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Abstract Web applications are increasingly pushing more computation to
the end-user. With the proliferation of the Software-as-a-Service model, ma-
jor Cloud providers assume browsers as the user-agent to access their solu-
tions, taking advantage of recent and powerful Web programming client-side
technologies. These technologies enhance and revamp web pages aesthetics
and interaction mechanics. Unfortunately, they lead to increasing energetic
impact, proportional to the rate of appearance of more sophisticated browser
mechanisms and web content. This work presents GreenBrowsing, which is
composed of i) a Google Chrome extension that manages browser resource
usage and, indirectly, energy impact by employing resource limiting mecha-
nisms on browser tabs and; ii) a Certification sub-system, that ranks URL
and web domains based on web-page induced energy consumption. We show
that GreenBrowsing’s mechanisms can achieve substantial resource reduc-
tion, in terms of energy-inducing resource metrics like CPU usage, memory
usage and variation, up to 80%, for CPU and memory usage. It is also, indi-
rectly and partially, able to reduce bandwidth usage when employing a spe-
cific subset of the mechanisms presented. All this with limited degradation of
user-experience when compared to browsing the web without the extension.

1.1 Introduction

The Software-as-a-Service business model relies largely on the capacity for
the client to execute rich applications inside a Web browser. Parallel to this
trend, the Web 2.0 phenomenon also led to the creation of more capable
technologies, such as HTML5, enhancements in the JavaScript language and
Cascading Style Sheets (CSS), to support blogging platforms, social networks,
and multimedia-streaming sites. As a result, the power consumption in a
single end-user device, derived from web browsing, is two to three orders of
magnitude larger than in all the intermediate routing equipment, found in the
traversed network path [14]. This relation between the different machinery
that operates on the Internet suggests much more could be done regarding
the way web pages are processed and demanded by browsers. To that effect,
two scenarios can be considered:

• either people start browsing the web more responsibly, requesting each
page at a time, lowering the resource consumption on their devices, and
therefore lowering power consumption rates, (which could be perceived
as a loss of convenience and business value); or

• developers become more responsible for the software they develop, mak-
ing energy-efficiency a primary requirement, taking it into account since
they start developing their systems.

The first scenario is an improbable one. It is hard to instigate environ-
mental responsibility and energy-awareness into users minds, mainly because
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the financial and energetic incentives, to make people adopt energy man-
agement strategies, are minor compared to the constant “desire for always
available computing” [10]. In the same study, it is also suggested that “peo-
ple do not necessarily choose their automated power management settings”.
Even though this was a study on energy inefficiencies derived from domes-
tic computer usage, it is reasonable to assume that the same ideas hold in
more specific cases like the one of web browsers. Another hint of the users
indifference towards green software, can be found in several studies [2, 24],
suggesting that energy-awareness must be delegated to the developer, instead
of the user.

Therefore, what power management strategies should be employed in or-
der to provide power consumption reductions, while browsing the web? How
can environmentally concerned users, or even simple-minded users alike, be
assured that certain web pages are greener than others? How can the related
web page processing be used to instigate energy-awareness?

Current solutions lack the context at which they were supposed to perform
power management actions (the web browser runtime state). Moreover, they
typically oversee components metrics, like CPU utilization, disregarding other
important components like main memory, which are also responsible for a rea-
sonable slice of the overall energetic waste [8]. An example is Chameleon [23],
that brings power management to the application level, adjusting the speed
at which applications run. This might be bad design, since users often impose
tight availability constraints on the systems they use. Although techniques
such as computation offloading [20] or edge computing servers [5] could be
used to improve performance and save energy. these techniques are not always
possible to use without hindering the user-experience expected from highly
responsive applications.

The main challenge is to provide mechanisms that effectively reduce the
energy cost when browsing the web, without sacrificing much of the availabil-
ity and performance that is expected. This chapter describes and evaluates
GreenBrowsing, a system that manages browser access to resources, through
the enforcement of different mechanisms that limit resource usage. Green-
Browsing extends the underlying runtime systems and application environ-
ments – web browsers – to monitor, promote and certify resource efficiency
of running applications – web pages, based on a cloud-supported certification
infrastructure.

On the front-end, GreenBrowsing extends Google’s Web Browser [1] to
reach operating system resource management mechanisms in order to enforce
our page-aware energy policies. Chrome embodies a full application execu-
tion environment with JavaScript just-in-time compilation, garbage collec-
tion, thread and process management, and component-oriented architecture.
In essence, a virtual machine for the web. Although it has widespread use,
studies also show that it is one of the most power consuming browsers and,
in general, one of the most power consuming applications [29, 7]. Supported
by a back-end infrastructure running cluster and classification algorithms,
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GreenBrowsing provides means to certify web pages regarding their energy
consumption (both during rending and user-operation), in order to inform
users of the energetic inefficiencies related to different web page visualizations.
We show that our system significantly saves browsing-related resources (up
to 80% for CPU, memory usage and bandwidth usage) while keeping delays
almost unnoticeable for the user.

In summary, in this chapter we present the following contributions:

• Policies to manage browser access to resources, through the enforcement
of different mechanisms that limit resource usage, by taking into account
idle tabs (tabs that are open but not being used).

• An extension to a widely-used browser, Chrome, in order to decrease the
energy costs of browsing, as well as taking advantage of the browser API
to perform energy-related optimizations.

• A cloud-based energy-related web page certification scheme, based on
computational resource consumption, to the end of raising user awareness
in regards to what pages are more resource hungry.

The chapter is organized in the following manner. In Section 1.2, both sem-
inal and state-or-the-art energy-reduction systems are surveyed along with
energy-related certification systems. In Section 1.3, the architectural choices
and the algorithms relative to this work will be described, for both the power
management extension and the certification sub-system. Section 1.4 explains
the details accounting for platform specific problems and how they were over-
come. In Section 1.5, the evaluation methodology will be presented, as well
as the evaluation testing done in regards to the resource reduction achieved
and user-perceived latency impact. To conclude, Section 1.6 presents final
remarks and directions for future work will be given.

1.2 Related Work

In this section we present several mechanisms, techniques and systems related
to the area of energy-aware web browsing. Section 1.2.1 focus on techniques
to dynamically manage power consumption. Section 1.2.2 presents scheduling
algorithms to reduce energy losses, in multi-task environments. Section 1.2.3
discusses big data and energy analytic systems.

1.2.1 Dynamic Power Management

Dynamic Power Management (DPM) is the ability to reduce power dissipa-
tion, by selectively turning off, or reducing the performance of a system’s
components when they are idle (or partially unexploited) [27]. These reduc-
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tions of power dissipation are typically subject to performance and inherent
quality of service constraints.

Benini et al. [6] establish a fundamental approach to system-level dynamic
power management by providing an high-level architecture, composed by
three main components: the Observer, the Controller and the Policy, (as seen
in Figure 1.1). The latter takes power-management decisions. These decisions
are based on the information gathered and transmitted by the Observer, as
it monitors system activity. The Controller is the component through which
power management decisions are enforced, on behalf of the Policy.

Fig. 1.1 Dynamic Power Management Architecture. As seen in the work of Benini et

al. [6]

In practice, the Observer corresponds to the components that interact
with the OS and other device APIs, gathering system properties like CPU
and memory usage. The controller is the one who engages devices directly
through device drives. The Policy is the component responsible for making
sense from the gathered data – by the Observer – and issue calls to the right
system components – through the Controller.

1.2.1.1 Classification of Dynamic Power Management Systems

The decision criteria that allows for a certain system to be adjusted in terms
of power consumption, with respect to a systems state change, is embodied
in Power Models. Through the enforcement of Power Models, the Policy can
adapt to different workload scenarios, adjusting its decision making mech-
anisms, in order to perform better power management actions. In essence,
Power Models provide a formal description of the conditions that need to be
met, accounting for both system characteristics and other constraints, (like
performance and availability).
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Heuristic Power Models.

The more intuitive approach to provide some means of policy adaptation
is through the establishment of a static set of rules. These rules are based
on common system behaviour and can be implemented as functions, whose
parameters correspond to observations and measurements gathered during
system’s execution. This is the essence of heuristic power models. When
modelling simple systems, under near-always-right assumptions, these might
suffice in providing good power management capabilities.

Stochastic Power Models.

A stochastic model [19] is one that is based on the notion of stochastic process:
set of random variables X(t), as a function of time t, whose values are called
states, and the set of possible values is the state space. In this way, a stochastic
model models a process where the current system’s state depends on previous
states in a non-deterministic way.

Amongst the many types of stochastic models, are the widely used Markov
Models [17]. In these models the Markov Property [25] holds, hence their
name. Intuitively, the Markov Property tells us that given a sequence of N
events, the value of the probability of the nth event happening after some
exact sequence of N − 1 previously observed events is approximately equal
to the value of the probability of the nth event happening after the n− 1th.
This approximation is quite useful, since it just requires the computation of
the probability of a certain event nth, conditioned to the previous n − 1th

one, disregarding all the events observed previously.
In a controlled system, the Markov Model state transitions depend on the

current state and on an action that is applied to the system. Therefore each
state is associated to a certain action. In the context of DPM, it means that
when the system is in a certain state, the Policy will perform the correspond-
ing action over some power consuming components. Of course, to that effect,
there must be some sort of relation amongst the state set and the components
under management, by the Policy.

Typically, the Stochastic Power Models used in Dynamic Power Manage-
ment fall into the Markov Decision Process category. What Markov Decision
Processes (MDP) try to capture is the relation amongst sequences of actions
in a system, and the state transitions that they cause.

Learning Power Models.

”An agent is learning if it improves its performance on future tasks after
making observations about the world” [32]. This proposition is very relevant
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to Dynamic Power Management, because there are some power management
problems to which solutions are difficult to be programmed or even devised,
due to the complexity of the systems at hand. In this way, the Policy can
be conceived as an agent that learns a new Power Model from the data it
gathers and actions it performs in run-time. This is why Machine Learning
Policies tend to be both Power Model and System Model free, since they
learn Power Models dynamically and they might not require any specific
system information, in order to execute. They also tend to perform worse
than policies that employ Heuristic models, though.

One particular type of learning process is Reinforced Learning (RL). In this
case, the agent learns from a series of reinforcements: rewards or punishments.
No direct consequence of the agent actions is observed, even though some
feedback is provided in the form of hints, useful for the agent to reason on
how it should operate.

It is often desirable to conceive Dynamic Power Management Policies that
perform actions on a trial-and-error basis, learning from good and bad deci-
sions. Hence, they can be designed as Reinforced Learning agents. One com-
mon technique of Reinforced Learning is Q-Learning [36] (QL). Q-learning is
designed to find stochastic policies, that follow the model of Markov Decision
Processes (MDP). This technique is an iterative process with feedback from
the previous iterations. At each step of interaction with the environment, the
agent observes the environment and issues an action based on the system
state. By performing the action, the system moves from one state to another.
Based on a value function, the agent decides which action should be taken,
given the state the system is in, to achieve the minimum long-term penalties.
As it is an iterative process, some initial numeral for the value function must
be assumed, in order to start the algorithm.

To construct a Markov Decision Processes through Q-Learning, two ques-
tions need to be answered: 1) What are the states that compose the state-
space? 2) How to formulate cost function, that depends both on the actions
taken and states transited to, from the observed information?

System Models.

As shown in the particular cases of Heuristic and Stochastic models, power
models often require information regarding the different power states in which
systems can be. More precisely, it is often desirable to know how the power
state transitions influence performance and the power consumption of sys-
tems. To that end, Power Models are often based on System Models.

System models are abstract constructs that describe how a system operates
and prescribe functionality and interactions amongst different system com-
ponents. They provide a basic framework of system behaviour, facilitating
the conception of suitable power models.
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An example of a System Model is the one of Service Requester and Service
Provider, (SRSP in short). These systems are composed by four components:
a Power Manager (PM), a Service Provider, (SP), a Service Requester, (SR),
and a Service Request Queue, (SQ). The idea is such that:

• the Service Requester sends requests to the Service Provider;
• the requests are enqueued in the Service Request Queue;
• if the queue of the Service Provider is empty, then it is in idle mode;
• if the queue of the Service Provider is not empty, then it is not in idle

mode;
• the PM is able to monitor service requests, and conclude the mode of the

Service Provider;

Adaptation.

Power models can be devised statically, before the execution of the policy, or
can be dynamically adapted, given the history that is maintained, in order to
perfect the model, itself.

This is practical because systems workload changes over time, due to the
number and type of applications running, users use and misuse of applica-
tions and other variable concerns that lead to chaotic and, sometimes, un-
predictable power dissipation scenarios. In this way, adapted power models
can be employed by policies, changing the criteria by which components are
put to sleep or have their performance reduced.

Logically, every policy that employs machine learning techniques to devise
its power model is an adaptable policy. Heuristic and Stochastic models can
also be adapted in run-time, by any means other than Machine Learning. One
limitation of a dynamically generated power model is that it incurs in addi-
tional overheads. This is sometimes problematic, especially if the adaptation
is computationally intensive or when there are tight performance constraints.

Synchronization.

The way the Policy communicates with the Observer and the Controller is a
determining factor on how well the Dynamic Power Manager effectively helps
to reduce the power consumption of a system’s components. Therefore, it is
relevant to classify a Policy regarding its communication synchrony, towards
the other two DPM components, as synchronous or asynchronous. Typically,
asynchronous policies perform better than their counterparts, since they do
not incur in overheads as substantial as synchronous policies, by busily wait-
ing for the observer’s responses or the controller’s actions to succeed. There-
fore, they do not miss as many system events that can be relevant to the act of
power management and operate in parallel with the Observer and Controller,
enhancing performance.
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Power Reduction Technique.

Policies can enforce the reduction of power consumption, according to dif-
ferent technique types. Either by selectively putting system’s components to
sleep or by reducing the performance of those same components. The notion
of sleep state will depend of the system that is being managed. One common
way of achieving lower power consumption through performance reductions
is through Dynamic Voltage and Frequency Scaling. DVFS [44, 13] allows
the voltage of certain hardware components or the clock frequency of CPUs
to be decreased, trading performance for energy. Current architectures pro-
vide mechanisms that allow direct access to system components, for DVFS
purposes.

Policy Optimality.

Policy classification can be done with respect to optimality. Benini et al. [6]
also point out that observation is indeed essential for devising good policies,
i.e., it is strictly necessary to gather system data and adjust policy decisions
in run-time. It is not sufficient to greedily put components to sleep as soon
as they are idle. There are trade-offs involved that need to be considered.
Namely: 1) in case of multiple sleep states, the Dynamic Power Management
System should choose one sleep state over the others and; 2) since transi-
tions to sleep-mode and back to active-mode also have a performance cost
and inherent overhead, the DPM System should guarantee that the state
transitions actually reduce power, compromising performance just up to an
acceptable level. This leads to the problem of Policy Optimization, which is
the one of choosing a Policy that minimizes power consumption, while un-
der performance constraints, (or vice-versa), based on certain usage patterns.
Such a policy is called an Optimal Policy.

1.2.1.2 Relevant Dynamic Power Management Solutions.

In the work by Qiu et al. [30], the authors describe the problem of DPM as a
continuous-time Markov Decision Process, applied to a SRSP system model.
Qiu et al. propose a Continuous Time Process and included the notion of idle
and busy states of the Service Provider (SP). This is accomplished by adding
a transfer state to the Service Request Queue (SQ), to represent the periods
when the SP is busy, (since the SP accesses directly the SQ).

On each iteration, a new policy is generated consisting on the cost of
performing a sequence of actions, whose probability is weighted and summed
to the delay cost of transiting from one system state to another (the actions
could be, for instance to put providers to sleep or wake them up). If the policy
is optimal under the performance constraints imposed (an upper-bound to
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the cost function described), it is put in practice. Otherwise, a new iteration
of the algorithm is performed, in order to adjust the sequence of actions that
are to be made, and the respective delay costs state transitions.

In the work by Gerards et al. [13], the authors prove in a theoretical fashion
that in order to find an optimal schedule for a set of tasks it is necessary to
consider both DPM and DVFS, instead of just maximizing idle periods length
or minimizing clock frequencies independently. They consider a system model
of a number of periodic tasks, in which each of them is invoked the same
number of times. The authors conclude that it is best to either start each
invocation as soon as possible or as late as possible, being this rationale used
to find a globally optimal schedule that minimizes the energy consumption
using DPM, for frame-based systems.

In the work by He et al. [15], it is presented a simulated annealing (SA)
based heuristic algorithm to minimize the energy consumption of hard real-
time systems (real-time system where deadlines must be met) on cluster-
based multi-core platforms. It is also proposed a technique that allows the
power management algorithm to be executed in an online fashion, exploring
the static and dynamic slack (times of idleness, or amount of time left until
a new task is scheduled, during job execution).

The system model follows a classic real-time task model, since this solu-
tion is intended for multi-core systems. In this way, the system comprehends
a task set, where each task corresponds to a pair of its worst case execution
time and the deadline (equal to the period of the job the task is executing).
The main idea behind SA is to iteratively improve the solution by investigat-
ing the neighbour solutions, generated based on penalty and reward values
obtained from the solution of the current iteration. If the number of iterations
is sufficiently large, an optimal schedule of tasks can be found.

Shen et al. propose an approach [36] to dynamic power management using
Reinforced Learning, specifically the Q-Learning algorithm. Even though QL
can be applied as a model-free technique, the system under management is
known before-hand, which allows for the enhancement of the QL algorithm.
In this work, they propose a solution to the management of peripheral de-
vices. The policy chosen will consider states that minimize the delay cost at
each state and expected average power wasted, given the observations it has
made, over the time the algorithm has been executing, while learning from
its decisions and maximizing their quality. After a certain set-up time, the
optimal policy can be found.

In the work of Wang et al. [43] the authors propose the use of Temporal
Difference (TD) learning for Semi-Markov Decision Process (SMDP), as a
power model-free technique, to solve the system-level DPM problem. Tem-
poral Difference learning is a type of Reinforcement Learning. The system is
modelled as a SRSP model. Temporal Difference Learning assumes that the
agent-environment interaction system evolves as a stationary SMDP, which
is continuous in time but has a countable number of events. The periods at
which those events occur are known as epochs.
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The key idea is to separate time in decision epochs. At each decision epoch
(corresponding to the SP being in a sleep state) actions are taken, depending
on the state of the SR. At the next decision epoch, the action is evaluated
in order to associate a value to the action taken previously. This will allow
to choose from a set of power preserving actions, for each state of the SR,
the one with the most beneficial value. Considering the number of requests
from the SR and the total execution time to be fixed, the value function
is equivalent to a combination of the average power consumption and per-
request latency. The relative weight between average power and per-request
latency can be changed, over epochs, to obtain an optimal trade-off curve
between the average power and latency per-request.

In Table 1.1 the different algorithms previously presented are summarized
according to the classification criteria established in the Section 1.2.1.1. The
[-] symbol represents that a certain property is not applicable to a partic-
ular solution or that the authors did not specified anything regarding that
property.

Work PowerModel SystemModel Policy

Optimality Adaptation Synchronization Technique

Qiu et al. MDP SRSP optimal adaptable asynchronous sleep

Gerards et al. - Sporadic Tasks optimal - - DVFS

He et al. Heuristic Real-Time Tasks optimal adaptable - DVFS

Shen et al. Q-Learning Peripheral Devices optimal adaptable asynchronous sleep

Wang et al. TD Learning SRSP optimal adaptable - sleep

Table 1.1 Dynamic Power Management Schemes Classification.

1.2.2 Energy-Aware Scheduling Systems

In the classical definition of scheduling, the goal of the scheduler is to deter-
mine which task, thread or process, should be executed, according to some
notion of priority. The idea is to optimize and take the most of CPU utiliza-
tion.

Energy-aware scheduling is the problem of assigning tasks to one or more
cores, so that performance and energy objectives are simultaneously met [35].
In this way, the goal of energy-aware scheduling differs from the one of
“vanilla” scheduling, since it is intended to solve a multi-objective optimiza-
tion problem, that comprehends both performance and energy.

Classic techniques include the First-Come-First-Served (FCFS) scheduling
algorithm [46], where jobs are executed according to the order of their arrival
time, to a waiting queue. The major disadvantage of this algorithm is the fact
that large jobs greatly delay the execution of the next jobs to execute. This
situation is called convoy effect. The Round Robin scheduling [40] asserts to
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each job a time-slice where it can run. Finding the proper value for the time-
slices might be challenging to meet performance constraints. Even more if it
is intended to achieve mutually performance and power optimization. Earliest
Deadline First [16] is a dynamic scheduling algorithm where tasks are placed
in a priority queue, such that whenever a scheduling event occurs the queue
will be searched for the process closest to its deadline, to be scheduled to
execution. Because the set of processes that will miss deadlines is largely
unpredictable, it is often not a suitable solution to real-time systems.

Energy-aware scheduling impacts on several levels of the system stack. In
the work of Kamga et al. [18], they propose a solution where they extend
Xen’s default Virtual Machine scheduler – Credit. The goals are to: i) induce
power reduction in the execution of several consolidated VMs while; ii) re-
specting the agreed Service Level Agreement (SLA) – maintaining acceptable
levels of performance. The extension of the Credit scheduler is comprised of
two modules: monitoring module and cap control module. At each tick, the
monitoring module gathers the current CPU load for each VM and then com-
putes the optimal frequency to which the CPU should be set to, according to
the total VM load and the ratio between current and the maximum frequency.
After that, the cap control module re-calculates new cap values for each VM,
adjusting each VM CPU share to the fair percentage, taking into account the
CPU load of each VM. In this way, it is possible to redistribute unused CPU
cycles from one idle or less active VM to another, while minimizing CPU
frequency to save energy, respecting the SLAs imposed.

Yan et al. propose an approach [46] where they introduce a job scheduling
mechanism that takes the variation of electricity price into consideration as
a way to make better decisions of the timing of scheduling jobs with diverse
power profiles, since electricity price is dynamically changing within a day and
High Performance Computing (HPC) jobs have distinct power consumption
profiles.

In this approach the scheduling system is composed by three components:
a waiting queue, a scheduling window and a scheduling policy. The waiting
queue is where jobs are stored in order to be processed by the HPC system.
Rather than allocating jobs one by one from the front of the wait queue, the
algorithm allocates a window of jobs. The selection of jobs into the window is
based on certain user centric metrics, such as job fairness while the allocation
of these jobs onto system resources is determined by certain system-centric
metrics such as system utilization and energy consumption. By doing so, it is
possible to balance different metrics, representing both user satisfaction and
system performance.

In the work of Datta et al. [11], the authors present two scheduling al-
gorithms that address the utilization of homogeneous CPUs, operating at
different frequencies, in order to lower the global power budget in a multi-
processor system. By using cache miss and context switch-CPU migration
indexes, the algorithms are able to exploit the increased performance associ-
ated with switching more computationally intensive tasks to higher frequency
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cores, without suffering from the performance losses associated with cache
coherence and context switching overhead. The algorithm assigns static and
dynamic priorities to each task. During the schedule stage, the algorithm
moves computationally intensive tasks, that perform slower, to a higher fre-
quency core or vice-versa, based on the number of context switches (or cache
misses depending on which of the two algorithms is chosen) and their priority.

1.2.3 Energy-related Certification and Analytics on the
Cloud

In this section we start by analysing the current solutions that assign some
sort of energetic rating to computational systems (Section 1.2.3.1). We then
move to the cloud and big data systems domain (Sections 1.2.3.2 and 1.2.3.3)
in order to study the relevant work, that will give us insight on how to
incorporate an energy-related certification sub-system into GreenBrowsing,
following a cloud-based approach.

1.2.3.1 Energy-related Certification Computational Systems.

To our knowledge, there is no considerable work focusing on the energy-
related certification of web pages. There is, however, some work that tries to
rationalize and quantify the energy consumption of devices and software, for
user visualization purposes.

Siebra et al. propose a scheme [37] to certify mobile devices, regarding their
energetic performance. The evaluation is done based on mobile operations
(voice call, Internet browsing, message services) and temporal delays between
them. Each test case has an energy threshold that cannot be surpassed. If it is,
then the mobile device under evaluation is not considered to be green. Amsel
et al. developed a tool – GreenTracker [3] – that aims at encouraging users to
use software systems that are the most environmentally sustainable. They do
this by collecting information about the computer’s CPU and by comparing
software systems in different classes of software (e.g. browsers are compared
with other browsers), based on energy consumption. When all the systems
in one class have been tested, Green Tracker creates a chart comparing the
CPUs across all the software systems.

Camps et al. propose a solution [9] where a classification of web sites
depending of their downloadable content is provided to users, making them
aware of the web session costs. The classification is done statistically, by
computing: i) the average size of objects embedded on pages; ii) the rate
flow and; iii) the distance from the web browser to the servers. The energy
cost should be displayed to final user: this, from the authors perspective, will
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allow people to make smarter decisions on how to better manage their energy
consumption in their web session.

From these three solutions, the most related to GreenBrowsing is, in fact,
the solution presented by Camps et al. However, some disadvantageous char-
acteristics make it less attractive than GreenBrowsing, in particular the fact
that it only takes into account the downloadable content of web pages, disre-
garding important and predominant metrics such as how heavy the page is in
terms of CPU, memory and I/O performance while rendering and executing
JavaScript code. Moreover, all of the required statistical processing is done
on the client side of the application, which might turn out to be a dominant
overhead, leading to high resource usage and consequent energy consumption.

1.2.3.2 Classes of Big Data Analytics System.

There is a big variability in terms of Big Data systems that deal with energy
data. In this section attention will be given to systems that gather home
energy counters for auditing, analysis, and automation purposes.

Features.

Singh et al. [39] identifies a number of features that can be used to classify
a system, regarding its ability to aggregate data from multiple sources and
to ubiquitously control data accesses and sharing (from any device and from
anywhere).

• Consolidation: To allow a single view into multiple data streams and
cross-correlation between different time series, the system should auto-
matically consolidate energy usage data from multiple sources.

• Durability: To allow analysis of usage history, a consumer’s energy data
should be always available, irrespective of its time of origin.

• Portability: To prevent lock-in to a single provider, data and computation
should be portable to different cloud providers.

• Privacy: To preserve privacy, the system should allow a consumer to
determine which other entities can access the data, and at what level of
granularity, or employ mechanisms that preserve consumers privacy.

• Flexibility: The system should allow consumers a free choice of analytic
algorithms.

• Integrity: The system should ensure that a consumer’s energy data have
not been tampered with by a third party.

• Scalability: The system should scale to large numbers of consumers and
large quantities of time series data.

• Extensibility: It should be possible to add more data sources and analytic
algorithms to the system.
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• Performance: Data analysis times and access latencies should be mini-
mized.

• Universal Access: Consumers should be able to get real-time access to
their data on their Internet-enabled mobile devices.

Design Rationale.

At the highest abstraction level, a system’s architecture can be divided into
the Data Store (D) components and the Application Runtime (AR) com-
ponents, that access the data store, and perform the execution of analytic
algorithms [39]. If we also consider that the system is comprised by two
”endpoints” – one residing locally, at the client-side of the system and other
residing remotely – three scenarios for the design of a system are possible:

• Local-DataStore-Local-Runtime (LDLR) - Both the Data Store and ap-
plication Runtime are placed at the client end of the system. There is no
remote end.

• Local-DataStore-Remote-Runtime (LDRR) - The Data Store is placed at
the client side while the application Runtime is executed remotely.

• Remote-DataStore-Remote-Runtime (RDRR) - Both the Data Store and
application Runtime are placed in the component of the system that
operates remotely.

The main disadvantage of the LDLR design is that the application Run-
time executes on the client side of the system, which can compromise system
performance, due to the computationally intensiveness of the AR execution.

The LDRR design tries to solve the LDLR disadvantage by moving the
application runtime to the component of the system that operates remotely.
However, as it also happens in the case of the LDLR design, the Consolidation
feature is harder to attain, since in order to integrate data from various
sources into the AR functions, this would incur in greater complexity of the
overall system management.

A RDRR design might releases the client-side of the application from the
store and application runtime totally, providing a more lightweight approach
to the client-end of the system than the LDLR and LDRR designs. However,
by moving the Data Store to the remote end of the system, less control over
personal data follows, because the granularity at which users can establish
access permissions to their energetic data is greatly decreased. This intro-
duces privacy concerns, since certain energy usage patterns might lead to the
disclosure of personal habits the users do not intend to make public.
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Business Rationale.

This aspect reveals the purpose of the system, which can be classified as a
Consumer-Centric system or an Utility-Centric one. The latter emphasizes
on the usage of energy data by the system, in order to provide utility plan-
ning and operation services such as customer billing and home energy waste
visualization [39]. On the other hand, consumer-centric approaches empha-
size consumer preferences regarding the way their data are handled [42], by
integrating their preferences in the decision-making of the services provided.

1.2.3.3 Relevant Energy-related Big Data Analytics Systems.

In the work of Lachut et al. [21], they present the design of a system for
comprehensive home energy measurement with the intent of automating the
process of adapting energy demand to meet supply. They do this by mea-
suring how the energy consumption is broken down by each appliance, on
house, instead of measuring the overall energetic waste of all appliances or
just at individual devices. Instead of having one device measuring the energy
consumed by each appliance, which might be considered intrusive, the au-
thors state that only minimal collections of energy-related data need to be
gathered, in order to measure the actual energy wasted at each appliance.
These devices will provide the necessary metrics in order to statistically de-
termine the energy consumption of each appliance, using a technique based
on a Markov Model.

In the work of Lee et al. [22], the authors propose an analytical tool that
can assist in assessing, benchmarking, diagnosing, tracking, forecasting, sim-
ulating and optimizing the energy consumption in buildings. This tool is
deployed in the cloud, in a Software-as-a-Service fashion, performing compu-
tationally intensive statistical operations on the data it gathers, and allowing
for the visualization of energy-related data of users houses. The visualization
is done at costumers devices through a dashboard application that summa-
rizes the data outputted by the tool running in the cloud, alleviating any
burden to the customer with regard to software maintenance, ongoing oper-
ation and support.

In the work of Singh et al. [39], it is presented a system that allows con-
sumers to control the access to their energy usage data, from different devices
on his/her house, and have it analysed on the cloud, using algorithms of their
choice. The analysis of their energy-related data can be done by any third
party application in a privacy preserving fashion. In order to allow other
applications to access to the data stored in the cloud, such as third party ap-
plications that can provide different analysis algorithms, privacy protection
mechanisms (PPMs) are enforced. This PPMs pre-process data by employ-
ing mechanisms like noise addition to the data transfered out of the cloud to
these applications.
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In the work of Balaji et al. [4], the authors present a system called
ZonePAC, for the energy measurement of houses with different types of clima-
tization technologies (e.g. Variable Air Volume type heating, ventilation, air
conditioning) and energy consumption feedback provision to the house occu-
pants through a web application. The system makes use of existing sensors
present on the deployed physical infrastructure of each building to communi-
cate energy consumption counters from the sensors to a building management
web service, called BuildingDepot [45]. It relies on a communication proto-
col for building automation and control networks, BACnet. The network is
formed of sensors and the BACnet Connector that communicate over a BAC-
net protocol.

In the work of Oliner et al. [26], the authors propose Carat, a system for
diagnosing energetic anomalies on mobile devices. This system consists in a
client application, running on a client device, to send intermittent, coarse-
grained measurements to a server, which correlates energy use with client
properties like the running applications, device model, and operating system.
The analysis quantifies the error and confidence associated with a diagnosis,
suggests actions the user could take to improve battery life, and projects the
amount of improvement. The server is deployed in a cloud setting, where
the samples from client devices are analysed, aggregating the consumption
of various mobile devices.

Table 1.2 presents the features that each system has. [*] means that a
partial solution is given. [-] means that the authors give no information re-
garding that particular feature. Table 1.3 exhibits the classification for each
system. To represent the fact that the authors gave no information regarding
a specific classification property, the [-] symbol will be used.

Feature Balaji et al. [4] Lachut et al. [21] Lee et al. [22] Oliner et al. [26] Singh et al [39]

Consolidation Yes No Yes Yes Yes

Durability - - - Yes Yes

Portability - - - Yes Yes

Privacy - Yes Yes - Yes

Flexibility No No No No Yes

Integrity - - Yes - *

Scalability - - Yes Yes Yes

Extensibility - - Yes - Yes

Performance - Yes Yes Yes Yes

Universal Access Yes Yes Yes Yes Yes

Table 1.2 Big Data System Features.
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System Energy Data to Visualize Design Rationale Business Rationale

Balaji et al. [4] Home Energy Consumption LDLR Utility-Centric

Lachut et al. [21] Home Energy Consumption RDRR Utility-Centric

Lee et al. [22] Home Energy Consumption RDRR Utility-Centric

Oliner et al. [26] Mobile Device Energy Anomalies RDRR Utility-Centric

Singh et al. [39] Home Energy Consumption RDRR Consumer-Centric

Table 1.3 Big Data System Classification.

1.2.4 Analysis and Discussion

In this section, different energy and software related topics were covered,
in order to understand how could a browser power management solution be
devised. We presented the trade-offs of Dynamic Power Management, in order
to understand the advantages of the different policies presented, as well as
help perceiving the most advantageous situations where one could use those
different policies. In particular, the concept of Dynamic Power Management
Energy-aware scheduling techniques were also discussed because they take
into account not only performance constraints but also energetic ones. The
rationale of energy-aware scheduling is of great interest to the design of a
multi-task architecture. Finally, emphasis was given to the fact that it is
desirable to move expensive and resource intensive computations to a cloud-
based system when it comes to energy evaluation. These remote systems
should be able to process events streams of energy-related counters and give
a response in a timely fashion. The data needed to do these computations
can sometimes disclose private details of users and so it sould be protected.

1.3 An Architecture for Energy-Efficient Browsing

There are two major subsystems that comprise the GreenBrowsing architec-
ture: a Browser Extension that will act at a power manager, limiting browser
access to resources, and a Web Page Certification Back End, to be deployed
as a prototypical big data analytics system.

1.3.1 Browser extension and power management

The main roles of the Browser Extension are to reduce the resource con-
sumption of idle tabs, and send to the Analytics back-end resource-related
data, used to derive energy consumption data, in order to certify web pages
in terms of their energy consumption while being accessed.
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A layered view of the extensions proposed are presented in Figure 1.2.
Observer-Controller-Adapter (OCA) provides interfaces for gathering perfor-
mance counters of each running tab and the process(es). It is also able to
issue commands to reduce tab resource usage through the application of dif-
ferent mechanisms. The Certification FrontEnd sends performance data to
the back end regarding the open web pages, whose result is rendered by the
Certification Renderer. The Policy Enforcer applies the power reduction al-
gorithms and is configured by the Policy Manager. It uses the OCA interface,
to gather performance counters and to issue content adaptation and power
reduction related commands. The Web Page Certifier module will have code
to fetch performance counters, through the OCA. It will also interface with
the Certification Front End to send the counters gathered to the Back End
(for energy-related certification of web pages). Communications with the Cer-
tification Renderer are done to inform the user of each web page certification.

OPERATING SYSTEM

BROWSER

Observer-Controller-Adapter

Policy Enforcer

Certification 
Renderer

Web Page Certifier

Profile Manager

Certification 
Front End

Platform 
Independent

Platform 
Dependent

Browser Extension

Fig. 1.2 Layered View of The Browser Extension.

In terms of components, the execution of Policy Enforcer’s code will be
done in parallel with the control and content adaptation of tabs/pages, by
two different tasks (comprising one or more threads, each). If they were to
be executed sequentially, significant delays could occur in the policy’s com-
ponents execution.

1.3.1.1 Browser-level management policies

We approached the power management problem through simpler heuristics,
that offer a smaller implementation overhead compared to stochastic or ma-
chine learning techniques. This is particularly important to cause the least
possible user-perceived delays, while browsing the web. Two assumptions are
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Data: Windows
Data: Tabs
foreach window in Browser.Windows do

if window is focused then
foreach tab in window.Tabs do

if tab not active then
compute tab resource usage allowance ;
apply resource consumption reduction mechanism ;

else
give unconditional resource consumption allowance to tab ;

end

end

else
foreach tab in window.Tabs do

halt tab’s process ;
end

end

end

Algorithm 1: Tab management algorithm overview.

made, regarding general browsing behaviour, serving as basis to the resource
limiting mechanisms to be considered:

• Last Time Usage. Tabs that were accessed more recently are more
likely to be accessed again and therefore will be less likely to be acted
upon. In this way, the tab management policy will make use of a Least
Recently Used list for tab energy management.

• Active Tab Distance. We also assume that tabs that are closer to the
actual tab opened by the user are more likely to be accessed, therefore
they will have lesser probability of being discarded or subject to resource
constraints.

The pseudo-code at Algorithm 1 summarizes the extension’s behaviour for
managing idle tab resource consumption. There is an initial test where, if a
certain browser window is not focused (i.e. the topmost user-viewed window)
all of the processes that handle its tabs will be halted. In other words, they
will stop executing. On the other hand, if a certain window is focused, each of
its tabs will be acted upon, individually. Firstly, if a certain tab is active (i.e
selected by the user) it can consume as many resources it needs. If a tab is not
active, the maximum resources its process is allowed to use will be limited.
If that tab’s process ever reaches the limits imposed, a certain effect/action
will be cast upon that process. Both the resource type (e.g. CPU usage) and
the expected effects on resource limit violation are mechanism-dependent.

An important aspect that our algorithm considers is the maximum re-
sources allowed for a given tab. Equation 1.1 expresses the resource usage
factor (uf) which is used to set the maximum resource usage (for any re-
source type), by taking into account the distance each idle tab is from the
currently visualized tab, at a given moment, and the last time a certain idle
tab was selected. Considering i as the tab index-distance from a certain tab
to the active tab, within a certain window, p as the least-recently-used index
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relative to tabs within that same window, a as a controllable/user-defined ag-
gressiveness exponent to further intensify reductions, if need be, and where
p >= 1, i >= 1, a >= 0:

uf(i, p, a) =
1

p × ia
(1.1)

The value computed by Equation 1.1 will determine the resources that a
given idle tab can consume, under the influence of any given resource con-
sumption mechanism (e.g. process priority, CPU and memory cap). The in-
tended effect on focused windows’ tabs resource consumption is depicted in
Figure 1.3.

resource usage
limit
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tabnactive
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a = 1
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a = 1
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Fig. 1.3 Effects of tab management algorithm on tab resource consumption.

This model allows the possibility that two tabs exist at the same distance i
from the active tab and still experience different resource usage limits, for the
same value of aggressiveness a, since one of them could have been activated
more recently (holding a smaller value for p). One final remark is that some
idle tabs may share the same process with the active tab. If this happens,
those idle tabs will not be acted upon, since the resource consumption of their
process would also constrain the active tab’s resource usage (and possibly
degrade user experience).
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1.3.1.2 Tab management mechanisms

Many browsers employ a multi-process model so GreenBrowsing has to act di-
rectly upon the process responsible for handling each tab. This allows to take
advantage of some operating system’s capabilities, but also implies that some
of the mechanisms considered will be OS-dependant. The available Green-
Browsing mechanisms used to reduce resource consumption are presented as
follows:

Process Priority Adjustment (prio): If there are x adjustable process
scheduling priorities, ascendantly ordered by scheduling weight (where a value
of x represents the highest priority value and a value of 1 represents the least),
the resulting priority of a certain tab’s process will be given by:

round(uf(i, p, a) × x) (1.2)

The maximum value x for priority will be the one that represents a stan-
dard/normal priority given on process creation, by the operating system
scheduler. Regarding the effect on resource limit violation, there is no con-
crete action taken. The only expectation is for a tab’s process to execute less
often relative to other processes (browser or any other application’s related).

Process CPU Rate Adjustment (cpu): The rate adjustment will be a value
in [0, 100], where 0 represents no process usage allowed, and 100 means the
process may fully utilize the processor, hence the adjustment will be com-
puted as:

round(uf(i, p, a) × 100) (1.3)

If cpu is active, once a tab’s process CPU usage reaches the limit set for
that process, its execution is postponed, running again later, when it is given
the chance to do so, by the Operating System’s scheduler.

Process Memory Limitation (mem): With this mechanism, the maximum
memory allowed for a process will be the maximum committed private mem-
ory up to the time that this mechanism was enforced. The adjusted memory
value will be given by:

round(uf(i, p, a) ×max memory committed) (1.4)

For mem there are two versions of this mechanism, with two different pos-
sible effect outcomes, once a memory limit is reached by a process: i) a Soft
version: the process is halted, and put to a sleep state, returning to execute
once its tab becomes active, or; ii) a Hard version: the process is terminated,
releasing all the resources allocated by it, until then.
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Process Execution Time Limitation (time): In order to limit the duration
a certain tab’s process is allowed to run for, the average time between con-
secutive tab activations will be considered. The resource directly managed
with this mechanism is execution time. The adjustment formula for allowed
process execution time is computed as:

round(uf(i, p, a) × average tab activation time) (1.5)

For time, the effects employed on limit-breaching processes are the same
as with mem, once the time for a tab’s process to execute expires. It will also
wield a Soft and a Hard version.

1.3.1.3 Enforcing limits

Once a certain limit is hit, i.e. the maximum value for a tab to consume was
reached or surpassed, the effects on the tab depend on the type of mecha-
nism employed. The effects expected once limits are violated are described
as follows:

i) If prio is active, there is no concrete action taken, because changing pro-
cess execution priorities is not, in itself, a resource limiting mechanism.
The expected outcome would be, however, for a tab’s process to execute
less often relative to other processes (browser or any other application’s
related). But, indeed, the arbitration of when a tab’s process should be
executed is delegated to the Operating System’s scheduler, entirely.

ii) If cpu is active, once a tab’s process processor usage reaches the limit set
for that process, its execution is postponed, running again later, when it
is given the chance to do so, by the Operating System’s scheduler.

iii) For mem there are two versions of this mechanism, with two different
possible effect outcomes, once a memory limit is reached by a process:

• Soft version: the process is either halted, and put to a sleep state,
returning to execute once its tab becomes active, or

• Hard version: the process is terminated, releasing all the resources
allocated until then.

iv) For time, the effects employed on limit-breaching processes are the same
as with mem, once the time for a tab’s process to execute expires. It will
also wield a Soft and a Hard version.

By combining the four resource adjustment metrics with the effects on
resource usage limit violation, described previously, a total of six mechanisms
are singled out. Table 1.4 summarizes these mechanisms in terms of the metric
that is directly adjusted by the mechanism, the maximum value for resource
limits and action taken on limit violation.
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Model Metric Maximum Resource Value Action on limit
prio cpu usage Normal process priority -
cpu cpu usage 100 % usage postpone execution
mem soft memory usage max memory committed halt execution
mem hard memory usage min memory committed terminate process
time soft execution time avg tab activation time halt execution
time hard execution time avg tab activation time terminate process

Table 1.4 Mechanisms summarized classification.

1.3.2 Certification Back End

The Certification Back End Sub-System has the objective of providing a
clear and meaningful notion of how much energy web pages consume. It is
composed of three main components, as depited on Figure 1.4:

• A Certification Server, comprised of Network Communication tasks
that receives energy-related web page certification requests and forwards
these requests to tasks specialized in the certification of pages themselves
(to avoid service bottlenecks and enhancing the scalability of the sys-
tem regarding the treatment of requests); those are Analytics Certifier
tasks, that do the work of certifying a given page, according to a specific
certification model.

• A Certification Modeller, comprised of Certification Modeller tasks
that adjusts the certification model, having into account all the resource
data sent from the extension subsystem. For performance purposes, this
design emphasizes the usage of specified Worker Tasks to whom parts of
the analytical calculations are mapped to. The results of processing data
at workers are assembled back at the Modeller Task, as soon as they are
ready.

• A Data Store that stores the models used in the certification of pages
and tuples with information relative to the performance counters of each
page;

1.3.2.1 Performance Counters for Energy-related Certification.

The power consumption induced by web pages will be indirectly determined
by some of the performance counters gathered on the Browser Extension. For
each page, the metrics considered will be:

1. CPU usage (in terms of completed clock cycles);
2. Private (main-)memory usage of processes (in Mega-Bytes);
3. Network interface usage (in terms of the bits-per-second), to process and

maintain each page open;
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Fig. 1.4 Certification requests sent from GreenBrowsing users to the Certification Server.

These metrics were chosen because they were proved to be highly related
to power consumption, in different settings ([31], [8], [28]).

The certification is done at the level of the web page and domain, but
could easily be extended to individual subdomains, subtrees of each domain
hierarchy, for instance. Therefore, the information sent from the Extension to
the Certification Back End will be a 5-tuple <id, type, CPU-usage, memory-
usage, network-bandwidth-usage>, where the type entry indicates if the per-
formance counters refer to an URL or domain and the id refers to its textual
representation.

1.3.2.2 Devising Categories and Certifying Pages

Certifying web pages considers the existence of a set of well-defined ranks or
certification categories, which in their totality are all-inclusive to any web-
page, i.e. given a certain web-page it is always possible to associate a energy-
related classification to it. This might not be trivial, since many different
resource usage patterns are expected to be observed while processing web-
pages, due to the variability of web technologies and richness of web content.
This, also because not all resource consumption behaviour inherent to web-
page processing is known.

While devising a certification scheme, one should also consider that the
entities to certify change over time. Web-pages are no different. What might
be considered resource intensive in the present, might be considered accept-
able in the future (or, most likely, the other way around). So, in essence, the
requirements expected for an appropriate certification scheme, in the context
presented, are:

1. Group resource consumption from various sources to ensure all-inclusiveness
of certification categories;
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2. Predict unobserved resource consumption ranges to further ensure com-
pleteness/inclusiveness of certification categories;

3. Dynamically adjust the certification scheme to the changes in web-page
properties, that induce varied resource consumption patterns over time;

To devise certification all-inclusive categories from multiple sources the
Certification Modeller uses a method know as Expectation-Maximization [12].
The basic idea is to cluster the observations recorded into, no less than, 8
categories. This is done in a 3-dimensional (multivariate) random variable
space that comprehends one dimension for the CPU usage, one for the mem-
ory usage and another for network usage. Two different data sets will be used
to compute parameters for two different models – one comprising resource
usage associated with URL and another for web-page domains, being the
URL dataset contained in the domain dataset.

The observations belonging to the multivariate resource consumption ran-
dom variables are assumed to be normally distributed, so Multivariate Gaus-
sian Mixture Models (MGMM) are used to fit the data and to iteratively
train the parameters for 8 random variable’s sub-populations, each one cor-
responding to a cluster. The parameters in question are:

• a 3-dimensional vector comprising the means of each random variable
and

• a 3 × 3 covariance matrix;

After having trained a group of MGMM clusters, a random selection of
trained cluster observations is selected from each cluster. The center of mass
(CM), or centroid, of each sample is computed, afterwards. The resulting
center of mass vector obtained this way, is representative of the category,
identifying it unequivocally, and will be used to certify web-page URL or
domains while running the certification algorithm. In order to qualify a cer-
tain cluster, the vectorial norm of the hypothetical vector space origin to the
center of mass of that cluster will be considered. The greater the norm, the
more resource intensive pages with that norm’s certification category will be
considered to be. This is done once, per trained model.

In order to certify a page’s URL and domain, tasks running at the Certifica-
tion Server fetch the clusters’ centers of mass, of the last trained Certification
Model, from the Data Store. The algorithm to certify a URL/domain’s web-
page with respect to its consumption consists in comparing the Euclidean
distance (d) that goes from each observed resource measurement to the cen-
ter of mass of each cluster. If two or more clusters’ centers of mass are at
the same distance from an observation, the one with the greater norm is
associated with the observation. In the end, the cluster/category that is as-
sociated with more observations, is the final certification category assigned
to the URL/domain.

The certification methodology is described more succinctly in Algorithm 2.
The input consists of a set of n resource consumption values gathered from a
single user device, and a set of k certification categories, previously computed.
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Input: A set O = {O1, O2, . . . , On} of resource consumption values
Input: A set C = {C1, C2, . . . , Ck} of clusters’ centers of mass
Output: A pair 〈s, k〉, where s ∈ {1, k}
S ← {S1, S2}
for i← 1 to n do

min← −∞
α← k
for j ← 1 to k do

distance← d(Oi, Cj)
if distance < min then

min← distance
α← j

end

end
Sα ← Sα + 1

end
s← i, where Si > Sj , ∀〈Si, Sj〉 ∈ S
return 〈s, k〉

Algorithm 2: Certification Algorithm used to score web-page URL and
domains.

1.4 Browser-level Extensions and Certification
Back-End

1.4.1 Browser Extension

The Browser Extension was implemented using a Chrome’s deployment on
the Windows operating system. Since Chrome has very limited support for
process management, namely of its tabs, the Extension needed to be di-
vided in two main entities: (i) The Browser Extension itself, comprised
of JavaScript callbacks and code rather event-oriented, whose execution and
handling is delegated to the Browser, by running from within the Browser
itself as a Google Chrome Extension. (ii) A Background Process (BP)
running natively as a service. Through it, browser processes can be directly
managed by communicating, beforehand, with the extension.

The Extension communicates with the Background Process issuing mechanism-
related commands and in order to allow the latter to keep track of certain
browser state, relevant to the Tab Management Algorithm described at Sec-
tion 1.3.1.2. The browser state-related information passed this way is com-
posed of general tab information such as tab identifiers, tab indexes within
their windows and corresponding process ids. All communications are han-
dled asynchronously by the Background Process each time an event is raised
by the browser, following a certain tab state update. For instance when a tab
is created, or when a tab is activated.

When on Windows, Chrome uses Windows Job Objects to employ part
of its sandboxing constraints. Job Objects are Windows abstractions that
allow the grouping of processes and the enforcement of certain limits and
restrictions over them. This is exactly what is needed in order to implement
the resource limiting mechanisms described at Section 1.3.
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The sandboxing used by Chrome prescribes the association of a single tab
process to a single Job. Knowing that these Job objects are kept at Chrome’s
Kernel Process – i.e. the process that orchestrates all browser activity, from
tab creation and management to resource access – the BP retrieves these jobs
by enumerating all the Windows Kernel Objects present at Chrome’s Kernel
Process, keeping those that correspond to Job Objects. Once all Job Objects
are found, the association of jobs to tab processes is done by calling a Win32
API function. Tab processes are retrieved by querying the browser, through
its JavaScript API. This is done at the Browser Extension which, in turn,
will pass the tab-to-process associations to the BP, where they are associated
with Jobs.

The Tab Management Algorithm described at Section 1.3 will therefore
limit resource usage by acting directly on Jobs. Each mechanism is imple-
mented by exploiting the capabilities of Job Objects. For instance, it is pos-
sible to change process priorities or adjust maximum CPU rates for any given
tab process belonging to a single Job Object. This is accomplished in the cases
of prio and cpu mechanisms.

1.4.2 Certification Back End

Concerning the Back End subsystem, all code was developed on Java. Com-
munication between components is done via the Certification Server Web
API, transporting messages in JSON format.

The Certification Server uses the Netty-socketio framework, to serve
incoming certification requests. This framework is an implementation of
the WebSocket protocol and allows to serve requests efficiently and asyn-
chronously. 1

The Certification Modeller runs as a process with two Java threads. Each
thread computes the model used to certify either URLs or domains. This
is done using a combination of Apache Spark built-in Expectation Maxi-
mization function, for Multivariate Gaussian Mixtures and Apache Commons
Math library, for the sampling of clusters. 2 For storing resource consump-
tion records, coming from the Certification Server, and the model’s centers
of mass, coming from the Certification Modeller, a PostgresSQL database is
deployed at the Data Store. 3

1 https://github.com/mrniko/netty-socketio, visited 22 November 2016.
2 https://spark.apache.org/, visited 22 November 2016.
3 http://www.postgresql.org/, visited 22 November 2016.
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1.5 Evaluation

In order to evaluate GreenBrowsing in a systematic way, tests were scripted
combining sequences of mechanisms with aggressiveness values. The aggres-
siveness values considered will hold values of 1 and 1024, to assess how the
intensification of the limits imposed affects resource usage. A set of typical
web-pages was used, comprising pages of news sites, social networks, sports
sites, mail clients and multimedia-streaming sites, providing a varied web-
page suite.

Scripts were developed to open a set of pages and then navigate through
those pages, gathering resource consumption data. Every time a tab is ter-
minated, due to employing mem hard or time hard, it has its page reloaded
once it becomes active again.

Regarding the testing environment Chrome version was 44.0.2391.0, dev-
channel release. The operating system on which Chrome was installed was
Windows 8.1 Pro – baseline install, no updates. Hardware-wise, the tests were
conducted with machines with Intel R©Core(TM)2 Duo CPU P8700 running
at 2.53GHz, with 4GB of RAM memory.

For understanding how the employment of certain mechanism combina-
tions might affect Latency, browsing habits are simulated through different
tab selection policies. These policies state what is the next tab to activate
(i.e. what page to visualize next): i) round-robin selection to navigate se-
quentially from tab to tab; ii) central tab incidence, where the tabs at the
center of the tab bar will be selected more often, by following a periodic nav-
igation scheme, from the first tab to the last and from the last to the first
one, in a back and forth-fashion; iii) random tab selection where a certain tab
is selected randomly, possibly more than once.

1.5.1 Resource Usage Evaluation

The resource variations induced by prio might not noticeable do to the naked
eye because of the highly variable values of CPU usage rates, over time.
Reductions of 9.92% and 17.56% were recorded, however, being the latter
recorded with an higher value of aggressiveness, as shown in Figure 1.5, in
green.

When applying cpu (Figure 1.5), the reductions in CPU usage are inten-
sified even more when compared with prio, this time holding reductions that
range from 20% to about 47% of CPU time. This seemingly advantage over
prio was expected, since cpu directly adjusts the CPU usage allowed for each
tab’s process, contrary to prio, that associates priorities to a process without
adjusting the maximum value for CPU usage, itself.

Figure 1.6 depicts how applying mem soft and time soft influenced CPU
usage. The first seems to be the most prominent in reducing CPU usage, with
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(a) CPU usage for prio. (b) CPU usage for prio & cpu.

Fig. 1.5 Priority and CPU share mechanisms

(a) CPU usage for mem soft. (b) CPU usage for time soft.

Fig. 1.6 CPU usage when applying memory related mechanisms

(a) Memory usage for mem soft & mem

hard.

(b) Memory usage for time soft & time hard.

Fig. 1.7 Memory restriction mechanisms

80% reductions, while the latter is still successful in doing so, even though to
a lesser extent, achieving close to 70% reductions.

Concerning memory usage, depicted in Figure 1.7, hard mechanisms induce
a substantially lower memory usage, than their soft counterparts, achieving
reductions of 80% to 85%, when compared to mechanisms being all off.

Overall, mem soft and time soft seemed to be the most capable mecha-
nisms, in terms of managing idle tab resource consumption regarding CPU
usage. Even though experiments in Figure 1.7 seem to disprove its effec-
tiveness in reducing memory usage, (since soft mechanisms achieved slight
increases when compared to all off ), it is important to notice how stable
memory consumption was when compared to the memory variations induced
by other mechanisms and all off, over time. If it is assumed that memory
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(a) Latency measurement /

round-robin tab selection

(b) Latency measurement

/ central-tab-incidence
selection

(c) Latency measurement /

random tab selection

Fig. 1.8 Latency measurements for the 3 tab selection policies considered.

variations represent system-wide activity, due to having many system entities
accessing it, and therefore inducing energy consumption rates proportional to
the variations recorded, then soft mechanisms effectively help reduce energy
consumption, by varying the least.

1.5.2 Perceived Delays Evaluation

In order to assess what are the implications in terms of user experience-
significant requirements, Latency was recorded, while running resource con-
sumption tests. Latency, in this context, corresponds to the time period that
goes from the moment the active tab starts loading web-page content to the
moment that content is totally loaded. This notion of latency is useful to
give an idea of how much time is wasted, by enforcing certain mechanisms,
in comparison to others.

Figure 1.8 presents the latencies experienced on average, as rectangles,
for each tab selection policy. Standard deviations correspond to the vertical
lines above rectangles. It is possible to see that latencies for hard mechanisms
were always bigger, on average, when compared to other mechanisms. The
experiments comprising all off, prio and cpu held the smaller latency values,
as expected, since they tamper very little with process functioning, when
compared to other mechanisms (namely the soft and hard ones). It is possible
to observe that soft mechanisms seem to achieve acceptable latencies, when
compared to all off. The exception is when tabs were chosen randomly, where
the latency values are comparable to those recorded for hard processes. The
standard deviations observed are rather high in value. It has to do with
the wide latency-value-ranges recorded since, occasionally, some long periods
of consecutive busy-tab activations were recorded (where the activated tabs
were still processing their pages).
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It seems, therefore, negotiable to apply all mechanisms for resource reduc-
tion purposes, with the exception of hard mechanisms, given the latencies
recorded for them, in most experiments.

1.6 Conclusions

This chapter presented GreenBrowsing, a tab-management solution (imple-
mented as a Google Chrome extension) and a cloud-based energy-related cer-
tification scheme implemented on a separate sub-system. Evaluation shows
substantial resource usage reductions, on energy consumption-related resource
metrics (up to 80% for CPU, 85% for memory usage and 85% for band-
width usage) while preserving acceptable user-perceived delays (unnotice-
able in most cases). All of this when comparing GreenBrowsing-aided web-
navigations with standard navigations.

Regarding future work, more resource reduction mechanisms could be de-
vised in order to account for bandwidth usage, since studies show it plays a
significant part on energy consumption, specially in the case of Wi-Fi enabled
devices. The Back End would benefit from improvements at the Data Store, in
order to improve its scalability when it comes to processing reads and writes
of resource consumption records. Furthermore, we would like to explore how
previous work on differentiated quality-of-service in the cloud [38] could be
combined with declarative policies [41] in order to improve the approach ef-
fectiveness and expressiveness for users. Also relevant is studying how this
work can be combined with providing web based services from community
networks in order to further improve energy effectiveness [34, 33].
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