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Abstract

Peer-to-peer overlays envision a single overlay substrate
that can be used (possibly simultaneously) by many ap-
plications, but current overlays either target fast, few-hop
lookups for contacting directly the responsible nodes, or
slower multi-hop lookups that can be used by applications
that exploit the overlay topology (like multicast or anycast).
In this paper we present Pastel, an extension to Pastry that
bridges the gap between the two types of overlays. Pastel
maintains both Pastry routing tables and a full information
table, and we show how we can exploit synergies between
the maintenance of the two. We also propose a novel API
that is richer than the one offered by existing overlays, to
give applications control over the type of lookups (struc-
tured, multi-hop routing, or attempt direct contact).

We implemented Pastel in a discrete-event packet level
simulator and our results show that Pastel has lookups that
are usually more efficient than Pastry’s. Furthermore, the
bandwidth required by Pastel is modest, even for a system
with thousands of nodes.

1. Introduction

Peer-to-peer overlays (like Chord [25], Pastry [22],
Tapestry [12], or CAN [19]) form a decentralized, self-
organizing substrate that can be used by a myriad of dif-
ferent applications with distinct requirements and ways of
using the overlay. In many cases, the designers of such
overlays have expressed the vision of deploying a single
peer-to-peer overlay with many applications running on top
of it (e.g., [13]).

We can categorize the applications that have been pro-
posed to run on top of peer-to-peer overlays in two broad
groups.

The first group consists of direct contact applications
that typically use a narrow get/put interface offered by a
layer running on top of a routing overlay that implements a
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distributed hash table interface (DHT) [8, 23]. These appli-
cations (or, in some cases, the DHTs that underlie them)
only use the routing overlay to locate the node or set of
nodes that are responsible for storing a particular data item.
Once the lookup primitive returns the node or set of nodes
that are responsible for the information, these nodes are
contacted directly to store or retrieve the data. Examples
of such applications include file systems [16], or databases
for citation indices [26].

The second group consists of routing applications, which
are applications that actively use topology formed by the
routing overlay. For example, a multicast application will
form trees by taking the union of the lookup paths to a com-
mon identifier [3]. The same principle is used by anycast
applications [4].

In previous work, authors have presented proposals for
reducing the lookup latency of peer-to-peer overlays by in-
creasing the amount of routing state maintained by each
node [11, 18, 20, 14]. Such overlays achieve faster lookups
because increasing the knowledge of each node about other
members of the overlay will lead to a shorter lookup path, or
ultimately preclude routing (i.e., a full information or “one-
hop” lookup). However, such overlays cannot be used by
routing applications, where multi-hop lookup paths are re-
quired.

This divide between overlays that support multihop
lookups and overlays that keep a large routing state conflicts
with the vision of a single overlay that can support multiple
applications (simultaneously or not). This is because rout-
ing applications cannot be deployed in overlays with large
routing state (since they lack both the interface to contact
nodes along a lookup path and the topology formed by a
structured overlay), and direct contact applications pay the
penalty of slow lookups if they are running on a multi-hop
routing overlay.

In this paper we present Pastel, an extension of Pastry
that bridges the gap between the two types of overlays. Pas-
tel has a richer interface than the one currently supported
in existing peer-to-peer overlays. This interface enables the
use of short lookup paths (or, even better, full information
lookups) for direct contact applications, and long, proxim-
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ity based lookup paths for routing applications.
The routing tables in a Pastel node can be functionally

divided in two parts: a structured part that resembles a Pas-
try routing table [22] which is used by routing applications,
and an unstructured part that maintains a full membership
information table with a large number of entries, to support
efficient lookups for storage applications.

This extended routing state will allow us to maintain the
Pastry functionality that is used by routing applications, and
to extend it with highly efficient (i.e., low latency) direct
contact for the remaining applications. But the reduced la-
tency is not the only advantage of Pastel. As we will show,
there are synergies between the two parts of the routing state
that improve the maintenance protocols.

The design of Pastel also raised interesting issues such as
how to control the extra bandwidth required to maintain a
full membership information at each node. We introduce a
distinction between strong links (that are aggressively kept
up-to-date) and weak links (that have a delayed response to
unreachability) for the routing state in Pastel. We also show
how applications can deal with the presence of weak links
without affecting its correctness or performance.

We implemented Pastel in a discrete-event packet level
simulator called p2psim [17], and we measured the effi-
ciency of direct contact lookups and the maintenance over-
head introduced by the full membership information in Pas-
tel.

Our results show that Pastel can achieve lookups that per-
form better than Pastry for direct contact applications: in the
majority of the cases, multi-hop routing is not required by
these applications. Our results also show that the bandwidth
required to maintain the extra state is modest, even for a sys-
tem with thousands of nodes. Furthermore, we achieve this
without sacrificing the multi-hop routing interface required
by routing applications.

The remainder of the paper is organized as follows. Sec-
tion 2 gives an overview of Pastry, the system we extended
to build Pastel. Section 3 presents an overview of our sys-
tem. Section 4 presents the Pastel design in detail. Section
5 shows an experimental evaluation of our implementation.
Section 6 presents related work, and we conclude in Section
7.

2. Pastry

In this section we summarize the design of Pastry [22], a
peer-to-peer overlay that we used as a starting point for the
design of Pastel.

Each Pastry node is assigned a 128-bit identifier, and the
identifiers are ordered in a circular identifier space modulo
2128. Node ids are uniformly distributed (e.g., they can be
computed using a secure hash of the nodes public key or IP
address).

Pastry applications use items to partition their workload,
and assign to each item a responsible node in the overlay,
which is the numerically closest live node (assuming that
items have ids in the same id space as nodes).

Pastry offers a route primitive that, given a message and
a key, reliably routes the message to the responsible node.
Assuming a Pastry network consisting of N nodes, Pastry
can route to any node in less than dlog2bNe hops on average,
where b is a system parameter with typical value 4.

The routing algorithm “sees” Pastry ids as a sequence
of digits with base 2b. Each node has a routing table that
is organized into dlog2bNe rows with 2b− 1 entries each.
Each entry in row n contains the network address of a node
whose node id matches the present nodes node id in the
first n digits, but whose n + 1st digit has one of the 2b− 1
possible values other than the present node’s n + 1st digit
(if such a node is found in the overlay). Each entry in the
routing table refers to one of potentially many nodes whose
node id have the appropriate prefix. Among such nodes, the
one closest to the present node (according to a proximity
metric such as the round trip time) is chosen.

In addition to the routing table, each node maintains net-
work addresses for the nodes in its leaf set, which consists
of the nodes with the l/2 numerically closest node ids in
each direction of the id space.

Using this state, the route operation works recursively
as follows. In each step, the node forwards the message to
a node whose node id shares with the key a prefix that is at
least one digit longer than the prefix that the key shares with
the current node id. If no such node is found in the routing
table, then the message is forwarded to a node whose node
id shares a prefix with the key as long as the current node,
but is numerically closer to the key than the current node id.

Node joins and departures are handled as follows. When
a node i joins the overlay, it initializes its state by contacting
an existing node asking to route a special message to the id
of the joining node, resulting in some responsible node j.
Then i obtains the leaf set from j, and the nth row of the
routing table from the nth node encountered along the route
to j.

To handle node departures, nodes that are neighbors in
the id space periodically exchange keep-alive messages. If
a node is unreachable for some duration then all nodes in
the leaf set are notified of that fact by the node that detected
it, and nodes remove this entry from their leaf set. Routing
table entries are repaired lazily when an attempt to route
through that node fails.

3. Pastel System Overview

We consider the Pastry system organization where nodes
are assigned a random 128-bit identifier, and the identifiers
are ordered in a circular identifier space modulo 2128.
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As in Pastry, we assume that applications use items to
partition their workload, and assign to each item a responsi-
ble node in the overlay, which is the numerically closest live
node. However, we also need to take into account a variant
of this occurrence when the application uses replication, in
which case items have a set of responsible replicas, which
we will consider to be the set of k nodes whose ids are nu-
merically closer to the item id.

To maintain the routing capabilities of the overlay, and
enhance the performance of direct contact applications, we
extend Pastry to maintain, side by side, two sets of routing
state: The Pastry leaf set and routing table (parametrized by
the number of bits in a digit, b), and a full information table.

The additional routing information will enable an ex-
tended API that satisfies both direct contact applications and
applications that rely on structured routing.

We envision that applications with mixed requirements
are those that will benefit the most from having these two
styles of routing available in the same overlay. Unicast, any-
cast, multicast and broadcast are all well supported, and are
usage patterns shared by many applications. For example,
a file sharing system may use broadcast to perform com-
plex queries on shared files, unicast to gauge the responsible
for a file that is already identified, and multicast groups to
manage groups of nodes sharing and downloading the same
files.

4. Pastel Design

In this section we present a design for the Pastel system
in more detail.

4.1. Interface

With the two classes of applications in mind, we devised
the following application programming interface, which we
briefly outline. Note that the presented interface is slightly
simplified for clarity. The extension to Pastry consists of the
send and broadcast primitives.

Initialization

init(node) – allows the local node to either join an ex-
isting Pastel overlay network, by referencing
an existing node, or to bootstrap its own, ini-
tializing all relevant state.

Message sending

send(msg, key, [k]) – tries to send the given mes-
sage directly (i.e., using the full membership
information) to the live node with identifier nu-
merically closest to key; if k is specified the k
closest nodes are contacted instead.

route(msg, key) – routes the message through the
structured overlay to the live node closest to
key.

broadcast(msg, [depth]) – broadcasts the mes-
sage through the structured overlay; if depth is
supplied only up to 2b×depth nodes uniformly
spread in the identifier space are reached,
otherwise all nodes in the system are to be
reached.

Message reception

deliver(msg, key) – callback invoked when a mes-
sage is received and the local node is the re-
cipient for the message, that is, its identifier is
numerically closest to key among all live nodes
for route, or one of k nearby nodes for send.

forward(msg, key, next) – called when the local
node is about to forward the message, whose
recipient is the node closest to key, through the
node whose identifier is next.

Other operations

leafs(set) – callback used when membership changes
in the node’s leaf set.

depart() – abandon the overlay permanently and in an
orderly fashion.

4.2. Node State

Each Pastel node maintains a leaf set, a routing table, and
a full information table.

The leaf set and the routing table are identical to the
ones implemented in Pastry, and the system tries to pop-
ulate these with reachable nodes, thus they must be kept
current rather aggressively, especially the leaf set (see [22]
for a precise description of these tables).

The full information table does not need to be as aggres-
sively kept current, and we even deliberately allow unreach-
able nodes to remain in this table for some time period (we
call these entries weak links). This is because the correct-
ness and liveness of Pastel and the applications that use it
do not depend on the freshness of the information present in
this table. In fact, often a nearby node will contain a replica
of the data being fetched, or otherwise such a node can for-
ward the lookup message to a new responsible node that has
just joined the overlay. (The problem of performing lookups
using weak links is addressed in the next section.) This ta-
ble replaces Pastry’s neighborhood set with data about all
nodes instead of just a sample of nearby nodes. For each
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entry, we maintain its node identifier, network address, and
freshness (time when last contacted).

The storage cost of this data structure is acceptable, es-
pecially if secondary storage is considered. For instance, for
1 million 128-bit node IDs and IPv4 addresses only about
25 MB are needed. Given this potential size, this table may
have to be implemented using a disk friendly data structure
such as a B-tree.

Bandwidth costs might be an issue, since nodes can have
short sessions [24, 1] and this leads to a large number of
notifications about routing information being sent to every-
one in the system. However, weak links do not generate
much maintenance traffic. This is because we employ a
strategy of a delayed response to unreachability: we wait
for a certain amount of time T before we remove unreach-
able nodes from the full information table. Therefore, we
do not trigger events due to temporary disconnections. The
importance of this strategy is substantiated by experimental
studies that have shown that despite short sessions, nodes in
peer-to-peer overlays tend to have much longer membership
lifetimes [1, 21], or, in other words, when they disconnect
from the system, they tend to reconnect later on. Further-
more, weak links also will allow for piggybacking of infor-
mation about membership changes, which reduces protocol
overheads.

Having a full information table is advantageous to the
maintenance of structured routing table entries, since, when
replacing entries in the routing table, we can choose the
best nodes among all live ones, according to some prox-
imity metric. To allow sharing of proximity information,
we can associate synthetic coordinates (as determined by a
system like Vivaldi [7]) with node entries, instead of round
trip times which have to be determined individually. This
may lead to better choices for routing table entries than Pas-
try, that relies on very scarce information and the external
knowledge of close by nodes to find neighbors.

In the next sections we show how the full information
tables also benefit from their structured counterparts.

4.3. Message Sending

Pastel routes different message types in different ways,
supporting the requirements of diverse applications.

Messages sent with route are forwarded through the
structured overlay, using Pastry’s routing algorithm [22]
(i.e., using only strong links in the routing table and the leaf
set).

Messages dispatched with the send primitive are routed
to the known node closest to the message key, using the
full information tables. If the closest node is unavailable
(which is more likely than when routing, since send uses
weak links) the next closest node is tried, and ultimately the
live routing table entries are used.

On the other hand, and if k is specified, the message is
sent in parallel to the k closest nodes found in the full in-
formation table, and the failure of some of them is silently
ignored.

We envision that direct routing applications will use the
send primitive in two distinct ways, depending on the ap-
plication design.

The first scenario occurs if the application replicates data
among the leaf set of the responsible node. In this case the
application can use send with a replication factor k > 1.
Since send uses weak links, it may occur that the k replicas
contacted are not the exact current neighbors of the respon-
sible node, since some nodes may be down, and other new
nodes may not be contacted. However, we expect that the
replication provided by the application should be enough
to tolerate such inconsistencies (which we can see as being
similar to node failures).

The other scenario is when the application just intends to
contact the exact responsible (and not just one of the repli-
cas). In this case, the send primitive will not specify k,
but it may fail to contact the responsible node (e.g., if a new
responsible has recently joined and the full information ta-
ble did not reflect this). To address this, the node that is
contacted by send forwards the message using the same
procedure (since it knows nodes closer to the key). Note
that even if this indirection is required, this is likely to be
faster than structured routing. In the worst case, if send
fails to reach the responsible node, we can fall back to the
traditional route primitive.

Messages distributed with broadcast are also sent
through the structured overlay using a mechanism similar
to constrained flooding [2]. A node wishing to broadcast
a message makes each node in its routing table responsible
for distributing the message to all nodes that share its prefix.
When all the descendants of a given node are contained in
its leaf set, the message is delivered directly to them, and
routing stops. The depth parameter can be used to control
the maximum number of nodes that may receive the mes-
sage, thus avoiding flooding the network. A broadcast with
depth D is accomplished by only broadcasting the message
to the first D lines in the routing table, decreasing D at each
hop. This way, the 2bD nodes reached are uniformly dis-
tributed in the identifier space, while at the same time being
amongst the nodes closest to the originating node, accord-
ing to the proximity metric.

4.4. Join and Reconnect Protocols

When a node arrives, it must initialize all relevant state
and let others know he joined.

The first steps of the join protocol are very similar to
Pastry’s: The incoming node asks a known overlay member
to route to the id of the incoming node, and the contents
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of the structured tables (routing table and leaf set) of the
intermediate nodes that are contacted are used to initialize
the structured tables of the incoming node.

At this point, the full information table is now either
empty, if the node is joining the overlay, or possibly out-
dated, if the node is reconnecting. Also, the system nodes
do not know of the existence of the joining node.

Although this does not affect the system’s correctness,
it affects the performance of the joining node, and the la-
tency of direct queries that should reach the joining node.
To address this, we need to disseminate the join informa-
tion to the remaining system nodes, and the joining node
must gather the full membership information.

The protocol for disseminating the information about the
node join closely mimics the broadcast primitive. Rout-
ing table entries are contacted and made responsible for in-
forming nodes that share their prefixes about the join. A
node should, however, locally terminate the routing of such
messages if it determines the joining node is already present
in his full information table. Also, when a node finally de-
livers the join messages to nodes in its leaf set (as per the
broadcast protocol), or when it decides to terminate fur-
ther routing, it should report back to the joining node. This
report contains information about all nodes that are leaves
in the broadcast tree, and allows the joining node to gather
complete membership information incrementally.

Reconnecting nodes must only download the updates
that occurred while they were offline. This can be done
efficiently using Merkle trees [15] to determine the missing
information.

Note that, since correction is guaranteed by leaf sets and
the normal routing mechanisms, all these messages are non-
urgent, and can be piggybacked on Pastry maintenance traf-
fic to reduce IP level overhead.

4.5. Leave and Depart Protocols

When a node leaves the system permanently (e.g., when
the Pastel application is uninstalled) it should use the
broadcast primitive to transmit a special depart mes-
sage. Again, this message is not urgent and can be pig-
gybacked on Pastry maintenance traffic.

When a node fails without warning, or otherwise tran-
siently abandons the system, this is quickly noted by the
members of its leaf set who will evict this node from that
set. These nodes then start a timer with time T plus some
small random value. If the node shows no activity before the
first of these timers expires, the node whose timer expired
first will broadcast the special depart message on behalf of
the departed node.

Upon receiving a depart message for a given node, all
information about this node should be deleted, including in-
formation present in the full information table, and pending

timers related to that node.
Again, we stress that this leads to a significant fraction

of unreachable nodes in the full information table of any
give node, but we leave the solution of this problem to the
higher level layers, using replication (and waiting for a re-
ply from any replica) or by redirecting send requests to
another nearby neighbor.

5. Evaluation

This section demonstrates the benefits of using Pastel
through simulation. Our evaluation tries to answer the fol-
lowing two main questions. First, we tried to determine the
overhead of using Pastel when compared to a small-state
routing protocol like Pastry. We measured the overhead in
terms of the additional bandwidth required to use Pastel,
since the overhead in terms of memory usage is relatively
small (as we explained in Section 4.2) and other resources
such as file descriptors are not problematic if UDP transport
is used. The second question we tried to answer was how
effective Pastel is, in particular how many lookups it can
resolve more efficiently by contacting the responsible node
directly.

5.1. Experimental Setup

This evaluation uses an implementation of Pastel in
p2psim [17], a discrete-event packet level simulator targeted
at the evaluation of peer-to-peer protocols.

The simulations ran for 4 hours of simulated time, of
which only the last 3 hours are recorded to allow for the
system to stabilize. The simulator periodically generates
join, part and lookup events, that follow exponential distri-
butions. The average time between joins and parts is 1 hour,
and the average time between lookups is 1 minute.

We used three topologies - with 1024, 1740 and 3000
nodes. The 1740 nodes topology models a real network as
described in [10]. The 1024 nodes topology corresponds
to a sample of nodes taken from the 1740 nodes topology,
and the 3000 nodes topology is a random euclidean topol-
ogy designed to approximate the other two in terms of the
average round trip time.

We parametrized Pastry according to values suggested
in the original paper[22]. In particular, we started by set-
ting b = 4. The size of the leaf set is always L = 2b as in
Pastry, and for the replication factor we used k = L/2 + 1
which is the highest possible value for which every replica
is guaranteed to know every other replica.

5.2. Bandwidth

Our first simulations compare Pastel with Pastry in terms
of bandwidth. We compared the average bandwidth con-
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Figure 1. Bandwidth of Pastry and Pastel, with b = 4,
L = 16 and k = 9 (T = 1h)

sumed by maintenance traffic by every node in the system
during the interval when measurements were taken.

Figure 1 shows that Pastel adds some traffic to man-
age membership changes. This traffic grows linearly with
N, which is what can be expected in a system that keeps
full membership information, since the number of member-
ship changes will also grow linearly, and each membership
change implies a constant amount of bandwidth consump-
tion at each node (on average, receiving and sending one
message that describes the membership change). However,
even for a system with thousands of nodes, this bandwidth
consumption is quite modest, reaching a total of only 30
bytes/second/node in a 3000 node system. This shows that
our design is well-suited for systems of this order of partic-
ipation, and will probably scale well to systems with tens of
thousands of nodes (or even a few hundreds of thousands).

In Figure 2 we see similar results for a smaller b (the pa-
rameter that defines the base of the digits used in the rout-
ing protocol). We can see that bandwidth costs in general
are reduced. Reducing b does not negatively impact Pas-
tel’s lookup performance due to its full information system,
and it can be argued that a smaller b can actually be benefi-
cial for applications that take advantage of longer multi-hop
paths to distribute load.

Figure 2. Bandwidth of Pastry and Pastel, with b = 3,
L = 8 and k = 5 (T = 1h)

5.3. Lookups

The next set of experiments examine the efficiency of
full information lookups in Pastel. The gathered data corre-
sponds to the anycast to any one replica: the lookup mes-
sage is sent in parallel to all the replicas, and the first good
answer is accepted.

Figure 3 shows that the percentage of lookups satisfied
in the first hop is between 50 and 60%. This already repre-
sents an improvement over Pastry, that for the same network
sizes and with b = 3 requires an average of 3 hops for each
lookup. Also note that in Pastel, when a one hop lookup
fails, the algorithm falls back to a Pastry lookup. Therefore
in the remainder of the cases we can get a performance that
is comparable to Pastry.

However, we believe we can improve Pastel further to get
the ratio of successful one hop lookups above 90%, a result
that was achieved by the One Hop overlay [11], which uses
a set of static trees to distribute all join and leave events.

To understand the causes of failed lookups, we investi-
gated how full membership information was being gathered
at each node, how many of those nodes are still live, and
how representative are those live nodes of all the live nodes
in the system. As can be seen in Figure 4, the percentage
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Figure 3. Percentage of lookups satisfied in one hop,with
L = 2b and k = L/2+1 (T = 1h)

Figure 4. “Quality” of the full information tables, with
T = 1h (b = 4, L = 16 and k = 9)

of live nodes in the full information tables remains approx-
imately constant with network growth. On the other hand,
the representativity of those nodes when compared to the
entire system reduces with network growth. This explains
why lookups are less efficient on larger networks.

Figure 4 can also be read the following way. The first
column represents the probability of a given node in our full
information tables being alive when we try to contact him;
the second column represents the probability that given a
random identifier we know the node responsible for it.

We have recently solved this problem in an implementa-
tion of Pastel that runs outside of the simulator. This imple-
mentation is described in a separate thesis [6] and we omit
its presentation due to space constrains. In short, the prob-
lem with the previous system was that, as can be seen in
Figure 4, the system lacks any knowledge of a significant
share of system nodes (up to around 40% in some tests).
This issue was tracked down to the unreliability of the cho-

Figure 5. “Quality” of the full information tables, with
T = 30min (b = 4, L = 16 and k = 9)

sen broadcast protocol, and moving to the more reliable ver-
sion of that protocol presented in [5] solves this. The results
from evaluating our implementation show that this solution
is effective, causing the ratio of successful one hop lookups
to be higher than 95%, and the average number of hops to
be as low as 1.05 hops.

5.4. Delayed Response to Unreachability

To understand the impact of having a delayed response to
unreachability (i.e., waiting before we declare an unreach-
able node to be removed from the system) on the quality of
the full information table we tried halving the time T that
we wait before announcing the departure of a node. As Fig-
ure 5 shows, varying T contributes to improve the percent-
age of live nodes in tables (the first column). On the other
hand, it also contributes to lower the ratio of the second col-
umn, which makes sense since nodes evicted from the full
information table may return.

5.5. Replication Factors

We tried to analyze the effect of increasing replication
factors in the quality of lookups. In Figure 6 we see that
increasing k gains us a little under 10% on the ratio of suc-
cessful one hop lookups. However, given the large portion
of unknown nodes, there is a limit to how successful this
can be.

From this analysis we gather that the best way to improve
lookup efficiency is to improve the way joins are handled,
which will cause less nodes to be unknown to other nodes.
In particular, the broadcast primitive we used to dissem-
inate joins did not make sure messages were delivered to all
live nodes (this limitation was also noted by other authors
[5]). As mentioned, the latest implementation of Pastel [6]
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Figure 6. Percentage of lookups satisfied in one hop,
with L = 2b+1 and k = L/2+1 (T = 1h)

solves this issue.

6. Related Work

Our work builds on existing routing protocols for peer-
to-peer overlays. Initial proposals (like Chord [25], Pas-
try [22], Tapestry [12], or CAN [19]) require multiple rout-
ing hops (typicallyO(logN)) to perform a lookup. More re-
cent proposals (like One Hop [11], Beehive [18], or Accor-
dion [14]) have tried to increase the amount of routing state
maintained by each node to improve lookup performance.
The side effect of these proposals is that the new overlays
are not well-suited for applications like peer-to-peer multi-
cast [3, 27] or anycast [4] that exploit the topology formed
by the multi-hop lookup paths. Pastel improves on the for-
mer group of overlays by achieving a better lookup perfor-
mance of a single hop in most lookups. Furthermore, Pas-
tel improves on the more recent proposals with increased
routing state by also supporting O(logN) lookups that en-
able the deployment of “routing” applications like multi-
cast. Furthermore, we improve on the other algorithm that
provides one hop lookups [11] since OneHop uses a set of
static distribution trees to disseminate join and leave events,
which leads to load imbalance at the nodes that are closer to
the roots. Our proposal for using broadcast distributes the
load uniformly among the system nodes.

Accordion [14] proposes a system that adapts the size of
its routing state in order to trade bandwidth for lookup effi-
ciency. Our system proposes a slightly different tradeoff to
achieve reasonable bandwidth consumption. The tradeoff
in Pastel is between bandwidth consumption and the fresh-
ness of the entries in the full information routing table (and,
consequently, the percentage of lookups that complete in a
single hop).

Pastel introduces an API that gives applications the flex-

ibility to choose between multi-hop and single-hop routing.
Most notably, a uniformed key-based routing API was pro-
posed [9] with the goals of facilitating independent inno-
vation in overlay protocols, services, and applications, al-
lowing direct experimental comparisons, and encouraging
application development by third parties.

7. Conclusion

This paper presents Pastel, a truly generic peer-to-peer
overlay that can be used by many applications. Pastel ex-
tends Pastry in order to create a substrate that can support
both fast, few-hop lookups, for direct contact applications,
and slower, multihop lookups, for applications that exploit
the overlay topology.

Pastel’s design demonstrates that synergies exist be-
tween the maintenance of full membership information and
structured routing state, and that, by exploiting them, band-
width and storage costs can be kept low, even for reasonably
sized and dynamic systems.

We implemented Pastel in a discrete-event packet level
simulator and our results show that Pastel has lookups that
are more efficient than Pastry’s in more than 50% of the
cases, where the responsible node is contacted directly. Fur-
thermore, the bandwidth required by Pastel is modest, even
for systems with thousands of nodes.
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