
Chapter 1

A Taxonomy of Adaptive Resource
Management Mechanisms in Virtual
Machines: Recent Progress and
Challenges

José Simão and Lúıs Veiga
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Abstract Cloud infrastructures make extensive use of hypervisors (e.g. Xen,
ESX), containers (e.g. LXC) and high level virtual machines (e.g. CLR, Java),
broadly known as virtual machine (VM) technologies, to achieve workload
isolation and efficient resource management. Isolation is a static mechanism
that relies on hardware or operating system support to be enforced. Re-
source management is dynamic and VMs must self-adapt or be instructed
to adapt in order to fit their guest’s needs. In this chapter we review the
main approaches for adaptation and monitoring in virtual machines deploy-
ments, their tradeoffs, and their main mechanisms for resource management.
We frame them into an adaptation loop where sensors are monitored (e.g.
page utilization), decisions are made (e.g. if-else rule, proportional-integral-
derivative controller) and actions are performed using actuators (e.g. share
page, change heap size). As is common in systems research, improvement in
one property is accomplished at the expense of some other property. So, we
present a taxonomy that, when applied to different solutions that use or aug-
ment virtual machines, can help visually in determining their similarities and
differences. We analyze adaptability in virtual machines using three seem-
ingly orthogonal characteristics: responsiveness (R), comprehensiveness (C)
and intricateness (I). The process of classification and comparing systems is
detailed and several representative state of the art systems are evaluated.

1.1 Introduction

Cloud computing infrastructures makes extensive use of virtualization tech-
nologies, either at the system or programming language level, providing a
flexible allocation of hardware resources and applying the necessary resource
scheduling to run multi-tenant datacenters [97, 24, 108]. Both system-level
VMs (Sys-VM) and High-level language VMs (HLL-VM) are designed to
promote isolation [87]. All these features are essential to consolidate applica-
tions into a smaller amount of physical servers, saving operational costs and
reducing the carbon footprint of datacenters [18, 95, 34].

Dynamic allocation of resources use different strategies, either aiming to
maximize fairness in the distribution of resources or deliberately favor a given
guest based on past resource consumption and prediction on future resource
demand. Among all resources, CPU [110, 39, 44] and memory [101, 61, 9] are
the two for which a larger body of work can be found. Nevertheless, other
resources, such as the access to I/O operations, have also been analyzed [63,
53, 40].

Most HLL-VMs have only one guest at each time - the application. As
a consequence, in most cases, some resources are monitored not to be par-
titioned but for the runtime to adapt its algorithms to the available en-
vironment. For example, a memory outage could force some of the already
compiled methods to be unloaded, freeing memory to maintain more data res-
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ident. Several systems have been proposed to control system resources usage
in HLL-VMs, most of them targeting the Java runtime (e.g. [31, 19, 84, 22]).
They use different approaches: from making modifications to a standard VM,
or even proposing a new implementation from scratch, to modifications in the
byte codes and hybrid solutions.

In each work, different compromises are made, putting more emphasis
either on the portability of the solution (i.e., not requiring changes to the
VM) or on the portability of the guests (i.e., not requiring changes to the
application source code). In order to do so, VMs, or middlewares augment-
ing their services, can be framed into the well-known adaptation loop [69],
where systems monitor themselves and their context, analyse the incoming
values and detect significant changes, decide how to react, and act to execute
such decisions. In this chapter we group these steps in three distinct phases,
similarly to the adaptability loop of other works in the context of autonomic
systems [7, 58]: i) monitoring, ii) decision, iii) actuation. Monitoring deter-
mines which components of the system (e.g. hardware, VM, application) are
observed. Control and decision take these observations and use them in some
decision strategy to decide what has to be changed. Enforcement deals with
applying the decision to a given component/mechanism of the VM.

However, existing surveys of virtualization technologies (e.g. [14, 55]) tend
to focus on a wide variety of approaches which sometimes results only in an
extensive catalog. One of the first published surveys of research in virtual
machines was presented in 1974 [38]. Goldberg’s work was focused on the
principles, performance and practical issues regarding the design and devel-
opment of system-level virtual machines that, at the time, were developed
by IBM, the Massachusetts Institute of Technology (MIT), and few others.
Arnold et al. [14] focus only on HLL-VMs and particularly on the techniques
that are used to control the optimizations employed by the just-in-time (JIT)
compiler, taking advantage of runtime profiling information.

This chapter surveys several techniques used by virtual machines, and
systems that depend on them, to make an adaptive resource management,
extending previous preliminary work [74, 77]. Here we fully describe the adap-
tation loop of virtual machines discussing their principles, algorithms, mech-
anisms and techniques. We then detail a way to qualitative classify each of
those according to their responsiveness, i.e. how fast it can react to changes,
their comprehensiveness, i.e. the scope of the mechanisms involved, and their
intricateness, i.e. the complexity of the modifications to the code base or to
the underlying systems. These metrics are used to classify the mechanisms
and scheduling policies. The goal is not to find the best system, as this de-
pends on the scenario where the system is going to be used, but instead it
aims to identity the tradeoffs underpinning each system.

Section 1.2 presents the architecture of high-level and system-level VMs,
depicting the building blocks that are used in research concerning resource us-
age. Section 1.3 presents several adaptation techniques found in the literature
and frames them into the adaptation loop. In Section 1.4, the classification
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framework is presented. For each of the resource management components of
VMs, and for each of the three steps of the adaptation loop, we propose the
use of a quantitative classification regarding the impact of the mechanisms
used by each system. We then use this framework to classify 18 state-of-the-
art systems in Section 1.5, aiming to compare and better understand the
benefits and limitations of each one.

1.2 From Virtual Machines Fundamentals to Recent
Trends

Virtualization technologies have been used since the primordials of multi-
user systems. The idea of having better isolation among different users in a
multi-user system was first explored by IBM [11]. In these systems, each user
was assigned a virtual machine which executed in the context of a so called
control program (CP).

In the last two decades this idea was extended and further explored to sup-
port the execution of commodity operating systems in each virtual machine,
without losing performance. Resource isolation was further enforced so that
bad behaving virtual machines cannot disrupt the service of other instances
[17]. This is due not only to the software but also to new hardware support
that enhances the performance of VMs running on a multi-tenant server [2].

System-level virtual machines execute under the control of a virtual ma-
chine monitor (VMM) to control the access of the guest operating system
running in each virtual machine to the physical resources, virtualizing pro-
cessors, memory, and I/O. Recently, operating systems extended the process-
level isolation mechanisms with further virtualization of the file system, name
spaces and drivers (e.g. network)[5, 6]. Furthermore, the integration of re-
source consumption controls, made it possible to run workloads on a new
kind of execution environment, called container, under the same OS.

High Level Language VMs, which are highly influenced by the Smalltalk
virtual machine [33], also provide a machine abstraction to their guest, which
is an end-user application. The just-in-time (JIT) compiler is responsible
for this translation and is, in itself, a source of adaptation driven by the
dynamics in the flow of execution (e.g. hot methods are compiled using more
sophisticated optimizations) [14]. Memory management has a high impact
on the use of memory and CPU. After more than three decades of research
work focusing on tunning garbage collection algorithms [52], recent research
work is made towards the selection of application-specific algorithms and
parameters, in particular, heap size and the moment of triggering memory
collection [60, 47, 90].

Figures 1.1 to 1.4 depicts four types of deployments. The first is a tra-
ditional configuration where an operating system (OS) regulates the access
of native applications (i.e., the ones that use the services of the OS) to the
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hardware. The second, Figure 1.2, represents a configuration where an hy-
pervisor, known as virtual machine monitor, takes control of the hardware,
making it possible to host several system-level virtual machine on top of the
same physical resources. Each virtual machine runs a possibly different op-
erating systems instance. Figure 1.3 shows the position of containers. These
execution environments share the kernel with the host OS and allow appli-
cations to run with an extra level of isolation from the remaining user-level
processes. Finally, Figure 1.4 depicts the position of high-level language VMs.
They are at the level of native applications but support the hosting of man-
aged components which rely (almost exclusively) on the services provided by
these VMs. This chapter focus on deployments 1.2 and 1.4.

The next three sections will briefly describe how fundamental resources,
CPU, memory, and I/O, are virtualized by the two types of VMs. The systems
presented in Section 1.5 are based on the building blocks presented here,
using them to implement different adaptive resource management strategies.
We conclude with a section about recent trends on the mechanism available
on these two types of VMs.

1.2.1 Computation as a resource

The virtualization of the CPU concerns two distinct aspects: i) the transla-
tion of instructions and; ii) the scheduling of virtual CPUs to a physical CPU.
In this chapter we focus on the scheduling problem. Although an efficient bi-
nary translation is of utmost importance, and several techniques are used
[87], this is done in a way that is dependent on the execution requirement of
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a given tenant. In Sys-VMs, the VMM must decide the mapping between the
real CPUs and each running VM [17, 26]. In the case of HLL-VMs, because
they rely on the underlying OS to schedule their threads of execution. In spite
of this portability aspect, the specification of HLL VMs is supported by a
memory model [59] making it possible to reason about the program behavior.

The VMM scheduler, where each guest VM is assigned to one or more
virtual CPUs (VCPU), has different requirements from the schedulers used
in operating systems [93]. Typically, the OS uses a priority-based approach
which is different from the family of schedulers used by the VMM. The VM
monitor scheduling is ruled by a Proportional Share assigned to each VM of
the system, based on its share (or weight) [91, 26].

Cherkasova et al. [26] further classifies schedulers as: i) work conservative
or non-work conservative and; ii) preemptive or non-preemptive. Work con-
servative schedulers take the share as a minimum allocation of CPU to the
VM. If there are available CPUs, VCPUs will be assigned to them, regardless
the VM’s share. In non-work conservative, even if there are available CPUs,
VCPUs will not be assigned above a given previously defined value (known
as cap or cpu limit). A preemptive scheduler can interrupt running VCPUs
if a ready to run VCPU has a higher priority.

In Section 1.5 we present different systems that dynamically change the
scheduler’s parameters to give guest VMs the capacity that best fits their
needs.

1.2.2 Memory as a resource

The design of memory management system is inherently complex, regardless
of the target environment. Virtual machines (VMs) are no exception and they
add an extra level to the system stack.

As pointed out by Smith et al. [87], the VMM extra level of indirection
generalizes the virtual memory mechanisms of operating systems. To main-
tain isolation, the guest OS continues to see a real address (i.e., machine
address) but this address can in fact change during the activation of the VM.
So, the VMM must establish a virtual→ real→ physical mapping for each
guest OS and VM.

When an OS kernel, running on an active VM, uses a real address to
perform an operation (e.g., I/O), the VMM must intercept this address and
change it to the correspondent physical one. On the other hand, user level
applications use a virtual address to accomplish their operations. To avoid a
two-fold conversion, the VMM keeps shadow pages for each process running
on each VM, mapping virtual → physical addresses. Access to the page
table pointer is virtualized by the VMM, trapping read or write attempts and
returning the corresponding table pointer of the running VM. The translation
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look-aside buffer (TLB) continues to play its accelerating role because it will
still keep in cache the virtual→ physical addresses.

To effectively manage the allocation of physical memory, the VMM must
re-assign pages between VMs. The decision about which specific pages are to
be relinquished is actually made by the guest OS running on the VM that is
selected by the VMM to give away memory. This is done by interacting with
a kernel driver at the OS, known as the balloon driver [17, 101].

The balloon driver is controlled by memory management policies which
will be introduced in Section 1.3. When the balloon is instructed to inflate it
will make the guest OS swap memory to secondary storage. When the balloon
is instructed to deflate, the guest OS can use more physical pages, reducing
the need to swap memory. Another issue related to memory management in
the VMM is the sharing of machine pages between different VMs. If these
pages have code or read-only data they can be shared avoiding redundant
copies.

The goal of memory’s virtualization in high language VMs is to free the
application from explicit dealing with memory deallocation, giving the per-
ception of an unlimited address space. This avoids keeping track of references
to data structures (i.e. objects), promoting easier extensibility of functional-
ities because the bookkeeping code that must be written in non-virtualized
environment is no longer needed [107, 87].

Different strategies have been researched and used during the last decades.
Simple mark and sweep, compacting or copying collectors, all identify live
objects starting from a root set (i.e., the initial set of references from which
live objects can be found, containing thread stacks and globals). All these
approaches strive for a balance between the time the program needs to stop
and the frequency the collecting process needs to execute. This is mostly
influenced by the heap dimension and, in practice, some kind of nursery
space is used to avoid searching all the heap.

As parallel hardware becomes ubiquitous and GC pause time reduction
becomes essential, the stop-the-world approach has been questioned, result-
ing in the design of concurrent and incremental collectors [28, 96]. However,
recent studies show that the base approach has no fundamental scalability
problem [35] and that the GC impact can be diminished with parallel tech-
niques, which still need to stop the program, but that explore the root set in
parallel.

Researchers have analyzed garbage collection performance and found it
to be application-dependent [89] and even input-dependent [60, 94]. Based
on these observations, several adaptation strategies have been proposed [14],
ranging from parameters adjustments (e.g. the current size of the managed
heap [42, 84]) to changing the algorithm itself before the first execution [86]
or at runtime [89].
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1.2.3 Input/Output as a resource

In both types of VMs, virtualization of input/output deals with the emula-
tion, accounting and constraining of using available physical devices. In spite
of these similar goals, virtualization occurs with different impacts. In a VMM,
the access to device drivers can be para-virtualized or full virtualized. In the
first scenario, a cooperative guest OS is expected to call a virtual API in the
VMM [17]. In the second scenario (a full virtualized environment) the VMM
can either intercept the I/O operation, at the device driver or system call
level [87]. The typical option is to virtualize at the device driver level, in-
stalling virtual device drivers at each guest, which, from the guest operating
system standpoint, are regular drivers.

The main challenge in I/O virtualization for fully virtualized systems, such
as the ESX [101] or the KVM [56] hypervisors, is to avoid the extra context
switches between the guest and the host to handle interrupts generated by
I/O devices [8, 40]. The interrupts are, by nature, asynchronous and sent to
the CPU to signal the completion of I/O operations. So, the overhead comes
from the extra CPU cycles necessary to exit the guest, run the host interrupt
handler and inject the virtual interrupt in the guest.

The performance of I/O-intensive applications in a virtualized environ-
ment is also affected by the CPU scheduling and memory sharing mecha-
nisms [25, 68, 63, 26]. The CPU scheduling strategy of each physical core to
the virtual cores has impact in the I/O performance of the applications run-
ning on top of virtual machines. A detailed analysis of the scheduler’s impact
on VM’s performance is available in the literature [63, 26]. The main obser-
vations were related to the domain driver’s preemption during the dispatch
of multiple network events and the order of VMs in the run queue.

High-level language VMs rely on the operating system API to accomplish
input/output operations as disk and network read and writes. Depending
on the address space isolation supported by the VM, accounting and regu-
lation have different levels of granularity. In a classic JVM implementation,
accountability can be done globally at the VM or on a per-thread basis [92].
In HLL-VMs supporting the abstraction of different address spaces (e.g. iso-
lates in Multi-task VM [31], application domains in the Common Language
Runtime) accounting is made independently for each of these spaces.

In summary, although the interaction with I/O devices has a major role
in the design of virtual machines, the sub-systems responsible for this task
do not have to make regular scheduling or allocation decisions. So, this chap-
ter will not focus on these works, but on adaptive techniques related to the
virtualization of CPU and memory (which indirectly contribute to the per-
formance of I/O-intensive applications).



8

1.2.4 Research Trends

The ACM library [1] shows that articles with the terms “VM” and “Virtual
Machine” continues to increase. Extrapolating the total number of publica-
tion up to 2016 to the end of the decade, the number will more than double
the results of the previous decade, the 2000s. Because of their strategic role in
cloud deployments they will certainly continue to be analysed and enhanced.

Regarding Sys-VMs, major research efforts continue to be done in memory
virtualization techniques. For example, Amit et al. proposes VSwapper [12],
which substitutes the classic balloon driver in the common case of uncoop-
erative guests. Although this situation is known for its poor performance,
VSwapper uses a combination of intricate techniques to overcome the prob-
lem, monitoring host disk blocks and establishing a relation to guest memory
pages in order to detect page writes and reads that hinder performance.

When looking to HLL-VMs, research in resource management is currently
driven by the need to incorporate further mechanisms to regulate memory
usage when running manage runtime in clusters. Although this has been
a topic of research for more than a decade now [29], new challenges were
introduced by cloud deployments, namely, the execution on top of Sys-VMs
and big-data applications.

Manage runtimes are the basis of modern processing and storage frame-
work widely used by cloud-enabled application. However, because many times
they execute on top of Sys-VMs, there is the need to externally instruct the
HLL-VM to relinquish some memory so that the VMM can deliver it to other
tenants [70, 49].

Considering a single node running instance, some improvements for big-
data workloads are also being explored to avoid the problems introduced
by object churn and very large heap sizes [37], including in NUMA-based
architectures [36]. But because typically the workloads run on top of multi-
ple physical nodes, researchers are looking for ways to coordinate resource
management, in particular GC operations [75, 57].

1.3 Adaptation techniques

In a software system, adaptation is regulated by monitoring, analyzing, decid-
ing and acting [69]. Monitoring is fed by sensors and actions are accomplished
by actuators, forming a process known as the adaptation loop, as depicted in
Figure 1.5. Virtual machines, regardless of their type, are no exception. The
two intermediate phases, Analysis and Decision, are in many cases seen as
one [58]. An example is the Observe, Decide and Act loop proposed by IBM
for autonomic systems [7]. This chapter follows the same approach and re-
sumes the adaptation loop to three major phases: monitor, analysis/decision,
action.
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In a broad sense, virtual machines have an important property of auto-
nomic systems which is self-optimization [7]. An example are the adaptive
JIT compilation techniques of HLL-VMs [14] or GC algorithms that use
feedback-directed online techniques to avoid page faults [41]. Furthermore,
virtual machines export adaptability mechanisms that are used by outside
decision systems to reconfigure VM’s parameters or algorithms.

There is a broad range of strategies regarding the analysis and decision
processes. Many solutions that augment system VMs use control theory ele-
ments, such as the proportional-integral-derivative controller, and Additive-
Increase/Multiplicative-Decrease (AIMD) rules, to regulate one or more VM’s
parameters. Typically, when the analysis and decision are done in the critical
execution path (e.g. scheduling, JIT, GC), the choice must be done as fast
as possible, and so, a simpler logic is used.

In our previous work, we have addressed adaptation with strategies based
on economic models and awareness of the workloads. Regarding System
VMs, we have addressed adaptation of VM allocation [73] and resizing
mechanisms [80, 82]. Regarding High-Level Language VMs (Java VM), we
have studied the economics of enforcing resource (CPU and memory) throt-
tling [79], taking into account application performance [81], and the tradeoffs
between resource savings and performance degradation/improvement, when
aggressively transferring resources among applications [78]. At the middle-
ware level, federating several VMs, adaptation concerns memory manage-
ment in object caching/replication aggressiveness [98], driven by declarative
policies [99], and adapting the number of VMs/nodes dynamically allocated
to multi-threaded Java applications, running on top of multi-tenant clustered
runtimes [76].

Next we will present and discuss the state of the art regarding the three
major steps of the adaptation loop for each type of VM and their internal
resource management mechanisms.
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1.3.1 System Virtual Machine

The VMM has built-in parameters to regulate how resources are shared by
their different guests. These parameters regulate the allocation of resources
to each VM and can be adapted at runtime to improve the behavior of ap-
plications given a specific workload. The adaptation process can be internal,
driven by profiling made exclusively inside of the VMM, or external, which
depends on application’s events such as the number of pending requests. In
this section, the two major VMM subsystems, CPU scheduling and Memory
Manager, will be framed into the adaptation processes - monitoring, decision,
and acting.

CPU Management

CPU management relates to activities that can be done exclusively inside the
hypervisor or both inside and outside. An example of an exclusively inside
activity is the CPU scheduling algorithm. To enforce the weight assigned
to each VM, the hypervisor has to monitor the time of CPU assigned to
each VCPUs of a VM, decide which VCPU will run next, and assign it to
a CPU [71, 26]. An example of an inside and outside management strategy
is the one employed by systems that monitor events outside the hypervisor
(e.g. operating systems load queue, application level events) but then use its
internal actuators to adjust parameters. For example, monitoring the waiting
time inside the spin lock synchronization primitive (in the kernel of the guest
operating system) may be necessary to inform the hypervisor’s scheduler
about the best co-scheduling [65] decisions of VCPUs [104].

Decision strategies can be simple, like the proportional share-based that
enforces predefined shares defined by high level policies in a multi-tenant
environment. More complex decisions, made outside the hypervisor, include:
i) control theory using a PID controller [110, 67], ii) linear optimization [66],
iii) signal processing and statistical learning algorithms [39].

The actions taken by the CPU scheduler inside the hypervisor include:
i) number of VCPUs [71], ii) co-scheduling [100, 104, 105], iii) VCPU migra-
tion [100], iv) number of threads and sleep time [110]. Systems where deci-
sions are made outside the hypervisor use the available actuators, namely:
i) VCPUs share, ii) VCPUs cap [39, 66, 46].

Memory Management

In this step of the control loop, the VMM needs to determine how pages (or
parts of it) are being used by each VM. To do so, it must collect information
regarding: i) page utilization [101, 103, 62], ii) page (and sub-page) contents
equality or similarity [101, 43]. Some systems also propose to monitor ap-
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plication performance, either by instrumentation or external monitoring, in
order to collect information closer to the application’s semantics [49, 70].

The VMM supports overcommit, that is, the total memory configured to
the overall VMs can be higher than the one that is physically available. When
pages of memory need to be transfered between VMs (and their guest OS)
different types of decisions are made based on: i) shares [101] ii) feedback
control [46], iii) LRU reference histogram [103], iv) linear programming [49].

To change the system state regarding its memory use there three main
approaches: i) page sharing, ii) page transfer between VMs, iii) compress
page contents. While page sharing and transfer relies on intrinsic mechanisms
of the VMM, as presented in Section 1.2.2, page compression is an extension
to these base mechanisms.

1.3.2 High-Level Language Virtual Machine

In this section, the three major language VM subsystems, JIT compiler, GC
and Resource manager, will be framed into the adaptation processes. HLL-
VMs monitor events inside their runtime services or in the underlying plat-
form. As always, there is a trade off between deciding fast but poorly, or
deciding well (or even optimally), but spending too much resources and time
in the process of doing so. Most systems base their decision on an heuris-
tic, that is, some kind of adjustment function or criterion that, although it
cannot be fully formally reasoned about, it still gives good results when prop-
erly used. Nevertheless, some do have a mathematical model guiding their
behavior [94]. Next we will analyze the most common strategies.

1.3.2.1 Just in time compilation

The JIT is mostly self-contained in the sense that the monitoring process (also
known as profiling in this context) collects data only inside the VM. Mod-
ern JIT compilers are consumers of a significant amount of data collected
during the compilation and execution of code.1 Hot methods information is
acquired using: i) sampling, ii) instrumentation. In the first case, the execu-
tion stacks are periodically observed to determine hot methods. In the second
case, method code is instrumented so that its execution will fill the appropri-
ate runtime profiling structures. Sampling is known to be more efficient [14]
despite its partial view of events.

To determine which methods should be compiled or further optimized,
there are two distinct group of techniques: i) counter-based, ii) model-based.

1 The adaptive optimization system (AOS) in Jikes RVM [10] produces a log with approx-

imately 700Kbytes of information regarding call graphs, edge counters and compilation

advices when running and JIT compiling ’bloat’, one of DaCapo’s benchmarks [20]



12

Counter-based systems look at different counters (e.g. method entry, loop ex-
ecution) to determine if a method should be further optimized. The threshold
values are typically found by experimenting with different programs [14]. In
a model-driven system, optimization decisions are made based on a mathe-
matical model which can be reasoned about. Examples include a cost-benefit
model where the recompilation cost is weighted against further execution
with the current optimization level [10, 54].

Adaptability techniques in the JIT compiler are used to produce native
optimized code while minimizing impact in application’s execution time over-
head. Because native takes more memory than intermediate representations,
some early VMs discarded native code compilations when memory became
scarce. With the growth of hardware capacity this technique is less used.
Thus, the actions that can complete the adaptation loop are: i) partial or
total method recompilation, ii) inlining, or iii) deoptimization.

1.3.2.2 Garbage collection

Although the way garbage collection is made usually does not change during
program’s execution, managed runtimes incorporate some form of memory
adaptation strategy [14]. In the literature, several sensors are used to guide
the decision process, both from the managed runtime and operating system,
including: i) memory structures dimensions (e.g. heap in used) [85, 86],
ii) GC statistics (e.g. GC load, GC frequency) [89], iii) relevant events in the
operating systems (e.g. page faults, allocation stalls) [41, 48], iv) working set
size [109].

Improvements to overall system performance is made reducing time spent
in GC operations. Heap-related structures are adapted both before and dur-
ing program execution. Adjusting before program execution is made after a
previous analysis of several executions, varying relevant parameters. While
there are some mathematical models of objects’ lifetimes, they are essentially
used to explain the GC behavior and not to drive a decision process [16].
The techniques used in the decision phase range from heuristics to more for-
mal processes: i) simple heuristics, ii) machine learning, iii) PID controller,
iv) microeconomic theories such as the elasticity of demand curves.

Actions regarding GC adaptability range from simply triggering the GC
in a specific situation to the hot-swap of the algorithm itself (e.g. to avoid
memory exhaustion [89]), as described next: i) GC parameters [86], ii) heap
size [85], iii) GC algorithm [89].

1.3.2.3 Resource management

Monitoring resources, that is, collecting usage or consumption information
about different kinds of resources at runtime (e.g. state of threads, loaded
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classes) can be done through: i) a service exposed by the runtime [15, 31],
ii) byte code instrumentation [51]. In the former, it is possible to collect more
information, both from a quantitative and qualitative perspective. A well-
known example is the Java Management Extensions (JMX) [64]. Because
HLL-VMs do not necessarily expose this kind of service, instrumentation al-
lows some accounting in a portable way. Accounted resources usually include
CPU usage, allocated memory and relevant system objects such as threads
or files.

This subsystem has to decide whether a given action (e.g. consumption)
over a resource can be done or not. This is accomplished with a policy, which
can be classified as: i) internal or ii) external. In an internal policy, the
reasoning is hard-coded in the runtime, possibly only giving the chance to
vary a parameter (e.g. number of allowed opened files). An external policy
is defined outside the scope of the runtime, and thus, it can change for each
execution or even during execution.

This subsystem is particularly important in VMs that support several
independent processes running in a single instance of the runtime. Research
and commercial systems apply resource management actions to: i) limit
resource usage, ii) perform resource reservation. Limiting resource usage aims
to avoid denial of service, or to ensure that the (possibly payed) resource
quota is not overused. The last scenario is less explored in the literature [31].
Resource reservation ensures that, when multiple processes are running in
the same runtime, it is possible to ensure a minimum amount of resources to
a given process.

1.3.3 Summary of techniques

In this section we summarize several techniques identified in the literature.
Figure 1.6 presents the techniques used in the adaptation loop of Sys-VMs.
They are grouped by the two major adaptation targets, CPU and memory,
and then into the three major phases of the adaptation loop. The CPU man-
agement sub-tree is the one that has more elements (i.e., more adaptation
techniques). This reflects the emphasis given by researchers to this compo-
nent of Sys-VMs. Regarding memory, early work of Waldspurger [101] and
Barham et al. in [17] laid solid techniques for virtualizing and managing this
resource. Recent work shows that, to improve perform of workloads regarding
their use of memory, it is crucial to have more application-level information
[103, 49].

Figure 1.7 presents the techniques used in the adaptation loop of systems
using HLL-VMs. They are grouped into the three major adaptation targets:
i) JIT compiler, ii) garbage collection, iii) resource management. Each adap-
tation target is then divided into the three phases of the adaptation loop. The
garbage collection sub-tree has a higher number of elements when compared
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Fig. 1.6 Techniques used by System VMs in the monitoring, decision and action phases

with any of the other two. This reflects different research paths, but also a
higher dependency of the garbage collection process on the workloads and on
the context of execution (i.e., shared environment, limited memory, etc.).

The techniques used in the monitoring and action phase are domain-
specific. For example, there are sensors related to the utilization of mem-
ory pages or actuators that change a parameter in the garbage collection
algorithm. On the contrary, the strategies used in the decision phase can be
found in other adaptability works and, in general, in autonomic computing
systems [7, 58].

Maggio et al. [58] have focused attention on the characterization of decision
techniques. They divide them into three broad categories: heuristics, control-
based, and machine learning. In fact, we can also see these categories when
we look to the techniques identified in this section. Figure 1.6 and Figure 1.7
show that the decision strategies are either heuristic (e.g. microeconomics,
share-based), control-based (e.g. PID controller), based on signal processing
techniques (e.g. correlation of different windows of samples), and machine
learning (e.g. reinforcement learning). Regarding strategies that use linear
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Fig. 1.7 Techniques used by HLL-VMs in the monitoring, decision and action phases

programming, they are used only to make a general model of the scheduling
variables. In practice, these approaches use integer linear programming which
is known to be NP-hard. Thus, they use some kind of greedy approach to
solve it.

Based on the survey of these different techniques, the next section will
present a classification framework that aims to compare complete adaptive
systems.

1.4 The RCI taxonomy

To understand and compare different adaptation processes we now introduce
a framework for classification of VM adaptation techniques. The classifica-
tion is based on the different techniques described earlier and depicted in Fig-
ure 1.6 and Figure 1.7. The analysis and classification of the techniques and
the way they are used in each of the adaptation loops revolves around three
fundamental criteria: Responsiveness, Comprehensiveness and Intricateness.
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We call it RCI taxonomy. Our goal is to put each system in perspective and
compare them regarding three criteria. The final RCI values of a given sys-
tem depend on the techniques the system uses for monitoring, decision and
acting.

These aspects were chosen, not only because they encompass many of the
relevant goals and challenges in VM adaptability research, but also because
they seem to embody a fundamental underlying tension: to achieve improve-
ments in two of these aspects the system must do so at the expense of the
other. System design in always a trade-off between different choices. A well
known example is the CAP theorem [23], showing the tension existing in the
general design of distributed systems. In the particular case of peer-to-peer
systems, high availability, scalability, and support for dynamic populations
are other kind of tensions [21].
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Fig. 1.8 A step-by-step classification process

The framework starts by taking the input system and decomposes it into
the adaptation techniques used in the monitoring, decision, and acting phase.
This is represented in step 1 of Figure 1.8. Then, for each technique, a value
for R, and I is determined (step 2). The metric C is determined in step 3
by taking into account the order of magnitude of the number of sensors and
actuators. Also in step 3, the previous values are aggregated and normalized,
determining the final RCI tuple for the system.

Decomposing the system into the previously mentioned parts (step 1) is
simply done by analyzing the reported techniques, both in their nature and
cardinality. To proceed with the classification process, the framework must
determine:

i) Which quantitative value is assigned to each technique in the monitoring,
decision or acting phase;
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ii) How these values are aggregated to reach a final RCI tuple.

These two steps are detailed in the following sections. First, Section 1.4.1
discusses a quantitative criteria, where design options, representing groups/classes
of techniques, are assigned a single value. Next, Section 1.4.2 maps the set
of specific techniques presented in Section 1.3 to these classes, so that each
technique is assigned a unique value of R and I. This completes step 2 of the
classification process. Finally, Section 1.4.3 explains the rationale of step 3,
showing how the previous values are aggregated with the C metric to deter-
mine a system’s RCI.

1.4.1 Quantitative Criteria of the RCI taxonomy

Time 

(Responsiveness)

Number of sensors/actuators

(comprehensiveness)

Code

(Intricateness)

(0,0,0)

(max(R),max(C),max(I))

Fig. 1.9 Systems design interval

We think the three metrics are able to capture a design interval as pre-
sented in Figure 1.9. They are a proxy for time, space and complexity-related
characteristics. Our conjecture is that we will see systems that are away from
the minimum and the maximum of the cube, that is, neither too simple (e.g.,
near the base of the coordinates) nor excelling in the three metrics (e.g., near
or coincident with the maximum point in the design space). The following list
points the exact meaning of the three criteria, regarding each of the adapta-
tion phases. Next, we will detail how they are mapped to a numeric scale, in
each phase, which will be used to determine the RCI of systems.

• Responsiveness. It captures time-related characteristics of the tech-
niques. Regarding the monitoring phase, it depends on the latency of
reading a value. Higher values are assigned to sensors immediately avail-
able on the VM code base, where higher values represent external sensors
(operating system or application-specific). For the decision phase, respon-
siveness is lower in those techniques that take longer to reach a given
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adaptation target. Regarding the action phase, high values indicate that
the effect is (almost) immediate, while a low value represents actuators
that will take some time to produce effects.

• Comprehensiveness. It captures quantity-related characteristics of the
techniques. Regarding the monitoring and deciding phases, it gets higher
as the quantity of the monitored sensors increases. Regarding the acting
phase, the comprehensiveness value grows with the quantity of actuators
that the system can engage.

• Intricateness. It captures the inherent complexity of the techniques.
Regarding the monitoring and acting phase, higher values are reserved
for sensors/actuators that had to be added to the base code of the virtual
machine, operating system, or application layer. Low values represent
sensors/actuators that are already available and can be easily used. In
the deciding phase, intricateness represents the inherent complexity of the
deciding strategy. For example, an if-then-else rule has low intricateness
but advanced control theory has higher values.

Fig. 1.10 Quantitative values for the design options of the RCI framework
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Figure 1.10 represents each of these criteria (R, C, I) for the three adap-
tation phases (M, D, A). For each criteria, in each adaptation phase, the
figure shows several options there are used during the classification of a given
technique, used in step 2 of the classification process. It does so by showing
the mapping between a design option (e.g. use a sensor that is an extension
inside the VM) and a quantitative value. These values establish an order
among different options.

It is important so stress that these design options do not represent a spe-
cific technique but a class of techniques. For example, “direct reading” in the
criterion I of the phase M, is to be selected when the sensor is available in the
original code base or in another level of the system stack, without the neces-
sity of building further extensions. This indirection makes the classification
system generic because the number of techniques, sensors and actuators can
grow in the future while being accommodated by the taxonomy in one of the
existing classes. Even so, we think these classes are expressive and distinctive
enough to characterize different levels of responsiveness, comprehensiveness,
and intricateness.

The mapping between classes and specific techniques will be presented
next, in Section 1.4.2. Note also that the scale of the values is not important
(they typically represent different orders of magnitude) as long as the values
are positive and monotonically increasing or decreasing, in accordance with
the corresponding criteria.

Across all the adaptation phases, comprehensiveness is directly represented
by the number of sensors or actuators, as explained previously. This is repre-
sented by n, which is a positive quantity (between 1 and 3) corresponding to
the number of sensors or actuators that are used. This means that the com-
prehensiveness increases as this number grows. The other two criteria have
more distinctive characterizations in each of the adaptation phases, which we
elaborate next:

• Monitoring. The responsiveness of the monitoring phase depends on the
cost of reading. The cost of reading relates to the time spent in reading a
single value, that is, how fast can a single value be collected. This depends
on the layer where the sensor is in relation to where the decision is made.
For example, some systems use application-level monitors which require
inter-process communication to read them (e.g. number of completed
SQL transactions [49]). Others depend only on values collected inside
the virtual machine monitor or the HLL-VM context. A middle ground
approach is that of systems that depend on sensors from other layers,
such as the OS, but, reading them has a low cost (e.g. the /proc virtual
file system).
The intricateness of the monitoring phase is a measurement of how com-
plex is the code for reading sensors. Value 1 is assigned to systems that
use preexisting sensors of the virtual machine or in the execution envi-
ronment, which have a direct access. Value 2 is for extensions made inside
the virtual machine and value 3 is assigned when extensions were made
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in the underlying system and/or hardware (e.g. operating system, in the
case of HLL-VMs).

• Deciding. The responsiveness and intricateness of the deciding phase is
in a large part inspired by the study of Maggio et al. [58]. They discuss
how feedback control mechanisms compare to each other in the context of
a benchmark suite composed of multi-threaded programs, instrumented
with the Application Heartbeat framework [50]. Taking into account the
analyzed techniques, our classification framework is based on five decision
types i) rules/heuristics; ii) linear optimization; iii) control-based solu-
tions; iv) signal processing techniques; v) model-free machine learning
solutions.
We have classified these five types of decision strategies as decreasingly
responsive, because they take an increasing amount of time to reach a
certain target point. They are increasingly intricate with the exception
of control-based solutions which we consider more intricate than signal
processing. This is so because of the panoply of parameters that usually
have to be tunned. A model-free solution has also the highest intricateness
value because the tunning of assigning credits to each possible action
and the balance between exploitation versus exploration (i.e. balancing
between making the best decision given current information or explore
more system states) [58].

• Acting. In this phase, responsiveness reflects the capacity of the actuator
to produce an observable and measurable consequence. Any throttle to
the processing capacity will have almost immediate effect and so a value
of 1 is assigned to this type of actuators. Regarding memory, tweaking
the set of pages assigned to a VM will have a quicker impact than simply
changing its memory share. Changing heap parameters is, in comparison
with the other techniques, the least responsive one, and so it gets a value
of 3. Intricateness has, in this phase, a similar characterization to the one
made in the monitoring phase.

In the following section, we map the previous analyzed techniques to this
tree of design options.

1.4.2 Classification of techniques

Based on the quantitative values of the taxonomy described in the previous
section, we now focus on mapping of the techniques described in Section 1.3
to a value, so that a final RCI of each system can be determined, and different
systems can be compared.

Tables 1.1-1.3 refer to system-level virtual machines and map a specific
sensor, actuator or decision technique to a particular value. For each line, the
first column identifies a technique (as presented in Figures 1.6 and 1.7) while
the second and third columns contain a design class and the corresponding
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value, for responsiveness (second column) and intricateness (third column).
Tables 1.4-1.6 are the ones corresponding to the high-level language virtual
machines and follow the same logic.

Table 1.1 System VMs: Sensors monitored

Sensor R option Value I option Value

page utilization inside VM 3 direct reading 1
page contents inside VM 3 extension same layer 2

page faults kernel 2 direct reading 1
memory demand kernel 2 direct reading 1

application’s performance outside 1 direct reading 1

Virtual time clock inside VM 3 direct reading 1
CPU consumed by each VCPU inside VM 3 direct reading 1

Xen CPU/Mem consumed kernel reading 2 direct reading 1

OS sync primitives kernel 2 extension other layer 3
OS CPU usage counter kernel 2 direct reading 1

Table 1.2 System VMs: Decision techniques

Control technique R option Value I option Value

share based rule / heuristic 5 rule / heuristic 1
counter threshold rule / heuristic 5 rule / heuristic 1

integer linear programming linear optimization 4 linear optimization 2

PID controller Control-based 2 Control-based 4
resource usage samples correlation signal processing 3 signal processing 3

LRU histogram rule / heuristic 5 rule / heuristic 1

Table 1.3 System VMs: Actuators used in the action phase

Actuator R option Value I option Value

page sharing VM parameter 3 extension in same 2
page compression VM algorithm 2 extension in same 2

page/memory transfer VM parameter 3 direct acting 1

co-scheduling VM parameter 3 extension in same 2
number of VCPUs assigned to CPU VM parameter 3 direct acting 1

change shares or caps VM parameter 3 direct acting 1
number of processes/threads VM parameter 3 direct acting 1

Looking at the techniques used in the monitor phase, Tables 1.1 and 1.4
show us that only two techniques have the minimum responsiveness. This is
so because most of the sensors are near the VM execution space (either in a
sub-system of the VM or in the operating system). Low intricateness also is
dominant as most sensors are already available.



22

Regarding the decision phase, analyzed in Tables 1.2 and 1.5, a majority
of techniques have high responsiveness values. As a consequence, they are
less intricate. In HLL-VMs, techniques are usually either very simple or have
maximum complexity.

Finally, regarding the action phase, we note that all actuators are either
already available in the VM code base or are extensions to the VM code
base. Contrary to sensors, no new actuators are proposed for other layers of
the execution stack. This leads to not having, in practice, actuators with the
maximum intricateness.

Table 1.4 HLL VMs: Sensors monitored

Sensor R option Value I option Value

Memory structures dimensions inside 3 direct 1

Events of the operative system kernel 2 direct 1
Working set size kernel 2 extension other layer 3

GC load inside 3 direct 1
Frequency of GC inside 3 direct 1

Memory usage patterns app 3 extension same layer 2

Table 1.5 HLL VMs: Decision techniques

Control technique R option Value I option Value

if-then-rule rule / heuristic 5 rule / heuristic 1

Generic condition rule / heuristic 5 rule / heuristic 1

Reinforcement learning Model-free ML 1 Model-free ML 4
PID controller Control-based 2 Control-based 4

Elasticity (micro-economy) rule / heuristic 5 rule / heuristic 1

Table 1.6 HLL VMs: Actuators used in the action phase

Actuator R option Value I option Value

Heap size VM parameter 3 direct 1

Run GC VM parameter 3 direct 1
Change GC algorithm VM algorithm 2 extension same layer 2

Limit usage VM algorithm 2 extension same layer 2

Reservation VM algorithm 2 extension same layer 2
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1.4.3 Aggregation of quantities

In this section, we give the details about the implementation of the final stage
of step 2 and how step 3 operates, as depicted in Figure 1.8.

Regarding the final stage of step 2, because a given system may use more
than one sensor, in the monitoring phase, and more than one actuator, in the
acting phase, the framework must determine how a single R and I value is
determine for these two phases (i.e. RM , RA, IM , IA). Regarding responsive-
ness, we consider the technique with the lowest responsiveness, as presented
in Equation 1.1. This was so because the monitor or the action phase will be
as responsive as the least responsive technique the system uses. Regarding
the intricateness metric, we use the technique with the highest value as a
representative of the phase’s intricateness. Finally, note that this is not an
issue for the decision phase because specific systems only use one strategy.

Rπ = minimum of techniques′ responsiveness, where π ∈ {M,A} (1.1)

For a given system, Sα, the three metrics of the framework, responsive-
ness, comprehensiveness and intricateness, are represented by R(Sα), C(Sα),
I(Sα), respectively. Each of these metrics depends on the specific values of the
techniques used by the system. So, to determine R(Sα), the framework adds
the responsiveness of each phase of the adaptation loop (Monitor, Decision,
Action), as presented in Equation 1.2. A similar operation is done to deter-
mine the intricateness metric.

R(Sα) =
∑

π ∈ {M,D,A}

Rπ(Sα) (1.2)

To determine comprehensiveness, C(Sα), the framework takes into account
the number of sensors used in the monitoring phase, the number of actuators
used in the acting phase, and adds them to reach a single value. This is the
operation identified as C(M,A) in step 3 of Figure 1.8.

As an example, consider system Sα, which uses several hypothetical tech-
niques for each phase of the adaptation loop. Step 1 of the framework de-
termines that the techniques must be identified (e.g. Ta..f ). Then, for each
technique, a quantitative value is assigned regarding its responsiveness and
intricateness for the three phases of the adaptation loop.

The last line of Table 1.7 shows the result of the aggregation operations
used to determine, for each of the three phases, the R and I values. The
aggregate function minimum is used for responsiveness, while the aggregate
function maximum is used for intricateness.

Table 1.8 completes the example, showing the arithmetic operations nec-
essary to determine the overall R, C, I values of the hypothetical system Sα.
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Table 1.7 Example of the aggregations made in step 2 for system Sα

System Monitor R I Decision R I Action R I

Sα

Ta 2 3 Td 2 3 Te 1 2

Tb 3 2 Tf 2 1

Tc 1 2
1 3 2 3 1 2

The values from the last line of Table 1.7 are the ones used to determine R
and I in Table 1.8, following the equation 1.2.

Table 1.8 Example of the arithmetic operations in step 2 for system Sα

System R C I

Sa 1+2+1 #sensors+#actuators 3+3+2

1.4.4 Critical analysis of the taxonomy

The RCI taxonomy aims to show trade-offs in the design of adaptive systems
in the context of virtual machines. Its critical point is the design options tree,
presented in Figure 1.10, and the corresponding quantitative values. It can
be the case that either the design options do not represent the entire design
space or that the quantitative values are not correctly assigned. We tried
to minimize this by designing the taxonomy after examining several systems
to better understand the scope of the design space. However, we are still
missing to collect the opinion of other researchers in the area while using the
taxonomy, and possibly improve it based on theirs feedback.

In the next section, relevant works are analyzed regarding monitoring and
adaptability in virtual machines, both at system as well as managed lan-
guages level. The RCI taxonomy is used to compare different systems and
better understand how virtual machine researchers have explored the tension
between responsiveness, comprehensiveness, and intricateness.

1.5 VM systems and their classification

In this section we start by surveying several state of the art systems, regarding
system-level VMs, Section 1.5.1, and high-level language VMs, Section 1.5.2.
In each case we frame the analyzed systems into the classification framework
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presented in Section 1.4, describing each of the techniques used, resulting in
the classification and comparison of complete systems.

1.5.1 System Virtual Machine

The following are succinct descriptions of system-level VMs and systems that
extend them. We start by presenting a well known open-source hypervisor. A
list of systems that extend this or other similar hypervisors follows. Most of
them are centered either on CPU or memory. At the end of the section, Table
1.9 summarizes the techniques used in each system. This process was iden-
tified as step 1 in Figure 1.8. This is the base for determining each system’s
RCI.

Friendly Virtual Machines (FVM).

This VMM aims to neither overused or underused resources. The respon-
sible for adjusting the demand of the underlying resources is delegated to
each guest, resulting in a distributed adaptation system [110]. The decision
phase is regulated by feedback control rules such as Additive-Increase/Mul-
tiplicative-Decrease (AIMD), typically used in network congestion avoidance
[27]. A VM runs inside a hosted virtual machine, the User Mode Linux. The
FVM’s daemon installed at each guest controls the number of processes and
threads that are effectively running at each VM. When only a single thread
of execution exists, FVM will adapt the rate of execution forcing the VM to
periodically sleep.

ASMan.

The Adaptive Scheduling Manager (ASMan) [104] is an extension to Xen’s
scheduler. It adds the capacity to co-schedule virtual CPUs (VCPU) of VMs
where there are threads holding a blocking synchronization mechanisms, such
as spin locks. In non-virtualized systems, threads holding spin locks are not
preempted. In a virtualized system, the VCPU continues to be hold by the
thread but, because the hypervisor sees the VCPU as being idle, the VCPU
is taken from execution and placed on the waiting queue. Using the concept
of VCPU related degree (VCRD), the ASMan system determines the degree
of relationship between the VCPUs in a VM. The system dynamically deter-
mines this metric by monitoring, in each guest OS, the time spent in spin
locks. The VM is then classified with a low or high VCRD if it is bellow or
above a certain threshold. When the VCRD is high, the VCPUs of that VM
are co-scheduled.
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HPC computing.

Shao et al. [71] adapt the VCPU mapping of Xen [17] for high performance
computing applications, based on runtime information collected by a monitor
that must be running inside each guest’s operating system. They adjust the
number of VCPUs to meet the real needs of each guest. Decisions are made
based on two metrics: the average VCPU utilization rate and the parallel level.
The parallel level mainly depends on the length of each VCPU’s run queue.
The adaptation process uses an addictive increase and subtractive decrease
(AISD) strategy. Shao et al. focus their work on benchmarks used to represent
the common operations of high performance computing applications. It acts
on number of VCPUs assigned to each VM.

Auto Control.

The Auto Control system [66] uses a control theory model to regulate resource
allocation, based on multiple inputs and driving multiple outputs. Inputs
include CPU and I/O usage, together with application specific metrics. It acts
on the allocation of caps for CPU and disk I/O. For each application, there is
an application controller which collects the application’s performance metrics
(e.g. application throughput or average response time) and, based on the
application’s performance target, determines the new requested allocation.
The model is adjusted automatically and so it can adapt to different operating
points and workloads.

PRESS.

PRedictive Elastic ReSource Scaling for cloud systems (PRESS) [39] tries to
allocate just enough resources to avoid service level violations while minimiz-
ing resource waste. To handle both cyclic and non-cyclic workloads, PRESS
tracks resource usage and predicts how resource demands will evolve in the
near future. The decision phase (which includes the analysis of oberved val-
ues) uses signal processing techniques (i.e., Fast Fourier Transform and the
Pearson correlation). PRESS tries to look for a similar pattern (i.e., a signa-
ture) in the resource usage history. If this fails, PRESS uses a discrete-time
Markov chain. The prediction scheme is used to regulate the CPU cap of the
target VM.

Overbooking and Consolidation.

Heo et al. [46] focus on monitoring memory usage (including page faults)
and application performance. They show that allocating memory in such
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an overcommitted environment without taking also into account the CPU,
results in significant service level violations. The system uses a PID controller
to dynamically change the allocating of memory (using the ballon driver) and
the CPU cap.

Difference engine.

Differently from other system, Gupta et al. [43] share page content at the
sub-page level, using a technique named page patching, which is made by
observing the difference relative to a reference page. Based on a not recently
used policy, Difference Engine also uses memory compression for pages that
are not significantly similar to other pages in memory. Both techniques ex-
tends the more traditional mechanisms of copy-on-write full page sharing,
already present at the Xen VMM.

VMMB.

In [62], Min et al. presents VMMB, a Virtual Machine Memory Balancer for
Unmodified Operating Systems. VMMB monitors the memory demand (i.e.
nested page faults and to guest swapping) re-allocates memory based on the
QoS requirement of each VM. It uses the LRU histogram as input for their
decision algorithm that determines the memory allocation size of each VM
while globally minimizing the page miss ratio. Similarly to other works, they
use balloon driver to enforce each VM’s new memory size. When this is not
enough, a VMM-level swapping is used to select a set of victim pages and
immediately allocate memory to a selected VM.

1.5.1.1 Overall systems analysis

Table 1.9 summarizes the systems analyzed in this section. After the system
name, the second column identifies the dominant resource, that is, the re-
source over which the system is monitoring but also acting. From the third
to the fourth column, we present the techniques used in each of the adap-
tation phases. The last column allows us to quickly determine if the system
proposes extensions to the code base of the VM or not.

Figure 1.11 depicts the overall RCI of each system that uses or augments a
system-level VM. It presents a visual, quantitative and comparative analysis,
which completes Table 1.9. Overall, systems tend to favor responsiveness
design options (as this metric prevails in every system).

When looking for memory-dominant systems (Difference engine, VMMB,
Oberbooking, Ginko) we see that Overbooking is less responsive because
it tries to embrace a large number of sensors and actuators. In the CPU-
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FVM CPU VTC PID Controller AIMD Number of threads,

periodic sleep

Yes

AutoControl CPU,
I/O

CPU, I/O usage, Av-
erage response time

Model Predictive,
Quadratic solver

cap, disk share No

Press CPU CPU, Mem, I/O us-

age

Pearson correlation CPU cap No

HPC CPU VCPU utilization

rate, System Parallel

level

Rules with AISD Number of VCPUs No

ASMan CPU Spin locks utilization

and waiting time

Thresholding rules co-scheduling Yes

Ginko Mem Average time per

URL request, #SQL

transactions, response
time

Linear programming Balloon No

Overbooking CPU,

Mem

CPU, Mem, Average

time per URL request

PID Controller CPU Cap, Balloon No

VMMB Mem Page faults, swap op-

erations

LRU histogram Balloon, VMM swap-

ping

Yes

Difference En-
gine

Mem (sub-)Page contents Not Recently Used Page sharing, Patch-
ing, Compression

Yes

0

0.2

0.4

0.6

0.8

1
FVM

AutoControl

Press

HPC

ASManGinko

Overbooking

VMMB

Difference
Engine

R

C

I

Fig. 1.11 RCI of Sys-VMs



29

dominated systems, HPC is the one classified as the most responsiveness
but uses simpler techniques (low intricateness) and a minimum number of
sensors and actuators. ASMan is more intricate, basically because it needs
extensions for the monitoring and action phase, but it had to give up on some
responsiveness.

1.5.2 High-Level Language Virtual Machines

This section will present and discuss different systems that monitor resource
usage, resulting in either imposing limitations or changing the policies of
the JIT, GC, or resource manager sub-systems. Adaptation in high-language
virtual machines is made by changing their building block parameters (e.g.
JIT level of optimization, GC heap size) or the actual algorithm used to
perform certain operations. This section starts by presenting classic work on
Java Virtual Machines (JVMs) whose goal was to incorporate resource usage
constraints on regular VMs. It then surveys more recent systems where the
focus was to diminish the impact of GC in program execution. At the end of
the section, Table 1.10 summarizes the techniques used in each system. As
in the case of system-level VMs, this process is the implementation of step 1
in Figure 1.8, which is the base for determining each system RCI.

KaffeOS.

Built on top of Kaffe virtual machine [15], KaffeOS [15] provides the abil-
ity to run Java applications isolated from each other and also to limit their
resource consumption. KaffeOS, adds a process model to Java that allows a
JVM to run multiple untrusted programs safely. The runtime system is able
to account for and control all of the CPU and memory resources consumed
on behalf of any process. Consumption of individual processes can be sepa-
rately accounted for, because the allocation and garbage collection activities
of different processes are separated. To account for memory, KaffeOS uses a
hierarchical structure where each process is assigned a hard and a soft limit.
Hard limits relate to reserved memory. Soft limits acts as guard limit not
assuring that the process can effectively use that memory. Children tasks can
have, globally, a soft limit bigger than their parent but only some of them
will be able to reach that limit.

JRES.

The work of Czajkowski et al. [30] uses native code, library rewriting, and
byte code transformations to account and control resource usage. JRES was
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the first work to specify an interface to account for heap memory, CPU time,
and network consumed by individual threads or groups of threads. The pro-
posed interface allows for the registration of callbacks, used when resource
consumption exceeds some limits and when new threads are created.

Multitask Virtual Machine (MVM).

The MVM [31] extends the Sun Hotspot JVM to support isolates and re-
source management. Isolates are similar to processes in KaffeOS. The dis-
tinguishing difference of MVM is in its generic Resource Management (RM)
API, which uses three abstractions: resource attributes, resource domain, and
dispenser. Each resource is characterized by a set of attributes (e.g. memory
granularity of consumption, reservable, disposable). In [31] the MVM is able
to manage the number of open sockets, the amount of data sent over the
network, the CPU usage and heap memory size. When the code running on
an isolate wants to consume a resource, it will use a library (e.g. send data
to the network) or runtime service (e.g. memory allocation). In these places,
the resource domain to which the isolate is bound will be retrieved. Then, a
call to the dispenser of the resource is made, which will interrogate all regis-
tered user-defined policies to know if the operation can continue. A dispenser
controls the quantity of a resource available to resource domains.

Isla Vista.

Grzegorczyk et al. [41] takes into account a phenomenon known as allocation
stalls, which happens during memory allocation when the system has only a
few free pages. If this is so, one or more resident pages must be evicted to
disk before any new page can be assigned to the requesting process. Isla vista
implements an algorithm inspired by the exponential backoff model for TCP
congestion control to avoid the stall, where transmission rate relates to heap
size, and packet loss relates to page faults. Doing so, the heap size increases
linearly when there are no allocation stalls. Otherwise, the heap shrinks and
the growth factor for successive heap growth decisions is reduced. This is an
heuristic to balance between inevitable paging operations and time spent in
GC operations.

GC switch.

Soman et al. [89] is adds to the memory management system the capacity
of changing the GC algorithm during program execution. The system moni-
tors application behavior (i.e. GC load versus the time used by application’s
threads), and resource availability, in order to decide when to dynamically
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switch the GC strategy. Their decision in based on heuristics so that when
the GC load is high, they switch from a Semi-Space (which performs bet-
ter when more memory is available) to a Generational Mark-Sweep collector
(which performs better when memory is more constrained).

Paging-aware GC.

Hertz et al. [48] developed a GC triggering system that takes into account
the overall state of the system where the VM is running and not its single
process. Two approaches where considered. VMs use a whiteboard area to
know if a GC is taking place in the system. If so, they deffer their collection to
avoid clustering the environment with simultaneous collection. The other is
called selfish and the VM only takes in consideration the heap size and page
faults. Based on simple heuristics like the difference in sizes of the resident
set and the evolution of page faults, the GC is triggered.

CRAMM [109], on the other hand, dynamically builds the working set
size (WSS) as the application progresses, monitoring minor and major page
faults. It then acts on the heap size to improve application performance.
The system extends the virtual memory manager of the operating system so
that the WSS is dynamically built as the application progresses, monitoring
minor and major page faults. After each heap collection, the system requests
a WSS estimative to the virtual memory manager. It then considers this value
to resize the heap. After each GC run, the histogram is also reset since the
new heap size will produce a new reference histogram pattern.

GC economics.

In [84], Singer et al. relates the heap size and number of garbage collections
with the price and demand law of micro-economics - with bigger heaps there
will be less collections. Their decision strategy is an heuristic based on the
concepts of memory elasticity to find a tradeoff between heap size and execu-
tion time, driving by a user-supplied elasticity target. Actions are made over
the heap size, to shrink or keep.

Control Theory.

Heap sizing was also researched as a control theory problem[106]. In White’s
et al. work, a PID controller is used where the control variable is the heap
resize ratio and the measurement variable is the GC overhead. To determine
the new heap size, the controller, after each collection cycle, measures the
error between the current GC overhead and the target GC overhead, specified
by the user. The goal is to achieve and maintain the user-defined target GC
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overhead. The controller’s parameters, such as the gain and the oscillatory
period, were manually fine-tuned for a set of benchmarks. They have only
tested their system under a full-heap collector.

Machine Learning for Memory Management.

Machine learning techniques have been used to dynamically learn which is
the best moment to garbage collect [13] and to choose, a-priori, the best GC
configuration (algorithm, serial, parallel) [83, 85] given an profile run of the
application. In the first case, a reinforcement learning algorithm is used. A
binary action is to be taken in each step leading to the decision to run the GC
or not. The reinforcement learning algorithm accumulates penalties based on
its decisions and, as time passes, it learns which are the best situations to run
the GC. In the second group of papers, an offline machine learning algorithm,
based on decision trees, is used to generate a classifier that, given a profile
run of a new program (i.e., not used to build the model), can predict a GC
algorithm that minimizes the execution time.

1.5.2.1 Overall systems analysis

Table 1.10 summarizes the system analyzed in this section. The majority of
them are focused on the management of the heap size and use simple heuris-
tics to guide this process. Exception are the ones using a PID controller [106]
and a machine learning algorithm. However, these two systems either have to
be fine-tuned manually or impose limitations on the type of garbage collector.
Only one work takes into account the collocation of VMs and the need to
transfer memory between them [48]. Even so, it is focused on the individual
performance of each instance and not the distribution of memory based on
the progress of each workload.

Figure 1.12 depicts the overall RCI of each system that augments a high-
level language VM, complementing the analysis of Table 1.10. As in the case
of system-level VMs, systems have design options that favor responsiveness.
The system taking into account the elasticity curve of micro-economics has
the highest level of responsiveness perhaps because of its low overall intricate-
ness of sensors, decision process, and actuators. We also see that the extra
intricateness of the decision phase in “Control” and “Learning” had a cost.
In the first case, it was the overall responsiveness, while in the second the
system had to be designed with a smaller number of sensors, reducing com-
prehensiveness. Further research is needed to determine if other unexplored
techniques in these two fields can bring more advantage.
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1.6 Summary and Open Research Issues

In this chapter, we reviewed the main approaches for adaptation and mon-
itoring in virtual machines, their tradeoffs, and their main mechanisms for
resource management. We framed them into the adaptation loop model (mon-
itoring, decision, and actuation). Furthermore, we proposed a novel taxonomy
and classification framework that, when applied to a group of systems, can
help visually in determining their similarities and differences. Framed by this,
we presented a comprehensive survey and analysis of relevant techniques and
systems in the context of virtual machine monitoring and adaptability.

This taxonomy was inspired by two conjectures that arise from the analysis
of existing relevant work in monitoring and adaptability of virtual machines.
We presented the RCI conjecture on monitoring and adaptability in systems,
identifying the fundamental tension among Responsiveness, Comprehensive-
ness, and Intricateness, and how a given adaptation technique aiming at
achieving improvements on two of these aspects, can only do so at the cost
of the remaining one.

In last years, the widespread use of management system for containerized
applications, like Docker [4] and kubernetes [3], resurrected the interest of
container-based operating system (COS) [88]. Sys-VMs allow for each guest
so have a complete stack of the operating system and applications running
in isolation from other guests. In contrast to this, containers loose some of
the CPU and I/O isolation and share the same kernel OS, promising close
to bare metal performance [72]. A container-based approach can give high-
performance computing applications an easy and light way to transport jobs
and a comprehensive resource scheduling environment [102].

An approach that is also becoming popular is the use of containers inside
Sys-VMs. Doing so, datacenter providers can reuse their current virtualiza-
tion infrastructure while going towards the need of more users. Also from a
desktop environment point of view, having containers inside Sys-VMs allows
the for non-Linux users to enjoy this technology and benefit from an extra
degree of isolation when running their sensitive workloads [102, 32].

With managed runtimes dominating the landscape of systems to process
big-data, research will continue to reduce the impact of platforms in work-
load’s performance, especially regarding automatic memory management and
the interface between HLL-VMs and the underlying execution stack. Regard-
ing memory management, the generational principle is well suited for most
general applications but in big-data deployments, either related to storage
or stream processing, this assumption is not always beneficial and new seg-
menting options have to be considered [37]. Regarding the deployments of
managed runtimes, further efforts are necessary to explore how to reduce the
cost of interfacing with operating services (especially I/O) as this is also a
cause of performance bottleneck. A research opportunity are hybrid runtimes
that run in kernel mode and take direct advantage of the available hardware
[45].
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