
Semantic-Chunks
A Middleware for Ubiquitous Cooperative Work

Luı́s Veiga and Paulo Ferreira
INESC-ID/IST, Distributed Systems Group, Rua Alves Redol N. 9,1000-029 Lisboa, Portugal

{luis.veiga||paulo.ferreira}@inesc-id.pt

ABSTRACT
To be productive, cooperative work has to be supported efficiently
so that users do achieve their goals. This requires solving the well-
known fundamental problem of replicas consistency.

Update-basedsolutions are easy to use transparently with com-
mercial applications, but consider every modification in a document
as a new document update, thus fostering conflicts and hindering
concurrency. Operational-basedsolutions promise increased con-
currency, by interleaving compatible modifications from different
users. They require central reconciliation algorithms, and cannot be
applied to commercial applications without further instrumentation.

We propose the notion of a semantic chunk, i.e., a semantically-
annotated document region with application relevance, that is pro-
moted to a full-right entity w.r.t. consistency information and en-
forcement. This unit, being smaller than a file and semantically
richer, allows greater concurrency and better update merging with
less aborts than current solutions.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications

Keywords
Replication, mobility, file systems, office applications, consistency

1. INTRODUCTION
Information sharing is a fundamental aspect to computer supported

cooperative work (CSCW) [9], and has been one of the main goals
of distributed systems research. This has become even more so,
recently, in the related fields of mobile, pervasive and ubiquitous
computing. More and more people perform work and exchange
data using their laptops, PDAs or mobile phones, even without be-
ing connected to a central network (e.g., using Bluetooth).In this
context, data-replication has been a prime technique used for in-
formation sharing. It improves availability, performance, and cost-
effectiveness.

Locally replicated data is always readily available to applications
(even when the network is down), with access times orders of mag-
nitude lower than non-local data, and avoids frequent, and possibly
lengthy and costly connections to the underlying network (specially
so in the case mobile devices with GSM, CDMA or GPRS connec-
tivity).

Data replication has been comprehensively addressed in various
projects and systems where applications are based either onfiles,
databases, objects, application components, and structured docu-
ments (refer to [8] for a detailed review).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RM’05, November 28-December 2, 2005Grenoble, France
Copyright 2005 ACM 1-59593-270-4/05/11 ...$5.00

Since several (or all) of the replicas may be independently up-
dated (accessed and modified), the issue of replica consistency natu-
rally arises. Traditional pessimistic approaches are based on locking
resources. They are not suited for ubiquitous computing since ap-
plications, possibly disconnected from the network, perform long
duration data manipulations.

Optimistic approaches allow concurrent modifications on differ-
ent replicas, in the expectation that conflicts will never orseldom
occur. If there are any, the system will attempt at reconciling them
later. This advantage is even more relevant in pervasive andubiqui-
tous computing since applications are seldom connected, and even
when they are, it may be impossible to access a specific machine
(e.g., a central server), like in the case of a spontaneous ad-hoc net-
work.

Data consistency enforcement and update reconciliation techniques
include: i) determining causality among updates performedon dif-
ferent replicas and epidemically propagated [21, 2] among different
peers; and ii) replaying of logged operations performed by different
client nodes [12, 19].

Leveraging knowledge from application, data and usage seman-
tics is a useful technique to improve replication management and
consistency enforcement. It helps reducing the number (andcost) of
update conflicts, and cuts down the amount of user’s work lostwhen
reconciliation of conflicting updates is impossible.

Semantics, w.r.t consistency, has been previously addressed by: i)
using type and application-specific reconciliation procedures
(opaque, i.e., non-transparent to the middleware) invokedwhen a
conflict is detected, that process the conflicting updates and decide
which update will prevail [21]; and ii) using application activity (op-
erations, logged or inferred) and their semantic constraints (declared
or inferred) to centrally re-order (re-schedule) them in a way that
minimizes conflicts [12, 19].

1.1 Shortcomings of Current Solutions
The issue of supporting ubiquitous cooperative work, in thecon-

text of collaborative document edition, involves roughly three kinds
of problems: i) enforcing replica consistency in an environment with
de-centralized replication, while favoring update concurrency and
successful update commits and merging; ii) allowing the users to
use the same off-the-shelf office applications they alreadydo, while
guaranteeing flexible inter-operability between these andthe replica-
tion and consistency systems; and iii) reduce wasted storage and net-
work bandwidth. Although these sub-problems have been addressed
(all or just one) in previous work, we propose a novel approach that,
we argue, is better suited for abovementioned activities.

There are the two main families of approaches to consistencyin
mobile and ubiquitous environments. The first,update-based, is
easy to integrate transparently witheverydaycommercial applica-
tions but considers every modification in a document, however small,
as a new document update, thus fostering conflicts and hindering
concurrency. The second,operational-based, promises increased
concurrency by attempting to interleave compatible modifications
from different users. However, it requires costly reconciliation algo-
rithms, and has issues w.r.t. integration and inter-operability with

everydaycommercial applications. Hence, it is difficult to apply
to them, without further instrumentation. Merge procedures can be
used inupdate-basesystems to reduce conflicts but they are opaque
to the rest of the middleware. They behave like black-boxes,difficult
to port and reuse, and their code must be blindly trusted. They are
inflexible, unadaptable w.r.t. having a clear interface with which the
middleware could parameterize the conciliation task with additional
information (e.g. gathered from context).

We try to establish a middle-ground between these two ”oppos-
ing” approaches, avoiding the problems of each one, while retaining
the advantages of both. From theoperational-basedapproach, we
take increased concurrency, but without the need to modify applica-
tions. From theupdate-basedapproach, we take transparency w.r.t
applications, but attempt at reducing update conflicts.

To improve efficiency of cooperative work, application semantics
must be considered w.r.t. data replication and consistency. Lever-
aging application semantics has been previously considered mainly
for purposes of operation logging, and designing merge procedures.
In this work, we make use of the structural and usage semantics of
documents and applications (i.e., the emphasis is on the structure of
the data that applications manipulate, and user behavior, regardless
of the internal operations they perform). Therefore there is no need
to log operations, just manage updates.

Techniques to exploit content similarities among different files,
and especially, among versions of the same file, in order to save
storage space and bandwidth, have been used prior in [14, 2].

1.2 Contribution and Paper Structure
We propose a novel approach to system support for cooperative

work in ubiquitous environments, namely collaborative document
edition. It is embodied in the notion of a semantic-chunk (semantic-
regions in general, targeted to a chunk-based system [14]),i.e., a
semantically-annotated document region with applicationrelevance,
that is promoted to a full-right entity w.r.t. consistency information
and enforcement.

It fulfils the requirements of reduced memory and network usage.
It provides the same level of optimistic consistency offered by cur-
rent solutions, but with greater concurrency and flexibility, thus, less
prone to update conflicts. It especially suited for, and easily lends
itself to document edition applications. Finally, we describe how
an adaptive middleware based on semantic-chunks can be integrated
with popular office applications, using their restricted reflective ca-
pabilities (namelyautomation).

The rest of the paper is organized as follows. In the next Sec-
tion, we present thoroughly the architecture of Semantic-Chunks
w.r.t., successively: i) system overview, ii) storage and communi-
cation, iii) application data structure, iv) middleware for application
enhancement, and v) consistency enforcement. Section 3 describes
the main aspects regarding the proposed implementation, followed
by Section 4, where we introduce some related work and projects.
Section 5 wraps the paper up by offering some discussion, drawing
conclusions and uncovering possible lines of future work.

2. ARCHITECTURE
We now briefly introduce some basic notions that are used through-

out the rest of the paper, and will be explained more thoroughly in
the next sub-sections. Chunks (or data-chunks) are portions of files
that have content-derived (instead of offset-derived) boundaries, as
introduced in LBFS [14]. A semantic-chunk manages a semantically
relevant document region. The content of a semantic-chunk is an ar-
ray of data-chunk IDs, thus referencing the data-chunks that actually
hold the content of the document region.

The operating environment and usage model addressed in Semantic-
Chunks is one of ubiquitous CSCW, namely, ad-hoc network-based

File System Extension

Application

Adaptation

 Modules

Operating System / Virtual Machine

Office Applications

Application Enhancement Layer

Chunk Database

Semantic-Chunk Manager

AppAdapter

document

C

o

m

m

u

n

i
c

a

t
i

o

n

S

e

r
v

i
c

e

s

S

e

m

a

n

t
i

c

-

C

h

u

n

k

s

M

i
d

d

l
e

w

a

r
e

Figure 1: Semantic-Chunks System Architecture.

cooperative document edition (or cooperative document edition in
ubiquitous computing). In this model, users make use of mobile
devices (typically laptops and PDAs) to create, edit, and exchange
documents, performing cooperative work based on office-like ap-
plications. Users access and (possibly) modify locally, documents
that may have been either created locally, or replicated from another
user’s device. Users may also (re-)replicate a locally replicated doc-
ument to another device.

We do not assume the presence of a fixed network infrastruc-
ture (either wired or wireless-based). Users must then relyon the
limited wireless networking capabilities available on their devices.
These are short-ranged, low-bandwidth (e.g., Bluetooth),further ag-
gravated by the device’s reduced battery life-time. Thus, users must
engage preferably in spontaneous and short-duration ad-hoc network
communication, in a variety of situations.

User activities include not only collaborative text edition (that re-
ceives the primary focus in the paper) but also other popularoffice-
like applications like the edition of spreadsheets, web content, slide-
based presentations, etc. In the remainder of this paper, wewill use
the termdocumentas an abbreviation forstructured document. Both
the above mentioned types of documents may be encompassed by
this notion, with the necessary and relevant adaptations.

2.1 Overview of a Semantic-Chunks System
The system architecture of Semantic-Chunks is depicted in Fig-

ure 1. It is is not bound to a specific platform or set of applica-
tions, since we intend it to be applicable generically. Nonetheless,
we present a typical implementation in Section 3. Users operate es-
sentially unmodified office applications, extended by an adaptable
middleware layer that makes use of applications’ reflectivecapabili-
ties, namelyautomation.

Semantic-Chunks middleware mediates the applications andthe
operating system or virtual machine environment they run on. File
System Extension provides a (virtual) file system abstraction for
users to create, copy, delete files on (virtual) folders managed by
Semantic-Chunks in their device, or on nearing devices alsoenabled
with Semantic-Chunks. The Chunk Database stores chunks, i.e.,
variable-sized fragments of document data. The Semantic-Chunk
Manager aggregates one or more chunks of data (as needed) that
comprise logical units of documents, according to application se-
mantics (e.g., sentences, paragraphs, sections, spreadsheet and slide
regions, etc.). Semantic-chunks, themselves, are also aggregated in

Chunk Database
Semantic-Chunk Database
Semantic-Chunk Manager

hash table
hash table of arrays
hash table of arrays

h11

h10

h4

h3

c2

c1

c3

c4

c5

c6

c7

c8

c9

c10

c11

h2
 h7
 h9
 h6

h1
 h5
 h8

h4

h2
 h7
 h9
 h11

s1

s2

s16
 s11

s7

s4

s1
 s2
 s5
 s7

s4
 s8
 s11
 s1
 s2

s12
 s13
 s15
 s14

s16
 s17
 s35
 s90
 s77

s63
 s25
 s34
 s33

s25
 s40

a)
 b)
 c)

s4
 s8

s12
 s15

s14

s25
 s20

s70
 s40

s99

Figure 2: Logical Architecture of Storage in a Semantic-Chunks System.

higher-level semantic-chunks. A top-level semantic-chunks is the
entry-level of a structured document. A large-sized document con-
tent can be incrementally fetched, and incrementally rendered, as
users need it, or as updates arrive.

Whenever the office applications need to retrieve data from (or
write to) the file system, those calls are intercepted by the File Sys-
tem Extension and it instructs the Application EnhancementLayer to
interface with the office application (via its reflective capabilities) in
order to fetch from (or inject in) it content (according to read or write
operations). This content is, conversely, structurally injected back
(or fetched from) to the Semantic-Chunks Manager (and hence, in
the Chunks Database). Thisloop-backapproach is key to maintain
application transparency. To address the specifics of each applica-
tion, basic mediation is extended by specific Application Adaptation
Modules.

Communication with other mobile devices (in order to replicate
files, propagate updates, etc.) is performed through a Web-Services
based Communication Services bridge. Interaction with other de-
vices can be performed at a variety of levels, as portrayed inFig-
ure 1. These interactions may be exchanging (for either propagation
or update purposes) of basic data-chunks, incrementally reconstruct-
ing semantic-chunks, downloading Application Adapters, etc.

2.2 Basic Storage and Communication
PDAs are devices with several resource constrains. Storage, band-

width, processing power and battery life, are of premium impor-
tance. In the context of this work, we address solely storageand
bandwidth limitations.

PDAs have no real (hard-)disks. Thus, there is no mass-memory
support, since they are usually equipped with memory that islimited
in size (normally, 32 or 64 MB). Therefore, file system is actually
simulated in the PDA’s memory. Although, there are Flash-memory
cards (CompactFlash, SecureDigital, etc.) extensions ranging to and
over 1 GB. However, these capacities are not common in most PDAs.

To address storage limitations, information redundancy must be
exploited without incurring in high performance penalties(that could
overload the processor and drain battery faster, as well). Data com-
pressionper se, besides performance demands, is not incremental
i.e., even small changes in the beginning, middle, or end of adoc-
ument affect the whole of the compressed version (since file must
be compressed again). Thus, data similarities among different ver-
sions of the same document, and even among different documents,
are leveraged without compression.

The basic storage substrate is therefore provided by a Chunk
Database, as presented in [14]. An example is presented in Figure 2-
c. It is structured as a hash-table of chunks. Chunks are portions of
files that have content-derived (instead of offset-derived) boundaries.

This way, they are mostly invulnerable to insertions, deletions, or
other modifications, occurring in other regions of the file (e.g., in
the beginning of the file). Only the neighboring chunks mightbe
affected.

Chunk boundaries are determined resorting to Rabin fingerprints[16].
Conceptually, file contents are scanned with an overlappingwindow
(48 bytesin length), and this determines a binary polynomial rep-
resentation of the data modulo another pre-determined polynomial
(one that is irreducible). This operation is performed efficiently with
a sliding-window. The space of fingerprint values for regions can
be segmented in two (not necessarily contiguous) subsets, so that
certain values trigger the creation of a chunk boundary.

Chunks are identified by a hash value of their contents, using
SHA-1 [22] algorithm. Only the first 64bits of the SHA-1 hash
value are taken as a chunk hashing key. Thus, every chunk has a
(just) 8bytesized identification key, while its size may range hun-
dreds of bytes. This is instrumental in reducing storage occupation
and bandwidth usage, as we explain next.

Whenever two neighboring devices need to exchange document
contents (previously divided in chunks), e.g., while replicating a
document, they exchange first the chunk keys they hold (regarding
that file) and transmit only the contents of the chunks they donot
hold already, hence saving bandwidth.

Whenever a user copies a file, creates a new version of a file,
or receives an update from another user, it is expectable that most
of the file contents remain relatively similar (i.e., apart the changes
performed). Similarity among files residing in local storage is thus
leveraged because when the new version or file is saved, most of its
contents are already in the Chunk Database. Therefore, instead of
copying the whole file contents, most of time, it just createsaddi-
tional references to existing chunks, hence saving storage.

2.3 Application Data Structure
Naturally, applications are unaware of chunks. This is needed

since normally, they just see flat files (regardless of their internal
format specific to the application). Although using chunks enables
the reduction of storage and bandwidth usage, it does not allow ex-
tracting and leveraging any kind of semantic information, from the
applications or documents.

To address this, each document is decomposed in semantically rel-
evant regions i.e., document regions that are significant tothe doc-
ument structure, to application semantics, and to typical usage be-
havior. These semantic-regions are called semantic-chunks because
of the underlying Chunk Database. They are defined hierarchically
and are application-semantics dependent, following naturally from
the hierarchical structure of office-like documents.

Application-based semantic-chunk borders may be defined assec-

tions, paragraphs, sentences in text documents, cell areasin spread-
sheets, objects and geometry in CAD tools, functions and declara-
tion zones, in programming source code editing, etc. This manage-
ment is easy for applications because they know best the dataand its
structure.

Figure 2-b depicts a Semantic-Chunk Database. It is a hash-table
of Level-1semantic-chunks (with data-chunks being atLevel 0). At
Level 1, semantic-chunks are arrays of chunk-ID, referencing those
chunks that actually hold the contents of the semantic-chunk. A
chunk can be shared by multiple semantic-chunks, belongingto any
number of files. A semantic-chunk may also be shared by multiple
versions of the same file.

Figure 2-a depicts the Semantic-Chunk Manager, where higher-
level semantic-chunks are stored. The content of a higher-level semantic-
chunk is an array comprised of IDs of other semantic-chunks.This
structure allows an hierarchy with arbitrary number of levels. A file,
besides other information regarding file system attributes, is simply
regarded as a top-level semantic-chunk. Semantic-Chunks are iden-
tified by a GUID based on document name and device of creation.

Conceptually, to search for a specific semantic-chunk, the Semantic-
Chunk Manager must be queried first, to check if it is a high-level
semantic-chunk. If not found, then the Semantic-Chunk Database
must be queried. In practice, all semantic-chunks are fetched from
the Semantic-Chunks Manager, and whether it belongs toLevel 0or
is a higher-level semantic-chunk, a pointer to the appropriate array
is returned, along with level info.

Semantic-chunks are transmitted either i) as a sequence of chunks
(much as files in LBFS, or ii) as a sequence of other (lower-level)
semantic-chunks. The hierarchy of semantic-chunks in eachdoc-
ument is XML-described, whenever it is transmitted, as partof a
web-service invocation. Each semantic-chunk has associated with it
meta-data, namely regarding consistency.

Thus, in Semantic-Chunks (analogously to LBFS chunks), when
two neighboring devices need to exchange document contents, they
first exchange semantic-chunks, and then, if the receiver does not
have them, they exchange the comprising lower-level semantic-chunks.
This may trigger exchange of more semantic-chunks (new onesand
others that may have been updated). Ultimately, exchangingnew
content may also cause transmission of data-chunks.

It is very frequent in collaborative edition of long-sized documents
(i.e., several chapters or sections, regardless of actual file size) that
some users only deal with a subset of fractions of the file (theones
they are collaborating in). Still, with current systems, every single
one of them is compelled to store a copy of the complete file. In
Semantic-Chunks, a document may be rendered without needing all
of its lower-level semantic-chunks (and corresponding data-chunks)
because, while the content is unknown, the document structure is
already known, and the middleware can adapt accordingly.

2.4 Middleware and Application Enhancement
The main goal of the application enhancement layer is to en-

hance application functionality without changing application code
(neither extending nor instrumenting it explicitly). Thislayer of
the middleware has a number of responsibilities, broadly: i) manage
document structure, ii) manage document content within Semantic-
Chunks managed folders, and iii) manage exporting/importing doc-
uments to/from non-managed folders.

W.r.t. managing document structure, it is the responsibility of
the application enhancement layer, through an adequate application
adaptation module, to detect the basic structure of a document once
it is inserted in a folder managed by Semantic-Chunks.

Semantic-chunk division must be performed with criteria inor-
der to minimize overhead due to increased number of higher-level
semantic-chunks. Thus, documents with reduced content andsize

are divided in fewer levels than documents larger sized. Larger doc-
uments can accommodate more semantic-chunks and more hierar-
chical levels, without significant penalties, comparatively, in terms
of storage.

To allow incremental content replication, in order to save storage,
the system must be able to replicate semantic-chunks as theyare
needed by the application, requested by the user, and accommodate
them as they arrive. The application enhancement layer is incharge
of inserting stub content (possibly with scripting to trigger download
content) to replace, w.r.t. rendering, document regions that are miss-
ing, while the comprised semantic-chunks and data-chunks holding
their content are still not available.

The application enhancement layer is in charge of mediatingthe
export of document content (extraction) to corresponding semantic-
chunks and, for each semantic-chunk render its contents. The Semantic-
Chunk Manager will then store it, possibly updating other semantic-
chunks, and associate it with consistency information. A converse
procedure is performed to mediate the import of document content
(injection) from semantic-chunks to be rendered in screen.

This layer is also responsible for importing and exporting docu-
ments from/to directories that are not managed by Semantic-Chunks.
It handles the specifics of converting documents to and from their
native format. These tasks can also be performed resorting to au-
tomation.

The adaptability of the middleware stems from the fact that it
can be automatically adapted to other applications and their formats.
This is performed resorting to Communication Services download-
ing new plug-able application adaptation modules, either from fixed
network or from another device. This may be performed upfront
or triggered when a folder managed by Semantic-Chunks receives a
file of a format yet unknown. Type identification is still performed
solely based on file name extension (.doc, .xls, etc.).

Replication and consistency sub-systems are unaware of thedif-
ferent semantic-chunks representations, so the base system is kept
unchanged as new types of document formats are introduced. It is up
to the application extensions, in a well defined cooperationwith the
storage and propagation system, to ultimately decide the actual con-
tent organization that will be presented to users. In this way the sys-
tem is open and extensible, driven by an adaptive middlewarelayer
and leveraging application reflective capabilities (even if limited).
By exploiting this semantic knowledge about data structureand typ-
ical usage, in a transparent way w.r.t to the underlying semantic and
data-chunk propagation system, favoring system modularity.

The usage of application automation API can be regarded as a
form of reflective capabilities (even if limited). The code invoking
this API gains, through them, access to the very structure and content
(that may be changed) of the documents, and functionalitiesof the
application itself. This portrays aspects of introspection and modifi-
cation that comprise reflective capabilities.

2.5 Data Consistency
Chunks, while allowing savings in storage and bandwidth, donot

provide, by themselves, support for document consistency enforce-
ment. This problem has been specifically addressed in the context of
another work [2], where a chunk-based system is extended with con-
sistency enforcement applied at file level. On the other hand, asso-
ciating consistency information with all chunks in the system would
be very inefficient, and with other problems, since chunk content
may be shared among several files.

In Semantic-Chunks, consistency is enforced at the semantic-chunk
level, instead of at file level. Thus, consistency enforcement is per-
formed by the Semantic-Chunk Manager. Semantic-chunks natu-
rally suit themselves to the typical editing operations performed by
users, i.e., centered in a fraction of the document sections, and inside

them, inserting, removing or editing some paragraphs, etc.This way,
update and consistency information is kept on a semantic-chunk gran-
ularity. This is a ideal subdivision to provide increased concurrency
in document edition, withstanding more updates and modifications
while reducing update conflicts. This is achieved by avoiding, or at
least, reducing false-sharing conflicts existing in other approaches
(in systems where updates are regarded as a whole) arising from
concurrent, yet unrelated, updates performed on documents.

Consistency meta-data, associated with semantic-chunks is en-
coded in an open, XML-based, flexible manner. In addition to use
causality information, it can accommodate user voting schemes, au-
thoritative updates, user leases, and custom hint messages. Semantic-
chunks inherit, by default, and without overhead, consistency meta-
data of their parent semantic-chunks.

Causality information annotating semantic-chunks is based on
version-vectors (that may be compressed and subject to other opti-
mizations [17, 21, 10]). Version vectors are applied hierarchically
to semantic-chunks. Semantic-chunks are updated when its content
data-chunks are modified (if it belongs toLevel-1), or when there are
insertions or deletions in its array of lower-level semantic-chunks.
When the structure of a higher-level semantic-chunk remains un-
changed, even in the presence of changes to lower-level chunks con-
tent, there is no need to transmit the higher-level semantic-chunk
again, just the lower-level ones that were modified. This prevents
having to transmit all the semantic-chunks in a document every time
is subject to localized modifications.

Semantic-chunks mat be subject to user voting schemes. When
users are confronted with (divergent) update conflicts, causal infor-
mation cannot help. To solve this, users can insert, and retrieve,
semantic annotations to the semantic-chunk stating their vote (possi-
bly with associated weight) for a particular update candidate. Users
vote based on the content they read and their opinion on it. This user-
provided semantic information advises other users of whichupdate
to use and, if the number of replicas is immutable, may even allow
automatic decision by the middleware. We stress that this voting is
not based on an algorithm as in other epidemic propagation schemes,
but on semantic information annotated by users.

Files and semantic-chunks may be subject to authoritative usage.
This allows a specific user (owner or creator), or set of users(ad-
mins), to arbitrarily force their updates through other users with less
privileges.

Semantic-chunks may be appended with semantic-data regarding
lease of preference. It is a period of time indicated by an user, during
which, he/she expects to produce another update to the semantic-
chunk. This way, other users are advised that, if completed within
time, this next update will have precedence to others w.r.t.conflicts.

Users can also annotate semantic-chunks with custom hint mes-
sages that will pop-up in the corresponding document regionto in-
form other users. Several semantic annotations, possibly of differ-
ent types, may be combined for any semantic-chunk. The middle-
ware can adapt consistency granularity to suit file owner preferences,
overriding default behavior.

An update is comprised of a set of semantic-chunks that have been
modified. Updates are propagated in two ways, either i) implicitly,
epidemically whenever two peers meet with neighboring devices, or
ii) explicitly, whenever two or more peers meet and the file owner
broadcasts a new update to explicitly overwrite all other replicas.

The ability to enforce consistency on a granularity larger than log-
ging every singular operation performed, and smaller thanall-or-
notingcomplete file updates, while also exploiting additional seman-
tic information defined by users, is key to provide high concurrency,
low number of update conflicts, avoid centralized reconciliation, and
ensure transparency w.r.t.everydayoffice applications.

3. IMPLEMENTATION ISSUES
The development of a preliminary Semantic-Chunks prototype is

currently underway. It targets laptop machines, while taking porta-
bility to PDAs into account. It makes use of Bluetooth connectivity,
.Net Framework and .Net Compact Framework (.Net CF), and Of-
fice applications. In this section we present its main designaspects,
explain the issues involved, the limitations found, and thedecisions
taken.

Communication Servicesare developed in C#, and use native
.Net (and .Net CF) support for web-service invocation. Requests
received from other peers are answered by .Net Active ServerPages
coded in C#, running on IIS or on a Mobile Web Server [15].

File System Extensionis deployed as an IFS (Installable File Sys-
tem), coded in C++, to manage folder initialization, directory main-
tenance, navigation through subfolders, and file operations them-
selves. To leverage the use of managed code (usable both in .Net
and .Net CF), most of the file system extension code is coded inC#
and is invoked from the core C++ code via a documentedinterop
hook [5, 20].

The main code ofChunk-DatabaseandSemantic-Chunk Man-
ager is developed in C#. This eases development w.r.t. C++, mainly
because it is straightforward to integrate it with the Communica-
tion Services (that make use of the native support, in .Net and .Net
CF, for web-service invocations). Semantic information annotating
semantic-chunks, regarding consistency, is XML-coded andis also
parsed and processed by C# code.

There is a reference count field associated with each data-chunk
and each semantic-chunk. It is incremented/decremented whenever
a semantic-chunk creates/drops a reference to a lower-level semantic-
chunk or to a data-chunk. When it reaches zero, the semantic-chunk
or data-chunk can be garbage collected by the middleware, since it
is no longer part of any of the documents stored. This is performed
lazily (i.e., when free memory reaches a low threshold).

Binary data, like data-chunks content, is sent over web services
which imposes some penalties, and it is still an open issue [3]. Al-
ternatives could be: i) using a lower-level communication protocol
exclusively to send binary content, and use web-services for higher
level communication, or ii) refine Semantic-Chunks Managerto gen-
erate (longer) XML-only descriptions of data-chunks content.

TheApplication Enhancement Layer is mainly coded in C#. It
has some parts in VB.Net for clearer interaction with VBA-based Of-
fice automation, in order to extract and inject content, stubs, and se-
mantic hints w.r.t. consistency. Document files and semantic-chunks
are exchanged as XML representations of comprising semantic and
data-chunks, much as a stripped-down version of OpenOffice [1]
format. Except for the Pocket Outlook Managed API, Pocket Of-
fice still lacks substantial automation support. This is a feature long
awaited due to the large number of applications and documents that
use it. Nonetheless, convergence with the desktop versionshas been
moving forward (e.g., use of native Office file formats).

Finally, while data-chunk contents follow the document w.r.t. con-
tent and formatting, these are coded in an way independent ofthe ac-
tual Office file format that is proprietary, binary and ratheropaque.
Thus, when possible, it is easier to use automation to extract content
than parsing/generating files. The latter is inadequate fora Semantic-
Chunk system because the Office format has some idiosyncracies
(e.g., saving a figure in a file, far from the position where it saves the
text that surrounds it). To address this format incompatibility, when
a file is copied to a folder that is not managed by Semantic-Chunks,
it must be rendered by Office and saved with the regular application
format. This may also be performed resorting to automation.

4. RELATED WORK

Semantic-Chunks is related to number of other projects regarding
replication and consistency. Due to lack of space, we only address
some. For a comprehensive survey, we refer to [18].

Bayou [21] is based on mobile-aware databases. Consistencyis
enforced by performing update operations in the same, well-defined
order at all servers. This achieves eventual consistency among servers.
Application-specific conflict resolution is performed by opaque de-
pendency checks and merge procedures.

LBFS [14] was the first system to exploit file content similarities
in order to save storage and bandwidth. It did not consider consis-
tency, that was addressed in Haddock-FS [2], with file granularity.

Operations performed by applications are logged by IceCube[12,
19], in different clients, and later sent to a generical central recon-
ciliation server. It heuristically performs sound re-scheduling of op-
erations in order to minimize conflicts, based on constrainsfor each
pair of operations.

The work presented in [7] aims to achieve substantial reductions
in update transmission latencies, allowing sending updates with in-
creasing level of fidelity, by leveraging information aboutdocument
structure and content adaptation.

Replication of XML documents, in mobile environments, has been
addressed in the context of Xmiddle [13].

With respect to other reflective middleware, sematic information
regarding QoS non-functional aspects is extracted and defined declar-
atively by contracts in [4]. Compatible contracts can be combined
straightforwardly. Conflicts among requirements from different con-
tracts are solved based on priority. An hierarchical approach is also
used in [6], in this case, to define channels in a publish/subscribe
messaging model. Using semantic information in the contextof
transactions (another way of enforcing consistency), has been ad-
dressed in [11], to meet varying transactional requirements from ap-
plications.

5. CONCLUSION
In this paper we presented a novel approach to replication, con-

currency, and consistency enforcement, with a proposed implemen-
tation. Semantic-chunks are a novel approach to cooperative doc-
ument edition in ubiquitous environments. Asemantic-chunkis a
document region with relevance to applications and users, further
annotated with semantic consistency information, in part provided
by users. Since it is smaller than a file and semantically richer,
it allows greater concurrency and better update merging with less
aborts than current solutions. While providing more flexible con-
sistency enforcement, Semantic-Chunks imposes a fractionof addi-
tional storage overhead w.r.t. LBFS (that does not enforce consis-
tency) and HaddockFS.

Semantic-chunks do not impose modifications to applications, nor
specific merge procedures, nor centralized conflict resolution. They
are both intuitive and flexible w.r.t. users, and transparently manage-
able by the middleware.

We establish a middle-ground between two widely adopted fam-
ilies of approaches,update-basedandoperational-based. Thus, the
problems of each one are avoided, while retaining the advantages
of both. From theoperational-basedapproach, we take increased
concurrency, but without the need to modify applications. From the
update-basedapproach, we take transparency w.r.t applications, but
attempt at reducing update conflicts.

Being designed as a middleware layer, between the operatingsys-
tem and the applications, Semantic-Chunks architecture and imple-
mentation are developed following adaptive and reflective middle-
ware techniques.

As future work, we intend to circumvent present Pocket Office’s
lack for automation support, by using content extraction/injection

libraries as Application Adaptation Modules (e.g., parser/writer for
Rich Text File, a format understood by Pocket Word).

We also intend to investigate the application of the Semantic-
Chunks approach to another CSCW applications for content and
document edition (e.g., an ad-hoc, ubiquitous Wiki system;OpenOf-
fice applications with OOBasic enhancement layer).

We also wish to further develop Semantic-Chunks w.r.t. consis-
tency guarantees, different consistency enforcement approaches, and
providing update hints for conflict resolution.

We want to test the system with a typical set of users, once a
complete user-friendly prototype is finished. Finally, we intend to
measure improvements in concurrency and successful committed
updates w.r.t. previous approaches.

6. REFERENCES
[1] Using openoffice.org’s xml data format. http://books.evc-cit.info/book.php,

OReilly & Associates, Inc., jul 2004.
[2] J. Barreto and P. Ferreira. A highly available replicated file system for

resource-constrained windows ce .net devices. In3rd International Conference
on .NET Technologies, 2005.

[3] A. Bosworth, D. Box, M. Gudgin, M. Nottingham, D. Orchard, and J. Schlimmer.
Xml, soap and binary data.
http://www.xml.com/pub/a/2003/02/26/binaryxml.html,feb 2003.

[4] R. Cerqueira, S. Ansaloni, O. Loques, and A. Sztajnberg.Deploying
non-functional aspects by contract. InThe 2nd Int’l Workshop on Reflective and
Adaptive Middleware, Middleware 2003, Rio de Janeiro, Brazil, june 2003.

[5] M. Combs. Unmanaged to managed calls - call managed code from unmanaged
code. http://www.codeproject.com/dotnet/bridge.asp, The Code Project, 2003.

[6] E. Curry, D. Chambers, and G. Lyons. Introducing reflective techniques to
message hierarchies. InThe 2nd International Workshop on Reflective and
Adaptive Middleware, Middleware 2003, Rio de Janeiro, Brazil, june 2003.

[7] E. de Lara, R. Kumar, D. S. Wallach, and W. Zwaenepoel. Collaboration and
multimedia authoring on mobile devices. InInt’l Conference on Mobile Systems,
Applications, and Services (MobiSys), San Franciso (CA), USA, May 2003.

[8] P. Ferreira and L. Veiga. Mobile middleware: Seamless service access via
resource replication. Technical report rt/08/2005 (extended version of the chapter
included in Mobile Middleware, A. Corradi and P. Bellavistaeds., CRC Press,
2005), INESC-ID Lisboa, april 2005.

[9] I. Greif, editor.Computer-Supported Cooperative Work: A Book of Readings.
MORGAN KAUFFMAN, 1988.

[10] Y.-W. Huang and P. S. Yu. Lightweight version vectors for pervasive computing
devices. InInternational Conference on Parallel Processing Workshops
(ICPPW’00), 2000.

[11] R. Karlsen and A.-B. Jakobsen. Transaction service management: An approach
towards a reflective transaction service. InThe 2nd Int’l Workshop on Reflective
and Adaptive Middleware, Middleware 2003, Rio de Janeiro, Brazil, 2003.

[12] A. Kermarrec, A. Rowstron, M. Shapiro, and P. Druschel.The icecube approach
to the reconciliation of divergent replicas. In20th ACM Symposium on Principles
of Distributed Computing (PODC’01), Newport, RI, USA, August 2001.

[13] C. Mascolo, L. Capra, S. Zachariadis, and W. Emmerich. Xmiddle: A
data-sharing middleware for mobile computing.Wirel. Pers. Commun.,
21(1):77–103, 2002.

[14] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth network file
system. InProceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), pages 174–187, October 2001.

[15] N. Nicoloudis and D. Pratistha. .net compact frameworkmobile web server
architecture. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnnetcomp/html/NETCFMA.asp, Monash University, Caulfield, Australia &
MSDN, Microsoft, jul 2003.

[16] M. O. Rabin. Fingerprinting by random polynomial functions. Report tr-15-81,
Center for Research in Computing Technology, Harvard University, Cambridge,
MA, USA, june 1981.

[17] D. Ratner, P. Reiher, and G. Popek. Dynamic version vector maintenance. UCLA
Technical Report CSD-970022, june 1997.

[18] Y. Saito and M. Shapiro. Optimistic replication.ACM Comput. Surv., 37(1), 2005.
[19] M. Shapiro, N. Preguiça, and J. O’Brien. Rufis: mobile data sharing using a

generic constraint-oriented reconciler. InIEEE International Conference on
Mobile Data Management (MDM 2004), jan 2004.

[20] M. Struys. Asynchronous callbacks from native win32 code.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnnetcomp/html/AsynchCallbacks.asp, PTS Software/MSDN, Dec 2003.

[21] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in bayou, a weakly connected replicated
storage system. InProceedings of the fifteenth ACM symposium on Operating
systems principles, pages 172–182. ACM Press, 1995.

[22] N. T. I. S. U.S. Department of Commerce/N.I.S.T. Fips 180-1. secure hash
standard. Springfiled, VA, april 1995.

