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Abstract—There has been extensive recent research in dis-
tributed systems regarding consistency in geo-replicated systems.
NoSQL databases have introduced a new paradigm in this
field, where user data location and replication mechanisms work
together to be able to offer best-in-class distributed applications.
Therefore, running data intensive operations under low latency
systems and ensuring timely data delivery for application logic
processing is fundamental. In some cases, such as eventual
consistency, certain degree of data staleness can be tolerated.
We prioritize data replication based on system-defined data
semantics that best serve to applications’ interests, avoiding
overloading both network and distributed systems during large
periods of disconnection or partitions. These data semantics are
integrated into the core architecture of HBase, a well-known data
store, so enabling it to trigger data replication selectively with the
support of a three-dimensional vector-field model. That provides
a tunable level of consistency to different user or application
needs (e.g., regarding timeliness, number of pending updates
and divergence bounds). In addition, updates can be tagged
and grouped atomically in logical batches, akin to transactions,
ensuring atomic changes and correctness of propagated updates.
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I. INTRODUCTION

In distributed systems in general and Cloud Computing
specifically, data replication is becoming a major challenge
with large amounts of information requiring consistency and
high availability as well as resilience to failures. There have
been several solutions to that problem, none of them appli-
cable in every case, as they all depend of the type of system
and its end goals. As the CAP theorem states [1], one can
not ensure the three properties of a distributed system all at
once, therefore applications usually need to compromise and
choose two out of three between consistency, availability and
tolerance to partitions in the network.

Nowadays, in many data center environments is key to
understand how one makes such distributed systems scalable
while still delivering good performance to applications. Data
availability is for instance always a desired property, while a
sufficiently strict level of consistency should be used to handle
data effectively across locations without long network delays
(latency) and optimizing bandwidth usage.

There are a number of existing systems where data se-
mantics are analyzed to provide operations with faster (even-
tual) or slower (stronger) consistency without compromising
performance [2]. In some, causal serialization and therefore
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commutative updates are provided also based on data se-
mantics, but require redesigning application data types [3]
or intercepting and reflecting APIs via middleware [4]. Un-
like linearizability, eventual consistency does work well for
systems with shared distributed data to be queried and/or
updated, because updates can be performed on any replicas at
any given time [3]. It is then easier to achieve lower latency,
so most systems implement eventual consistency in order
to avoid expensive synchronous operations across wide area
networks and still keeping data consistent through low latency
operations in large geo-located deployments.

HBase is a well-known and deployed open source cloud
data store written and inspired on the idea of BigTable [6]
which targets the management of large amounts of informa-
tion. HBase does not provide strong consistency outside of
the local cluster itself. Eventuality is the promise and a write-
ahead log maintained for that.

This work introduces HBase-QoD, a replication module
that integrates into HBase mechanisms targeting applications
which might also require finer-grain levels of consistency.
Other systems use a variant of Snapshot Isolation tech-
niques [[7], which works within, but not across data centers.
Others, like the conit model, are based on generality but not
practicality [8]. We find the later to be more rewarding to
users in terms of quality of data within a fully functional
and reliable data storage system, achieving optimization of
resources during geo-replication and consequently significant
cost savings. We propose an architecture with custom levels
of consistency, providing finer-grain replication guarantees
through data semantics. Application behavior can be therefore
turn into a key and more efficient shift into the consistency
paradigm. This is reflected in this paper by modifying and
extending eventual consistency, with an innovative approach
used to tune its replication mechanisms, originally developed
for treating all updates equally.

A. Contributions

The main contributions are focused on what other consis-
tency properties HBase can provide between different geo-
located clusters at the replication level, that is, using a flexible
and tunable framework, developed for treating groups of
updates tagged for replication in a self-contained manner. The



work presented includes the design and development of the
model to be applied to non-relational cloud-based data stores.

We take a step forward from the eventual consistency model
at inter-site replication scenarios with HBase deployments to
prove the validity of the model. It is possible to evaluate it by
using an adaptive consistency model that can provide different
levels of consistency depending of the desired Service Level
Objective (SLO) for the Quality-Of-Data (QoD) fulfillment.
The idea of QoD fulfillment is based on the percentage of
updates that need to be replicated within a given period using
a three-dimensional vector model K.

We also propose to extend HBase client libraries in order to
provide grouping of operations during replication, where each
of the groups can provide the level of consistency required:
ANY, IMMEDIATE, or even with a specific custom bound.
To achieve this we modify HBase libraries (Htable). Grouping
of operations occurs from the source location before replica-
tion actually occurs, so apart from the multi-row atomically
defined model in HBase, a more versatile system can also
provide atomically replicated updates beyond the row-level
(e.g., column families or combinations of the fields in a row
in HBase). The work is also an informal contribution that
we aim to turn into a formal one to complete the efforts of a
"pluggable replication framework" as proposed by the Apache
HBase community. [[]

B. Roadmap

In the next sections of the paper we have a brief overview
of fundamental consistency models and background work
in this area of distributed systems, having special focus on
the concept of eventual versus strong consistency and what
possible variations of the two can exist in the middle of
the spectrum. As intermediate approach, we devise HBase-
QoD, a HBase extension to apply QoD defined through a
three-dimensional vector-field model inspired on [9]. Data
semantics are defined and enforced with a vector K (6, o,
v), representing Time, Sequence and Value respectively.

The rest of the paper is organized as follows, related work
in Section 2, our HBase extension architecture in Section 3,
the implementation details in Section 4, and evaluation in
Section 5. The evaluation results show that from the archi-
tectural point of view our solution integrates well in HBase
and provides the corresponding vector-bounded replication
guarantees. Finally, with Section 6 we conclude this work.

II. BACKGROUND AND RELATED WORK

HBase is open source, and its architecture is based in
previous work at Google, BigTable [10]], a distributed, per-
sistent and multi-dimensional sorted map. HBase is being
used for instance at Facebook data-centers for structured
storage of the messaging and user data in partial replacement
of Cassandra [11]]. Cassandra offers replica-set consistency
tuning, but not divergence bounded consistency regarding
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data semantics. In geo-located and replicated remote clusters,
the system provides eventual guarantees to data consistency
through RPC (Remote Procedure Call) mechanisms.

Eventual consistency might be sufficient in most cases.
Although, complex applications require stronger consistency
guarantees and can be difficult to manage. Due to that, there
have been recent research efforts to address these shortcom-
ings in geo-replicated data centers, with Google developing
earlier in 2012 an evolution of BigTable that provides external
consistency through atomic clocks for instance, Spanner [12].
This makes applications highly-available while ensuring as
much synchronicity among distant replicas as possible and
more importantly, atomic schema changes. Data locality is
also an important feature for partitioning of data across
multiple sites. Spanner does use Paxos for strong guarantees
on replicas.

Strong consistency does not work well for systems where
we need to achieve low latency. So the reason for most sys-
tems to use eventual consistency is mostly to avoid expensive
synchronous operations across wide area networks. In other
cases such as COPS [13]] causality is guaranteed, although it
does not guarantee the quality of data by bounding divergence,
which can still lead to outdated values being read. Previous
inspiring work from [14] also shows divergence bounding
approaches to be feasible in that regard.

Systems such as PNUTS from Yahoo [15], introduced
a novel approach for consistency on a per-record basis.
Therefore, it became possible to provide low latency during
heavy replication operations for large web scale applications.
As in our work, they provide finer-grain guarantees for certain
data, so in other words, new updates are not always seen right
away by the clients (which is the case also with our HBase
extension), but only if strictly necessary. Keeping that in mind,
it is not mandatory for applications to be highly-available
and consistent both at once. That is applicable to our use
case. Yahoo made the case for eventual consistency not being
enough, and as in the case of social networks, stale replicas
can introduce privacy issues if not handled adequately. We
propose using operation grouping to resolve the consistency
issue among blocks of updates more efficiently and in an
straight forward manner by using several QoD levels.

III. HBASE-QOD ARCHITECTURE

HBase-QoD allows for entries to be evaluated prior to
replication, and it is based in the aforementioned vector-
field consistency model, allowing for a combination of one
or several of the parameters in K (0, o, v), corresponding
to Time, Sequence, and Value divergence in this case. Sec-
ondly, updates that collide with previous ones (same keys but
different values) can also be checked for number of pending
updates or value divergence from previously replicated items
and, if required, shipped or kept on hold accordingly. The
time constraint can be always validated every X seconds,
and the other two through Alg. [I] as updates arrive. For
the work presented here we use Sequence (o) as the main
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Figure 1: HBase QoD high-level

QoD-2. 6=1 for column family c2.
In this case 0 is a time constant, so each
second it replicates all items from c2 .

vector-field constraint to showcase the model in practice. For
this, we define a set of customized data structures, which
hold the values of database row items due to be checked
for replication on a particular data container. Containers are
identified as tableName:columnFamily for us, and can also
be a combination of row-fields from the data store relevant to
differentiate or apply data semantics on it.

In order to track and compare QoD fields (which act as
constraints during replication) against stored updates, data
containers are defined for the purpose, controlling both cur-
rent and maximum (then reset) bound values. Therefore, a
QoD percentage is on the updates due to be propagated at
once (e.g., using o). This process is partly automated at
the moment, with us just defining it at run-time (or by the
developer later) adding a parameter into the HBase console
that selects the desired vector-field bound percentage.

Extensions to the HBase internal mechanisms: A high-
level view of the mechanisms introduced with HBase-QoD
is outlined in Figure [T} and it is based in each case in an
specific QoD bound applied to each defined data container
per user. Replicating when the QoD is reached means here,
3 updates for using o in the case of QoD-1 for User A and
each second for the User D with QoD-2 of 8 field instead,
in this case also showing the last-writer wins behavior on
the remote side, user N, for a same propagating remote data
container value during replication. This overall architecture
layout is presented in order to showcase a scenario where to
rule updates selectively during geo-replication.

The original HBase architecture has built-in properties
derived from the underlying HDFS layer. As part of it, the
WALEdit data structure is used to store data temporarily

before being replicated, useful to copy data between several
HBase locations. The QoD algorithm (shown in Algorithm. [T)
uses that data structure, although we extend it to contain
more meaningful information that help us in the management
of the outgoing updates marked for replication. We extend
HBase, handling updates due to be replicated in a priority
queue according to the QoD specified for each of their data
containers. Thereafter once the specified QoD threshold is
reached the working thread in HBase, in the form of Remote
Procedure Call, collects and ships all of them at once.
Typical distributed and replicated deployment: In dis-

tributed clusters Facebook is currently using HBase to manage
the messaging information across data centers. That is because
of the simplicity of consistency model, as well as the ability
of HBase to handle both a short set of volatile data and ever-
growing data, that rarely gets accessed more than once.

With the eventual consistency enforcement provided, up-
dates and insertions are propagated asynchronously between
clusters so Zookeeper is used for storing their positions in
log files that hold the next log entry to be shipped in HBase.
To ensure cyclic replication (master to master) and prevent
from copying same data back to the source, a sink location
with remote procedure calls invoked is already into place with
HBase. Therefore if we can control the edits to be shipped,
we can also decide what is replicated, when or in other words,
how soon or often.

Algorithm 1 QoD algorithm for selecting updates using o
criteria (with time and value would be the same or similar)
Returns true means replicate.

Require: containerld
Ensure: mazBound # 0 and control Bound # 0
1: while en forceQoD(containerId) do
2. if getMax K (containerId) = 0 then
3 return true
4. else {getactual K (containerId)}
5 actual K (o) < actual K (o) + 1
6: if actual K (o) > container Max K (o) then
7 actual K (o) < 0
8 return true
9

else
10: return false
11: end if
12:  end if

13: end while

Operation Grouping: At the application level, it may
be useful for HBase clients to enforce the same consistency
level on groups of operations despite affected data containers
having different QoD bounds associated. In other words, there
may be specific situations where write operations need to
be grouped so that they can be all handled at the same
consistency level and propagated atomically to slave clusters.

For example, publication of user statuses in social networks
is usually handled at eventual consistency, but if they refer to



new friends being added (e.g., an update to the data container
holding the friends of a user), they should be handled at a
stronger consistency level to ensure they are atomically visible
along with the list of friends of the user in respect to the
semantics we describe here.

In order to not violate QoD bounds and maintain con-
sistency guarantees, all data containers of operations being
grouped must be propagated either immediately after the
block execution, or when any of the QoD bounds associated
to the operations has been reached. When a block is triggered
for replication, all respective QoD bounds are naturally reset.

To enable this behavior we propose extending the HBase
client libraries to provide atomically consistent blocks.
Namely, adding two new methods to HTable class in order
to delimit the consistency blocks: startConsistentBlock and
endConsistentBlock. Each block, through the method start-
ConsistentBlock, can be parameterized with one of the two
options: i) IMMEDIATE, which enforces stronger consistency
for the whole block of operations within itself; and ii)
ANY, which replicates groups of updates as a whole and as
soon as the most stringent (smaller) QoD vector-field bound,
associated with an operation inside the block, is reached.

IV. IMPLEMENTATION DETAILS

HBase replication mechanism is based in a Write Ahead
Log (WAL), which must be enabled in order to be able
to replicate between distant data centers. The process of
replication is currently carried out asynchronously, so there
is no introduced latency in the master server. Although,
since that process is not strongly consistent, in write heavy
applications a slave could still have stale data for an order of
more than just seconds, and just until the last updates commit
to local disk.

In our implementation we overcome the pitfalls of such
an approach, and propose a QoD-vector to handle selected
updates, thus lower values of it (e.g maxBound of o in the
three dimensional vector K) enforce their delivery at the
remote cluster earlier. For write intensive applications, that
can be both beneficial in terms of reducing the maximum
bandwidth peak-usage, while still delivering data according
to application needs and with improved semantics.

The QoD module in Figure [2] shows the implementation
details introduced with HBase-QoD. We observe the module
integrates into the core of the chosen cloud data store (HBase),
intercepting incoming updates, and processing them into a
priority queue named Unified Cache, which is defined to store
those for later replication to a given slave cluster.

Changing the logic of the shipping of edits in the write-
ahead log, this process is therefore performed now according
to the data semantics we define. Several data structures are
required, some of them existing in HBase, as the WALEdit.
That is in order to access different data containers that we
later query to determine where and how to apply a given
QoD at the row level (e.g. tablename:columnFamily). The
data is replicated once we check the conditions shown in
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Figure 2: HBase QoD operation

Algorithm 1 are met, and replication is triggered if there is
a match for any of the vector-constraints (e.g o). The use of
the QoD is also applicable to the selection of those updates
to be replicated according to a combination of any the three-
dimensional vector constraints, not only o.

V. SIMULATION AND EVALUATION

It has been already verified and presented in other reports
and projects in the area of Hadoop, that a statically defined
replication level is in itself a limitation, which therefore must
be addressed and more efficiently adjusted in order to keep
up with the scheduling of tasks. That is also related to the
work here covered within HBase, as HDFS is its storage layer.
A workaround on static replication constraints in HDFS and
HBase is offering and enforcing on-demand replication with
HBase-QoD and its vector-field model. During evaluation of
the model, a test-bed of several HBase clusters has been
deployed, having some of them using the HBase-QoD engine
enabled for quality of data between replicas, and others
running a regular implementation of HBase 0.94.8. All tests
were conducted using 6 machines with an Intel Core 17-2600K
CPU at 3.40GHz, 11926MB of available RAM memory, and
HDD 7200RPM SATA 6Gb/s 32MB cache, connected by 1
Gigabit LAN.

We confirm the QoD does not hurt performance as we
observe from the throughput achieved for the several levels of
QoD chosen during the evaluation of the benchmark for our
modified version with HBase-QoD enabled, Figure [3] The
differences in throughput are irrelevant and mostly due to
noise in the network, that is the conclusion after obtaining
similar results to that one in several rounds of tests with the
same input workload on the data store.

Next we conducted as shown in Figure [ and dstar
presents, an experiment to monitor the CPU usage using



HBase-QoD. CPU consumption and performance remains
roughly the same and therefore stable in the cluster machines
as can be appreciated.

We have also taken measurements for the following work-
loads obtaining results as follows:

Workloads for YCSB: We have tested our implementation
in HBase with several built-in workloads from YCSB plus
one custom workload with 100% writes to stress the database
intensively, because target updates in social networks as
previously mentioned, are mostly all about changes and new
insertions.

Figure [5] shows three different sets of Qualities of Data for
the same workload (A):

1) YCSB workload A (R/W - 50/50)

e No QoD enforced.

o QoD fulfillment of 0=0.5% of total updates to be
replicated.

e QoD fulfillment of 0=2% of total updates to be
replicated.

During the execution of the workload A, in Figure[5} the
highest peaks in replication traffic are observed without
any type of QoD, i.e. just using plain HBase. This is
due to the nature of eventual consistency itself and the
buffering mechanisms in HBase.

With a QoD enabled as shown in the other two
graphs, we rather control traffic of updates from being
unbounded to a limited size, and accordingly saving
resources’ utilization, while suiting applications that
require smaller amounts of updates as they only prop-
agated as a group, when they are just needed.

We observe that a higher QoD implies replication traffic
less often, although interactions reach high values on
Bytes as they need to send more data. Small QoD
optimizes the usage of resources while sending priority
updates more frequently (this could be the case of wall
posts in a social network).
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Figure 4: CPU usage over time with QoD enabled

2) YCSB workload A modified (R/W - 0/100)
e No QoD enforced.
o QoD fulfillment of 0=0.5% of total updates to be
replicated.
¢ QoD QoD fulfillment of 0=2% of total updates to
be replicated.

In Figure [6] we can see how a write intensive workload
performs using a QoD. Similar results are expected and later
also confirmed in this graph (please note the scale of the
Y axis is modified in order to show the relevant difference
in Bytes more accurately). For smaller QoD (0.5%), overall
we see lower peaks in bandwidth usage than with plain
HBase, as well as in the following measurement used for QoD
2.0% (having that one higher maximum peak values than the
previous QoD). Finally HBase with no modifications shows
a much larger number of Bytes when coming to maximum
bandwidth consumption. Note we are not measuring, or find
relevant, in any of these scenarios, to realize savings on
average bandwidth usage. The principal source of motivation
of the paper is to find a way of controlling the usage of
the resources in a data center. Also, to be able to leverage
the trading of strong for eventual consistency with a more
robust atomic grouping of operations using vector bounded
data semantics.

VI. CONCLUSION

Performance in HBase improves as the number of resources
increases, for instance with more memory available [6],
but it is not always trivial to scale further following that
approach. Therefore, having ways of providing different levels
of consistency to users regarding data in cloud environments
translates into substantial traffic savings and potentially as-
sociated costs to service providers. That is a relevant matter
already discussed for consistency cost-efficiency [16].

In this paper we presented HBase-QoD, a module that
uses quality-of-data (QoD) to envision the goal of a tunable
consistency model for geo-replication. The framework allows
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bounds on data to be used in order to perform selective  peak loads. Achieving the last, can help to significantly
replication in a more controlled and timely-fashion than usual reduce replication overhead between data centers when there
eventually consistent approaches in these sort of data stores. are periods of disconnection or bottlenecks in the network.

With the semantics presented we trade-off short timed We evaluated our implementation on top of HBase clusters
consistency with wide area bandwidth cost savings during distributed across several locations showing relevant results



for that.

In summary, a successful model based on vector-field
divergence mechanisms [9] was implemented and shows how
HBase consistency can be tuned at the core-system level,
without requiring intrusion to the data schema and avoiding
more middle-ware overhead such as in [17]. In our case,
experimental results indicate that we are able to maintain
an acceptable throughput, reduce latency peaks, as well as
optimize bandwidth usage. In the future we would like to
conduct more experiments using Amazon EC2 infrastructure
and also several other cluster locations in partner-universities
if there is any chance to do so.
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