Semantic-Chunks
A Middleware for Ubiquitous Cooperative Work

Luis Veiga and Paulo Ferreira

INESC-ID/IST, Distributed Systems Group, Rua

Alves Redol N. 9,1000-029 Lisboa, Portugal

{luis.veigal|paulo.ferreira} @inesc-id.pt

ABSTRACT

To be productive, cooperative work has to be supported efilyi
so that users do achieve their goals. This requires soltiagvell-
known fundamental problem of replicas consistency.

Update-basedsolutions are easy to use transparently with com-
mercial applications, but consider every modification iroaunent
as a new document update, thus fostering conflicts and hivtder
concurrency. Operational-basedsolutions promise increased con-
currency, by interleaving compatible modifications fronffedient
users. They require central reconciliation algorithmsl eannot be
applied to commercial applications without further instentation.

We propose the notion of a semantic chunk, i.e., a semalgtical
annotated document region with application relevance, ithpro-
moted to a full-right entity w.r.t. consistency informatiand en-
forcement. This unit, being smaller than a file and semalhtica
richer, allows greater concurrency and better update megrgith
less aborts than current solutions.

Categories and Subject Descriptors
C.2.4 Distributed Systemg: Distributed Applications
Keywords

Replication, mobility, file systems, office applicationsensistency

1. INTRODUCTION

Information sharing is a fundamental aspect to computegratipd
cooperative work (CSCW) [9], and has been one of the mainsgoal

of distributed systems research. This has become even ropre s

recently, in the related fields of mobile, pervasive and uibays

computing. More and more people perform work and exchangg,,

data using their laptops, PDAs or mobile phones, even witheu
ing connected to a central network (e.g., using Bluetooth)this
context, data-replication has been a prime technique usedth
formation sharing. It improves availability, performanead cost-
effectiveness.

Locally replicated data is always readily available to agtlons
(even when the network is down), with access times ordersagf-m
nitude lower than non-local data, and avoids frequent, asgdiply
lengthy and costly connections to the underlying netwope¢sally

so in the case mobile devices with GSM, CDMA or GPRS connec-

tivity).

Data replication has been comprehensively addressed imugar
projects and systems where applications are based eithBiesn
databases, objects, application components, and stedctwcu-
ments (refer to [8] for a detailed review).

Permission to make digital or hard copies of all or part o$ twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toycogherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

RM’'05, November 28-December 2, 20BEenoble, France

Copyright 2005 ACM 1-59593-270-4/05/11$5.00

Since several (or all) of the replicas may be independernly u
dated (accessed and modified), the issue of replica consystatu-
rally arises. Traditional pessimistic approaches aredeasdocking
resources. They are not suited for ubiquitous computingesap-
plications, possibly disconnected from the network, penfdong
duration data manipulations.

Optimistic approaches allow concurrent modifications dfedi
ent replicas, in the expectation that conflicts will neverseldom
occur. If there are any, the system will attempt at recomgithem
later. This advantage is even more relevant in pervasivaubitpli-
tous computing since applications are seldom connectet gaen
when they are, it may be impossible to access a specific machin
(e.g., a central server), like in the case of a spontanectmadet-
work.

Data consistency enforcement and update reconciliatahmiques
include: i) determining causality among updates performediif-
ferent replicas and epidemically propagated [21, 2] amaffigrent
peers; and ii) replaying of logged operations performedifigrent
client nodes [12, 19].

Leveraging knowledge from application, data and usage sema
tics is a useful technique to improve replication managenaead
consistency enforcement. It helps reducing the numberdast) of
update conflicts, and cuts down the amount of user’s workwbgn
reconciliation of conflicting updates is impossible.

Semantics, w.r.t consistency, has been previously adztidss i)
using type and application-specific reconciliation praged
(opaque, i.e., non-transparent to the middleware) invokbhdn a
conflict is detected, that process the conflicting updatesdecide
which update will prevail [21]; and ii) using applicationtaity (op-
erations, logged or inferred) and their semantic congsdaeclared
or inferred) to centrally re-order (re-schedule) them in aywhat
inimizes conflicts [12, 19].

1.1 Shortcomings of Current Solutions

The issue of supporting ubiquitous cooperative work, indbe-
text of collaborative document edition, involves roughiyee kinds
of problems: i) enforcing replica consistency in an envin@mt with
de-centralized replication, while favoring update comency and
successful update commits and merging; ii) allowing thersuse
use the same off-the-shelf office applications they alregywhile
guaranteeing flexible inter-operability between thesethadeplica-
tion and consistency systems; and iii) reduce wasted st@ad net-
work bandwidth. Although these sub-problems have beereaddd
(all or just one) in previous work, we propose a novel appindaat,
we argue, is better suited for abovementioned activities.

There are the two main families of approaches to consistancy
mobile and ubiquitous environments. The firgpdate-basedis
easy to integrate transparently wigverydaycommercial applica-
tions but considers every modification in a document, howswell,
as a new document update, thus fostering conflicts and hingder
concurrency. The seconaperational-basedpromises increased
concurrency by attempting to interleave compatible madliftns
from different users. However, it requires costly recaatibn algo-
rithms, and has issues w.r.t. integration and inter-oplsalkvith

everydaycommercial applications. Hence, it is difficult to apply
to them, without further instrumentation. Merge proceduran be

:) Office Applications e
used inupdate-baseystems to reduce conflicts but they are opaque A PP ; document

for purposes of operation logging, and designing mergegquioes.
In this work, we make use of the structural and usage sensaotic
documents and applications (i.e., the emphasis is on thetste of

to the rest of the middleware. They behave like black-bootifcult o
to port and reuse, and their code must be blindly trustedy Bhe © f)
inflexible, unadaptable w.r.t. having a clear interfacenwitiich the 033 v Application Enhancement Layer # D | M
middleware could parameterize the conciliation task wittional 5 o
information (e.g. gathered from context). i) . ARSSaa2aassasaaaaaas L S
We try to establish a middle-ground between these two "oppos= Application ; AppAdapter i o
ing” approaches, avoiding the problems of each one, whitémieg £ Adaptation hppanrannonnonononnedndz 2
p < c
the advantages of both. From tbperational-basedipproach, we S Modules g M O
take increased concurrency, but without the need to mogiffiea- < &
tions. From thaupdate-basedpproach, we take transparency w.r.tQ | VA Semantic-Chunk Manager - | >-’:E,
applications, but attempt at reducing update conflicts. O =
To improve efficiency of cooperative work, application setics = | \/ Chunk Database 4_}>§
must be considered w.r.t. data replication and consistebeyer- g O
aging application semantics has been previously considesnly g \L > J
" [T_Operating Systom / virwal Washine]

the data that applications manipulate, and user behaeigardless Figure 1: Semantic-Chunks System Architecture.

of the internal operations they perform). Therefore thened need

to log operations, just manage updates. cooperative document edition (or cooperative documerttoedin
Techniques to exploit content similarities among differéles, ubiquitous computing). In this model, users make use of aobi

and especially, among versions of the same file, in orderve sa devices (typically laptops and PDAS) to create, edit, arzharge

storage space and bandwidth, have been used prior in [14, 2]. documents, performing cooperative work based on office-tik-

: : plications. Users access and (possibly) modify locallyguhoents
1.2 Contribution and Paper Structure that may have been either created locally, or replicated fiaother

We propose a novel approach to system support for cooperativyser's device. Users may also (re-)replicate a locallyicafed doc-
work in ubiquitous environments, namely collaborative Wloent yment to another device.

edition. It is embodied in the notion OfasemantiC-ChunkT'(aBtiC- We do not assume the presence of a fixed network infrastruc-
regions in general, targeted to a chunk-based system [d@]),a ture (either wired or wireless-based). Users must thenaglyhe
semantically-annotated document region with applicatédevance, |imited wireless networking capabilities available onittaevices.
that is promoted toa fU”'nght ent|ty W.r.t. ConSiSteanl’mation These are Short_ranged’ low-bandwidth (e_g_’ B|uet0mrt}"]er ag_
and enforcement. gravated by the device’s reduced battery life-time. Thesysimust

It fulfils the requirements of reduced memory and networlgesa engage preferably in spontaneous and short-duration adéta/ork
It provides the same level of optimistic consistency offieby cur- communication, in a variety of situations.

rent solutions, but with greater concurrency and flexipitius, less User activities include not only collaborative text editigihat re-
prone to update conflicts. It especially suited for, andlgdsids ceijves the primary focus in the paper) but also other pomffare-
itself to document edition applications. Finally, we déserhow |ike applications like the edition of spreadsheets, welienmn slide-

an adaptive middleware based on semantic-chunks can lyedted phased presentations, etc. In the remainder of this papeniivese
with popular office applications, using their restrictefieetive ca- the termdocuments an abbreviation fatructured documenBoth
pabilities (namelyautomatior). the above mentioned types of documents may be encompassed by
The rest of the paper is organized as follows. In the next Secthis notion, with the necessary and relevant adaptations.
tion, we present thoroughly the architecture of Semantior®s
W.r.t., successively: i) system overview, ii) storage anchmuni- 2.1 Overview of a Semantic-Chunks System
cation, iii) application data §tructure, iv) middleware &pplica}tion The system architecture of Semantic-Chunks is depictedgn F
enhancement, and v) consistency enforcement. SectioncBltes 1o 1 |t is is not bound to a specific platform or set of applica
the main aspects regarding the proposed implementatidowid tjons since we intend it to be applicable generically. Nbatss,
by Section 4, where we introduce some related work and @jec e present a typical implementation in Section 3. Usersaipess-
Section 5 wraps the paper up by offering some discussiominga sentially unmodified office applications, extended by anpsatze

conclusions and uncovering possible lines of future work. middleware layer that makes use of applications’ refleatiygabili-
ties, namelyautomation
2. ARCHITECTURE Semantic-Chunks middleware mediates the applicationsttand

We now briefly introduce some basic notions that are usedigfiro operating system or virtual machine environment they runfite
out the rest of the paper, and will be explained more thoruigh System Extension provides a (virtual) file system abswacfor
the next sub-sections. Chunks (or data-chunks) are perabfiles users to create, copy, delete files on (virtual) folders madaby
that have content-derived (instead of offset-derived)nidauies, as ~ Semantic-Chunks in their device, or on nearing deviceseisbled
introduced in LBFS [14]. A semantic-chunk manages a serahti ~ with Semantic-Chunks. The Chunk Database stores churks, i.
relevant document region. The content of a semantic-craiak ar- variable-sized fragments of document data. The SemarticiC
ray of data-chunk IDs, thus referencing the data-chunksaittaally Manager aggregates one or more chunks of data (as needed) tha
hold the content of the document region. comprise logical units of documents, according to applbcase-

The operating environment and usage model addressed imBema mantics (e.g., sentences, paragraphs, sections, speeadstu slide
Chunks is one of ubiquitous CSCW, namely, ad-hoc netwodetta regions, etc.). Semantic-chunks, themselves, are alsegagd in

| Semantic-Chunk Manager | |

Semantic-Chunk Database | |

Chunk Database |

——®»|s4 -s8 - si1 s1 182 mam 4 pumsm

[S s1 . . _
| s1 1s2 > s5 s7 nun T—>1h2-h7 - h9:h6 e 7

|

s4

s11
h5 : hg —>h3 ‘h10}—>+=+ e e

s16 . [] s14
——>[s12 513 " 515 :s14 > " “—wh1:
] s20]
BN T2 B g WO [[vy wry -

s99

> 1s25 540 |

hash table of arrays

5 s40 . . .
| oTsaiszs = sas saa]wewe | || +—>_h2 i h7 hgihiil—>rrr

hash table of arrays

hash table

a) b)

Figure 2: Logical Architecture of Storage in a Semantic-Chunks System.

higher-level semantic-chunks. A top-level semantic-&suis the
entry-level of a structured document. A large-sized doatngen-
tent can be incrementally fetched, and incrementally resdjeas
users need it, or as updates arrive.

Whenever the office applications need to retrieve data from (

write to) the file system, those calls are intercepted by fleSys-
tem Extension and it instructs the Application Enhancerhayer to
interface with the office application (via its reflective ahjities) in
order to fetch from (or inject in) it content (according tedeor write
operations). This content is, conversely, structuraljgdted back
(or fetched from) to the Semantic-Chunks Manager (and hence
the Chunks Database). THmop-backapproach is key to maintain
application transparency. To address the specifics of eaglica-
tion, basic mediation is extended by specific Applicatiorapihtion
Modules.

Communication with other mobile devices (in order to reguiéc
files, propagate updates, etc.) is performed through a Véebices
based Communication Services bridge. Interaction witterotte-
vices can be performed at a variety of levels, as portraydeign
ure 1. These interactions may be exchanging (for eitherggafion
or update purposes) of basic data-chunks, incrementalbnegruct-
ing semantic-chunks, downloading Application Adaptets, e

2.2 Basic Storage and Communication

PDAs are devices with several resource constrains. Stdoage-
width, processing power and battery life, are of premiumamp
tance. In the context of this work, we address solely stoeagk
bandwidth limitations.

This way, they are mostly invulnerable to insertions, detet, or
other modifications, occurring in other regions of the fileg(ein
the beginning of the file). Only the neighboring chunks might
affected.

Chunk boundaries are determined resorting to Rabin fingpsft6].
Conceptually, file contents are scanned with an overlappingow
(48 bytesin length), and this determines a binary polynomial rep-
resentation of the data modulo another pre-determinechpotial
(one that is irreducible). This operation is performed effidy with
a sliding-window. The space of fingerprint values for regi@an
be segmented in two (not necessarily contiguous) subsetthas
certain values trigger the creation of a chunk boundary.

Chunks are identified by a hash value of their contents, using
SHA-1 [22] algorithm. Only the first 64its of the SHA-1 hash
value are taken as a chunk hashing key. Thus, every chunk has a
(just) 8 bytesized identification key, while its size may range hun-
dreds of bytes. This is instrumental in reducing storageipation
and bandwidth usage, as we explain next.

Whenever two neighboring devices need to exchange document
contents (previously divided in chunks), e.g., while regling a
document, they exchange first the chunk keys they hold (déugr
that file) and transmit only the contents of the chunks theyalo
hold already, hence saving bandwidth.

Whenever a user copies a file, creates a new version of a file,
or receives an update from another user, it is expectabtentbat
of the file contents remain relatively similar (i.e., apd thanges
performed). Similarity among files residing in local stagdg thus
leveraged because when the new version or file is saved, mitst o

PDAs have no real (hard-)disks. Thus, there is no mass-nyemorcontents are already in the Chunk Database. Thereforeaithsif

support, since they are usually equipped with memory tHahited
in size (normally, 32 or 64 MB). Therefore, file system is atiu
simulated in the PDA's memory. Although, there are Flashmoey
cards (CompactFlash, SecureDigital, etc.) extensiorgimgrio and
over 1 GB. However, these capacities are not common in moasPD
To address storage limitations, information redundancgtrbe
exploited without incurring in high performance penal{igmst could
overload the processor and drain battery faster, as we#lja Dom-

copying the whole file contents, most of time, it just creaddi-
tional references to existing chunks, hence saving storage

2.3 Application Data Structure

Naturally, applications are unaware of chunks. This is rded
since normally, they just see flat files (regardless of thaernal
format specific to the application). Although using chunkatdes
the reduction of storage and bandwidth usage, it does raw a&ik-

pressionper se besides performance demands, is not incrementatracting and leveraging any kind of semantic informatioonf the

i.e., even small changes in the beginning, middle, or enddda
ument affect the whole of the compressed version (since filstm
be compressed again). Thus, data similarities among eliffarer-

applications or documents.
To address this, each document is decomposed in semantaall
evant regions i.e., document regions that are significatit¢aloc-

sions of the same document, and even among different do¢gemen ument structure, to application semantics, and to typisage be-

are leveraged without compression.

The basic storage substrate is therefore provided by a Chunk
Database, as presented in [14]. An example is presentedumeF2-
c. Itis structured as a hash-table of chunks. Chunks aréperof
files that have content-derived (instead of offset-dedibedindaries.

havior. These semantic-regions are called semantic-chbe&ause
of the underlying Chunk Database. They are defined hierzatthi
and are application-semantics dependent, following adyufrom
the hierarchical structure of office-like documents.
Application-based semantic-chunk borders may be definedas

tions, paragraphs, sentences in text documents, cell erspsead-
sheets, objects and geometry in CAD tools, functions anthoec
tion zones, in programming source code editing, etc. Thisage-
ment is easy for applications because they know best theaddtas
structure.

Figure 2-b depicts a Semantic-Chunk Database. It is a fedb-t
of Level-1semantic-chunks (with data-chunks being-avel 9. At

Level 1 semantic-chunks are arrays of chunk-ID, referencingehos

chunks that actually hold the contents of the semanticichufy
chunk can be shared by multiple semantic-chunks, belortgiagy

number of files. A semantic-chunk may also be shared by nheiltip

versions of the same file.

Figure 2-a depicts the Semantic-Chunk Manager, where highe

are divided in fewer levels than documents larger sizedgéradoc-

uments can accommodate more semantic-chunks and more- hiera

chical levels, without significant penalties, compardsiven terms
of storage.
To allow incremental content replication, in order to saweage,

the system must be able to replicate semantic-chunks asatleey

needed by the application, requested by the user, and acodaten

them as they arrive. The application enhancement layerdeange
of inserting stub content (possibly with scripting to trggglownload

content) to replace, w.r.t. rendering, document regioasahe miss-

ing, while the comprised semantic-chunks and data-chuaokdiry
their content are still not available.

level semantic-chunks are stored. The content of a highwat-semantic-export of document content (extraction) to correspondergantic-
chunks and, for each semantic-chunk render its contenesS&mantic-

chunk is an array comprised of IDs of other semantic-chufiikss
structure allows an hierarchy with arbitrary number of Isvé file,
besides other information regarding file system attribugesimply
regarded as a top-level semantic-chunk. Semantic-Chuekisien-

tified by a GUID based on document name and device of creation.

Conceptually, to search for a specific semantic-chunk, émegBitic-
Chunk Manager must be queried first, to check if it is a higlelle
semantic-chunk. If not found, then the Semantic-Chunk Baga
must be queried. In practice, all semantic-chunks are éet¢rom
the Semantic-Chunks Manager, and whether it belongevel Oor
is a higher-level semantic-chunk, a pointer to the appabprarray
is returned, along with level info.

Semantic-chunks are transmitted either i) as a sequendrinks
(much as files in LBFS, or ii) as a sequence of other (lowes)ev
semantic-chunks. The hierarchy of semantic-chunks in each
ument is XML-described, whenever it is transmitted, as para
web-service invocation. Each semantic-chunk has assadoveith it
meta-data, namely regarding consistency.

Thus, in Semantic-Chunks (analogously to LBFS chunks),nwhe

two neighboring devices need to exchange document contaets
first exchange semantic-chunks, and then, if the receives dot
have them, they exchange the comprising lower-level sémahtinks.
This may trigger exchange of more semantic-chunks (new anés
others that may have been updated). Ultimately, exchangéavg
content may also cause transmission of data-chunks.

Itis very frequent in collaborative edition of long-sizegbdiments
(i.e., several chapters or sections, regardless of actealifie) that
some users only deal with a subset of fractions of the file ¢ties
they are collaborating in). Still, with current systemsemyvsingle
one of them is compelled to store a copy of the complete file.
Semantic-Chunks, a document may be rendered without reeadin
of its lower-level semantic-chunks (and corresponding-ainks)
because, while the content is unknown, the document steidsu
already known, and the middleware can adapt accordingly.

2.4 Middleware and Application Enhancement

Chunk Manager will then store it, possibly updating othenaetic-
chunks, and associate it with consistency information. Avecse

The application enhancement layer is in charge of medidting

procedure is performed to mediate the import of documentern

(injection) from semantic-chunks to be rendered in screen.
This layer is also responsible for importing and exportiogut
ments from/to directories that are not managed by Semattigiks.

It handles the specifics of converting documents to and fioair t

native format. These tasks can also be performed resodiag-t
tomation

The adaptability of the middleware stems from the fact that i

can be automatically adapted to other applications andfibranats.
This is performed resorting to Communication Services doaah
ing new plug-able application adaptation modules, eitt@mnffixed

network or from another device. This may be performed upfron

or triggered when a folder managed by Semantic-Chunksvesei
file of a format yet unknown. Type identification is still penfned
solely based on file name extension (.doc, .xls, etc.).

ferent semantic-chunks representations, so the basersysteept
unchanged as new types of document formats are introduciedip
to the application extensions, in a well defined cooperatiith the
storage and propagation system, to ultimately decide thiabcon-
tent organization that will be presented to users. In thig tha sys-
tem is open and extensible, driven by an adaptive middleleger
and leveraging application reflective capabilities (evelinited).
By exploiting this semantic knowledge about data structune typ-
ical usage, in a transparent way w.r.t to the underlying sg¢imand
data-chunk propagation system, favoring system modularit

In The usage of application automation API can be regarded
form of reflective capabilities (even if limited). The code/dking
this API gains, through them, access to the very structuteantent
(that may be changed) of the documents, and functionatifiése
application itself. This portrays aspects of introspecaad modifi-
cation that comprise reflective capabilities.

The main goal of the application enhancement layer is to en42-5 Data ConSiStenCy

hance application functionality without changing apgiica code
(neither extending nor instrumenting it explicitly). THeyer of
the middleware has a number of responsibilities, broadlljmanage
document structure, ii) manage document content withingBeict
Chunks managed folders, and iii) manage exporting/impgrtioc-
uments to/from non-managed folders.

W.r.t. managing document structure, it is the respongjbof
the application enhancement layer, through an adequatieam
adaptation module, to detect the basic structure of a docuoree
itis inserted in a folder managed by Semantic-Chunks.

Semantic-chunk division must be performed with criteriaoin
der to minimize overhead due to increased number of highest|
semantic-chunks. Thus, documents with reduced contensiaed

Chunks, while allowing savings in storage and bandwidthnaio

provide, by themselves, support for document consistentyree-
ment. This problem has been specifically addressed in thextoof
another work [2], where a chunk-based system is extendéudoait-
sistency enforcement applied at file level. On the other hasso-
ciating consistency information with all chunks in the gystwould
be very inefficient, and with other problems, since chunkteon
may be shared among several files.

Replication and consistency sub-systems are unaware dfithe

as a

In Semantic-Chunks, consistency is enforced at the secalntink

level, instead of at file level. Thus, consistency enforoanieper-

formed by the Semantic-Chunk Manager. Semantic-chunks nat

rally suit themselves to the typical editing operationsqaned by
users, i.e., centered in a fraction of the document sectambinside

them, inserting, removing or editing some paragraphs,Tétis way,
update and consistency information is kept on a semantiolcran-
ularity. This is a ideal subdivision to provide increasedaarency
in document edition, withstanding more updates and modiifica
while reducing update conflicts. This is achieved by avajdior at
least, reducing false-sharing conflicts existing in othgpraaches
(in systems where updates are regarded as a whole) ariging fr
concurrent, yet unrelated, updates performed on documents

Consistency meta-data, associated with semantic-chinks-i
coded in an open, XML-based, flexible manner. In additionge u
causality information, it can accommodate user voting s&® au-
thoritative updates, user leases, and custom hint messagemntic-
chunks inherit, by default, and without overhead, consisteneta-
data of their parent semantic-chunks.

Causality information annotating semantic-chunks is base
version-vectors (that may be compressed and subject to oftie
mizations [17, 21, 10]). Version vectors are applied hignerally
to semantic-chunks. Semantic-chunks are updated whearitsrt
data-chunks are modified (if it belongsltevel-J), or when there are
insertions or deletions in its array of lower-level semadatiunks.
When the structure of a higher-level semantic-chunk remaim
changed, even in the presence of changes to lower-levekstoom-
tent, there is no need to transmit the higher-level semahtimk
again, just the lower-level ones that were modified. Thivemes
having to transmit all the semantic-chunks in a documentyevme
is subject to localized modifications.

3. IMPLEMENTATION ISSUES

The development of a preliminary Semantic-Chunks promigp
currently underway. It targets laptop machines, whilerigkporta-
bility to PDAs into account. It makes use of Bluetooth cortivy,
.Net Framework and .Net Compact Framework (.Net CF), and Of-
fice applications. In this section we present its main deagpects,
explain the issues involved, the limitations found, anddbeisions
taken.

Communication Servicesare developed in C#, and use native
.Net (and .Net CF) support for web-service invocation. Fstg
received from other peers are answered by .Net Active S&ages
coded in C#, running on IIS or on a Mobile Web Server [15].

File System Extensioris deployed as an IFS (Installable File Sys-
tem), coded in C++, to manage folder initialization, dicegtmain-
tenance, navigation through subfolders, and file operatitbem-
selves. To leverage the use of managed code (usable bottein .N
and .Net CF), most of the file system extension code is cod&€din
and is invoked from the core C++ code via a documeritgerop
hook [5, 20].

The main code o€hunk-DatabaseandSemantic-Chunk Man-
ageris developed in C#. This eases development w.r.t. C++, mainl
because it is straightforward to integrate it with the Comiua-
tion Services (that make use of the native support, in .Nét.Ret
CF, for web-service invocations). Semantic informationatating
semantic-chunks, regarding consistency, is XML-codediaradso
parsed and processed by C# code.

Semantic-chunks mat be subject to user voting schemes. When There is a reference count field associated with each datakch

users are confronted with (divergent) update conflictssakimfor-
mation cannot help. To solve this, users can insert, anéevetr
semantic annotations to the semantic-chunk stating thégr(possi-
bly with associated weight) for a particular update caniddsers
vote based on the content they read and their opinion onis UEer-
provided semantic information advises other users of whjnitate
to use and, if the number of replicas is immutable, may evienval
automatic decision by the middleware. We stress that thisgads
not based on an algorithm as in other epidemic propagatizenses,
but on semantic information annotated by users.

Files and semantic-chunks may be subject to authoritatage!
This allows a specific user (owner or creator), or set of ugails
mins), to arbitrarily force their updates through otherraseith less
privileges.

Semantic-chunks may be appended with semantic-data regard
lease of preference. Itis a period of time indicated by an aksging
which, he/she expects to produce another update to the seman
chunk. This way, other users are advised that, if completigairw
time, this next update will have precedence to others wartflicts.

and each semantic-chunk. It is incremented/decrementedevier
a semantic-chunk creates/drops a reference to a lowdrsiewantic-
chunk or to a data-chunk. When it reaches zero, the semeimtick
or data-chunk can be garbage collected by the middlewaree i
is no longer part of any of the documents stored. This is peréol
lazily (i.e., when free memory reaches a low threshold).

Binary data, like data-chunks content, is sent over webicesv
which imposes some penalties, and it is still an open isspeAl3
ternatives could be: i) using a lower-level communicatiootgcol
exclusively to send binary content, and use web-servicekifier
level communication, or ii) refine Semantic-Chunks Mandgeen-
erate (longer) XML-only descriptions of data-chunks cohte

The Application Enhancement Layer is mainly coded in C#. It
has some parts in VB.Net for clearer interaction with VB/Aséd Of-
fice automation, in order to extract and inject content, staind se-
mantic hints w.r.t. consistency. Document files and seroafitunks
are exchanged as XML representations of comprising semant
data-chunks, much as a stripped-down version of OpenOffite [
format. Except for the Pocket Outlook Managed API, Pocket Of

Users can also annotate semantic-chunks with custom hisit me fice still lacks substantial automation support. This isatee long

sages that will pop-up in the corresponding document retgian-
form other users. Several semantic annotations, possfldyffer-
ent types, may be combined for any semantic-chunk. The eddl
ware can adapt consistency granularity to suit file ownefepeaces,
overriding default behavior.

An update is comprised of a set of semantic-chunks that hese b
modified. Updates are propagated in two ways, either i) icitpj
epidemically whenever two peers meet with neighboring asyior
ii) explicitly, whenever two or more peers meet and the filmew
broadcasts a new update to explicitly overwrite all otheticas.

The ability to enforce consistency on a granularity larhantlog-
ging every singular operation performed, and smaller thior-
notingcomplete file updates, while also exploiting additional aam
tic information defined by users, is key to provide high canency,
low number of update conflicts, avoid centralized recoatidn, and
ensure transparency w.raverydayoffice applications.

awaited due to the large number of applications and docisribat
use it. Nonetheless, convergence with the desktop verbimmbeen
moving forward (e.g., use of native Office file formats).

Finally, while data-chunk contents follow the documenttwaon-
tent and formatting, these are coded in an way independéhé @ic-
tual Office file format that is proprietary, binary and ratbgaque.
Thus, when possible, it is easier to use automation to extoatent
than parsing/generating files. The latter is inadequata 8¥mantic-
Chunk system because the Office format has some idiosyeeraci
(e.g., saving a figure in a file, far from the position whereites the
text that surrounds it). To address this format incomplitibivhen
a file is copied to a folder that is not managed by Semanticr&u
it must be rendered by Office and saved with the regular aqipdic
format. This may also be performed resorting to automation.

4. RELATED WORK

Semantic-Chunks is related to number of other projectsdagz
replication and consistency. Due to lack of space, we ontiress
some. For a comprehensive survey, we refer to [18].

libraries as Application Adaptation Modules (e.g., pafsgter for
Rich Text File, a format understood by Pocket Word).
We also intend to investigate the application of the Semanti

Bayou [21] is based on mobile-aware databases. Consistency Chunks approach to another CSCW applications for contedt an

enforced by performing update operations in the same, defihed
order at all servers. This achieves eventual consistenopgservers.
Application-specific conflict resolution is performed byaojpie de-
pendency checks and merge procedures.

LBFS [14] was the first system to exploit file content simifies
in order to save storage and bandwidth. It did not considasise
tency, that was addressed in Haddock-FS [2], with file graityl

Operations performed by applications are logged by IceQlbe
19], in different clients, and later sent to a generical @necon-
ciliation server. It heuristically performs sound re-sdhiéng of op-
erations in order to minimize conflicts, based on constriinsach
pair of operations.

The work presented in [7] aims to achieve substantial réclust
in update transmission latencies, allowing sending updatth in-
creasing level of fidelity, by leveraging information abodacument
structure and content adaptation.

Replication of XML documents, in mobile environments, hast
addressed in the context of Xmiddle [13].

With respect to other reflective middleware, sematic infation
regarding QoS non-functional aspects is extracted andetkfieclar-
atively by contracts in [4]. Compatible contracts can be loiored
straightforwardly. Conflicts among requirements frometint con-
tracts are solved based on priority. An hierarchical apghaa also
used in [6], in this case, to define channels in a publishtsites
messaging model. Using semantic information in the conoéxt
transactions (another way of enforcing consistency), e tad-
dressed in [11], to meet varying transactional requiresénm ap-
plications.

5. CONCLUSION

In this paper we presented a novel approach to replicatiam, ¢
currency, and consistency enforcement, with a proposeteimgn-
tation. Semantic-chunks are a novel approach to cooperdbe-
ument edition in ubiquitous environments. sekmantic-chunks a
document region with relevance to applications and usershdr
annotated with semantic consistency information, in pesviped
by users. Since it is smaller than a file and semanticallyerich
it allows greater concurrency and better update merging iess
aborts than current solutions. While providing more flexibbn-
sistency enforcement, Semantic-Chunks imposes a frastiaddi-
tional storage overhead w.r.t. LBFS (that does not enfooresis-
tency) and HaddockFS.

Semantic-chunks do not impose modifications to applicatinar
specific merge procedures, nor centralized conflict resoluiThey
are both intuitive and flexible w.r.t. users, and transpdyenanage-
able by the middleware.

We establish a middle-ground between two widely adopted fam

ilies of approachesjpdate-basedndoperational-basedThus, the
problems of each one are avoided, while retaining the adgast

document edition (e.g., an ad-hoc, ubiquitous Wiki syst@menOf-
fice applications with OOBasic enhancement layer).

We also wish to further develop Semantic-Chunks w.r.t. ns
tency guarantees, different consistency enforcemenbaphes, and
providing update hints for conflict resolution.

We want to test the system with a typical set of users, once a
complete user-friendly prototype is finished. Finally, vatend to
measure improvements in concurrency and successful coeamit
updates w.r.t. previous approaches.

QI] UslﬁgEopenoR:e org's me ata format. http://booke-it.info/book.php,
OReilly & Associates, Inc., jul 2004.

[2] J.Barreto and P. Ferreira. A highly available replickfiée system for
resource-constrained windows ce .net device8rdhinternational Conference
on .NET Technologie®005.

[3] A.Bosworth, D. Box, M. Gudgin, M. Nottingham, D. Orchamhd J. Schlimmer.
Xml, soap and binary data.
http://www.xml.com/pub/a/2003/02/26/binaryxml.htrfep 2003.

[4] R. Cerqueira, S. Ansaloni, O. Loques, and A. SztajnbBeploying
non-functional aspects by contract.The 2nd Int'l Workshop on Reflective and
Adaptive Middleware, Middleware 200Rio de Janeiro, Brazil, june 2003.

M. Combs. Unmanaged to managed calls - call managed codedfnmanaged

code. http://www.codeproject.com/dotnet/bridge.asme Tode Project, 2003.

E. Curry, D. Chambers, and G. Lyons. Introducing reflectechniques to

message hierarchies. Tie 2nd International Workshop on Reflective and

Adaptive Middleware, Middleware 200Rio de Janeiro, Brazil, june 2003.

[7] E.de Lara, R. Kumar, D. S. Wallach, and W. Zwaenepoellabolration and

multimedia authoring on mobile devices.It'| Conference on Mobile Systems,

Applications, and Services (MobiSySan Franciso (CA), USA, May 2003.

P. Ferreira and L. Veiga. Mobile middleware: Seamlessise access via

resource replication. Technical report rt/08/2005 (egtezhversion of the chapter

included in Mobile Middleware, A. Corradi and P. Bellavigds., CRC Press,

2005), INESC-ID Lisboa, april 2005.

1. Greif, editor. Computer-Supported Cooperative Work: A Book of Readings

MORGAN KAUFFMAN, 1988.

[10] Y.-W. Huang and P. S. Yu. Lightweight version vectors ffervasive computing
devices. Innternational Conference on Parallel Processing Workshop
(ICPPW’00) 2000.

[11] R. Karlsen and A.-B. Jakobsen. Transaction serviceagament: An approach
towards a reflective transaction serviceThe 2nd Int'l Workshop on Reflective
and Adaptive Middleware, Middleware 20@io de Janeiro, Brazil, 2003.

[12] A. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschéle icecube approach
to the reconciliation of divergent replicas. 20th ACM Symposium on Principles
of Distributed Computing (PODC’'01Newport, RI, USA, August 2001.

[13] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmeriahidtle: A
data-sharing middleware for mobile computiigirel. Pers. Commun.
21(1):77-103, 2002.

[14] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-tardth network file
system. InProceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP '01)pages 174-187, October 2001.

[15] N. Nicoloudis and D. Pratistha. .net compact framewoidbile web server
architecture. http://msdn.microsoft.com/library/défasp?url=/library/en-
us/dnnetcomp/html/NETCFMA.asp, Monash University, @ald, Australia &
MSDN, Microsoft, jul 2003.

[16] M. O. Rabin. Fingerprinting by random polynomial fuieets. Report tr-15-81,
Center for Research in Computing Technology, Harvard Usitse Cambridge,
MA, USA, june 1981.

[17] D. Ratner, P. Reiher, and G. Popek. Dynamic versionorengintenance. UCLA
Technical Report CSD-970022, june 1997.

Y. Saito and M. Shapiro. Optimistic replicatioACM Comput. Sury37(1), 2005.

[5

6

8

[9

- . 8]
of both. From theoperational-basedipproach, we take increased [19] m. Shapiro, N. Preguica, and J. O'Brien. Rufis: mobiktaisharing using a

concurrency, but without the need to modify applicationsnfthe

generic constraint-oriented reconcilerlEEE International Conference on

update-basedpproach, we take transparency w.r.t applications, but[2 Mobile Data Management (MDM 20043n 2004.

attempt at reducing update conflicts.

Being designed as a middleware layer, between the opesitsig
tem and the applications, Semantic-Chunks architectuleraple-
mentation are developed following adaptive and reflectivedie-
ware techniques.

] M. Struys. Asynchronous callbacks from native win32leo
http://msdn.microsoft.com/library/default.asp?uibrary/en-us
/dnnetcomp/html/AsynchCallbacks.asp, PTS Software/MSDec 2003.

[21] D.B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, MSjreitzer, and C. H.
Hauser. Managing update conflicts in bayou, a weakly coedeeiplicated
storage system. IRroceedings of the fifteenth ACM symposium on Operating
systems principlepages 172-182. ACM Press, 1995.

As future work, we intend to circumvent present Pocket Office [22] N.T.1. s. U.S. Department of Commerce/N.1.S.T. Fip§48 secure hash

lack for automation support, by using content extractigagtion

standard. Springfiled, VA, april 1995.

