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Abstract—Memory management plays a vital role in modern
virtual machines. Both system- and language-level VMs manage
memory to give the illusion of a unbounded allocation space
although the underlying physical resources are limited. One
of the main challenges for memory management is the range
of dynamic characteristics of the workloads. Researchers have
developed a large body of work using different mechanisms and
dynamic decision making to specialize the memory management
system to specific workloads. This design can be considered
as a control loop where sensors are monitored, decisions are
made and actions are performed by actuators. Nevertheless as
is common in systems research, improvement in one property
is accomplished at the expense of some other property. In
this work we survey different techniques for adaptive memory
management expressed as a control loop. We propose to analyse
memory management in virtual machines using three seemingly
orthogonal characteristics: responsiveness (R), comprehensive-
ness (C) and intricateness (I). We then present the details of
an extensible classification framework which emphasizes the
tradeoffs of different approaches. Using this framework, some
representative state of the art systems are evaluated showing
inherent tensions between R, C and I.

Index Terms—Memory Virtualization, Adaptability, Quantita-
tive analysis

I. INTRODUCTION

Regardless of the target environment, designing memory
management strategies is a demanding task. Virtual machines
(VMs), either virtual machine monitors (Sys-VMs) or high-
level language runtimes (HLL-VMs), add an extra level of
complexity.

Sys-VMs (e.g. Xen) host multiple isolated guest instances of
an operating system (OS) on multi-core architectures, sharing
computational resources in a secure way. From an abstract
perspective, managing memory in a Sys-VM is a generaliza-
tion of operations performed by a classical OS [1]. However,
in practice, many Sys-VMs gain performance advantages by
dynamically adapting their memory management strategies.

HLL-VMs (e.g. JVM) have a single guest application, even
when there is more than one address space, i.e. domains in
the Common Language Runtime (CLR). Again, HLL-VMs
adapt memory management decisions based on the dynam-
ics of a given workload. Actions include heap resizing or,
in more extreme scenarios, changing the garbage collection
algorithm to one that saves memory at the expense of some
performance [2].

Conceptually, Sys-VMs and HLL-VMs perform the same
memory management task, i.e. they mediate hosted application
access to an underlying potentially scarce, address space.
We argue that there are potential overlaps and unexploited
synergies between Sys-VM and HLL-VM memory manager
activity and adaptation. It might be the case that techniques
from one domain could be transferred profitably to the other.
Alternatively, in a system stack it might be possible for cross-
layer exchange of information between these two levels of
VMs to enable co-operative adaptation. Recent works (e.g.
[3], [4]), where memory management of both domains coop-
erate to achieve better performance, show that this synergy is
indeed important and worth exploring.

Existing surveys of virtualization technologies (e.g. [5]) tend
to focus on a wide variety of approaches which sometimes
results only in an extensive catalog. In this paper we present
our current results of using a classification framework to
characterize the adaptation techniques in memory management
of Sys-VMs and HLL-VMs. Furthermore, several existing
systems are analyzed and compared using this framework. In
Section II we detail the rationale of an extensive classification
framework aiming to characterize VM memory management.
Section III discusses the techniques used in each type of VM
memory management and presents them as part of a control
loop. Section IV surveys several state of the art approaches
from the literature. Using the framework previously presented,
we show the inherent tension between responsiveness, com-
prehensiveness and intricateness. The final conclusions are
presented in Section V.

II. COMPARING THE ADAPTIVE LOOP OF MEMORY
MANAGEMENT

In this work we aim to find a systematic way to compare
different systems that use adaptive memory management tech-
niques. An illustration of the control loop in each of these
domains is depicted in Figure 1.

We have constructed a framework to quantitatively analyze
and classify adaptive memory management techniques and, as
a result, the overall systems that use them. The framework is
named RCI because it is based on three criteria: Responsive-
ness, which represents how fast the system is able to adapt,
Comprehensiveness, which takes into account the breadth and
scope of the adaptation process, and Intricateness, which
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Fig. 1: The control loop for adaptive memory management in (a) system-level and (b) high-level language virtual machines.

considers the complexity of the adaptation process. Each of
these criteria can be further detailed for each of the adaptability
loop. For example, when classifying the monitoring phase,
Responsiveness decreases with the overhead introduced by the
techniques used, Comprehensiveness depends on the quantity
of the monitored sensors and Intricateness is the amount of
interference and complexity of the monitoring sensors.

We argue that these criteria form a fundamental tension: A
given adaptation technique aiming at achieving improvements
on two of these aspects, can only do so at the cost of
the remaining one. As a result, systems build around these
techniques inherit this tension and must compromise one or
two criteria to favor another.

The RCI framework is indeed a generalization of common
trade offs in systems research, applied in the context of the
adaptive sub-systems of virtual machines. A prominent exam-
ple of such trade offs, but in the context of distributed systems,
is the CAP conjecture [6]. CAP argues that there is a ten-
sion in large-scale distributed systems among (C)onsistency,
(A)vailability, and tolerance to (P)artitions. Although our
research work is still undergoing, we think that a precise
characterization of our framework classification metrics will
help to show the major tensions in adaptive systems, and in
particular, those present in adaptive memory management.

A. Quantitative analysis

In order to quantitatively compare different systems (e.g.
more responsive or more comprehensive), each of the previ-
ously discussed metrics must be assigned with a quantitative
value, which depend on the analyzed adaptation technique.
Table I presents the nature of these metrics.

Responsiveness Comprehensiveness Intricateness

Monitor ISL Q SL
Decision PT Q IC
Action ISL Q SL

TABLE I: Quantitative units of the classification metrics

Table II shows the meaning of each metric for each of
the quantitative values that the framework allows techniques

to be classified (i.e. 1, 2 or 3). Quantitative (Q) intervals,
Intrinsic Complexity (IC), and Processing Times (PT) used in
the framework are presented. Also, two notes are worth noting.
First, System level (SL) represents the natural organization of
a computer system, assigning 1 to hardware, 2 to OS and
hypervisor and 3 to applications. Inverse system level (ISL)
uses this scale in reverse order so that the term Responsiveness
can be understood as described previously. Second, for the
decision step of the control we adapt the criteria of Maggio
et al. [7].

Level 1 2 3

Q [1..2] [3..4] [4..N]
SL hardware hypervisor/OS application

ISL application hypervisor/OS hardware
PT milliseconds seconds minutes
IC simple medium complex

TABLE II: Relation between classification levels (on top) and
classification metrics

To better understand how the framework is used, we con-
sider some hypothetical techniques, Ta..Tf . After having a
classification of each technique according to Table II the
framework builds the RCI of a system by aggregating each
criteria value. For a given system, Sα, the three criteria of the
framework, responsiveness, comprehensiveness and intricate-
ness, are represented by R(Sα), C(Sα), I(Sα), respectively.
The corresponding criteria of each technique (e.g. Ta) used by
Sα is summed (e.g. R(Sα) =

∑
t responsiveness(t)). Using

these mock techniques, Table III presents, in the bottom row,
the resulting RCI of Sα.

System Phase R C I

Sa
Monitor Ta(1) Ta(2) Ta(3)
Decision Tc(3) Tc(2) Tc(3)
Action Tf(1) Tf(2) Tf(1)

RCI 5 6 7

TABLE III: RCI of hypothetical system Sα



III. ADAPTATION TECHNIQUES

In this section we survey relevant adaptation techniques of
the adaptive control loop, found in the literature of Sys-VMs
and HLL-VMs. We conclude the section with the RCI analysis
of each technique.

A. Page management in Sys-VMs

The Virtual Machine Monitor (VMM) can regulate the
access of multiple guest OS (each running on a different VM)
to the underlying physical memory. In order to do so, the
VMM adds a translation step, keeping the relation between
what the OS believes is the real memory to what is in fact the
physical hardware page. Nevertheless, using shadow pages,
regular memory management operations made by the guest
OS bypass the VMM so that the performance impact can be
minimized. When page tables need to be changed the guest OS
depends again on the VMM strategy to distribute the available
pages among the running guests. In doing so, the VMM acts
as an adaptive system, monitoring, deciding and acting, based
only on information he directly accesses or hints collected
outside the VMM, namely the application performance.

Regarding the monitoring phase, the VMM need to deter-
mined how pages are being used by each VM. To do so he
must collect information regarding i) page utilization [8], [9]
and ii) page contents equality or similarity [8], [10]. Some
systems also propose to monitor application performance,
either by instrumentation or external monitoring, in order to
collected information closer to the application’s semantics [3],
[4]. To determine which guest OS must relinquish pages in
favor of the current request, decisions are made using i)
shares [8], ii) feedback control [11], LRU histogram [9] or iii)
linear programming [3]. Finally, regarding the acting phase,
the VMM can enforce i) page sharing [8] using the page
tables controlled by the VMM or ii) page transfer between
VMs using the guest OS balloon driver.

B. Garbage collection in HLL-VMs

Traditional GC algorithms are not fully adaptive in the sense
that the allocation strategy for new objects, the organization of
spaces used to do so and the way garbage is detected does not
change during program execution. Nevertheless, most research
and commercial runtimes incorporate some form of parame-
terized strategy regarding memory management e.g. [5]. To
accomplish adaptation, the following metrics are tracked: i)
memory structure dimensions (e.g. total heap size, nursery
size) [12], [13], ii) the program behavior (e.g. allocation rate,
stack height, key objects) [2] and, iii) relevant events in the
operating systems (e.g. page faults, allocation stalls) [14], [15].

Decisions regarding the adaptation of heap related structures
are taken either i) offline or ii) inline with execution. Offline
analysis takes in consideration the result of executing different
programs to see which parameter or algorithm has the best
performance for a given application. Inline decisions must
be taken either based on a mathematic model or on some
kind of heuristic. Some authors have elaborated mathematical
models of objects’ lifetime, e.g. using thermodynamics [16]

or radioactivity [17]. These models are mostly used to give a
rationale of the GC behavior, rather than being used in a de-
cision process [16]. So, most systems have a decision process
based on some kind of heuristics. The decision process include
i) machine learning ii) control theory and iii) microeconomic
theories such as the elasticity of demand curves.

Adaptability regarding memory management aims to im-
prove overall system performance. Classic GC algorithms
provide base memory virtualization. Recent work has focused
on optimizing memory usage and execution time, taking in
consideration not only the program dynamics and but also
its execution environment. Some work also adapts GC to
avoid memory exhaustion in environments where memory
is constrained. To accomplish this, actions regarding GC
adaptability are related to changing: i) heap size [12], ii) GC
parameters [13] iii) GC algorithm [2].

C. Summary of adaptation loop techniques

Figure 2 present a summary of techniques used in the
adaptation loop of Sys-VMs and HLL-VMs. The two have
related approaches to monitoring by relying on information
provided by the operating system, mostly the underlying host
OS, to assess memory utilization and application performance
or behavior. There is a range of approaches to decision.
HLL-VMs rely on higher-level information about memory
structures (objects). Generally a summary of this data feeds
into simple heuristic models, although recent work replaces
specialized heuristics with machine learning, control theory
and microeconomics. In Sys-VMs, the input data is less high-
level. Again, specialized heuristics are common but sometimes
linear optimization is applied. It is in the action domain that
the approaches differ the most, with Sys-VMs performing
adaptations at the page level and HLL-VMs making more
refined adjustments to the object heap and to GC parameters,
or switching algorithms altogether.

D. RCI classification of techniques

Figure 3 uses a triangular chart to represent techniques
presented in this section. In each figures, techniques are further
categorized among the three steps of the adaptability loop:
Monitoring, Decision, and Action.

In the next section, we analyze relevant works regarding
monitoring and adaptability in virtual machines, both at system
as well as managed languages level. The RCI framework is
used to compare different systems and better understand how
virtual machine researchers have explored the tension between
responsiveness, comprehensiveness and intricateness.

IV. SYSTEMS

In this section we survey some of the most relevant works
regarding the use of the techniques identified in Section III. We
conclude presenting the RCI overall analysis of these systems
and some preliminary observations.
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Fig. 2: Typical techniques used by Sys-VM (a) and HLL-VM (b) to monitor, control and enforce
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Fig. 3: Relation of responsiveness, comprehensiveness and intricateness for the different techniques used in the control loop
of Sys-VM (a-c) and HLL-VM (d-f)

A. VMM Memory Management

a) Overbooking and Consolidation: In [11], Heo et al.
use a feedback control mechanisms to dynamically allocate
memory in an environment where multiple virtual machines
share the same host. They show that allocating memory in such
an overcommitted environment without taking also in account
the CPU results in significant service level violations. Their
sensors measure memory allocation and usage and also the
application performance (i.e. response time of an Apache Web
server). Memory allocations are collected from the balloon
driver along with page fault rates from the /proc file system.

b) VMMB: In [18], Min et al. presents VMMB, a Virtual
Machine Memory Balancer for Unmodified Operating Sys-
tems. It uses the LRU histogram to estimate memory demand
to periodically re-balance the memory allocated to each VM.
Their algorithm determines the memory allocation size of each
VM while it strives to globally minimize the page miss ratio.
Their sensors are looking at nested page faults and to the guest

swapping, using a pseudo swap device for monitoring. They
act of the balloon driver to enforce each VM new memory size.
When the balloon cannot collect enough memory, VMMB uses
a VMM-level swapping to select a set of victim pages and
immediately allocate memory to a beneficiary VM.

c) Ginkgo: Ginkgo [3] takes into account application
performance hints to determine the page management strategy
of the VMM. Doing so, it allows cloud providers to run more
System VMs with the same memory. Ginkgo uses a profiling
phase where it collects samples of the application performance,
the submitted load and the memory used to process each
request. During operation, Ginkgo uses the previously built
model and, using a linear program, determines the memory
allocation that, for the current load, maximizes the application
performance (e.g. throughput). Ginko’s performance is also
due to the use of JVM-level balloon that is able to reclaim
memory faster from Java-base applications (e.g. WebSphere
Application Server). A similar approach is followed by Sa-
lomie et al. [4].



d) Difference engine: Gupta et al. [19] is an extension to
the Xen VMM which supports sub-page sharing using a novel
approach that builds patches to pages by using the difference
relative to a reference page. Similar pages are identified by
comparing hash value of randomly selected parts of different
pages. In-memory compression of infrequently accessed pages
is made using multiple algorithms.
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Fig. 4: Relationship of R, C and I for different memory
management works in system-level VMs

Analysis: When looking at Figure 4, most works in Sys-
VM exchange comprehensiveness (e.g. low quantity of moni-
tored sensors and actuators) for the use of more responsiveness
(e.g. monitor page utilization) and intricate techniques (e.g.
feedback control techniques).

B. Garbage Collection

Garbage collection is known to have different performance
characteristics with different applications [2], [20]. The re-
mainder of this section analyzes recent works belonging to one
of the following categories: i) adjust heap related parameters
(e.g. nursery size, total heap size) [14], [12]; ii) algorithms
that take execution environment events into account [21]; iii)
VMs that switch the GC algorithm at runtime [2]. Common
to all these solutions is the goal to decrease application’s total
execution time or, in some scenarios, to continue operation
despite memory exhaustion.

e) Isla Vista and the allocation stalls: Grzegorczyk et
al. [14] take into account allocation stalls. In Linux, a process
will be stalled during the request of a new page if the
system has very few free memory pages. If this happens, a
resident page must be evicted to disk. This operation is done
synchronously during page allocation. They have implemented
an algorithm that grows the heap linearly when there are no
allocation stalls. Otherwise, the heap shrinks and the growth
factor for successive heap growth decisions is reduced, in an
attempt to converge to a heap size that balances the tradeoff
between paging and GC cost. This heap sizing behavior is
inspired by the exponential backoff model for TCP congestion
control, where transmission rate relates to heap size, and
packet loss relates to page faults.

f) Resource-based GC: Hertz et al. [15] observe that
the same application operating with different heap sizes can
perform differently if the heap size is under or over dimen-
sioned, resulting in many collections or many page faults,

respectively. Based on this observation they have devised the
time-memory curve, that is, the shortest running time of a
program independently of his heap size for a given amount
of physical memory. Their approach allows that the heaps
of multiple applications remain small enough to avoid the
negative impacts of paging, while still taking advantage of
any memory that is available within the system. They have
modified the slow path of the GC (i.e. code path that can result
in tracing alive objects) to also take in account two conditions:
if the resident set has decreased or if the number of page
faults have increased. If any of this conditions is true, GC is
triggered. They call it a resource-driven garbage collection.

g) GC economics: In [12], Singer et al. discuss the
economics of GC, relating heap size and number of collections
with the price and demand law of micro-economics - with
bigger heaps there will be less collections. This relation
extends to the notion of elasticity to measure the sensitivity of
the heap size to the size of the number of GCs. They devise
an heuristic based on elasticity to find a tradeoff between heap
size and execution time. The user of the VM provides a target
elasticity. During execution, the VM will take into account this
target to grow, shrink or keep the heap size. Doing so, the user
can supply a value that will determine the growth ratio of the
heap, independently of the application specific behavior.

h) Intelligent Selection of Application-specific Garbage
Collectors: Singer et al. [22] show that Java applications have
differing execution characteristics in different GC regimes.
They use an offline machine learning algorithm based on
decision trees to generate a classifier that, given a small profile
run of a benchmark, can predict an appropriate GC algorithm
for efficient execution. In a related work, this approach is used
in order to improve the performance of a MapReduce’s Java
implementation for multi-core hardware. For each relevant
benchmark, machine learning techniques are used to find the
best execution time for each combination of input size, heap
size and number of threads in relation to a given GC algorithm
(i.e. serial, parallel or concurrent). The goal is to decide about
a GC policy when a new MapReduce application arrives. The
decision is made locally to an instance of the JVM.

i) GC switch: Soman et al. [2] add to the memory man-
agement system the capacity of changing the GC algorithm
during program execution. The system considers program
annotations (if available), application behavior, and resource
availability to decide when to switch dynamically, and to
which GC it should switch. The modified runtime incorporates
all the available GCs into a single VM image. At load time all
possible virtual memory resources are reserved. The layout of
each space (i.e. nursery, Mark-Sweep, High Semispace, Low
Semispace) is designed to avoid a full garbage collection for
as many different switches as possible. For example, a switch
from Semi-Space to Generational Semi-Space determines that
the allocation site will be done at a nursery space, but the two
half-spaces are shared. Switching can be triggered by points
statically determined by previous profiling the application
execution or by dynamically evaluating the GC load versus
the application threads. If the load is high they switch from a



Semi-Space (which performs better when memory is available)
to a Generational Mark-Sweep collector (which performs
better when memory is constrained).
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Fig. 5: Relationship of R, C and I for different memory
management works in high-level language VMs

Analysis: When looking at Figure 5, the system with
greater intricateness, GC Switch [2], which is also reasonably
comprehensive in comparison to others, is the least responsive.
Our current observation of the others is that they exchange
intricateness, for comprehensiveness and responsiveness.

V. CONCLUSIONS

Currently, data centers in the context of cloud infrastructures
make extensive use of virtualization to achieve workload iso-
lation and efficient resource management. This is carried out
primarily by means of virtualization technology. Virtualization
mechanisms to enforce resource management are present both
at hypervisors (e.g. Xen, ESX) and high level virtual machines
(e.g. CLR, Java). Although the services offered by each of
these two software layers are used or extended in several
works in the literature, the community lacks an organized and
integrated perspective of the mechanisms and strategies used at
each virtualization layer regarding resource management and
focusing on adaptation.

We have further detailed a classification framework which
aims to understand the trade offs that underpin adaptive sub-
systems of virtual machines, particularly regarding memory
virtualization. Future work needs to be done regarding the
analysis of more fundamental memory adaptive techniques and
the systems that use them. Doing so, we can further understand
the boundaries of each technique and then eventually argue for
the need of information exchange between these two layers.
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