quantify the probability that all the nodes in one copyset or more fail. Since the

primary and backup tiers are stored on separate infrastructure, we assume that their

failures are independent.

Since each copyset includes two nodes from the primary tier, when these nodes fail

simultaneously, data loss will occur only if the third copyset node from the backup

tier failed at the same time. Since our assumption is that correlated failures occur

once a year and affect 1% of the nodes each time (i.e., an MTTF of 100 years for a

single node), while independent failures occur once in every 10 years for a node, it

is 10 times more likely that if a backup node fails, it is due to an independent node

failure. Therefore, the dominant cause of failures for Tiered Replication is when a

correlated failure occurs in the primary tier, and at the same time an independent

node failure occured in the backup tier.

To compute the MTTF of data loss due to this scenario, we need to compute the

probability that a node failure will occur in the backup cluster while a correlated

failure event is occurring in the primary cluster. To be on the conservative side, we

assume that it takes 12 hours to fully recover the data after the correlated failure

in the primary tier (LinkedIn data center operators report that unavailability events

typically take 1-3 hours to recover from [10]). We compute the probability of data

loss in this scenario, using the same combinatorial methods that we used to compute

the MTTF under correlated failures before.

Figure 3.4 shows that the MTTF of Tiered Replication is more than two orders of

magnitude greater than Copyset Replication. This is due to the fact that it is much

less likely to lose data under correlated failures when one of the replicas is stored on

an independent cluster. Recall that Copyset Replication’s MTTF was already three

orders of magnitude greater than random replication.

3.3. DESIGN 65

In Figure 3.5 we explore the following question: what is the turning point, where

a storage system needs to use R = 4 instead of R = 3? We plot the MTTF of Tiered

Replication and extend it N = 1, 000, 000, which is a much larger number of nodes

than is used in today’s clusters. Assuming that storage designers are targeting an

MTTF of at least 100 years, our results show that at around 100,000 nodes storage

systems should switch to a default of R = 4. Note that Figure 3.4 shows that Copyset

Replication needs to switch to R = 4 much sooner, at about 5,000 nodes. Other

replication schemes, like Random Replication or Facebook’s scheme, fail to achieve

an MTTF of 100 years with R = 3, even for very small clusters.

3.3.2 Dynamic Cluster Changes

Since running Tiered Replication is fast to execute (on the order of milliseconds, see

Section 3.4) and the algorithm is structured to create new copysets incrementally, the

storage system can run it every time the cluster changes its configuration.

When a new node joins the cluster, we simply run Tiered Replication again. Since

the new node does not belong to any copysets, it starts with a scatter width of 0.

Therefore, Tiered Replication’s greedy operation will ensure that the node is assigned

to a sufficient number of copysets that will increase its scatter width to the value of

S.

When a node dies (or leaves the cluster), it leaves behind copysets that are missing

a single node. The simplest way to re-instate the copysets is to assume that the old

copysets are down and run the algorithm again. The removal of these copysets will

reduce the scatter width of the nodes that were contained in the removed copysets,

and the algorithm will create a new set of copysets to replace the old ones. The data

in the old copysets will need to be re-replicated R times again.

Alternatively, the algorithm can be optimized to look for a replacement node for

the node that left the cluster, which addresses the constraints of the remaining nodes

in the copyset. In this scenario, if the algorithm succeeds in finding a replacement,

the data will be re-replicated only once.

One of the main disadvantages of Copyset Replication is that it is a static scheme

66 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

p
y
s
e

t
E

ff
ic

ie
n

c
y

Tiered Replication
Tiered Replication with

Power Downs
Tiered Replication with

Chain Sets

Tiered Replication with
Power Downs

and Chain Sets

Facebook
Random Replication

Figure 3.6: Adding constraints on Tiered Replication increases the number of copy-
sets, on a cluster with N = 4000, R− 3 and S = 10.

where the copysets are generated by randomly permuting all the nodes in the cluster,

and then dividing them to copysets. Addition and deletion of nodes are handled

locally in a non-optimal way, and they create excessive copysets. This means that

at some point the system designers would need to completely rearrange the data

placement in the entire cluster. Unlike Copyset Replication, Tiered Replication is

inherently an online algorithm, which incrementally adds copysets as needed, and is

always optimized for reducing the overall number of copysets.

3.3.3 Additional Constraints

Tiered Replication can be extended to support different requirements of storage sys-

tem designers by adding more constraints to the cluster.check(copysets) function.

The following provides two examples.

Controlled Power Down: Some storage designers would like to allow parts of the

3.3. DESIGN 67

cluster to be temporarily switched off to reduce power consumption (e.g., according

to diurnal patterns). For example, Sierra [83], allows a cluster with three replicas

to power down two thirds of its cluster and still allow access to data. This feature

can easily be added as a constraint to Tiered Replication by forcing each copyset to

contain a node that belongs to a different partition. This feature is also important

for supporting controlled software or hardware upgrades, where parts of the cluster

may be powered down without affecting the cluster availability.

Chain Replication: In chain replication, each replica it is assigned a position in

the chain (e.g., head, middle, tail) [84]. Chain replication can provide improved

performance and consistency. A desirable property of chain replication is that each

node will have an equal number of replicas in each position. It is straightforward to

incorporate this requirement into Tiered Replication. In order to ensure that nodes

have an even distribution of chain positions for their replicas, when the algorithm

assigns nodes to copysets and chain positions, it tries to balance the number of times

the node will appear in each chain position. For example: if a node has been assigned

to the head position twice, middle position twice and tail position once, the algorithm

will enforce that it will be assigned to a tail position in the next copyset the node

will belong to.

To demonstrate the ability to incorporate additional constraints to Tiered Repli-

cation, we implemented it on HyperDex [23], a storage system that uses chain repli-

cation. Note that Copyset Replication and Random Replication are inefficient for

supporting balanced chain sets. Copyset Replication is not designed for incorporat-

ing such constraints because it randomly permutes the entire set of nodes. Random

Replication is not effective for this requirement because its random placement of

nodes frequently creates imbalanced chain positions.

3.3.4 Analysis of Additional Constraints

Figure 3.6 demonstrates the effect of adding constraints on the number of copysets.

In the figure, copyset efficiency is equal to the ratio between the number of copysets

generated by an optimal replication scheme that minimizes the number of copysets,

68 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

and the number of copysets generated by the replication scheme with the constraint.

The graph shows that as we further constrain Tiered Replication, it is less likely

to generate copysets that meet multiple constraints, and its copyset efficiency will

decrease. The figure also shows that the chain set constraint has a greater impact on

the number of copysets than the power down constraint. In any case, Tiered Repli-

cation with additional constraints significantly outperforms any Random Replication

scheme.

3.4. IMPLEMENTATION 69

3.4 Implementation

We have implemented Tiered Replication on HyperDex, an open-source key-value

storage system [23]. In Hyperdex, the coordinator is responsible for replicating chunks

across the nodes. It utilizes a replication technique called chain replication [84]. In

chain replication, each node has a position in the chain. The first node in the chain

is the head, there are middle nodes, and the last node in the chain is the tail. Heads

service client read requests and receive write requests. When writes are serviced

they are passed sequentially through the nodes in the chain, and if successful the tail

acknowledges the write.

Each node serves as a head, tail or middle node for different chunk replicas. In

order to spread the workload evenly across the nodes in the cluster, HyperDex requires

that each node will have a balanced number of positions in the chain.

Since Tiered Replication only takes several milliseconds to run, and is only called

when nodes join or leave the cluster, it is implemented in the main loop of the con-

figuration manager of HyperDex. We added the chain replication requirement as

an additional constraint to the Tiered Replication algorithm. In addition to tracking

which copysets each node has appeared in, we also track the chain positions that each

node has already appeared in. When a node is assigned to a new copyset, among the

nodes that satisfy the scatter width requirement (i.e., that haven’t appeared with the

other nodes in a copyset before), we select the node that has a minimal number of

appearances in a chain position that is still open in the copyset. For simplicity’s sake,

we chose to replicate to the backup tier synchronously; that is, the storage system

does not acknowledge a write until it has been written to the backup tier.

In the next subsections, we evaluate the performance of our Tiered Replication

implementation. The goal of this evaluation is to demonstrate the performance impact

of using Tiered Replication in a practical setting. Note that our evaluation does not

evaluate the frequency of data loss, because the typical time scale (decades) and

cluster sizes (thousands of nodes) required for such experiments are impractical.

70 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

0

20

40

60

80

100

120

140

Loading A B C D F

T
h

ro
u

g
h

p
u

t
(t

h
ou

sa
n

d
op

/s
)

Random Replication
Tiered Replication

Figure 3.7: Tiered Replication throughput under YCSB benchmark. Each bar repre-
sents the throughput under a different YCSB workload.

3.4.1 Performance Benchmarks

In order to evaluate the performance of Tiered Replication, we set up a 9 node

HyperDex cluster on Amazon EC2 using M3 xlarge instances. Each node has a high

frequency Intel Xeon E5-2670 v2 (Ivy Bridge) with 15 GiB of main memory and two

40 GB SSD volumes configured to store HyperDex data.

We compare Tiered Replication to HyperDex’s default replication scheme, random

replication. We ran 6 nodes in one availability zone (us-east-1a) and the three remain-

ing nodes in a second availability zone (us-east-1b). In Amazon EC2, each availability

zone runs on its own physically distinct, independent infrastructure. Common points

of failures like generators and cooling equipment are not shared across availability

zones. Additionally, they are physically separate, such that even extremely uncom-

mon disasters such as fires, tornados or flooding would only affect a single availability

zone [2].

Figure 3.7 presents the results of running Tiered Replication and random repli-

cation under two availability zones, using YCSB (Yahoo! Cloud Serving Bench-

mark) [17]. We used 16 client threads per host on each of the 9 hosts, with one

million 1KiB objects. We plotted the throughput we achieved using both replication

schemes. We attribute the difference in throughput between Tiered Replication and

Random Replication to random performance variabilities in the Amazon virtualized

environment. The error bars in the graph depicts the high variation of the throughput

3.4. IMPLEMENTATION 71

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

C
D

F
(p

er
ce

n
ta

ge
)

Time (ms)

Random Replication
Tiered Replication

Figure 3.8: Tiered Replication write latency under YCSB benchmark.

among different runs of the experiment.

3.4.2 Write Latency

We evaluate the impact of Tiered Replication on latency. Figure 3.8 compares the

write latency of Tiered Replication and random replication under the YCSB bench-

mark. The figure shows that there is no measurable difference in latency.

Note that we are comparing two replication schemes that split nodes across two

clusters. Clearly, we expect the write latency of Tiered Replication if it is compared

to the write latency of a storage system that is deployed entirely in a single availability

zone.

3.4.3 Recovery Evaluation

We measured the time it takes to recover a node in the primary tier with HyperDex

using Tiered Replication while running the YCSB benchmarks. HyperDex took ap-

proximately 98 seconds to recover all of the node’s data, which is consistent with the

performance of HyperDex using random replication.

72 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

3.5 Related Work

Several researchers have made observations that the MTTF under independent fail-

ures is much higher than from correlated failures [58, 87]. A LinkedIn field study

reported no record of data loss due to independent node failures [10]. Google re-

searchers have shown that the MTTF with three replicas under correlated failures

is almost three orders of magnitude lower than the MTTF under independent node

failures [28].

Google researchers developed an analysis based on a Markov model that computes

the MTTF for a single stripe under independent and correlated failures. However,

they did not provide an analysis for the MTTF of the entire cluster [28]. Nath et

al. modeled the affect of correlated node failures and demonstrated that replication

techniques that prevent data loss under independent node failures are not always

effective for preventing correlated node failures [58]. In addition, several researchers

have modeled the MTTF for individual device components, and in particular for

disks [70, 39, 5, 72, 62].

Several replication schemes addressed the high probability of data loss under cor-

related failures. Facebook’s HDFS implementation [8, 3] limits the scatter width of

Random Replication, in order to reduce the probability of data loss under correlated

failures. Copyset Replication [14] improved Facebook’s scheme, by restricting the

replication to a minimal number of copysets for a given scatter width. Tiered Repli-

cation is the first replication technique that not only minimizes the probability of

data loss under correlated failures, but also leverages the much higher MTTF under

independent failures to further increase the MTTF under correlated failures. In addi-

tion, unlike Copyset Replication, Tiered Replication can gracefully tolerate dynamic

cluster changes, such as nodes joining and leaving the cluster and planned cluster

power downs. It also supports chain replication and the ability to distribute replicas

to different racks and failure domains, which is a desirable requirement of replication

schemes [53, 8].

3.5. RELATED WORK 73

The traditional way to increase durability under correlated failures is to use geo-

replication [28, 52, 49, 77, 91]. Geo-replication duplicates the entire cluster to a re-

mote site. Therefore, if the cluster was using three replicas, once it is geo-replicated,

the storage provider will effectively use six replicas. Similarly, Glacier [33] and

Oceanstore [46, 66] design an archival storage layer that provides extra protection

against correlated failures by adding multiple new replicas to the storage system.

While the idea of using archival replicas is not new, Tiered Replication is more cost-

efficient, since does not require any additional storage for the backup: it migrates one

replica from the original cluster to a backup tier. In addition, previous replication

techniques utilize random placement schemes and do not minimize the number of

copysets, which leaves them susceptible to correlated failures.

Storage coding is a technique for reducing the storage overhead of replication [69,

38, 50, 64, 44]. De-duplication is also commonly used to reduce the overhead of

redundant copies of data [63, 92, 22]. Tiered Replication is fully compatible with any

coding or de-duplication schemes for further reduction of storage costs. Moreover,

Tiered Replication enables storage systems to further reduce costs by storing the

third replicas of their data on a cheap storage medium such as tape, or hard disks in

the case of an solid-state based storage cluster.

74 CHAPTER 3. THE PECULIAR CASE OF THE LAST REPLICA

3.6 Appendix

This section contains the closed-form solution for the Markov chain described in

Section 3.2 and Figure 3.1 with an infinite number of nodes. The state transitions

for state i are:

i · µ · Pr(i) = λ · Pr(i− 1)

Therefore:

Pr(i) =
ρ

i
Pr(i− 1)

Where ρ =
λ

µ
. If we apply this formula recursively:

Pr(i) =
ρ

i
Pr(i− 1) =

ρ2

i · (i− 1)
Pr(i− 2) =

ρi

i!
Pr(0)

In order to find Pr(0), we use the fact that the sum of all the Markov state

probabilities is equal to 1:

∞∑
i=0

Pr(i) = 1

If we apply the recursive formula:

∞∑
i=0

Pr(i) =
∞∑
i=0

ρi

i!
Pr(0) = 1

Using the equality
∞∑
i=0

ρi

i!
= eρ, we get: Pr(0) = e−ρ.

Therefore, we now have a simple closed-form formula for all of the Markov state

probabilities:

Pr(i) =
ρi

i!
e−ρ

Chapter 4

Conclusions

75

76 CHAPTER 4. CONCLUSIONS

4.1 Conclusions

This works challenged current best practices of data durability in cloud storage sys-

tems. It demonstrated that existing replication techniques are far from being optimal

for guarding against different types of node failure events. This dissertation formed

new paradigms for analyzing node failures, and designing non-random data placement

schemes that provide significantly higher durability than existing techniques, at the

same storage cost and cluster performance.

The first part of the dissertation shows that randomly replicating across an entire

cluster incurs almost guaranteed data loss when a small number of nodes fail at the

same time, due to a correlated failure. Given that many storage system designers

prefer to reduce the occurance of data loss events, since they incur a high fixed cost,

the work presents a novel framework that trades off between the frequency of data

loss events and the data loss magnitude in each event. It presents a design of a novel

replication scheme, Copyset Replication, which provides a near optimal reduction in

the probability of data loss events, as a function of the scatter width, or node recovery

time. Copyset Replication was implemented on two open-source cloud storage sys-

tems, RAMCloud and Hadoop File System, and the work demonstrated that when

1% of the nodes fail simultaneously, Copyset Replication reduces the probability the

probability of data loss from 99.99% to 0.15%. In the Facebook Hadoop File System

setup, Copyset Replication would reduce the probability of data loss from 22.8% to

0.78%.

In addition to the practical aspects of cloud replication, the work also demon-

strates the connection between cloud data placement, to the field of Balanced Incom-

plete Block Designs (BIBD). Existing BIBD results only address the particular case

where the scatter width is equal to the number of nodes in the system. Therefore, the

copyset problem introduces a new thoretical framework for developing block designs

where the scatter width is smaller than the number of nodes in the cluster.

The second part of this dissertation questioned the common wisdom of cloud stor-

age systems that rely on three-way replication within a cluster to protect against

independent node failures, and on full geo-replication of an entire cluster to protect

4.1. CONCLUSIONS 77

against correlated failures. It provided an analytical framework for computing the

probability of data loss under independent and correlated node failures, and demon-

strated that the standard replication architecture used by cloud storage systems is

inefficient. Three-way replication is excessive for protecting against independent node

failures, and clearly falls short of protecting storage systems from correlated node fail-

ures. The key insight of this chapter is that since the third replica is rarely needed

for recovery from independent node failures, it can be placed on a geographically

separated cluster, without causing a significant impact to the recovery time from

independent node failures, which occur frequently in large clusters.

The work presented Tiered Replication, a replication technique that automati-

cally places the n-th replica on a separate cluster, while minimizing the probability

of data loss under correlated failures, by minimizing the number of copysets. Tiered

Replication improves the cluster-wide MTTF by a factor of 100,000 compared to

random replication, without increasing the storage capacity. In addition, unlike geo-

replication, Tiered Replication does not duplicate an entire cluster’s data. Tiered

Replication supports additional data placement constraints required by the storage

designer, such as rack awareness and chain replication assignments, and can dynam-

ically adapt when nodes join and leave the cluster. An implementation of Tiered

Replication on HyperDex, a key-value storage system, demonstrates that it incurs a

small performance overhead.

A potential future extension of this result is designing and implementing Tiered

Replication with asynchronous replication. Asynchronous replication would allow

Tiered Replication to acknowledge write requests before the last replica is written to

the backup tier. This would decrease the write latency of Tiered Replication in cases

where writing to the backup tier causes a long delay.

Bibliography

[1] HDFS RAID. http://wiki.apache.org/hadoop/HDFS-RAID.

[2] How isolated are availability zones from one another? http://aws.amazon.com/

ec2/faqs/#How_isolated_are_Availability_Zones_from_one_another.

[3] Intelligent block placement policy to decrease probability of data loss. https:

//issues.apache.org/jira/browse/HDFS-1094.

[4] Sérgio Almeida. Geo-replication in large scale cloud computing applications.

Master’s thesis, Univ. Técnica de Lisboa, 2007.

[5] Lakshmi N. Bairavasundaram, Garth R. Goodson, Shankar Pasupathy, and Jiri

Schindler. An analysis of latent sector errors in disk drives. In Proceedings of

the 2007 ACM SIGMETRICS International Conference on Measurement and

Modeling of Computer Systems, SIGMETRICS ’07, pages 289–300, New York,

NY, USA, 2007. ACM.

[6] Mehmet Bakkaloglu, Jay J Wylie, Chenxi Wang, and Gregory R Ganger. On

correlated failures in survivable storage systems. Technical report, DTIC Docu-

ment, 2002.

[7] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.

Computer, 40(12):33–37, December 2007.

[8] Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan Muthukkarup-

pan, Nicolas Spiegelberg, Hairong Kuang, Karthik Ranganathan, Dmytro

Molkov, Aravind Menon, Samuel Rash, Rodrigo Schmidt, and Amitanand Aiyer.

78

BIBLIOGRAPHY 79

Apache hadoop goes realtime at Facebook. In Proceedings of the 2011 interna-

tional conference on Management of data, SIGMOD ’11, pages 1071–1080, New

York, NY, USA, 2011. ACM.

[9] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold,

Sam McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Sim-

itci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Ed-

wards, Vaman Bedekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian

Fahim ul Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand,

Anitha Adusumilli, Marvin McNett, Sriram Sankaran, Kavitha Manivannan, and

Leonidas Rigas. Windows Azure Storage: a highly available cloud storage service

with strong consistency. In Proceedings of the Twenty-Third ACM Symposium on

Operating Systems Principles, SOSP ’11, pages 143–157, New York, NY, USA,

2011. ACM.

[10] Robert J. Chansler. Data Availability and Durability with the Hadoop Dis-

tributed File System. ;login: The USENIX Magazine, 37(1), February 2012.

[11] Robert J Chansler. Personal Communication, 2013.

[12] Byung-Gon Chun, Frank Dabek, Andreas Haeberlen, Emil Sit, Hakim Weath-

erspoon, M Frans Kaashoek, John Kubiatowicz, and Robert Morris. Efficient

replica maintenance for distributed storage systems. NSDI, 6:4–4, 2006.

[13] Asaf Cidon, Robert Escriva, Sachin Katti, Mendel Rosenblum, and Emin Gun

Sirer. Tiered replication: A cost-effective alternative to full cluster geo-

replication. In 2015 USENIX Annual Technical Conference (USENIX ATC 15),

pages 31–43, Santa Clara, CA, July 2015. USENIX Association.

[14] Asaf Cidon, Stephen M. Rumble, Ryan Stutsman, Sachin Katti, John Ouster-

hout, and Mendel Rosenblum. Copysets: Reducing the frequency of data loss

in cloud storage. In Proceedings of the 2013 USENIX Conference on Annual

Technical Conference, USENIX ATC’13, pages 37–48, Berkeley, CA, USA, 2013.

USENIX Association.

80 BIBLIOGRAPHY

[15] W.G. Cochran and G.M. Cox. Experimental designs . 1957.

[16] WG Cochran and DJ Watson. An experiment on observer’s bias in the selection

of shoot-heights. Empire Journal of Experimental Agriculture, 4(13):69–76, 1936.

[17] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and

Russell Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of

the 1st ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154, New

York, NY, USA, 2010. ACM.

[18] Frank Dabek, M Frans Kaashoek, David Karger, Robert Morris, and Ion Sto-

ica. Wide-area cooperative storage with cfs. ACM SIGOPS Operating Systems

Review, 35(5):202–215, 2001.

[19] Jeffrey Dean. Evolution and future directions of large-scale storage and compu-

tation systems at Google. In SoCC, page 1, 2010.

[20] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-

pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter

Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value

store. SIGOPS Oper. Syst. Rev., 41(6):205–220, October 2007.

[21] Norman R Draper and Friedrich Pukelsheim. An overview of design of experi-

ments. Statistical Papers, 37(1):1–32, 1996.

[22] Cezary Dubnicki, Leszek Gryz, Lukasz Heldt, Michal Kaczmarczyk, Wojciech

Kilian, Przemyslaw Strzelczak, Jerzy Szczepkowski, Cristian Ungureanu, and

Michal Welnicki. Hydrastor: A scalable secondary storage. In FAST, volume 9,

pages 197–210, 2009.

[23] Robert Escriva, Bernard Wong, and Emin Gün Sirer. Hyperdex: A distributed,

searchable key-value store. In Proceedings of the ACM SIGCOMM 2012 Confer-

ence on Applications, Technologies, Architectures, and Protocols for Computer

Communication, SIGCOMM ’12, pages 25–36, New York, NY, USA, 2012. ACM.

BIBLIOGRAPHY 81

[24] Sérgio Esteves, Joao Silva, and Lúıs Veiga. Quality-of-service for consistency of

data geo-replication in cloud computing. In Euro-Par 2012 Parallel Processing,

pages 285–297. Springer, 2012.

[25] Bin Fan, Wittawat Tantisiriroj, Lin Xiao, and Garth Gibson. DiskReduce: Repli-

cation as a prelude to erasure coding in data-intensive scalable computing, 2011.

[26] Stephen E Fienberg, Burton Singer, and Judith M Tanur. Large-scale social

experimentation in the united states. In A Celebration of Statistics, pages 287–

326. Springer, 1985.

[27] R.A. Fisher. An examination of the different possible solutions of a problem in

incomplete blocks. Annals of Human Genetics, 10(1):52–75, 1940.

[28] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh

Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. Availability in globally

distributed storage systems. In Proceedings of the 9th USENIX Conference on

Operating Systems Design and Implementation, OSDI’10, pages 1–7, Berkeley,

CA, USA, 2010. USENIX Association.

[29] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file sys-

tem. In SOSP, pages 29–43, 2003.

[30] Garth A Gibson. Redundant disk arrays: Reliable, parallel secondary storage,

volume 368. MIT press Cambridge, MA, 1992.

[31] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding net-

work failures in data centers: measurement, analysis, and implications. In ACM

SIGCOMM Computer Communication Review, volume 41, pages 350–361. ACM,

2011.

[32] Jim Gray and Catharine Van Ingen. Empirical measurements of disk failure rates

and error rates. arXiv preprint cs/0701166, 2007.

82 BIBLIOGRAPHY

[33] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier: Highly durable,

decentralized storage despite massive correlated failures. In IN PROC. OF NSDI,

2005.

[34] Danny Harnik, Dalit Naor, and Itai Segall. Low power mode in cloud storage

systems.

[35] Mark Holland and Garth A Gibson. Parity declustering for continuous operation

in redundant disk arrays, volume 27. ACM, 1992.

[36] Robert Horst and Pankaj Mehra. Method and apparatus for cluster interconnec-

tion using multi-port nodes and multiple routing fabrics, 2002.

[37] SK Houghten, LH Thiel, J. Janssen, and CWH Lam. There is no (46, 6, 1) block

design*. Journal of Combinatorial Designs, 9(1):60–71, 2001.

[38] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit

Gopalan, Jin Li, and Sergey Yekhanin. Erasure coding in windows azure storage.

In Proceedings of the 2012 USENIX Conference on Annual Technical Conference,

USENIX ATC’12, pages 2–2, Berkeley, CA, USA, 2012. USENIX Association.

[39] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky. Are disks

the dominant contributor for storage failures?: A comprehensive study of storage

subsystem failure characteristics. Trans. Storage, 4(3):7:1–7:25, November 2008.

[40] M Kalyanakrishnam, Zbigniew Kalbarczyk, and Ravishanka Iyer. Failure data

analysis of a lan of windows nt based computers. In Reliable Distributed Systems,

1999. Proceedings of the 18th IEEE Symposium on, pages 178–187. IEEE, 1999.

[41] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,

and Daniel Lewin. Consistent hashing and random trees: Distributed caching

protocols for relieving hot spots on the world wide web. In Proceedings of the

twenty-ninth annual ACM symposium on Theory of computing, pages 654–663.

ACM, 1997.

BIBLIOGRAPHY 83

[42] P. Kaski and P.R.J. Österg̊ard. There exists no (15, 5, 4) RBIBD. Journal of

Combinatorial Designs, 9(3):227–232, 2001.

[43] J.C. Koo and JT Gill. Scalable constructions of fractional repetition codes in

distributed storage systems. In Communication, Control, and Computing (Aller-

ton), 2011 49th Annual Allerton Conference on, pages 1366–1373. IEEE, 2011.

[44] Ramakrishna Kotla, Lorenzo Alvisi, and Mike Dahlin. Safestore: a durable and

practical storage system. In USENIX Annual Technical Conference, pages 129–

142, 2007.

[45] Tim Kraska, Gene Pang, Michael J Franklin, Samuel Madden, and Alan Fekete.

Mdcc: Multi-data center consistency. In Proceedings of the 8th ACM European

Conference on Computer Systems, pages 113–126. ACM, 2013.

[46] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,

Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weatherspoon, West-

ley Weimer, et al. Oceanstore: An architecture for global-scale persistent storage.

ACM Sigplan Notices, 35(11):190–201, 2000.

[47] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured

storage system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[48] Jacob Leverich and Christos Kozyrakis. On the energy (in)efficiency of hadoop

clusters. SIGOPS Oper. Syst. Rev., 44(1):61–65, March 2010.

[49] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and

Rodrigo Rodrigues. Making geo-replicated systems fast as possible, consistent

when necessary. In Proceedings of the 10th USENIX Conference on Operating

Systems Design and Implementation, OSDI’12, pages 265–278, Berkeley, CA,

USA, 2012. USENIX Association.

[50] Runhui Li, Patrick PC Lee, and Yuchong Hu. Degraded-first scheduling for

mapreduce in erasure-coded storage clusters.

84 BIBLIOGRAPHY

[51] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen.

Don’t settle for eventual: scalable causal consistency for wide-area storage with

cops. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems

Principles, pages 401–416. ACM, 2011.

[52] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen.

Stronger semantics for low-latency geo-replicated storage. In Symposium on

Networked Systems Design and Implementation, 2013.

[53] John MacCormick, Nicholas Murphy, Venugopalan Ramasubramanian, Udi

Wieder, Junfeng Yang, and Lidong Zhou. Kinesis: A new approach to replica

placement in distributed storage systems. ACM Transactions On Storage (TOS),

4(4):11, 2009.

[54] Kannan Mathukkaruppan. Personal Communication, 2012.

[55] Pankaj Mehra. Network and method of configuring a network, 2003.

[56] Michael David Mitzenmacher. The power of two choices in randomized load

balancing. Technical report, IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, 1996.

[57] Richard R Muntz and John CS Lui. Performance analysis of disk arrays under

failure. Computer Science Department, University of California, 1990.

[58] Suman Nath, Haifeng Yu, Phillip B Gibbons, and Srinivasan Seshan. Subtleties

in tolerating correlated failures in wide-area storage systems. In NSDI, volume 6,

pages 225–238, 2006.

[59] Daniel Nurmi, John Brevik, and Rich Wolski. Modeling machine availability in

enterprise and wide-area distributed computing environments. In Euro-Par 2005

Parallel Processing, pages 432–441. Springer, 2005.

[60] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John K. Ousterhout, and

Mendel Rosenblum. Fast crash recovery in RAMCloud. In SOSP, pages 29–41,

2011.

BIBLIOGRAPHY 85

[61] David Oppenheimer, Archana Ganapathi, and David A Patterson. Why do

internet services fail, and what can be done about it? In USENIX Symposium

on Internet Technologies and Systems, volume 67. Seattle, WA, 2003.

[62] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz Andr Barroso. Failure trends

in a large disk drive population. In 5th USENIX Conference on File and Storage

Technologies (FAST 2007), pages 17–29, 2007.

[63] Sean Quinlan and Sean Dorward. Awarded best paper! - venti: A new ap-

proach to archival data storage. In Proceedings of the 1st USENIX Conference

on File and Storage Technologies, FAST ’02, Berkeley, CA, USA, 2002. USENIX

Association.

[64] KV Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and

Kannan Ramchandran. A solution to the network challenges of data recovery in

erasure-coded distributed storage systems: A study on the facebook warehouse

cluster. In Presented as part of the 5th USENIX Workshop on Hot Topics in

Storage and File Systems. USENIX, 2013.

[65] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker. A scalable content-addressable network, volume 31. ACM, 2001.

[66] Sean C Rhea, Patrick R Eaton, Dennis Geels, Hakim Weatherspoon, Ben Y Zhao,

and John Kubiatowicz. Pond: The oceanstore prototype. In FAST, volume 3,

pages 1–14, 2003.

[67] Antony Rowstron and Peter Druschel. Storage management and caching in past,

a large-scale, persistent peer-to-peer storage utility. In ACM SIGOPS Operating

Systems Review, volume 35, pages 188–201. ACM, 2001.

[68] Ramendra K Sahoo, Mark S Squillante, Anand Sivasubramaniam, and Yanyong

Zhang. Failure data analysis of a large-scale heterogeneous server environment.

In Dependable Systems and Networks, 2004 International Conference on, pages

772–781. IEEE, 2004.

86 BIBLIOGRAPHY

[69] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos,

Alexandros G. Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur.

Xoring elephants: novel erasure codes for big data. In Proceedings of the 39th

international conference on Very Large Data Bases, PVLDB’13, pages 325–336.

VLDB Endowment, 2013.

[70] Bianca Schroeder and Garth A. Gibson. Disk failures in the real world: What

does an mttf of 1,000,000 hours mean to you? In Proceedings of the 5th USENIX

Conference on File and Storage Technologies, FAST ’07, Berkeley, CA, USA,

2007. USENIX Association.

[71] Bianca Schroeder and Garth A Gibson. A large-scale study of failures in high-

performance computing systems. Dependable and Secure Computing, IEEE

Transactions on, 7(4):337–350, 2010.

[72] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber. Dram errors

in the wild: A large-scale field study. In Proceedings of the Eleventh Interna-

tional Joint Conference on Measurement and Modeling of Computer Systems,

SIGMETRICS ’09, pages 193–204, New York, NY, USA, 2009. ACM.

[73] Eric J Schwabe and Ian M Sutherland. Improved parity-declustered layouts for

disk arrays. In Proceedings of the sixth annual ACM symposium on Parallel

algorithms and architectures, pages 76–84. ACM, 1994.

[74] Thomas Schwarz, Mary Baker, Steven Bassi, Bruce Baumgart, Wayne Flagg,

Catherine van Ingen, Kobus Joste, Mark Manasse, and Mehul Shah. Disk failure

investigations at the internet archive. In Work-in-Progess session, NASA/IEEE

Conference on Mass Storage Systems and Technologies (MSST2006), 2006.

[75] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

hadoop distributed file system. Mass Storage Systems and Technologies, IEEE

/ NASA Goddard Conference on, 0:1–10, 2010.

BIBLIOGRAPHY 87

[76] Emil Sit, Andreas Haeberlen, Frank Dabek, Byung-Gon Chun, Hakim Weath-

erspoon, Robert Morris, M Frans Kaashoek, and John Kubiatowicz. Proactive

replication for data durability. In IPTPS, 2006.

[77] Yair Sovran, Russell Power, Marcos K Aguilera, and Jinyang Li. Transactional

storage for geo-replicated systems. In Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles, pages 385–400. ACM, 2011.

[78] D.R. Stinson. Combinatorial designs: construction and analysis. Springer, 2003.

[79] Ion Stoica, Robert Morris, David R. Karger, M. Frans Kaashoek, and Hari Bal-

akrishnan. Chord: A scalable peer-to-peer lookup service for internet applica-

tions. In SIGCOMM, pages 149–160, 2001.

[80] Nisha Talagala and David Patterson. An analysis of error behavior in a large

storage system. Technical Report UCB/CSD-99-1042, EECS Department, Uni-

versity of California, Berkeley, Feb 1999.

[81] Dong Tang, Ravishankar K Iyer, and Sujatha S Subramani. Failure analysis and

modeling of a vaxcluster system. In Fault-Tolerant Computing, 1990. FTCS-20.

Digest of Papers., 20th International Symposium, pages 244–251. IEEE, 1990.

[82] Jeff Terrace and Michael J Freedman. Object storage on craq: High-throughput

chain replication for read-mostly workloads. In Proc. USENIX Annual Technical

Conference, page 59, 2009.

[83] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: practical power-

proportionality for data center storage. Proceedings of Eurosys 11, pages 169–182,

2011.

[84] Robbert van Renesse and Fred B. Schneider. Chain replication for supporting

high throughput and availability. In Proceedings of the 6th Conference on Sym-

posium on Opearting Systems Design & Implementation - Volume 6, OSDI’04,

pages 7–7, Berkeley, CA, USA, 2004. USENIX Association.

88 BIBLIOGRAPHY

[85] Martin B Wilk and Oscar Kempthorne. Some aspects of the analysis of factorial

experiments in a completely randomized design. The Annals of Mathematical

Statistics, pages 950–985, 1956.

[86] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K Iyer. Networked windows nt

system field failure data analysis. In Dependable Computing, 1999. Proceedings.

1999 Pacific Rim International Symposium on, pages 178–185. IEEE, 1999.

[87] Praveen Yalagandula, Suman Nath, Haifeng Yu, Phillip B Gibbons, and Srini-

vasan Seshan. Beyond availability: Towards a deeper understanding of machine

failure characteristics in large distributed systems. In USENIX WORLDS, 2004.

[88] Jimmy Yang and Feng-Bin Sun. A comprehensive review of hard-disk drive relia-

bility. In Reliability and Maintainability Symposium, 1999. Proceedings. Annual,

pages 403–409. IEEE, 1999.

[89] F Yates and I Zacopanay. The estimation of the efficiency of sampling, with

special reference to sampling for yield in cereal experiments. The Journal of

Agricultural Science, 25(04):545–577, 1935.

[90] Haifeng Yu, Phillip B. Gibbons, and Suman Nath. Availability of multi-object

operations. In Proceedings of the 3rd conference on Networked Systems Design

& Implementation - Volume 3, NSDI’06, pages 16–16, Berkeley, CA, USA, 2006.

USENIX Association.

[91] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K Aguilera,

and Jinyang Li. Transaction chains: achieving serializability with low latency

in geo-distributed storage systems. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, pages 276–291. ACM, 2013.

[92] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck in the

data domain deduplication file system. In Proceedings of the 6th USENIX Con-

ference on File and Storage Technologies, FAST’08, pages 18:1–18:14, Berkeley,

CA, USA, 2008. USENIX Association.

