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ABSTRACT
Middleware simplifies application development by encapsu-
lating common low-level concerns in modular reusable com-
ponents. However, the traditional methods of software de-
composition fail to properly encapsulate so-called cross-cut-
ting concerns thus leading to scattered (and sometimes repet-
itive) code and difficult to maintain designs.

Aspect-Oriented Programming (AOP) aims to solve these
issues by encapsulating such code within reusable compo-
nents called aspects. However, current AOP implementa-
tions suffer from restrictive programming models leading to
limited aspect reusability.

In this paper we present a new Java framework for middle-
ware design and development based on Concurrent Event-
based AOP. We focus on simplicity, generality and reusabil-
ity. The programming model is based on Attribute-Oriented
Programming. Aspects are declared and used by writing
plain Java code and tagging it with plain Java annotations.
The framework is small and can be easily extended to build
more sophisticated frameworks targeting different kinds of
devices. We describe the implementation of an initial pro-
totype and evaluate its performance.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming, Parallel programming ; D.2.8
[Software Engineering]: Metrics—Performance measures;
D.2.11 [Software Engineering]: Software Architectures—
Patterns; D.3.3 [Programming Languages]: Language
Constructs and Features—Frameworks; D.3.4 [Programming
Languages]: Processors—Code generation

General Terms
Design, Performance, Measurement
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1. INTRODUCTION
As the users of modern mobile devices (such as smart-

phones and netbooks) demand for richer, more complex ap-
plications that enable them to work anywhere, any time, on
a daily basis, the limitations of such devices (e.g. variable
bandwidth, limited battery capacity, etc.) become an obsta-
cle that considerably restrains the kind of tasks these devices
can perform. Therefore, modern mobile applications must
rely on distribution (i.e. delegate data and tasks to other
network nodes) and adaptation (i.e. changing one’s own be-
haviour during runtime) in order to better achieve the user’s
current objectives and/or better manage resources available
locally and remotely.

However, providing support for these features is a daunt-
ing task, which requires the programmer to directly deal
with low-level issues such as data management, security,
awareness, among others. Several middleware solutions pro-
vide these features in a modular, reusable fashion, thereby
delivering considerable savings in development effort, time
and cost. However, integrating an application with the sup-
porting middleware constitutes by itself a considerable ef-
fort, which usually requires the programmer to adapt the
application to fit a particular programming model. In addi-
tion, some features may be employed in several business logic
modules thus becoming scattered throughout the source code,
leading to a complex design which is difficult to understand
and maintain.

In this paper we present a new framework for the Java lan-
guage which is based on the Concurrent Event-based Aspect-
Oriented Programming (CEAOP) paradigm [11, 10]. This
framework was designed as a support tool for middleware
design and development but its design is generic enough for
it to be of practical use in other areas as well.

The programming model of our framework is based on
the Attribute-Oriented Programming paradigm. Aspects, as
well as pointcuts, are expressed as plain old Java objects
(POJOs) which are then tagged with a set of predefined
Java annotations. To improve aspect reusability, we have
separated the declaration of a new aspect from the dec-
laration of its pointcuts. This way programmers can use
aspects written by others and aspects can be distributed
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even in binary form. Pointcuts can be modified in runtime
thus giving the programmer greater control over applica-
tion runtime behaviour. To keep our framework small, sim-
ple and general-purpose, we deliberately avoided addressing
such issues as aspect composition and coordination. Instead,
our framework provides extension mechanisms for creating
higher-level frameworks on top of it and delegate to these
such issues. Also, our programming model is simple and
generic enough to be implemented on different platforms in
a variety of ways, according to the capabilities or constraints
of the underlying running environment.

This paper is organized as follows. We compare our so-
lution with other related work in Section 2. Section 3 de-
scribes the architecture of our framework and its program-
ming model. We discuss the implementation of our proto-
type in Section 4. In Section 5 we give an evaluation of
our prototype and propose some optimizations. Finally, we
describe our plans for extending the framework and its use
in real-world applications and give some concluding remarks
on Section 6.

2. RELATED WORK
AspectJ [13] is one of the oldest and well-known aspect

languages and it helped to bring AOP to the mainstream.
AspectJ is an extension of the Java language which defines
a special syntax for declaring aspects. The first versions
of AspectJ featured compile-time source code weaving and
bytecode weaving. It later merged with AspectWerkz [1]
which brought load-time weaving as well as AspectWerkz’s
annotation style to the language. The support for load-time
bytecode weaving allows AspectJ to weave advice code into
classes available only in binary (.class) form.

Our work differs from AspectJ in some key points. First,
our focus is helping the programmer to write aspects that
can be reused even if available only in binary form (for in-
stance, middleware libraries) instead of applying aspects to
precompiled code. This means that pointcut declarations
must be separated from aspect declarations. We therefore
define two different roles: the role of the aspect program-
mer, i.e. the programmer who writes an aspect and defines
both the structural and behaviour changes it encapsulates
(introductions and advices), and the role of the application
programmer or client programmer, i.e. the programmer who
uses the aspect and specifies in which circumstances should
the aspect apply its advice (by defining pointcuts). Second,
AspectJ’s aspect model is a sequential model, i.e. aspect
advice is executed sequentially with regard to other aspects
and the target (advised) code. Our work is based on a model
of concurrent aspects and is inspired by previous work by
Douence et al. [11, 10].

Like AspectJ and other AO languages and frameworks [2,
6, 4], our programming model is based on Attribute-Oriented
Programming. However, these approaches still depend on
special syntaxes or complex models of composition or in-
heritance in one way or the other. For instance, although
AspectJ allows the programmer to write aspects using only
annotations (using the annotation style adopted from As-
pectWerkz), pointcut declarations still need to be expressed
as strings written in a special regular expression language.
On their turn, PostSharp [4] and JAC [17] both require the
programmer to inherit from a special base class. Such re-
strictions make it harder to reuse existing code and require
the programmer to restructure his application thus impos-

ing an additional burden. Our solution does not make any
such requirements. The programmer uses only plain Java
annotations to declare and use aspects in his code. When-
ever annotations are not expressive enough to specify certain
requirements (such as pointcuts), we allow the programmer
to express such requirements through predicates written as
plain Java methods which are tagged using plain Java an-
notations. Although this results in more verbose code, it
has the advantages of being more flexible and giving the
programmer greater control over application behaviour.

The term Dynamic AOP is employed to denote the run-
time weaving of advice code [1] or the runtime registering of
proxies or interceptors [2, 3]) for a particular kind of event.
Dynamic AOP is a powerful tool that allows the programmer
to write applications whose behaviour changes in runtime
and is supported by many AO tools including JAC [17] and
JAsCo [18]. Like JAC and JAsCo, our framework treats as-
pects as loosely-coupled components which can be inserted
or removed at runtime.

Dinkelaker et al. [8] proposed an aspect runtime with sup-
port for a meta-aspect protocol called POPART. POPART
allows programmers to extend and modify the semantics of
the aspect language at runtime without any changes to the
aspects themselves. Our solution also allows the specifica-
tion of meta-aspects but without requiring any special sup-
port from the framework as we show in the next sections.

3. ARCHITECTURE
The framework is built as a foundation for middleware

development, as shown in Fig. 1. At the middleware level,
each feature (a cross-cutting concern such as security or data
management) is encapsulated in a reusable component called
an aspect. Aspects can run concurrently with regard to the
base program (advised code) and to each other. Commu-
nication between aspects and the base program is based on
message passing (i.e. event-based). Aspect deployment, pro-
cess/thread management and event handling are the core
concerns of our framework, on top of which the middleware
sits.

Our framework runs on top of standard Java VM. In or-
der to keep the framework small, simple and generic, issues
such as concurrency control, aspect composition and oth-
ers are not addressed in its core. We consider these issues
to be cross-cutting concerns of aspects or meta-aspects [8]
(i.e. aspects of aspects) and we leave them to be addressed
by specialized, higher-level frameworks sitting between the
core framework and the middleware. At the top level we
have the user applications which make use of the middle-
ware libraries as well as of services provided by the levels
below. Our framework is designed to be generic enough to
support different implementations targeting different kinds
of devices.

3.1 Concurrent Event-Based AOP
Aspects are implemented as loosely-coupled, concurrent,

isolated entities that respond to events which are raised at
specific points of interest within the execution flow called
join points. The specific set of join points that a particular
aspect is interested in is specified by a query which is re-
ferred to as a pointcut. Aspects are executed concurrently
thus allowing applications to leverage, if available, the mul-
tiprocessing capabilities of the underlying platforms. Since
aspects are weakly coupled, they are easily replaced at run-
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Figure 1: Global system architecture

time which makes it easier and simpler to express changes in
application behaviour. Finally, since each aspect isolates a
specific concern from the rest of the application, applications
also benefit from improved robustness.

When a join point (e.g. a method call) is reached in the
execution flow of a program, events are raised right before
and just after join point execution. This allows listening as-
pects to execute advice code before, around (i.e. instead of)
and after the join point. Events are not delivered directly to
listening aspects by the advised program. Instead, they are
delivered to a dispatcher thread that is responsible for deliv-
ering the events to the appropriate aspects. When an aspect
is activated (i.e. instantiated) it registers itself with the dis-
patcher thread stating which kind of events it is listening
for. Decoupling event senders from event receivers allows
for multiple implementations of the framework based on dif-
ferent message-passing mechanisms. The base program, the
dispatcher and the listening aspects could be implemented
as different threads within the same process communicating
through shared objects or as different processes communicat-
ing through some inter-process communication mechanism.

Fig. 2 illustrates the sequence of actions which take place
for the particular case of execution of a method call. For
the sake of brevity the figure only shows the interactions
between one application object and one aspect instance.

When an event is raised, such as a method call, the fol-
lowing actions take place:

1. The current thread (in which the application object
is being executed) places a message in the message
queue of a dispatcher thread (that will deliver the mes-
sage) (step 1.1) and goes to sleep (step 1.2). In this
particular example the message being sent is the BE-

GIN_METHOD_INVOKE message which states that a method
is about to be called on the application object.

2. The dispatcher retrieves the message from its queue
and delivers it to its target aspects (step 2).

3. Each aspect executes its advice code (step 3).

4. Upon completion each aspect replies back by posting
a message to the dispatcher (step 4).

SomeObject Dispatcher SomeAspect

1.1. postMessage(BEGIN_METHOD_INVOKE)

1.2. sleep()

2. dispatch(BEGIN_METHOD_INVOKE)

3. executeAdvice()

4. postMessage(REPLY)

5.1. dispatch(REPLY)

5.2. wake()

5.3. if (REPLY == PROCEED) someMethod()

1.1. postMessage(END_METHOD_INVOKE)

1.2. sleep()

2. dispatch(END_METHOD_INVOKE)

3. executeAdvice()

4. postMessage(REPLY)

5.1. dispatch(REPLY)

5.2. wake()

Figure 2: Event raising at a method call and advice
execution

5. Upon receiving all replies the dispatcher sends back
reply to the first thread (step 5.1) that will then re-
sume execution (step 5.2). If the dispatcher replies
back with the message PROCEED then the method call
can take place as normally, otherwise the application
should go around it as the listening aspects have al-
ready performed alternative actions in its place (step
5.3).

6. The previous sequence of events is repeated after the
method call taking place (or being skipped) with the
exception of step 5.3 and the END_METHOD_INVOKE mes-
sage being dispatched instead.

The described sequence of steps ensures that aspects are
executed synchronously with regard to the base program.
However, an aspect can be executed asynchronously by run-
ning its advice code in a background thread and replying
back before advice execution finishes.

3.2 Attribute-Oriented Programming
Aspects are regular Java classes which are tagged with

pre-defined Java annotations. The following example shows
the declaration of an aspect for logging application events.
For the sake of brevity we do not show the full set of anno-
tations and their corresponding elements.

@Aspect(Name="Logged",

Elements={@Element(Name="LogFile",

Type=String.class)})

public class Logger {

...

@Member

private int eventCount = 0;

...

@Before(Actions={ActionType.METHOD_INVOKE},...)

public void log(...) {...eventCount++;...}

...

}

The Logger aspect class is declared by tagging it with the
@Aspect annotation. This annotation tells the framework’s
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build tool to extend the aspect class with the necessary boil-
erplate code at compile time. The build tool will also gen-
erate a new annotation type called @Logged which has an
annotation element called LogFile of type String. This an-
notation will then be used by programmers who wish to use
the Logger aspect class in their applications.

Introductions (i.e. inter-type declarations) and advices
are declared by tagging type members with the @Member and
@Before annotations respectively. In the above example the
Logger aspect class declares a private instance field called
eventCount that will be added at compile time to every type
which uses Logger. It also declares an advice method called
log that, among other things, keeps count of every method
call that occurs for each instance of the type being logged.

The following example shows how the aspect class de-
clared above can be used in an application.

@Logged(LogFile="log.txt")

public class SomeClass {

...

@Pointcut(Aspects={Logger.class})

public boolean predicate(AdviceType advice,

ActionType action, ...) {...}

...

}

In this example the class SomeClass is tagged with the
@Logged annotation which states that all method calls on
instances of SomeClass should be logged to file log.txt.

Unlike other approaches, our framework separates point-
cuts declarations from aspect declarations. This improves
reusability, allowing the application programmer to include
in his code aspects written by other programmers with-
out having to restructure the application to fit a particular
model. The aspect programmer therefore only specifies the
aspect’s join point model, i.e. the kinds of join points to
which it can apply its advice (such as method calls, field
accesses, etc.). By default an aspect will apply its advice to
all join points of the kinds that were specified by the aspect
programmer.

However, the application programmer may wish to restrict
advice execution to a small set of join points or even to a
small set of instances depending on the circumstances. He
can achieve this by declaring pointcuts that specify whether
a particular join point should trigger advice execution or not.
Pointcuts are regular Java methods which are tagged with
the @Pointcut annotation as shown in the above example.
The application programmer must specify the aspect classes
the pointcut applies to. A pointcut method defines a predi-
cate which returns true or false (whether the advice should
be executed or not) depending, among others, on the kind of
advice to be applied (before, around or after) and the kind
of join point (method call, field access, etc.). Since a point-
cut is a simple instance method, the programmer can easily
dynamically modify application behaviour simply by letting
the pointcut return a different value based on instance state
or by resorting to more elaborate means such as the Strategy
design pattern [12].

3.3 Extending the framework
Our extension model is based on the notion of meta-aspects

[8], i.e. aspects that encapsulate cross-cutting concerns of
other aspects. Meta-aspects intercept the advice execution
of other aspects. A meta-aspect can allow advice execution

to proceed as normal or delay it, override it or even prevent
it. After execution, it can also delay the delivery of the reply
message or modify it.

Because in our framework advice execution is performed
as a simple method call and aspects are ordinary classes, it
follows that meta-aspects are simply regular aspects listen-
ing to method calls of other classes who happen to be also
aspects.

The framework described in this paper is only a small part
of a greater whole and by itself does not satisfy all the needs
of real world applications. We now discuss how full-fledged
frameworks providing for those needs are built on top of
ours.

Stateful aspects. Stateful aspects [7, 9] are aspects that
trigger not on a single join point but instead on a sequence of
join points. The programmer can easily implement a stateful
aspect as a finite state machine (FSM) whose state transi-
tions are triggered by events raised at particular join points.
Different advice code could be executed according to the
FSM’s current state (another implementation of the Strat-
egy design pattern).

However, implementing a FSM is a tedious, error-prone,
repetitive task that places additional burden on the pro-
grammer. To facilitate the development of stateful aspects,
FSMs that capture complex sequences of events can be im-
plemented as meta-aspects which prevent the delivery of
events to stateful aspects until the goal state of the FSM
is achieved.

Aspect composition. Aspect composition [14, 9, 15] can be
implemented using meta-aspects which redirect intercepted
events and replies to other aspects for pre-processing and
post-processing respectively.

Concurrency control. A set of concurrently executing as-
pects can be coordinated by having a meta-aspect which
intercepts events and replies and then places some on hold
while others not according to some criteria.

Distributed aspects. A näıve approach for implementing
distributed aspects [17, 16, 15] would be to have a meta-
aspect that broadcasts intercepted events on the network
and which dispatches received broadcasts.

4. IMPLEMENTATION
Our current prototype is based on compile-time source-

weaving. We have implemented a build tool that parses pro-
gram source code at compile-time looking for code tagged
with our predefined annotations and generates the respective
boilerplate code. Code generation is a multi-pass process.
After each code expansion the code is parsed again in or-
der to identify new points of expansion. The process goes
on until no further expansion is possible. Our build tool
is based on the RECODER [5] framework for Java source
code metaprogramming. However, our programming model
also allows for different implementations based on load-time
bytecode-weaving.

The following example shows the program transformation
pattern for a method call join point.

boolean _goAround000001 =

beginMethodInvoke(HelloWorld.sayHello,
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myHelloWorld, {"<My name>"});

Object _returnValue000001;

if(!_goAround000001)

_returnValue000001 =

myHelloWorld.sayHello("<My name>");

endMethodInvoke(HelloWorld.sayHello,

myHelloWorld, {"<My name>"},

_returnValue000001);

In this example the method sayHello is being called on
an object called myHelloWorld which is an instance of class
HelloWorld. The method receives a single argument of
type String which in this particular case has the value
"<My name>". The build tool has injected two method calls
(beginMethodInvoke and endMethodInvoke) around the call
to method sayHello. These method calls are the ones that
will raise the events before and after the method call is ex-
ecuted by sending messages to the dispatcher thread.

Each of these methods receives as arguments the type of
the object and the method being called on it, a reference to
the object itself and an array containing the values of the
arguments passed to the method being called. In the case of
the endMethodInvoke method call, the return value of the
method that was just called is also passed along. In this
case, because the return value of sayHello was not being
stored, the build tool generated a new variable for holding
that value. These arguments will be sent to all listening
aspects as part of the message sent and will be available to
advice code.

The beginMethodInvoke method returns a boolean value
that states whether the program should go around (i.e. skip)
the method call. We simply assume that all aspects listening
for this particular event will agree on whether the program
should skip or not the method call. It is up to the pro-
grammer to ensure correct behaviour either manually or by
using a higher level framework which features mechanisms
for preventing and/or dealing with aspect interference.

Similar patterns are applied to other kinds of join points.
Because the build tool needs to insert code before and after
each join point, nested expressions in the source code will be
flattened and temporary variables for holding intermediate
values will be generated.

For the sake of brevity and also because the generated
code depends on each particular implementation of the frame-
work, we do not show the full program transformation pat-
terns for aspect classes and the implementation of the dis-
patcher. Suffices to say that our current prototype executes
the main program, the dispatcher and all aspects as differ-
ent threads running in the same process which communicate
through shared objects. The dispatcher thread runs with a
higher priority than the rest to ensure that all aspects are
notified in the least time possible.

5. EVALUATION
The time overhead introduced by the execution of our

framework is mainly related to process/thread creation and
management, event dispatching and execution of advice code.
The process/thread creation and management overhead should
be mitigated by the use of process/thread pools. Also pro-
cess/thread creation and termination (associated with dy-
namic activation and deactivation of aspects) should not be
a frequent operation in most cases.

We performed a synthetic micro-benchmark of our initial
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Figure 3: Time overhead for advice execution on a
join point

prototype. The purpose of the benchmark was to measure
how the event dispatching and advice execution overhead
scales when the number of concurrent aspects is increased
and to compare it with the advice execution overhead of
a sequential implementation. We focused solely on CPU-
bound operations as I/O-bound operations don’t scale well
and therefore in the benchmark each aspect executes a set of
floating-point operations which is the same for all aspects.
We simulated the sequential execution of all aspects by run-
ning the set of operations in a loop. The results, which were
obtained on a dual-core equipped computer, are shown in
Fig. 3.

The graphic shows the total time (in milliseconds) it takes
to execute advice code for all aspects interested in a joint
point when that join point is reached. As expected, the
time overhead scales linearly with the number of aspects,
doubling as the number of aspects doubles, for both imple-
mentations. The benefits of executing aspects concurrently
can be seen as the time overhead for our prototype is re-
duced almost by half in a dual-core machine. However, due
to the overhead of process/thread management and event
dispatching, the execution time is still well above 50% of
the time taken by the sequential implementation. The event
dispatch overhead is shown to scale linearly as well, but is
clearly dominated by the advice execution time as the num-
ber of concurrent aspects grow. Predictably, the average
time it takes for an aspect to execute its advice code (mea-
sured as the time elapsed between an event being received
and the completion of all operations performed in response
to it) also increases linearly with the total number of con-
current aspects, as each aspect has to wait for other aspects
scheduled to run first to finish executing (remember that in
our prototype the dispatcher thread runs with higher pri-
ority which means that all aspects are notified before any
begins executing). This is demonstrated by the maximum
time it takes an aspect to execute its advice code, since the
aspect which takes the longest time will be invariably the
last one to execute, thus its execution time will approach
the total execution time.

6. FUTURE WORK AND CONCLUSIONS
We have proposed a new framework for middleware de-

sign based on the Concurrent Event-based Aspect-Oriented
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paradigm. Compared to other AO languages and frame-
works, ours is focused on simplicity and ease of use. Aspects
are declared and integrated in applications using solely plain
Java annotations. Our framework can be extended by im-
plementing meta-aspects that modify the semantics of other
aspects.

The work presented is still at an initial stage and further
analysis is still required in order to assess the scenarios to
which our approach is best suited for. We intend to focus
on scalability issues such as the execution of I/O-bound op-
erations in advice code, the scalability of the event dispatch
mechanism and the overlapping of both advice execution
and event delivery for better performance (the latter would
be particularly useful in distributed environments).

We also plan to focus on the implementation of higher
level frameworks and address issues such as distributed as-
pects and concurrency control. These frameworks will then
be used to conduct research in the implementation of mid-
dleware solutions for adaptability and context-awareness in
distributed mobile applications and software development
for application servers in cluster / farm infrastructures.
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