
Resource-Aware Scaling of Multi-threaded Java
Applications in Multi-tenancy Scenarios

José Simão
INESC-ID Lisboa

Instituto Superior de Engenharia de Lisboa (ISEL)
jsimao@cc.isel.ipl.pt

Navaneeth Rameshan
Universitat Politècnica de Catalunya

rameshan@ac.upc.edu

Luı́s Veiga
Instituto Superior Técnico

INESC-ID Lisboa
luis.veiga@inesc-id.pt

Abstract—Cloud platforms are becoming more prevalent in
every computational domain, particularly in e-Science. A typical
scientific workload will have a long execution time or be data
intensive. Providing an execution environment for these appli-
cations, which belong to different tenants, has to deal with the
horizontal scaling of execution flows (i.e. threads) and an effective
allocation of resources that takes into account the effective
progress made by each tenant. While this is trivial for Bag-
of-Tasks and embarrassingly parallel jobs, it is hard for HPC
single-process multi-threaded applications because they cannot
be scaled up automatically just by adding more virtual machines
to execute the workload. In this paper we present MengTian1,
a distributed execution environment or platform capable of
addressing the issues above. It encompasses several extensions
to the Java execution environment, ranging from middleware to
the virtual machine code and libraries. Our Java-based platform
provides a Single System Image abstraction supported by a
Partially Global Address Space to transparently spawn threads
across a cluster of machines. It monitors progress with different
levels-of-detail and accounts and restricts resource consumption.
The overall goal is to redistribute resources among different
JVM instances, increasing the unitary outcome of the progress
vs. resource usage ratio over time.

Index Terms—Resource scheduling, Progress monitoring, Man-
aged runtimes

I. INTRODUCTION

The Infrastructure-as-a-Service (IaaS) model is now widely
adopted by the industry and the information community in
general, either through public, private or hybrid clouds. In
this service model, tenants (users that share a common infras-
tructure) are eased from managing the physical hardware and
the hardships associated. They get a system virtual machine
(VM), that runs full-fledged guest OS instance to execute
their applications. Furthermore, they can change their needs
over time, asking for more or less VMs, using provider-
specific interfaces. Nevertheless, the IaaS model does not
handle application horizontal scaling adequately in the case
of single-process multi-threaded applications. These cannot be
scaled up transparently just by launching or allocating more
virtual machines to run the application. This may increase
throughput (more instances running simultaneously) but it will
not make any single instance execute faster.

1Meng Tian was a prominent general of the Qin dynasty. During this
dynasty, a massive terra cotta army was build to honor the emperor.

Providing an execution environment for these applications,
which belong to different tenants, has to deal with the
horizontal scaling of execution flows (i.e. threads) and an
effective allocation of resources that takes into account the
effective progress made by each tenant. While this is trivial
for Bag-of-Tasks and embarrassingly parallel jobs, it is hard
for HPC single-process multi-threaded applications because
they cannot be scaled up automatically just by adding more
virtual machines to execute the workload.

Developing a mechanism to transparently scale multi-
threaded applications and effectively allocating resources is
a challenging task. To transparently scale applications, the
execution environment has to deal with two main tasks: dis-
tribution of execution flows and share object graphs between
distributed nodes. The algorithm to distribute execution flows
must naturally take into account the available nodes and their
load but also the correlation among different threads. Regard-
ing shared memory, non thread-local modifications must be
visible to all threads. The system must either automatically
identify this shared state or ask the programmer to do so.
Furthermore, the program lock semantics in concurrent ac-
cesses to shared memory must be enforced. Regarding the
effective use of resources, the execution environment needs
mechanisms to infer each workload’s progress and to regulate
resource consumption, in a workload specific way.

Our work crosses two very active research areas: scaling of
applications and resource management. Regarding the former,
several new programming models and languages [1], [2],
[3], [4] have been proposed. Nevertheless they require the
program to be bounded to yet another programming interface,
which invalidates the use of previous working solutions by
non programming-expert users, e.g. some groups of e-science
researchers. Others have proposed to scale a virtual machine to
the datacenter scale [5] but this would require new hardware
architectures and a penalty to applications that do not need
this kind of scalability. Differently from these approaches, we
show that the widely known semantics of a Java program can
indeed be extended to a distributed environment. Finally, these
systems also do not account for scenarios of multi-tenancy
where no single scheduling algorithm or resource allocation
strategy has the best result for every workload.

In this context, we present MengTian, a Java-based plat-
form for shared computer clusters, such as cloud environments.

It extends a distributed shared objects (DSO) middleware to
provide a partial global address space with a thread spawning
mechanism that has: a) two modes of transparency: one fully
automatic, where the middleware can identify the shared
elements of the program; the other lets the programmer
identify them using annotations, for increased expressiveness
and performance; b) two scheduling layers, either hybrid or
centralized; c) resource-aware and workload-aware scheduling.

Furthermore, a set of extensions to the JVM are introduced
to account for resource usage and progress awareness on a
per workload basis. On top of these mechanisms we present
a simple model that acts on thread spawning and resource
accounting mechanisms, aiming to employ available resources
where they are more effective.

As a consequence we: a) apply different scheduling heuris-
tics, each targeted to suit a specific class of applications; b) al-
locate resources to workloads that exhibit superior incremental
performance, when more resources are available to them.
Evaluation results demonstrate the limited overhead introduced
by the enabling mechanisms, while achieving significant im-
provements in performance, even with full transparency to
programmers and users (i.e., neither changes nor access to
source code).

The rest of the paper is organized as follows. Section II
discusses the architecture of our system, showing the different
abstraction layers we extended, and presents the relevant
design issues of the thread spawning mechanism, and the
extensions to the DSO middleware. Section III introduces the
mechanisms MengTian provides for resource and progress
monitoring and how they are used to determine if more
resources will be used efficiently. Section IV presents the set of
scheduling algorithms implemented. Section V discusses the
results regarding the new mechanisms overhead and the gains
obtained when running well-know Java workloads. Section VI
presents related work and Section VII concludes the paper.

II. SYSTEM OVERVIEW

Figure 1 depicts the general overview of our proposal for a
cloud Java execution environment, targeting shared computer
clusters or clouds. There are 3 main elements in MengTian :
i) scheduler capable of applying different strategies to each
workload, ranging from thread scheduling to per workload
resource allocation; ii) distributed middleware for object heap
sharing that is organized as a partitioned global address space,
and extended to support thread spawning in remote nodes;
and iii) extended JVM capable of monitoring and accounting
resource usage (e.g. number of cores, heap size) and exposing
several JVM and application performance indicators (e.g.
threads and objects correlation).

We have followed a co-designed approach combining mid-
dleware with necessary JVM extensions for control, access
and raw performance requirements. However, the extended
JVM and the enhanced DSO middleware can actually be
used separately. The former can be used whenever it is really
necessary to have a rich execution environment with several
application progress sensors and resource accounting, while

the latter does not depend on those extensions to operate. In
the following, we give further details regarding each key aspect
of MengTian , discussing the tradeoffs of the design.

DSO and Distributed Thread Scheduling.: Our thread
distribution mechanism is based on the availability of a dis-
tributed shared objects (DSO) middleware for Java applica-
tions. We assume the basic services offered by the DSO layer
(e.g., Terracotta from terracotta.org) include: i) a programming
model where selected objects can be elected to be visible,
i.e., shared across a cluster of machines; ii) allow concurrent
access to shared objects, while upholding the usual consistency
model based on Java monitors. This middleware enables the
application to propagate changes to shared objects (which we
will discuss next) but it is also used by the thread spawning
middleware (see Figure 1) to support the thread distributed
placement and the distributed reasoning for resource-aware
scheduling.

The thread spawning middleware uses a master/worker
approach. The master is responsible for starting the application
and, for each new thread created, it launches remotely on a
worker node. The worker exposes an interface for launching
threads and provides all the operations supported by the base
class library Thread class.

Semantics for objects sharing.: The class(es) associated
with each thread can either use local objects or access (for
read or write) objects that are shared in the cluster. Without
any knowledge about the application behavior, the middleware
has to use a pessimistic approach and ensure that every write
to a field will be visible to the rest of threads. Although
fully transparent, in case of false shares, this will result in
an unnecessary overhead regarding network communication.
To overcome this, there are two possibilities. One is to use
code analysis techniques such as static escape analysis to the
thread fields. The other is to let the programmer annotate
the shared fields. In the former case, these techniques can
also give some false shares, and can be less effective with
dynamic code loading. The latter slightly breaks transparency.
To accommodate these scenarios, MengTian provides two
operation modes Auto and Guided.

Application performance indicators.: These rates express
what is the dynamic behavior of the application. These indi-
cators can be either collected from inside or outside the JVM.
Examples include the number of instructions executed per ma-
chine cycle, the number of objects accessed per milliseconds,
or the number of frames processed per second.

III. PROGRESS MONITORING FOR WORKLOAD-AWARE
SCALING

Resource allocation scaling is an important mechanism to
support workloads that can take advantage of extra resources.
Nevertheless, in a multi-tenant shared infrastructure, it is
necessary to compare the opportunity cost of having more re-
sources allocated to a workload of a given tenant if workloads
from other tenants can also make some progress. Because
physical resources will eventually be limited, we must have
mechanisms and metrics to measure and decide for which

Hypervisor/Operating system

MengTian runtime

t1 t2

Multi-threaded application (worker)

proxy

Hypervisor/Operating system

Resource Accounting

JIT GC

MengTian runtime

DSO middleware

tmain

proxy

Multi-threaded application (master)

I/OThreading

t1 = new Thread(…)
t1.start()

t2 = new Thread(…)
T2.start()

Thread Spawning middleware

Resource Accounting

JIT GC I/OThreading
Global Heap

Thread
correlator

Progress
monitor

Cluster-wide resource
scheduler

Fig. 1: Overview of MengTian system architecture

tenants resources are more effectively employed. To do so,
there are three layers that must be in place. First, mechanisms
to allocate and control resource usage. Second, mechanisms
to determine the quality of progress of different workloads.
Third, a control model to act on the allocation mechanisms
based on these inputs.

In previous work [6], [7], [8] we have discussed and pre-
sented some results regarding the design and implementation
of the two first mechanisms. Our current platform includes
a Java execution environment that can enforce resource con-
sumption policies and act over critical resources for managed
applications, such as the heap growth/shrink policy. It is also
aware of progress monitoring annotations that the programmer
can use to identify critical functions of a program so that the
runtime can handover resources to the workloads that make
better use of them.

Regarding the third requirement, we propose in this paper
to use an economic metric, return on investment, which is a
ratio between net profit and investment, and apply it to our
computational environment. As presented in Equation 1, this
metric relates speedup and the extra resources employed to
get them for workload w based on two observations j and
j−1. When considering giving more work units (or resources
in general) to entitled tenants, we are able to serve those with
expected higher RoIs first, in an eager yet fast approach at
maximizing the aggregated RoI.

RoI(w, j) =

Progressj
Progressj−1

WorkUnitsj −WorkUnitsj−1
(1)

IV. RESOURCE-AWARE SCHEDULING ALGORITHMS

When an application launches a thread, the master is re-
sponsible for making scheduling decisions based on the chosen
heuristic. The worker can also make scheduling decisions if a
thread spawns multiple threads. The middleware supports two
types of scheduling and they are presented below.

A. Centralized Scheduling

In centralized scheduling, the decisions are taken entirely
by a single node. Here, the master is responsible for making

every scheduling decision. Based on the specified heuristic, the
master selects a worker for remotely executing the thread and
also maintains state information. The centralized scheduling
heuristics supported are the classic round-robin and resource-
aware, where scheduling decisions are made depending on the
load of every worker. Regarding resource-aware scheduling,
MengTian provides several variations:

CPU Load: The CPU load of every worker is monitored
by the master and the threads are remotely launched on the
worker with the least CPU load. The master maintains state
information about the CPU load of every worker.

Load Average: Threads are scheduled on nodes with
the least CPU utilization until the CPU load gets saturated.
The scheduling heuristics then aims at equalizing the load
average across the cluster. The values of load average obtained
from the command-line top are not instantaneous. They are
measured in three ranges as a moving average over one minute,
five minute and fifteen minutes and the time taken for updating
the moving average is five seconds. If multiple threads are
launched instantaneously within a five second window, it is
possible that all the threads are launched on the worker with
the lowest load average. This problem is circumvented by an
estimation of the number of threads to launch based on the
processor queue of the worker.

Accelerated Load Average: This heuristic is similar to the
scheduling heuristic Load-Average but is not as conservative
and takes into account instantaneous changes in load average.
It allows for scheduling the minimum number of threads
possible while keeping the estimation correct and at the same
time aiding in using a recent value of load average. The load
information of CPU and load average is updated by the worker
in one of the two ways:

• On-demand When an application is just about to launch
a thread, the master requests all the workers to provide
their current load. State information is updated only on
demand from the master. This is a blocking update and
it incurs an additional overhead of round trip time delay
to every worker for every thread launch.

• Periodic: The load information of worker nodes are
maintained by the master and updated periodically. The
period required to perform updates is a configurable

parameter which can be chosen by the user. All updates
are performed asynchronously and hence they do not
block remote launching of threads. Optimal period for
a worker is given by Equation 2:

p =

√
tl ∗ (2 ∗ tm +RTT)

2 ∗N
(2)

where tl is the arrival time of the last thread, tm is the
time to monitor load by the worker, RTT is the round
trip time to the distributed shared objects server and N
is the total number of threads.
Thread Load: The master maintains state information

about the number of threads each worker is currently running.
This heuristic schedules in a circular fashion just like round
robin until at least one thread exits. Once a thread exits, it
ceases to behave like round robin and launches threads on
nodes with least threads. The state information is updated only
when a thread begins or finishes execution.

B. Hybrid Scheduling

Once a thread is scheduled to a worker, depending on
the application, the thread itself may launch multiple inter-
nal threads. To handle such scenarios, the middleware also
supports hybrid scheduling, where local copies of information
that help scheduling decisions are maintained. The trade-off
between consistency and performance is handled optimally for
distributed scheduling.

In this approach, the master asynchronously sends the state
information tables (global) to every worker before any thread
launch. The workers store a copy of the table locally. Workers
use this local table for making scheduling decisions after
which they update the local table and then the global table.
Once a worker updates its local table, there are inconsis-
tencies regarding the information table among the workers.
Nonetheless, they are lazily consistent and the final update
on the global table is always the most recent and updated
value. We achieve this by considering updates only to entries
corresponding to that worker, in both global and local tables.
This prevents updates to global table from blocking.

In this context, performance and consistency are inversely
proportional to each other and we aim to improve performance
by sacrificing a bit on consistency. If a worker has to schedule
based on thread load and makes a choice by always selecting
the worker with the least loaded node from its local table, then
it could result in every worker selecting the same node for
remotely spawning an internal thread, eventually overloading
the selected node. This happens because the workers do not
have a consistent view of the information table for a certain
period. To prevent this problem, workers make their choice
based on weighted random distribution.

C. Profiling Threads Behavior

Because there is no scheduling strategy that fits all kinds of
workloads, we need to profile the application to determine its
characteristics and apply the best algorithm. We considered
four metrics to characterize an application: i) variations in

thread’s creation rate, ii) thread’s workload imbalance, iii) total
memory and iv) CPU usage. Thread’s creation rate determines
how frequently the application creates new threads. Thread
imbalance represents how different is the workload assigned
to each thread. Total memory represents all the memory (both
the heap and non-heap) consumed for the process running
a given JVM. Sections V-C relates the efficiency of the
scheduling algorithm with each identified profile. Currently,
profiling is done prior to executing the application on the
middleware. It is not required to execute the application com-
pletely, instead sampling a part of the application is enough
to obtain the necessary metrics. However, accuracy of the
metrics are directly proportional to th amount of data sampled.
Most accurate information about the metrics is obtained by
executing applications till they finish.

V. EVALUATION

The evaluation of our platform starts in with a micro-
benchmark regarding the overheads of several extensions
made to the execution environment (Sections V-A). Then we
show that, for compute-intensive multi-threaded applications,
speedups largely overcome these overheads. Section V-B also
presents the return on investment for different workloads,
showing how some workloads will benefit more than others,
resulting from a resource up-scaling. Section V-C compares
the impact of different scheduling heuristics. Evaluation was
done using up to four machines in a cluster, with Intel(R)
Core(TM) i7 Quad core processors (with eight cores each)
and 16GB of RAM. Each machine was running Linux Ubuntu
12.04.

A. Thread Spawning

Executing Java applications on the middleware may incur
an additional overhead of increase in the size of bytecode
and delay in the launching of each thread. Regarding periodic
updates of load information, they are small and asynchronous;
this masks any specific overhead incurred. For this reason,
and to maintain generality, this section measures two main
overheads: size of the bytecode, and delay in spawning a
thread. To measure them, we developed a synthetic multi-
threaded application, where each thread runs several times the
MD5 cryptographic hashing function.

We observed an overhead of 5.04% in bytecode size due
to additional instrumentations which provide for transparency,
remote launching of threads, monitoring runnable objects and
capturing thread execution times. Also, as the number of
threads in the MD5 hashing application doubles, the total
overhead incurred for launching threads also doubles. The
overhead is considerable and indicates that the middleware
is mostly suited for applications that are compute-intensive.

B. Execution Speedups

Multi-threaded applications that are compute intensive have
the potential to fully exploit the benefits of our extended
execution environment. To evaluate such a scenario, we used
a micro-benchmarking workload and a complete application.

00

100

200

300

400

5 threads 10 threads

Ex
ec

ut
io

n
tim

e
(m

se
c)

Single JVM 2 workers 3 workers

1.7
2.6

2.0

2.7

Fig. 2: Parallel MD5 hashing.

0

200

400

600

800

1000

1200

20 sites 30 sites

Ex
ec

u
ti

o
n

 t
im

e
 (

se
c.

)

Single JVM 2 Workers 3 Workers

Fig. 3: Crawler for 20 and 30 websites.

The first spawns several threads, each using the MD5 hash
algorithm to generate the hash of 500 messages. The second
is a web crawler that spawns several threads to crawl a set
of predefined sites. The third is SunFlow, 2 an Open Source
rendering system for photo-realistic image synthesis, which
represents a class of multi-threaded applications with coarse-
grained interaction between threads.

For the micro-benchmark, the performance is compared by
executing the MD5 hashing application on a single machine
and using the middleware. Two and three workers are used
for the purpose of comparison, and times taken with five and
ten threads executing is measured. Figure 2 shows that when
the number of workers increase, the time taken to execute the
application decreases. There is positive scalability, and roughly
linear. Regarding the web crawler, the number of websites
crawled was increased for each evaluation. The number of
threads for crawling within a single website is maintained as
a constant at 3. These 3 threads require synchronization among
themselves that may cross VMs. Every website is crawled up
to a depth of two. Figure 3 shows the performance results,
denoting also positive scalability, albeit sub-linear.

Figures 4 and 5 show how returns on investment can help
users and administrators to configure thresholds, below which,
elasticity is deemed ineffective and no extra resources are
awarded (e.g., below 10%). As a law of diminishing marginal
returns is expected (e.g., SunFlow from 6 to 10), thresholds
can be configured for the RoI-deltas (e.g., less than 5 percent
points) to detect this inelasticity earlier and prevent resource
sub-efficiency.

2http://sunflow.sourceforge.net/

0%

20%

40%

60%

80%

100%

+1 +2

R
et

u
rn

 o
n

 In
ve

st
m

e
n

t

Extra resources (number of workers)

MD5 Crawler-20 Crawler-30

Fig. 4: RoI for MD5 and WebCrawler with increasing number
of nodes

0%

20%

40%

60%

80%

100%

+2 +6 +10

R
et

u
rn

 o
n

 In
ve

st
m

e
n

t

Extra resources (number of threads)

Sunflow

Fig. 5: RoI for Sunflow with increasing number of threads and
nodes

C. Scheduling Algorithms

In this section, the different scheduling algorithms are
evaluated with different application behaviors. All the exper-
iments are done performing the MD5 hashing of multiple
messages. To understand how different scheduling algorithms
behave with different application characteristics, the following
thread characteristics are modified in an sequenced fashion: i)
variations in thread creation rate and thread inter arrival time,
ii) thread’s workload imbalance.

For each of these characteristics two orders of magnitude
were considered: i) small and ii) large. When thread’s work-
load imbalance is small, we assume threads to either compute
low or high intensive workloads.

Table 6.a maps the letters used in Figures 6.b, 6.c and 6.d
to the corresponding algorithm name. We first make threads
perform a similar amount of computations with new threads
being created after similar amounts of time. In other words,
the thread’s imbalance is small and variation in the thread’s
creation rate is also small (Fig. 6.b).

Round robin performs better because the threads have equal
workloads and are equally spaced regarding their creation
time. CPU load on demand incurs the overhead of obtaining
the load information from every worker before making a
decision. The results obtained for low thread workload are
similar, except that the time taken for execution is considerably
lower. We then make threads perform a similar amount of com-
putations with threads being created after different amounts of
time. In other words, the thread’s imbalance is small and the
variation in thread’s creation rate is large. The results obtained
for high and low thread workloads are shown in Figure 6.c.

A Single JVM
B Round Robin
C Thread Load
D CPU load - On Demand
E CPU load - Periodic
F Average load - On Demand
G Accumulated Average load - Periodic

(a)

A B C D E F G

high workload 480 232 235 263 336 264 264

low workload 280 176 177 192 220 191 192

0

100

200

300

400

500

600

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c.

)

high workload low workload

(b)

A B C D E F G

high workload 489 238 240 256 245 246 247

low workload 291 188 178 206 184 191 190

0

100

200

300

400

500

600

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c.

)

high workload low workload

(c)

A B C D E F G

large variations 433 290 280 267 259 282 281

small variations 430 278 275 251 285 275 274

0

100

200

300

400

500

Ex
e

cu
ti

o
n

 t
im

e
 (

se
c.

)

large variations small variations

(d)

Fig. 6: (a) Legend used in evaluation figures (b) Impact of different workloads sizes for applications with small workload
imbalance and small variations in creation rate (c) Impact of different workloads sizes for applications with small workload
imbalance and large variations in creation rate (d) Impact of variations in thread’s creation rate for applications with large
workload imbalance

For high thread workload CPU load periodic finishes faster
than CPU load on demand, unlike the previous scenario. The
lowest period is enough time to update the state information
asynchronously, as opposed to synchronous update for on-
demand. For low thread workload, some of the threads finish
execution before all threads are even scheduled, and the thread
load heuristic is thus able to make a better decision than round
robin. The overhead incurred by monitoring the CPU load
increases the time taken to schedule threads and, hence CPU
load heuristic performs worse than round-robin and thread
load heuristic.

Finally, we considered an application with a large workload
imbalance (i.e. different threads running with low and high
intensive workloads). The results obtained for small and large
variations in creation rate are shown in figure 6.d. For high
variation in creation rates, the scheduling heuristic CPU load
periodic consumes the least amount of time to finish execution.
Although the scheduling heuristic has no information about
the time taken to finish a thread, some threads finish much
earlier, before all the threads are scheduled. This information
helps the heuristic make a better decision, and spreads out
threads of high and low workloads evenly among the different
workers.

For low variation in creation rates, CPU load on demand
performs better than any of the other scheduling heuristics,
because the workloads of threads are unknown, and this
heuristic aims to greedily equalize the CPU load of different
workers, as and when threads are created. CPU load periodic
takes a much higher time, as the lowest possible period to

update the state information is indeed larger than the inter-
arrival time between most of the threads. Most of the threads
are hence scheduled on the same worker.

VI. RELATED WORK

In this section we frame our work with other contribu-
tions regarding single system image and transparent scaling,
resource awareness, progress monitoring and adaptability.

Cluster-aware virtual machines are JVMs built with clus-
tering capabilities in order to provide a Single System Im-
age (SSI). In Aridor et al. [9], threads and objects can be
distributed without modifying the source or byte code of an
application. To synchronize the objects across the cluster a
master copy is maintained and updated upon every access
which is a major bottleneck. Systems using standard JVMs
are built on top of a DSM system to provide a Single System
Image for applications. Some of the most popular systems
are Java Party [10], Java Symphony[11] and JOrchestra[12].
Nevertheless, these systems either (i) require the program-
mer to explicitly deal with object management, defeating
the advantage of a built-in garbage collection or (ii) lack
the mechanisms to support resource and progress monitoring
which makes them unsuitable for multi-tenancy scenarios.

Leitner et al. present CloudScale [4], a middleware to
offload methods execution from general purpose Java appli-
cations to the cloud. Differently from MengTian , it re-
lies on a wide-area client-side infrastructure that, based on
configuration, transforms local calls into remote ones, and
assumes no data sharing between components residing in the
cloud. Kächele et al. [13] present an OSGi-inspired component

framework that automatically manages elastic deployment
of applications already organized as OSGi-like components.
MengTian can be used with advantage in applications not
bound to the OSGi contract.

Several systems in the literature focus on choosing the best
number of hosts to run Bag-of-Tasks workloads, in an attempt
to find a trade off between performance and cost effectiveness
(regarding the host renting time). These approaches not only
require more expertise to organize programs but they are
also sensible to long running workloads where finishing time
among different tasks (or length of the input queue and
the size of each element) can have large variations. Unlike
Grid infrastructures, Cloud infrastructures depend on virtual
machines to provide the two basic service models, either IaaS
or PaaS. In [14], Mc Evoy et al. discuss implications of
scheduling work in such environments showing the importance
of knowing more about the workloads profile so that the
execution environment can be adapted to provide improved
performance.

Task driven workloads, typical in grid infrastructures, must
also be monitored by the execution runtime to adapt the
relevant system parameters and achieve the desired goals (e.g.
improve performance, save energy). In [15] two algorithms
are proposed which, based on a performance model, can
detect tasks with a bottleneck. The identified tasks are then
duplicated to increase the throughput of a stream program.
Cushing et al. [16] propose a prediction-based framework to
automatically scale the number of tasks running in scientific
workflow management systems. The prediction of the number
of tasks is based on the size of the input queues of each task
and the data processing rate.

VII. CONCLUSIONS

In this paper we proposed MengTian , an improved dis-
tributed execution environment, extending the Terracotta mid-
dleware and Jikes RVM, with mechanisms to measure the
application progress, and fine-grained resource usage, that can
drive a metric of elasticity, inspired by the return-of-investment
economic notion. This offers illusion of a single system image,
with resource elasticity, and transparent access to an elastically
scalable object heap and CPU pool, larger than any single
physical machine. It is able to scale existing applications
with ease and schedule threads efficiently across machines.
It supports multiple scheduling heuristics, each best suited for
a specific thread behavior in an application. Thread behavior is
obtained by a profiling feature supported by the middleware.
Based on the results obtained, a cpu-intensive application can
be modeled based on the characteristics of the cluster and
threads, and the best scheduling chosen.

In the future, we want to enrich the model with learning
and profiling techniques as well as develop a library of
typical progress monitoring patterns. Moreover we want to
leverage the profiling in MengTian to detect thread compe-
tition/coordination/cooperation patterns by intercepting object
synchronization in order to decide when to co-locate, with
higher or lower density, threads of the same application in a

given VM instance. This tradeoff between extra CPU load but
lower object synchronization latency will also be subject to
monitoring, profiling and optimization.

Acknowledgments: This work was partially supported by national
funds through FCT – Fundação para a Ciência e a Tecnologia,
projects PTDC/EIA-EIA/113613/2009, PTDC/EIA-EIA/108963/2008, PEst-
OE/EEI/LA0021/2013.

REFERENCES

[1] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” SIGPLAN Notices, vol. 40,
no. 10, pp. 519–538, Oct. 2005.

[2] J. Su and K. Yelick, “Automatic support for irregular computations in
a high-level language,” in Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05), ser. IPDPS
’05. Washington, DC, USA: IEEE Computer Society, 2005.

[3] E. Tejedor, M. Farreras, D. Grove, R. M. Badia, G. Almasi, and
J. Labarta, “A high-productivity task-based programming model for
clusters,” Concurrency and Computation: Practice and Experience, pp.
2421–2448, 2012.

[4] P. Leitner, B. Satzger, W. Hummer, C. Inzinger, and S. Dustdar,
“Cloudscale: a novel middleware for building transparently scaling
cloud applications,” in Proceedings of the 27th Annual ACM Symposium
on Applied Computing, ser. SAC ’12. New York, NY, USA: ACM,
2012, pp. 434–440.

[5] Z. Ma, Z. Sheng, L. Gu, L. Wen, and G. Zhang, “Dvm: towards
a datacenter-scale virtual machine,” in Proceedings of the 8th ACM
SIGPLAN/SIGOPS conference on Virtual Execution Environments, ser.
VEE ’12. New York, NY, USA: ACM, 2012, pp. 39–50.

[6] J. Simão and L. Veiga, “QoE-JVM: An adaptive and resource-aware Java
runtime for cloud computing,” in Proceedings of OTM Conferences, ser.
Lecture Notes in Computer Science, R. Meersman, H. Panetto, T. S.
Dillon, S. Rinderle-Ma, P. Dadam, X. Zhou, S. Pearson, A. Ferscha,
S. Bergamaschi, and I. F. Cruz, Eds., vol. 7566. Springer, 2012, pp.
566–583.

[7] ——, “A progress and profile-driven cloud-vm for resource-efficiency
and fairness in e-science environments,” in Proceedings of Symposium
On Applied Computing, S. Y. Shin and J. C. Maldonado, Eds. ACM,
2013, pp. 357–362.

[8] L. Veiga and P. Ferreira, “PoliPer: policies for mobile and pervasive
environments,” in Proceedings of the 3rd workshop on Adaptive and
reflective middleware, ser. ARM ’04. New York, NY, USA: ACM,
2004, pp. 238–243.

[9] Y. Aridor, M. Factor, and A. Teperman, “cJVM: a single system image
of a JVM on a cluster,” in Proceedings of the International Conference
on Parallel Processing, 1999, pp. 4–11.

[10] M. Philippsen and M. Zenger, “JavaParty - transparent remote objects
in Java,” Concurrency: Practice and Experience, vol. 9, no. 11, pp.
1225–1242, 1997.

[11] T. Fahringer, “JavaSymphony: A system for development of locality-
oriented distributed and parallel java applications,” in In Proceedings
of the IEEE International Conference on Cluster Computing. IEEE
Computer Society, 2000.

[12] E. Tilevich and Y. Smaragdakis, “J-orchestra: Automatic java application
partitioning.” Springer-Verlag, 2002, pp. 178–204.

[13] S. Kächele and F. J. Hauck, “Component-based scalability for cloud
applications,” in Proceedings of the 3rd International Workshop on
Cloud Data and Platforms, ser. CloudDP ’13. New York, NY, USA:
ACM, 2013, pp. 19–24.

[14] G. Mc Evoy and B. Schulze, “Understanding scheduling implications for
scientific applications in clouds,” in Proceedings of the 9th International
Workshop on Middleware for Grids, Clouds and e-Science, ser. MGC
’11. New York, NY, USA: ACM, 2011, pp. 3:1–3:6.

[15] Y. Choi, C.-H. Li, D. D. Silva, A. Bivens, and E. Schenfeld, “Adaptive
task duplication using on-line bottleneck detection for streaming appli-
cations,” in Proceedings of the 9th conference on Computing Frontiers,
ser. CF ’12, 2012, pp. 163–172.

[16] R. Cushing, S. Koulouzis, A. S. Z. Belloum, and M. Bubak, “Prediction-
based auto-scaling of scientific workflows,” in Proceedings of the 9th
International Workshop on Middleware for Grids, Clouds and e-Science,
ser. MGC ’11. New York, NY, USA: ACM, 2011, pp. 1:1–1:6.

