The Computer Journal Advance Access published March 2, 2015

(© The British Computer Society 2015. All rights reserved.
For Permissions, please email: journals.permissions @oup.com
doi:10.1093/comjnl/bxv012

C3P: A Re-Configurable Framework
to Design Cycle-sharing Computing
Cloud Platforms

SERGIO ESTEVES®, PAULO FERREIRA AND LUIS VEIGA

INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
*Corresponding author: sesteves@gsd.inesc-id.pt

A new era of High-Performance Computing has been coming about during the last decade. The
overabundance of resources lying idle throughout the Internet, for long periods of time, calls for
resource-sharing infrastructures operating in the settings of the Cluster, Grid, P2P and Cloud. Many
organizations own grids, frequently underutilized, but impose several restrictions to their usage
by outside users. Despite the already extensive study in the field of Grid and Cloud computing,
no solution was ever successful in reaching out to typical home users and their resource-intensive
commodity applications. This is especially lacking in an open environment with no cost and low
access barriers (e.g. authentication, configuration). We propose C3p,a comprehensive distributed
cycle-sharing framework for enabling the sharing of computational resources in a decentralized
and free computing cloud platform, across large-scale networks and thus improve the performance
of commonly used applications. cp encompasses the following activities: application adaptation,
job scheduling, resource discovery, reliability of job results and overlay network management. cr
evaluation shows that any ordinary Internet user is able to easily and effectively take advantage of
remote resources, namely CPU cycles, for their own benefit; or provide spare cycles to other users,
getting incentives in return, in a free, yet fair and managed global infrastructure.

Keywords: grid; peer-to-peer; cycle sharing; cloud computing; public computing; middleware frameworks

Received 27 September 2013; revised 24 January 2015
Handling editor: Fionn Murtagh

INTRODUCTION

During the last decade and a half, high-performance, high-
throughput and large-scale computing in general have attracted
significant interest from the scientific community. Computers
and networks with increasing capabilities at lowering costs,
along with Internet wide access, have been regarded as one
of the most viable solutions to the unmistakably increasing
needs of solving today’s science problems. These demand
greater and greater computational resources (processing,
storage, bandwidth). In fact, many sciences, ranging from
natural sciences (e.g. physics, chemistry, biology) to social
sciences and humanities (e.g. economics, sociology with
social networks, linguistics) have become, to a large extent,
e-Sciences, in the sense that they rely on heavy computations
to discover, produce, process and validate or disprove most
of their scientific findings. Thus far, computer resources
have been harvested relying on well-known models, such

as the cluster, the grid, peer-to-peer (P2P) and, lately, the
cloud. Additionally, many contents related to the analysis
and presentation of e-Science results rely more and more on
multimedia that is heavy to generate, process and present,
namely so in medical and life sciences, physics, astronomy,
chemistry, materials, mechanics and networking.

Regarding Internet home users, there is also need for
increasing computational resources in activities carried out by
enthusiastic amateurs or hobbyists. Examples include the use
of applications to render photo-realistic images and animations
using ray tracing, video transcoding for format conversion,
batch picture processing for photo enhancement, face detection
and identification, among others. Many of such applications are
free or shareware, and widely available and deployed across
the Internet.

Shortcomings of current solutions: Most infrastructures
owned by companies and research institutions may encompass

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

2 S. ESTEVES et al.

dedicated data-centers, clusters or desktop computers, all
federated and leveraged for cycle-sharing scheduling as
they are frequently underutilized. This gives place to
almost inexpensive computing resources available that, being
frequently extensive, need to be harnessed, governed and
made available to users’ applications in an easy and efficient
manner. In the settings of cluster, grid, P2P and cloud
computing, this is handled by resource discovery (RD);
scheduling and management and middleware (i.e. application
programming interfaces, application development, deployment
and adaptation).

While there are many solutions in the literature to address
this, none of them has been successful in the goal of bringing
these settings to the typical non-expert ordinary Internet home
users, many of whom nowadays already have significant
computation needs, usually related to multimedia content
generation and processing. To the best of our knowledge,
there is no proposed solution in cycle-sharing-related technical
literature that has been successful in the deployment of the
overall Grid paradigm on top of large-scale networks with no
cost or low access barriers, and suiting any ordinary user and
their unmodified CPU-intensive applications.

Usual restrictions and shortcomings often include aspects
regarding: authentication, difficult configurations, inflexibility
of master-slave models; absence of a useful set of applications
targeted; users being able to only donate cycles (typical
in client-server models); authorization and authentication
models precluding the typical computer user (typical in
institutional Grids); being directed mostly for science and
engineering, forgetting desktop applications; being not easy to
use; configurations being hard to manage; jobs being platform
dependent; idleness levels being disregarded; applications
needing to be modified (data-based parallelism not exploited).

Proposed contribution: Given the current context, we
propose a comprehensive middleware platform that eases
the sharing of computational resources across large-scale
networks. Better still, we intend to provide open access where
any non-expert user may consume remote resources from other
machines or provide their own idle resources to others. Such
a platform should be designed as a global re-configurable
and adaptable meta-architecture capable of functioning in
environments from the simple cluster to the Cloud.

The solution here presented is named C*P (Middleware
Framework for Cycle-sharing Computing Cloud Platforms),!
and it is designed around two main guiding principles:

(1) The notion of gridlet, an abstraction of a chunk of
data with meta-data (or code). It is used consistently a
semantics-aware unit of work, in the context of RD and
management, workload division and task deployment,
accounting and reputation, computation off-load and
application adaptation. Gridlets serve to C>P the same

I'We use the C3P acronym to avoid collision with CCCP that stands as a
country acronym in the Cyrillic alphabet.

purpose of a unifying common minimal interface,
as TCP packets in many network and distributed
application protocols.

(2) A layered, composable, component-based middleware
architectural framework, where the relevant concerns
and interactions within a cycle-sharing platform are
identified and abstracted. This frees the developer
of middleware components encasing each specific
mechanism, from the details related to the underlying
sources of computing resources and deployment
infrastructures, such as clusters, grids, P2P overlay
networks and cloud infrastructures. Moreover, it allows
easy creation of a tailored cycle-sharing platform
targeting a specific scenario by declaratively defining
a configuration of middleware components.

The metaphor, approach and architectural framework,
together with the detailed implemented components, provide
the following novelties regarding previous work pursuing the
same goals:

(i) novel mechanisms to discover, allocate and schedule
resources for cycle-sharing systems running on large-
scale networks, such as P2P grids and community
clouds;

(i) novel data-driven and -aware model and methodology
for transparent parallelization of common desktop
applications, without requiring the modification of the
original source code or even binaries of the application;

(iii)) novel mechanisms to verify results and improve
reliability of executions on large-scale systems, in the
presence of malicious and free-rider nodes;

(iv) significant out-of-the-box performance speedups for
CPU-intensive applications, without the need to
develop according to specific APIs or Grid middleware;

(v) additional flexibility for cycle-sharing architecture
design itself, as the middleware framework can cope to
a significant extent with different sets of components
and mechanisms implemented by those components.

Overall, an important advantage of our solution is that it
enables the transparent parallelization of common desktop
applications without the need to introduce changes in
their source code. With the gridlet metaphor, we rely
on a data-based parallelism in which the input files and
parameters, of an application are divided and encapsulated
into gridlets to be executed on remote machines. To
exercise these design principles, we developed a solution
bundled with components already implementing the more
relevant aspects, encompassing the following functionalities:
application adaptation mechanisms, gridlet creation (GC) and
scheduling, network management, reliability mechanisms, RD,
accounting and incentives.

System administrators may configure a composition of
components (or reuse a pre-built one) in order to deploy a

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

CYCLE-SHARING COMPUTING CLOUD 3

custom middleware platform targeting the intended scenario.
Middleware developers may target one of these aspects (e.g.
accounting integration with a PayPal or institutional credit
system module), develop a new component, make it available
to be plugged in configurations, without having to worry
about how other aspects (e.g. scheduling) are handled. Users
and application developers/adapters should be exempted from
platform details.

Document road-map: This article is organized as follows.
In the next section, we present the core of the cip
middleware framework, inspired by the gridlet metaphor,
with the components responsible for providing the enabling
mechanisms of a archetypal cycle-sharing platform. We also
highlight specifics of C3P deployment on most popular
settings. In Section 3, we offer relevant implementation details,
regarding the core organization of the framework and a
number of representative components. Section 4 describes the
experimental setup and results to demonstrate the qualitative
aspects and assess the quantitative metrics of C3P performance.
Work found in the literature related with C3P is discussed
in Section 5. The paper closes with some conclusions in
Section 6.

2. C3P MODEL AND ARCHITECTURE

In this section, we describe the model, architecture and
design choices of C*P. C3P is a framework addressing the
development and deployment of distributed resource-sharing
middleware platforms for large-scale, high-performance and
high-throughput computing, with multiple paradigms targeting
different settings. It is mainly dedicated to enable users to share
computer resources across a network, local or wide areas, to
exploit parallel execution of commonly used applications and,
hence, improve their performance. This, in an easily extendable
and adaptable way.

The case for an integrated cluster, grid, P2P and
cloud ecosystem: Cluster computing has enabled the parallel
execution of applications running on multiple computers
connected via a local network. In many ways, accessing the
Cluster is like accessing a single computer, with the advantage
of being cheaper than traditional supercomputers and more
easily scalable. The message passing interface is one of the
most relevant paradigms addressing the communication of data
in parallel applications running on the Cluster.

Grid computing provides an aggregation of networked
loosely coupled computers (or clusters) that can be heteroge-
neous and geographically dispersed. Normally, this model is
for internal use by a single organization/institution or consor-
tium (business, university, virtual organization, etc.), impos-
ing heavy authentication and restrictions over the sharing of
resources. Also, it allows the federation of multiple clus-
ters under the same administrative control, taking advantage
of a wider range of computational resources that might be
otherwise underused.

Since its inception, P2P architectures have been gaining
considerable research attention and widespread use across the
Internet. P2P achieves higher scalability by allowing a much
greater number of machines connected and, unlike the Grid,
achieves higher decentralization, since it does not require
the intermediation of centralized servers or authorities, which
could suffer from typical problems such as bottlenecks or
single points of failure.

Cloud computing provides a useful layer of abstraction
over the networked-linked resources. The main idea is that a
developer should only focus on the application he wants to
build, and not on the underlying infrastructure used to scale
that same application. Resources are dynamically allocated in
accordance with the application’s needs and, in case of public
clouds, a customer has only to pay for what he gets, generating
the unprecedented utility computing paradigm.

These models have been designed over time as attempts to
improve application performance, scalability as well resource
utilization (effective usage of resources made available) and
scheduling (fairness or balance in resource allocation). Such
models have been combined with one another so that their
best properties may be joined together. For example, a grid
P2P infrastructure allows the mutual sharing of resources in
a higher scale. Nonetheless, the bottom line is that all of
these models are aggregations of computers, connected over
a network, that might be idle for long periods of time and can
be used to compute resource-intensive applications in parallel.

Nowadays, the scarce resource utilization of already
powerful computers lying all over the Internet is creating a
great opportunity for these computing models to take place.
In the matter of content distribution over the web, P2P
protocols have already been widely exploited. As for cycle-
sharing, several barriers still stand, such as the parallelization
of common desktop applications.

We envision that not only scientists and engineers, but
also typical Internet users and general society could enjoy
augmented performance on their commodity applications, by
adding remote resources to their computations.

Gridlets: As already described, in C3P, the notion of
gridlet is central (Fig. 1 depicts the general architecture
overview). It is a semantics-aware unit of workload division
and computation off-load. A gridlet is a chunk of data
associated with the operations to be performed on the data,
and in many cases these operations consist of unmodified
application binaries. In C3P, gridlets are the basic units of
processing scheduling, data transfer, RD and accounting of
contribution to the system. We assume the existence of a
standard gridlet (e.g. derived from the Linpack benchmark or
computational puzzle), used as a reference unit for comparison,
and to correctly take into account the different capability of
nodes.

Without loss of further detail in this and in the next section,
each gridlet goes through a life cycle (Fig. 2) and has an
associated cost (that may be an estimate or an actual value),

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

4 S. ESTEVES et al.

=

P2P

overlay
network

gridlets
served

gridlets
submitted

: [

(L

Unmodified
Desktop Applications

|

Gridlet
Management

Overlay
Management

*aEEEEEEEEEREEEEE

“HEE

GEEEEEEEE NN EE R

Communication
Sep(ioes

L

Operating System /
Virtual Machine

' gridlets gridlets
returned received

FIGURE 1. C3P network architecture overview.

which will take into account the processing, bandwidth and
memory necessary to execute it. The gridlet application model
essentially divides application execution in the following
phases: (1) GC, (2) gridlet processing and (3) gridlet-result
aggregation (GRA). Gridlet processing can be further divided
into: (2a) gridlet data injection, (2b) application execution and
(2c) gridlet-result extraction. Phase 1 preprocesses and splits
input and triggers RD so that Phase 2 can take place. Phases
(2a) and (2b) perform application adaptation (via data and
parameters, more details later) so that an unmodified binary
may be executed in (2b). Phase 3 is analogous to Phase 1, yet
carried out in a converse manner.

2.1. C3P framework

The C3P framework follows an archetypal architecture (or
meta-architecture) for a cycle-sharing middleware, described
in Fig. 3. It comprises four layers: the application adaptation
layer, which encapsulates specific mechanisms to handle each
supported application; gridlet management and reliability,
which handles gridlet processing; network and resource
management, which is responsible for the operations finding
resources and allocating them and data transfers over the
network (e.g. a P2P overlay) and Communication Service,
which abstracts the means for actual distributed interaction,

with addressing, routing and sending messages (much as a
middleware counterpart to the MAC layer, it could encapsulate
Java RMI, Python or C sockets).

The four layers comprise a number of components that
address the various required mechanisms we found in cycle-
sharing (or Internet distributed computing, public computing)
platforms throughout the literature, in here, defined around
gridlets. Each layer has a core component (gray) as any
system, however minimalist, provides such a mechanism (e.g.
an application adaptation could be an API library, scheduling
could be an FIFO queue, network management may be a
simple list of known hosts and message routing (MR) may
resort to ftp across hosts). In most settings, however, one
or more of these layers must have additional mechanisms or
functionality in a given mechanism, such as briefly introduced
in the next paragraphs. Finally, some mechanisms such as
those for reliability and replicated storage are not essential
(in functional terms) and thus non-mandatory (green).

Application adaptation engine (AAE): This component han-
dles application-dependent mechanisms that are described
through an XML-based declarative specification language.
It gives semantics to the described rules in order to
provide transparency to the processes of configuring and
parameterizing applications, and splitting and merging
data.

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

CYCLE-SHARING COMPUTING CLOUD 5

Phasel: preprocess and split input (1a) and discover resources (1b)

« []
I

Phase2: data injection (2a), app execution (2b), and result extraction

(20) : e - Lh :
=S

FIGURE 2. Gridlet life cycle.

Execution environment (EE): To provide a safe environment
to execute applications with external input data, this
component provides a sandbox and virtualization technology
(system VM or managed language VM). It can also allow
interaction with job submission middleware (clusters, grids),
workflow engines or cloud infrastructures.

Gridlet scheduler (GS): This component plays a major role
in C3P as it coordinates all the interactions between all the
other high-level components. From some GUI or command
line, the GS keeps waiting for commands to initiate jobs. It is
responsible for maintaining the whole state of the jobs; asking
other components on the same layer to perform specific tasks,
like creating or aggregating gridlets and interacting with the
layer below, namely to send or accept gridlets.

Gridlet creation: This component creates properly formed
gridlets and assesses their cost against the standard gridlet.
To split input data or generate different configuration for each
gridlet, the GM uses the Application Adaptation Layer.

Gridlet-result aggregation: The purpose of this component
is to merge and store gridlet results and build the application’s

final output when a job is completed. The mechanism of joining
gridlets and building application output is made in accordance
with the rules defined for that application or data format in the
AAE.

Gridlet-result verification (GRV): In a consumer node, this
component is responsible for validating the received gridlet
results by checking overlapping chunks of redundant data.
Gridlets whose results are considered as not valid have to be
rescheduled by the GS, and the provider nodes that produced
the wrong results have to be discarded from the new set of
candidate nodes to process the failed gridlets.

Currency and reputation (CR): This component is used,
normally by a subset of nodes (e.g. a central server or super-
peers in an overlay), in order to keep a distributed reputation
system for all the nodes. For instance, in a P2P overlay,
each super-peer is responsible to keep track of its direct
children nodes in terms of reputation and currency. The details
of reputation and currency may be hidden from the other
components and are described in detail later.

Network manager (NM): This component coordinates all
the interactions between the components on this layer. It is
responsible for the operations of routing and addressing over
the network. From the above layer, this component receives
gridlets and distributes them to other nodes through the layer
below. Conversely, it delivers gridlets coming from the layer
below to the above one to be processed.

Resource manager (RM): The purpose of this component
is to assess the capability and availability levels of the local
resources on the machine (CPU, memory and bandwidth).
This is done through system calls to the operating system or
resorting to well-known benchmarks, in the case of CPU.

RD: This component provides mechanisms for locating
computational resources within the network. The NM calls this
component specifying parameters, like minimum capability
and availability required, and it returns a set of nodes that
match those requirements. Furthermore, there are usually two
levels considered: using the resources of sibling or neighbor
nodes directly; and, if required, using relay across the network
(such as via super-nodes) to reach other nodes.

Gridlet-result storage (GRS): To avoid redundant execution
of gridlets, this component has the purpose of storing
gridlet results within the network. The GS will look up for
gridlet results here soon after the GC process. Also, when a
gridlet result is deemed trustworthy, it is sent to this component
to be persisted, or to allow decoupling in time between
consumers and producers.

MR: This component handles all of the low-level mecha-
nisms related to sending and receiving messages to and from
the network, such as translating node identifiers in hostname/-
port pairs. The NM uses this component to send messages to
the other nodes in the network. Also, whenever a message from
the network is received, this component analyzes the message
in the first instance and then delivers it to the adequate handler
routine in the NM.

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

S. ESTEVES et al.

Unmodified Applications

[Core Components

[Gridlet Management

[Reliability Components

3 Non-Mandatory Components

c
o
U
SN pplication ;
§5 | Admmon | | Docer
<. Engine
Qo
Qo
<
2 [ittt e —
<23 i o
258 Gridet |4 Gridlet Gridlet
&K Scheduler I Creation Result
o |O = g : Aggregation
21 =5 e R
®
-4 |5 =
Cod
O E
£30 Network Resource R_esource
223 Manager Manager Discovery
oC s
z =
=
S
T @
o
=S Message
Sc €
ES Routing
£
Q
S T

Operating System / Virtual Machine

FIGURE 3. C3p archetypal layer and component architecture.

We recall that not all of these components are mandatory
to be included in a cycle-sharing middleware platform. For
example, the reliability components may be discarded if the
platform is running on a trusted environment, such as an
institutional grid. In the same way, the GRS can be precluded
if the data in executed gridlets are very different from one
another. Nonetheless, the components colored in gray, the core
components, cannot be removed as they control the entire

workflow of the platform.

In order to not overload a single machine, some components
may run in different computers, especially the component that
launches applications to perform external gridlets, EE, as it
could be very resource-intensive. Moreover, it is possible to
have multiple EEs in various machines controlled by the same
node. In this case, the machine that runs the core components

must implement additional code to call the other

remote

components, e.g. through remote procedure calls (RPCs) or

web services.

Interactions between layers: The core components must
be implemented according to an API (addressed in the next
section) so that each layer can provide/invoke the following

functionality to/from other layers:

(i) The Gridlet Management and Reliability needs the
following functions from the Application Adaptation
Layer: (i) launch applications with the correct param-
eters and input files; (ii) launch applications to exe-
cute part of a gridlet (e.g. a single chunk) to calcu-
late its cost; (iii) split input data to build gridlets;

(ii)

(iii)

@iv)

)

(vi)

(iv) merge output data to build the application final
output.

The Gridlet Management and Reliability needs the
following functions from the Network and Resource
Management: (i) submit gridlets to be processed by
remote nodes; (ii) return gridlet result to the consumer
node; (iii) look up gridlet result in distributed storage;
(iv) save gridlet result in distributed storage; (v) update
resource availability levels; (vi) get candidate nodes to
process gridlets.

The Gridlet Management and Reliability needs to
provide the following functions so that it can be called
by some user interface: (i) process work; (ii) return
progress indication; (iii) register, update and remove
application with format descriptors.

Network and Resource Management needs the Gridlet
Management and Reliability to: (i) deliver gridlet
result; (ii) deliver gridlet to be processed.

Network and Resource Management needs the Com-
munication Service to: (i) route messages to some
address.

Communication Service needs Network and Resource
Management to: (i) deliver message. Each API can
be implemented differently (the approach used to
tackle different settings) and can also be extended.
Component manifests and reflection are used to
expose such extensions to other components, but their
semantics must be known by middleware developers of
other components in order to be leveraged.

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘S Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

CYCLE-SHARING COMPUTING CLOUD 7

2.2. Prototypical setting: a P2P Grid

Without loss of generality, we now consider how C3P can
be instantiated in a large-scale scenario such as a P2P
cycle-sharing system or P2P Grid. As the first instance of
our network configuration, we consider a C°P grid-overlay
consisting of an hybrid P2P overlay, where each node
can act as a resource consumer, provider or, additionally,
as a super-peer, performing special functions within the
overlay. Super-peers form a ring (such as Pastry [1] or
Chord [2]) amongst themselves (or optionally, are organized
in a CAN [3]) and they aggregate information about their
child nodes, namely application indexing and node reputation
maintenance/accounting.

The C?P middleware runs on each node enrolled in a
C3P grid-overlay, and follows a vertical layered architecture
to favor portability and extensibility (Fig. 3). In this
particular work, all jobs are composed of independent,
non-communicating tasks/gridlets, commonly referred to as
embarrassingly parallel tasks.

Super-Peers: Figure 4 depicts the P2P overlay organization.
Super-peers form a ring among themselves to allow faster
communication and avoid hopping messages through the
overlay network. They share information about the availability
of applications among their child nodes and act as resource
brokers, sharing their child nodes’ resources with each other
when such is needed (for instance, when a super-peer’s
children cannot perform the work required for a given gridlet,

Overlay connections
Peer to Super-Peer connections
— — Super-Peer ring

FIGURE 4. Node organization in the network. SP indicates a super-
peer, while P indicates a regular peer

it requests work from another super-peer whose children have
enough availability to perform the task). Regular nodes, in
turn, are ‘clustered’ around these super-peers and use them
to perform service discovery and forward gridlet requests to
other nodes in the network. Every node is assigned to a single
super-peer, determined from all known super-peers through
the Pastry proximity metric; it is then referred to as that
node’s primary super-peer. The use of the proximity metric was
chosen because it explicitly represents the degree of proximity
between two given nodes in the overlay, as defined by the basic
Pastry protocol.

Despite being assigned to a single super-peer, every node
possesses a list of existing super-peers in order to choose a new
super-peer in case of failure of the existing one. Election of
super-peers is performed in a way that attempts to balance the
ratio of super-peers to regular nodes and make sure no nodes
are orphaned, i.e. left without knowing any super-peers. Nodes
will periodically check the number of super-peers they know; if
this number is below a certain threshold, those nodes can select
themselves to become super-peers with a given probability.
This probability has to be kept low enough so that the number
of super-peers cannot grow too large at any given point in time,
but such that allows a fairly rapid expansion of the number of
super-peers in case of shortage.

Resource access model and gridlet life cycle: We now
describe the gridlet life cycle and resulting resource access
model. First, a user specifies the application, parameters and
input files through a user interface. The GS then creates gridlets
from the given input data and calculates their cost, e.g. by
executing some samples and comparing them to the standard
gridlet.

Then, after a minimum amount of time, for each gridlet, the
GS verifies if its result is available in the GRS. If so, the result
is retrieved and forwarded to the GRA component. Otherwise,
gridlets are forwarded to the NM which, by its turn, tries to
gather a set of candidate nodes that are available to process
work.

The NM locates resources firstly by looking up its internal
cache for neighbor nodes, and, if required, contacting its
primary super-peer to reach other nodes in the network. Soon
after, the gridlets are distributed through the candidate provider
nodes (this completes Phase (1)). For reliability purposes, each
gridlet should be allocated to k different nodes, where k is a
replication factor.

Whenever a resource provider node receives a gridlet,
the MR sends it to the adequate handler routine in the
NM. In turn, the NM sends the gridlet to the GS, which
executes the gridlet by launching the respective application
with the correct parameters and input files, possibly subject
to adaptation (e.g. parameter transformation and/or data
wrapping/un-wrapping). Upon gridlet completion, its result is
sent to the resource consumer node through the NM and MR
components (Phase 2).

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

8 S. ESTEVES et al.

The resource consumer receives the gridlet result and sends
it upwards to the GS, which, by turn, sends the data to the
GRV. If a k replication factor of results of a same gridlet
exists inside the GRYV, the results are validated against each
other. If a majority of results is accepted, one of the valid
results is sent both to the GRA and the GRV, and the
primary super-peer of the consumer is informed about which
results were accepted and from which provider nodes, so that
their reputation and currency may be increased (Phase 3).
Otherwise, the corresponding gridlet has to be rescheduled and
the super-peer has to decrease the reputation of the nodes that
produced the wrong results.

When the GRA contains all gridlet results of a same job,
the final output of the application is built with the AAE and a
notification is sent to the user interface.

In the following subsections, we describe the design
(algorithms, protocol and data structuring) of the more relevant
mechanisms, covering from application adaption to basic RD
across the network.

2.3. Application adaptation and gridlet management

Gridlets are small work units that should be distributed in
a proportional manner, for performance reasons, to nodes
with different capabilities. As an example, if there are three
available provider nodes to process a job, two of them having
half the capabilities of the other one, then the more powerful
provider would receive 50% of the gridlets and the other two
25% each. This promotes an ideal situation where all gridlets
should have the same cost, or as approximate as possible.

The cost of a gridlet can be parameterized and should be
small both in size and computational complexity, for easy
relaying and restarting. This requires the assessment of the cost
of the whole input, which is done by computing small random
parts of the job. For example, if we have a job concerning an
image to be rendered with 100 chunks, then we may compute
three random chunks and determine the average cost of a single
chunk in terms of consumed resources (elapsed time, memory
taken and transfer size). Knowing this allows efficient and
balanced distribution of chunks into gridlets.

The size of gridlets in a job is mostly fixed for rescheduling,
caching and pipelining purposes. First, sending heavy gridlets
to powerful nodes might not be a good idea, as machines
may fail while performing gridlets (i.e. gridlets would need
to be rescheduled to other nodes that might not be so
powerful). Secondly, having different-sized gridlets for the
same job would hinder the search for gridlet results already
computed in some cache. Finally, a node can be processing a
gridlet while receiving others, as a great part of the difficulty
of achieving high performance comes from the need to
orchestrate communication and computation.

With regard to the parallelization of applications, they
need not be modified to work with the C’P framework.
This significantly lowers the access barrier of home users

into distributed cycle-sharing systems, as either they do not
have to possess any expertise in software development or the
applications they use are closed-source or proprietary. Instead,
we rely on a data-based parallelism in which the input data of a
job is decomposed into smaller units (gridlets) with associated
tasks to be distributed and executed in cycle-sharing machines.
Later, the output data generated by the provider machines are
reassembled into a single result.

In CP, application-dependent mechanisms are handled
transparently and automatically by the AAE component, and
it only requires access to an available format description
of the application input and output. Better still, this format
description is an XML-driven grammar, written in a high-
level language, containing all the necessary rules to split input
data and merge output data. This includes header analysis and
reconstruction, patching and structural modifications such as
moving blocks across the file. This is addressed in detail in
Section 3.2 and in Listing 1. Furthermore, format descriptions
for widely used applications may be obtained transparently
through an online repository, or neighbor nodes.

2.4. Gridlet-result verification

The results returned by provider nodes may be wrong due
either to machine failures or malicious behavior. Malicious
nodes create fake results that are intentionally difficult to
detect. Their motivation is to discredit the system, or raise a
reputation for work they have not performed.

To improve reliability against wrong or forged gridlet
results, every given gridlet should be executed in k different
nodes, where £ is a replication factor. This k may vary with the
reputation of provider nodes that will execute the gridlet. For
example, if the first node receiving a gridlet has a reputation
above a given threshold considered trustworthy, then & may
be reduced. In C3P, this is obtained through the following
equation:

maxy, if reput < threshold,

k= reput — threshold

, otherwise.
(maxrepur — threshold)/maxy)

After gridlet computation, instead of accepting results based
on a voting quorum scheme (that can be easily fooled if groups
of colluding nodes decide to return the same wrong results), we
propose another approach, as described next.

Samplication: The replication model might not be sufficient
as the majority of gridlet results are provided by untrusted
third parties. As such, we considered to add a sampling model,
consisting in the local execution of a fragment, as small as
possible, of a gridlet to be compared with its returned results.

In C3P, we use replication and sampling sequentially to
achieve higher reliability of the results. The samples are chosen
from mismatch areas of the replicated results or randomly if
there is no mismatch. Results that do not match the sample

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

CYCLE-SHARING COMPUTING CLOUD 9

are promptly discarded. Moreover, we propose the following
algorithm for samplication in the listing below.

schedule redundant work, put the results in a bag;
if bag is empty then
| goto(l);
end
if all results in the bag are equal then
if random sample matches then
| accept result;
else

o X NN AR W N -

remove all results from the bag;
goto(1);

-
=)

end

—
=

else

-
w N

choose a sample within the mismatch area;
compare with all results;

remove results from the bag that mismatch the
sample;

16 goto(2);

17 end

-
A2 I

Furthermore, this scheme can still be tricked, albeit not
so easily as the voting quorum scheme, if colluding nodes
submit equal gridlet results in which some fragments (but
not all) are forged, and the randomly taken samples refer to
other fragments (that are correct). This is less likely to happen
with higher number of samples, and thus there must be a
compromise between this number and the incurred overhead
of execution.

2.5. Currency and reputation

C3P incorporates the concept of resource usage fairness. The
nodes contributing more to the community, by providing more
access time to their spare resources, should also be capable of
assembling more available resources for their own, when they
need to execute gridlets. On the other hand, nodes contributing
less to the community, by providing less resources or denying
access to them, should have their priority decreased when they
need to execute gridlets.

This exchange of resources is controlled by a currency
economy where, unlike a token economy, resources may have
different values based on their capability and availability
levels. For example, a machine with 60 Mbps of available
upstream bandwidth would be more expensive than a machine
with 24 Mbps.

We also consider that resource prices should vary with the
demand and supply like in real-world businesses. If some
resource is scarce within the network, due to great demand in
‘rush hours’ for instance, then its price should be increased; or,
inversely, if there is an overabundance of some resource, its
price should be decreased. In this way, the overall throughput

of the system—number of processed gridlets in a given time—
tends to be higher and the collaboration between users is
fostered.

In an open environment, where malicious users might reside,
knowing which nodes are trusted is crucial for preventing
faked/forged results. CP provides a reputation system where
nodes can attribute reputation to each other. The reputation of
an entity can be described as the result of the level of trust
peers place on that entity. In our case, the reputation of a node
is simply the quotient between the number of valid returned
results and the number of total executed gridlets.

We use reputation when a consumer node needs to locate
and select a set of nodes for performing a job. Only nodes
with a reputation above a specified threshold on the consumer
can be selected, and, within them, the most well-reputed ones
are preferred. The reputation system can also be consulted
by well-reputed providers to reject work from consumers
with low reputation. This gives an incentive for nodes not to
forge results. Finally, reputation can help in reducing gridlet
redundancy, as previously described (Section 2.4).

Usually, a central entity or a subset of nodes, such as super-
peers is responsible for maintaining the reputation values of
their direct child nodes. These values are periodically adjusted
downward to promote activity; both the time interval and
reputation points are configurable.

2.6. Resource management and discovery

In the context of a distributed cycle-sharing platform, regard-
less of it being an idle cluster, institutional grid, P2P grid or
cloud-like infrastructure, the resources considered are CPU,
primary and secondary memory and bandwidth. Resource
availability is assessed every time changes in resource utiliza-
tion occur, i.e. on node’s bootstrapping, before and after gridlet
computation and within a specified time frame, since avail-
ability may change due to external process activity. This last
option may be always used in order to reduce network traffic.

To measure CPU availability, we rely on the Linpack
benchmark [4] where a system of linear equations is solved.
In this way, we get the execution time or GFLOPS taken,
no mattering if machines have different CPU architectures.
Regarding primary and secondary memory, they are simply
assessed through operating system calls. Finally, our approach
to measure bandwidth relies on checking the length of time
for a message to travel from one node to another and back
again. This is done by taking advantage of regular messages
(gridlets) of the system already exchanged between a node and
their neighbors. Within a short period of time, the minimum
round-trip time obtained, among all exchanged messages with
neighbors, is kept and the bandwidth is trivially calculated. In
this way, we may find the useful bandwidth between a node
and its neighbor with highest bandwidth. If the neighbor has
more upstream and downstream bandwidth than the node, then
we have found the node’s bandwidth.

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeutnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

10 S. ESTEVES et al.

Nonetheless, installed applications and services in nodes
may also be regarded as (software) resources. The super-
nodes in the C3P grid-overlay are responsible for indexing
applications, thereby keeping information about the family
hash and application hash. The family hash is a hash of the
canonical name of an application, for example, the URL of the
application’s main web page online (e.g. www.ffmpeg.org for
the ffmpeg application).

In the super-nodes, this family hash is used to aggregate
information about the availability levels of nodes that have
applications that fall in that family. More precisely, for each
family, super-nodes maintain a table containing both the capa-
bility of all of their child nodes and the aggregated capability
of nodes belonging to the domain of other (possibly a fraction
or neighboring) super-nodes. If a super-node ID is larger and
numerically closest to the key given by the family hash, then
the super-node is responsible for that family. This is done in
order to evenly distribute the application family’s key space
among all super-nodes and avoid overloading any given one.

Concerning the application hash, it represents a hash of the
application name, version and, if needed, operating system.
It is used inside a super-node, responsible for the respective
application family, to find which nodes have a specific
application or version installed. For example, considering
the ffmpeg application family, there could be a number
of distinct application versions described uniquely by this
hash such as ffmpeg 0.6 and ffmpeg 0.8. This distinction
is important for dealing with cases where: different versions
of an application are incompatible with each other; the user
requires functionality only present in some specific versions; or
applications have different functionality for different operating
systems.

Whenever a consumer node needs to gather a set of
candidate nodes to process gridlets, there are two processes to
consider: using sibling or neighbor nodes directly, and using
super-nodes.

Each node advertises its own resources and supported
applications to the peers comprising its neighborhood. Upon
receiving this information, neighbor nodes calculate, with their
own judgment, the global rating of the announcer node. This
judgment consists of a weighted combination of the measured
availability of every single resource. Then, the global rating
of the announcer is stored, and when a node needs to execute
gridlets, it will prefer providers with higher global rating.

If the neighborhood is not sufficient to process the whole
job, then the consumer node requests its primary super-node
to find more available nodes. In turn, the primary super-node
forwards the request to its counterpart node responsible for the
family of the application required to process the job. Upon
receiving this request, the super-node looks up on its internal
table and tries to gather a set of available nodes that have the
job application. This may involve asking other super-nodes
with greater aggregated capability for the set of their specific
nodes that have the job application. In this way, the consumer

node can directly contact provider nodes to send gridlets and
save network hops that would otherwise increase the latency
of the transmission.

2.7. Gridlet-result storage

To persist gridlet results, this component provides a distributed
networked storage system which is maintained by the network
nodes. As machines may fail, there is a replication factor
allowing equal data to reside in different nodes. The main
purpose of this component is to reduce resource utilization,
namely CPU and bandwidth, by avoiding redundant execution
of gridlets that were already computed in the past.

In practice, this component forms a distributed hash table
(DHT), with the typical two operations of lookup and store,
mapping gridlet input data digests into gridlet-results/output
data. The lookup is performed for every newly created gridlet;
and the store is performed every time a gridlet result is deemed
trustworthy. Both operations are performed by the consumer
node. Furthermore, the maximum lifetime of stored results, as
well as the overall size of the storage and replacement policy,
can be parameterized.

This storage system reveals itself more useful in small
communities (or overlays) where users have quite the same
applications installed and work in projects with similar data
(e.g. an animation studio or a community of hobbyists working
on a same project). For this reason, this storage component can
be deactivated, thus reducing the overall system overhead.

3. IMPLEMENTATION

This section details relevant implementation aspects of the
architecture previously described. In particular, the used
technology, adaptation of applications, EE, and resource
management and discovery.

3.1. Used technology and integration

To favor portability, our middleware is developed in Java and
runs on top of a Java Virtual Machine, which is available for the
most common operating systems and computer architectures.
The base platform is intended to be executed in a single
process, albeit non-core components can run in isolated
processes or different machines. In this case, additional code
inside the core components is required to handle the inter-
component communication, which can be done, for instance,
through RPCs or web services.

With respect to the network, we adopted FreePastry?
as an implementation of the Pastry P2P overlay. This
particular implementation is made in Java and provides several
components to create and manage a Pastry overlay network
with numerous nodes.

2http://Www.ﬁreepastry.Org.

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

file:www.ffmpeg.org
http://www.freepastry.org
http://comjnl.oxfordjournals.org/

CYCLE-SHARING COMPUTING CLOUD 11

With regard to the GRS component, we resorted to PAST [5],
which is a large-scale, P2P archival storage facility. The
integration of PAST with our platform was easily done, since
PAST is intended to work upon FreePastry. Furthermore, the
key to look up for gridlet results is the SHA-1 hash generated
from the gridlet description, which includes the input and
configuration data.

3.2. Application adaptation engine

Owing to transparency and portability key issues, we do not
expect users and developers to adhere to yet another specific
API, and to modify applications to interact with the framework
and with internal mechanisms (e.g. RD, allocation, bidding).
Instead, we rely solely on the ability to understand data
formats (via adapters). We modify the input files, splitting
them, aware of format intrinsics, creating gridlets that wrap
the file chunks/fragments in a way that they appear as correct
(yet smaller) files to the applications. We perform similar
complementary transformations during the result aggregation
process to provide a correct output file to any application (e.g.
a video player).

We target mostly CPU-intensive Bag-of-Tasks jobs, where
any application carries out processing over input files and
generates output files, and these are easily adapted. In this case,
regardless of the complex formats, the intrinsic parallelism
is easier to extract and leverage, once the format issues are
handled. Regarding other categories of jobs (e.g. hierarchical
jobs, workflows) we can also integrate the execution of their
tasks. In such scenarios, heterogeneity will imply that all
the formats involved must have the corresponding adapters
for C3P. Regarding the dependencies between tasks, these
are exposed naturally, e.g. as gridlets for higher-level jobs
can only generate results once all the results of the lower-
level gridlets have become available and aggregated; and
downstream tasks in workflows can only be started once the
gridlet results of upstream tasks have also been dealt with
accordingly.

When splitting an input file to create gridlets, the first step is
to parse that file and construct an auxiliary tree in accordance to
the XML-based format descriptor specified for the application.
This tree represents the structure of the file, where the nodes
are logical parts of the file and the leafs represent pointers to
the data contained in the file.

Then, this tree is manipulated through sequences of CRUD
operations (create, insert, update, delete tree nodes before,
after, or between specified elements or tokens) in order to
create partitions in several coherent branches and generate
smaller trees. These CRUD operations are defined in the format
descriptor and must include all the necessary header analysis
and reconstruction, patching and structural modifications (e.g.
moving blocks across the file). After this transformation, trees
are serialized into files and encapsulated inside gridlets as
regular files of their respective format.

As for the merging, the process is reverted. Every single
output file is parsed and converted to a tree structure according
to the defined application grammar. Afterwards, all trees
are merged into one through the CRUD operations and the
corresponding final output file is built. Moreover, the merging
process may (i) start from an empty output file, (ii) start with
the result created from the response to the first request or (iii)
start with the result created from the response that arrived first.

The entire process for an example ray-tracing application is
globally described in Fig. 5. Furthermore, this component was
developed in Java and the Saxon XPath engine® was used to
read and process XML configuration files.

Due to space concerns, we do not provide the full details
of this approach in the main body of the paper. In the
figures and listings in Appendix, we provide an example
of an XML configuration file for an adapter to AVI files
which is able to transparently partition a movie file. We
also offer the full grammar for specifying applications file
formats and the transformations for splitting and aggregation.
It involves some knowledge of the formats, that can be derived
from specifications or descriptions, but it enables transparent
speedups and prevents modifying all the applications using that
format.

3.3. EE and supported applications

The EE component can be configured to use sandbox
technology, like LinuxSandboxing* or sandboxie,” in order
to create a safe environment, controlling resource usage and
protecting the operating system from misused applications.
Further, Sandbox is a security mechanism for running
programs independently of the rest of the system. It also allows
to run multiple instances of a same application on the same OS
instance that otherwise would not be possible for some cases.
It is often used to execute untested code, or untrusted programs
from unverified third parties, suppliers, untrusted users and
untrusted web sites since it creates an isolated environment
with possibly resource control. For gridlets that are to be
processed by Java applications, we can bypass this (if and
only if the user has the Java VM installed, and so decides
by defining the appropriate security policies to access local
resources) and we need not execute the Java VM on top of
another virtualization framework. The EE can be configured to
use different systems (also LXC® in Linux), thereby indicating
the command necessary to launch the environment along with
all necessary configuration parameters.

This component can take advantage of multi-core CPUs
(SMP), as each launched application corresponds to one new
process that can be easily scheduled to available cores by

3 http://saxon.sourceforge.net/.
4https://code.google.com/p/chromium/wiki/LinuxSamdboxing.
5 http://www.sandboxie.com.

6https://linuxcontainers.org/.

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://saxon.sourceforge.net/
https://code.google.com/p/chromium/wiki/LinuxSandboxing
http://www.sandboxie.com
https://linuxcontainers.org/
http://comjnl.oxfordjournals.org/

12 S. ESTEVES et al.

> ginger povray camaraz2.ini

l SR /\ — /\

Application Input Format Tree File
Parser Parsing Partitioner Reassembly
| povray H camara2.ini ‘ / \ > / \ e >]
camara2.pov | ey = / \ / \ - [
Tree Agregator Gridlet (o Hl Gridlet
- nil e
File Reassembly Manager ., Smriey, 72 Manager
o e

= ~. - _F
. id; app
LR = iL

Peer processing ez

v

Result

FIGURE 5. C3P application adaptation pipeline.

the operating system. In this way, more than one application
may be running at the same time without great performance
penalties.

Currently, the kind of applications allowed by this system
should either be parameterized through the command line or
receive a script or configuration files as input (i.e. parameter
sweep or batch file processing). They should also easily
generate output files and report errors. Moreover, it should be
possible to create independent tasks from those applications.

3.4. Resource management and discovery

To measure the capability and availability levels, every
considered resource is assigned with a real number from O to
1, where 0 means that the resource is unavailable and 1 that
the resource is powerful and has very good availability. Thus,
a machine considered as very good, and ranking 1 in each
resource, would have its resource availability levels at least like
<cpu, ram, bandwidth>=<80GFlops,8GB,360Mbps>. These
values are not the overall capacity of the machine, but the
capability (or availability) at a given time (e.g. a machine with
16 GB of memory, albeit with only 8 GB available). We simply
obtain the normalized values by dividing the current resource

availability of a machine by our very good reference. For
example, a machine with resources <cpu, ram, bandwidth>=x
GFLOPS,y GB,z Mbps> is normalized to <x/70, y/8, z/360>.
If any resource has higher capability than the reference, then
the normalized value is automatically 1, since we do not make
distinctions above the very good reference.

Nodes periodically send update messages to all of their
neighbors in order to announce their presence and resources.
More precisely, these messages contain the node identifier, its
supported applications (i.e. application and family hashes) and
its resource availability levels (normalized). In turn, neighbors
receive these updates and calculate the global rating of a node.

The global (among all types of resources) rating of a node
is obtained through a simple additive model [6]. In this way,
nodes define the relative importance of each resource by
defining weights (using methods like the swing weights). With
them, it is then possible to make a weighted sum and obtain the
global availability value (Equation (1)).

Via)=Y kjvj(@) with Y k;=1 andk;>0. (1)

j={CPU, RAM, bandwidth};
V (a) global value of node a;

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

CYCLE-SHARING COMPUTING CLOUD 13

v;(a) partial value of node a in the resource j;
k; weight of the resource j.

Every time a super-node receives an update message from
its neighborhood, it contacts all other super-nodes responsible
for the application families therein contained, so that they can
update their internal tables with the new aggregated availability
of that node for a given application.

3.5. Application programming interfaces

The APIs are organized as follows. Each layer has a unique
interface, implemented by its corresponding core component,
that is public and visible to other layers. These layer interfaces
aggregate (or extend) all individual component interfaces
relative to that layer. Components in different layers can only
interact through the layer interface and not directly through
the individual component interface. Moreover, a component
interface should be kept unmodified if the implementation of
its component changes.

This organization of interfaces allows the easy reconfig-
uration and extension of the architecture components; and
abstracts in two levels (layer and component interfaces) the
specific component (or layer) implementation that can be then
changed without compromising the interactions between the
other components.

4. EVALUATION

In this section, we present the evaluation of the c3p
framework. Components were tested both separately and
combined together in simulated and real environments in order
to obtain partial and overall performance values and identify
possible sources of overhead. All tests were conducted using
machines with an Intel Core 2 Quad CPU Q6600 at 2.40 GHz
with 7825MB of RAM memory. As for the network, all nodes
were within the same LAN and the available bandwidth was
around 100 Mbps.

In Section 4.1, we evaluate the impact of adapting
applications in the overall performance of the system. We
then assess, in Section 4.2, the reliability of the system when
malicious nodes collude by returning wrong gridlet results.
Section 4.3 explores how the incentive mechanisms, CR,
affect the reliability and collaboration of nodes. Following,
Section 4.4 evaluates the efficiency of the RD mechanisms;
and, finally, the overall performance of the system is assessed
when facing real end-to-end application environments (i.e. not
simulated), in Section 4.5.

4.1. Transparent adaptation of applications

In this section, we analyze the impact of the AAE component in
the overall system performance, thereby identifying overheads
and demonstrating how they vary.

M analysis m splitting merging M processing and transferring

Al
A2
A3

B1
B2
B3

C1

I
ey 00 00O
c:

500 1000 1500 2000 2500 3000
Time (s)

o

FIGURE 6. Execution time of video compression for one to three
nodes with input files with different sizes.

To carry out the tests, we resorted to video transcoding
jobs using the ffmpeg application,” which, besides being CPU-
bound, is relatively I/O intensive and usually deals with large
files that either are given as input or produced as output. In
particular, for input, we fed the application with video files of
type AVI, which represents a complex format with an intricate
internal structure. The partition was applied over the key
frames, which are good splitting points as they are independent
of each other.

For transparency, C3P must address that: (i) key frames are
not placed at equidistant offsets but are rather detected within
the inner structure of an AVI file; (ii) the ffmpeg application
deals with proper AVI files and not with chunks of data
between key frames; thus, transparent adaptation is a challenge
not without CPU demands.

During evaluation we performed three jobs, a, b and c,
consisting of the transcoding of three video files, with the same
complexity and sizes 100, 300 and 500 MB, from the mpeg4
xvid codec to the x264. Each job was executed for one to three
nodes (designated as al, a2, a3, bl, b2, b3, cl, c2 and c3).

Results are shown in Figs. 6 and 7, and there are two
important considerations to make: (i) the overall processing
and response times are conservative, i.e. taken from the
gridlet that takes the longest time to produce its result
(streaming could have started with only a fraction of the
gridlets executed); and (ii) this component is still not fully
optimized with regard to parsing and interpreting xml-based
heavy grammars.

The first observation we can take is that the time taken
for adapting applications increases with the size of the input
(al with 8%, bl with 13%, c1 with 14%), and also increases
for higher number of nodes, especially the splitting process
time. This process of splitting is the most intensive and time
consuming due mainly to the generation and management of
new trees (representing the internal structure of the videos),
which can be significantly enhanced in future versions.

7http://www.ffmpeg.org.

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘S Yyore) uo 1enb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://www.ffmpeg.org
http://comjnl.oxfordjournals.org/

14 S. ESTEVES et al.

M application adaptation M processing and transferring

Al
A3

B1
B2
B3

C1
Cc2
c3

0,0% 20,0% 40,0% 60,0% 80,0% 100,0%
Time

FIGURE 7. Comparison between application adaptation and pro-
cessing time for one to three nodes with input files with different sizes.

Besides lacking optimization, every time a new splitting is
required, the source tree is copied again in order to apply the
transformations over a clean version of this tree. Since 100 MB
videos produce a tree of around 50000 nodes, it is a slow
process to make a copy, apply the transformations and produce
the gridlet. In fact, we can say with some confidence that this
is the main problem and not the splitting transformations, since
this is much less noticeable in the merging process that only
works with one tree. Nonetheless, this process is fully driven
by declarative XML format specifications that are run in Java
code and so, while much optimization is still possible, the
flexibility and transparency are demonstrated.

That said, we can expect in future versions a similar
evolution of the time taken for the splitting and merging
processes. Nonetheless, the current impact this component
causes is quite small, around 20% of the overall time taken,
and, as the number of nodes increases, the gain in parallelism
is much higher than the loss in splitting gridlets. Moreover, c3
obtained 36% on application adaptation due to the processing
time that was substantially decreased. Thus, we must stress
two things: (i) adaptation weight increases relatively when
execution speedups increase, and this is only natural. It shows
that there is obviously a ceiling to the speedups an application
can achieve (regardless of how many and small gridlets are
created) when the costs of adaptation start to dominate, and
(ii) as detailed next, the relevant metric for users will be the
relative speedup of the entire application execution and not the
specific breakdown of where time is being spent. Furthermore,
XML parsing and application adaptation can be significantly
optimized if they are also catered to be optimized for parallel
execution, that we are further developing.

Furthermore, the experimental evaluation demonstrated that
popular commodity applications, such as ffmpeg, can be
efficiently and transparently adapted to execute several tasks in
parallel over a distributed environment. Results show that this
approach is feasible, as it allows users to execute jobs remotely,
in parallel fashion, without the need to modify applications’
source or binary code. Performance results identified the
(not great) overheads related with splitting and aggregation of

== Samplication (R.F, 2) ====Samplication (R.F. 3) - -Samplication (R.F. 5)

= Samplication (R.F, 7) ===Samplication (R.F. 9)
50%

45% |
a0% +
35%
30% -+
25%
20% -+
15%

10% +
5%
0%

Percentage of Wrong Results Accepted

0 10 20 30 40 50 60 70 80 90 100
Percentage of Colluders

FIGURE 8. Samplication: percentage of wrong results accepted for
several replicated factors in a scenario where returned results are 50%
corrupted.

complex file formats (i.e. MPEG4), which are not present in
other applications based on parameter sweep (e.g. ray-tracing
animations). Naturally, speedups are more favorable in jobs
with higher CPU/IO ratio.

4.2. Gridlet-result verification

This section describes the evaluation of the GRV component,
which makes use of a technique that combines replication
and local sampling (samplication). As previously explained,
unequal fragments of replicated gridlet results are tested
against local execution of those same fragments. If results are
equal, the fragments are randomly picked. In the end, only
results matching the local sample are kept.

As other typical techniques, samplication can be fooled if
a group of nodes decides to collude. This may happen if the
replicated results of a same gridlet are equal to one another
and have some fragments that are corrupted. In this way,
the samples to be locally executed are randomly picked and,
therefore, the (wrong) results can be accepted if the samples
match non-corrupted fragments. As such, we simulated a
scenario to assess the percentage of wrong results accepted, in
the presence of colluding nodes, for several replication factors.
Additionally, each returned result was corrupted in random
50% of its content regarded as a bitstream.

As depicted in Fig. 8, samplication is effective in
maintaining the wrong results accepted very low for small, and
even medium (30-70%), groups of colluding nodes. Note that
in a real environment colluding nodes are typically a minority.
When colluding nodes correspond to <50%, the wrong results
accepted are below 10% (and below 5% for replication factors
>2), which is very good when compared with other techniques.
For instance, other tests we conducted, for standard replication
without sampling, show that the wrong results accepted are
>10% when colluding nodes correspond to 20% or more.

Furthermore, results have also shown in this simulation
that the incurred overhead of locally running samples, and
identifying and aggregating correct results, assumes a good

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 1senb Aq /Bio'sfeulnolployxo’ julwooy/:dny wouy pspeojumoq

http://comjnl.oxfordjournals.org/

CYCLE-SHARING COMPUTING CLOUD 15

compromise with the reliability of the gridlet results. In
addition, replication is considerably improved by the addition
of the sampling model, as voting quorum schemes are
completely vulnerable to colluding nodes. Thus, on average,
samplication will incur lower resource usage, to ensure a given
level of trust, when compared with simply replicating gridlets
or entire tasks in order to achieve quorums and determine the
trusted result.

4.3. Currency and reputation

In this section, we present the average results of our two most
relevant simulations regarding the CR component. The first
simulation, Zero Incentive Mechanisms, consists of a scenario
to assess the impact and leverage that malicious nodes have
on a system with no incentives. In this scenario, 10% of the
nodes act maliciously by illegitimately trying to maximize their
gain. These nodes reject all requests for resources, collude
to improve their reputation and utilize the initially awarded
currency to obtain resources from other nodes, simply creating
new identities when needed.

On the other hand, the second scenario, Full Incentive
Mechanisms, intends to measure the effectiveness of our
incentive mechanisms, comparing the results achieved by
the malicious nodes with the ones from the first scenario.
Besides the general settings, these incentive mechanisms also
encompass the following activities: (i) progressively award
CR, where nodes start with a low initial budget and periodically
receive more currency (instead of starting with all of it),
which forces users to accumulate currency and share more
resources; (ii) periodic decrease of reputation, to force nodes
to share resources and (iii) collusion detection, where super-
nodes maintain a record of transactions of their child nodes to
verify possible collusion between nodes.

The simulation settings are described in Table 1. We used
PeerSim with the different types of nodes uniformly randomly
distributed over the overlay and the results are averages of 10
simulations.

The average results of the performed simulations are
presented in Table 2. In addition, we obtained a similar
elapsed time in both simulations, meaning that the application
throughput is not affected by the incentive mechanisms.

As can be seen, the success of attacks from faulty nodes is
greatly reduced with the incentive mechanisms, reducing the
completed exchanges of malicious users, from twice as much
as those accomplished by regular nodes to just 11%. The results
are very positive and show that faulty nodes are identified
and do not have any advantage or leverage over legitimate
nodes.

Furthermore, the small initial budget and progressive
introduction of currency results in a slow start even for honest
users. For that reason, the number of successful transactions
may appear to be weak but, as the number of interactions
increases and time advances, that initial impact is softened.

TABLE 1. Simulation parameters.

Zero incentive Full incentive

Parameter mechanisms ~ mechanisms

Initial budget 100 1

Initial reputation 50 50

Maximum cost of a resource 5 5

Probability of a node being faulty 10% 10%

Probability of a faulty node making 10% 10%
fake requests or acceptances

Probability of a faulty node 10% 10%
badmouthing or praising

Probability of collusion between 25% 25%

faulty nodes

TABLE 2. Simulation results.

Zero incentive Full incentive

mechanisms mechanisms
Number of nodes 2249 2036
Expelled nodes 0 308
Super nodes 0 5
Faulty nodes 211 27
Exchanges attempted 21960 19294
Exchanges failed 0 850
Reputation (correct nodes) 72 60
Budget (correct nodes) 100 28
Successful exchanges (correct nodes) 8.27 7.98
Reputation (faulty nodes) 74 36
Budget (faulty nodes) 109 3
Successful exchanges (faulty nodes) 17.14 0.9

Through Fig. 9 it is possible to observe that routing gridlets
while taking into account reputation information improves the
efficiency, i.e. the average number of hops taken per time unit
to process jobs. The gain was less accentuated in the first
iteration because the consumer node had not acquired by then
the reputation information regarding its neighbors. Starting on
the second iteration, there is a strong reduction in the number of
re-transmissions performed (since we are able to better avoid
malicious nodes), and we can see that the convergence for the
optimal point is fast.

4.4. Resource discovery

This section presents the evaluation of the RD mechanisms
implemented in C3P for a Pastry overlay network. As these
mechanisms take place soon after the start of a job, they
can incur overhead to the overall application performance,
especially due to the messages that are exchanged with super-
nodes to locate resources in farther domains. As such, we

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

16 S. ESTEVES et al.

60

mmm With reputation
Without reputation

50
" ,': Z
g 7 7 1 | 1 : 7
= ol Z 7 7 Z 7 Z .
% _ ! 7 . /
Hi 7 7 / 7 z 7
£ 7 . '. . . . 7
30 Z Z 7 %z 7
2 Z /. . 7 7 7 7
s 7 /' 4 7 4 % Z
£ 20 7 7 Z Z Z 7 . Z
[Z Z 7 7 7 Z Z
z 7 / ', . 7 7 . ,
/ . . , 7 .
10 7 7 7 . . 7 , 7
' 7 Z Z Z 7 7 Z
0 - - - - — . : —
0 1 2 3 4 5 6 T 8 9

Time unit

FIGURE 9. Average number of hops per time unit with and without
using reputation.

M 1000 nodes M 5000 nodes

100

10000 nodes

80

O & & O O O O & O O
& e g 0000 P o P

FFFFSFSFFPF PSSP
N I I S G\ I G

Time (cycles)

FIGURE 10. RD effectiveness.

designed scenarios to assess the efficiency (in terms of hops
and time) and number of messages exchanged.

All tests were executed in a simulated environment and the
time units refer to the number of simulated cycles processed.
To get representative results, we performed 500000 cycles,
during which nodes can send or receive messages with a
low probability. Also, we assumed a uniform distribution of
applications amongst all nodes.

The first test is intended to show the effectiveness of the
RD component. More specifically, the percentage of executed
gridlets (or ratio) during the simulation time (i.e. resources
that are located, perform work and later return results). As
we can see through Fig. 10, a large number of gridlets do
not find any appropriate node initially. This happens because
nodes are still joining the network and, as time goes by,
the amount of gridlets that successfully locate the required
resources increases, stabilizing more rapidly for larger number
of nodes (as expected). Moreover, all curves converged to
100, meaning that sent gridlets will eventually find available
resources with the required applications to get executed.

25

—#— 1 consumer node
== 100 consumer nodes
8 20 =@~ 200 consumer nodes
o ¢ 300 consumer nodes
5 =de— 400 consumer nodes
g 15 —Q— 500 consumer nodes
E
3
3
o 10
o
:
<
05
0,0

2 T T
200 400 500 600 TO0 200 900 1000
Number of submitted gridlets

FIGURE 11. Number of attempts to locate available resources.

In another scenario, we assess the average number of
attempts consumer nodes make in order to locate available
resources and get their gridlets effectively processed. When a
request for resources returns a set of candidate available nodes
that do not have an overall capacity sufficient to attend all
gridlets, an attempt is made (albeit some of the gridlets were
already dispatched). This simulation was performed with 500
nodes, each with capacity to process only 1 gridlet at a time.

Through Fig. 11 we may see that, as the number of submitted
gridlets’ increases from 600 to 1000, the number of requested
resources is greater than the number of resources that were
provided within the network; therefore, more attempts were
made until the end of the first gridlets’ computation. Below
500, the number of attempts is almost O (gridlets were served
immediately in the first request), except for the case of 500
consumers. This divergence happened due to the concurrency
of 500 nodes trying to compete for the same resources, albeit
this impact was minimal (only 0.7 more attempts on average).

In Fig. 12, we have the average hops a gridlet travels until
finding an available and capable node to execute it, obtained for
a set of simulations. Through it, we can see that the number of
hops evolves logarithmically with the number of nodes, which
demonstrates scalability. There is a number of hops spent
in super-peer redirection, but it levels rapidly as the number
of super-nodes stabilizes and they become known amongst
themselves as to become nearly insignificant.

Figure 13 shows the number of messages exchanged across
the network by their type. The amount of messages spent in
querying super-nodes and the subsequent replies is relatively
high (as they account for almost 10% of all network traffic),
especially due to the degree of churn introduced in the
simulation.

With regard to the advertising messages that nodes
send periodically to announce their resources, they increase
quadratically with the number of nodes: n nodes will exchange
2n(n — 1) messages. Note that this information could also be
piggy-backed on any other type of message nodes exchange,
namely when relaying gridlet requests or results among nodes.

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

CYCLE-SHARING COMPUTING CLOUD 17

=4=jobl =fli=job2 —h—job3

\

A\

A\

====linear speedup =fll=jobl

1 2 3 4 5 6 7 8
Number of Nodes

FIGURE 14. Time elapsed for job 1, 2 and 3 using from one to eight

=fe=job2 ==¢=job3

A
e

=<

M 1000 5000 ¥ 10000 0
11.0
450
10.5 400
10.0 350
2 300
g 9.5 =
£ @ 250
® £
g 9.0 = 200
‘% 8.5 150
100
8.0 50
7.5 0
Number of nodes
FIGURE 12. Average number of hops.
nodes.
Mjoin B GridletResponse MiState
M joinReply M superQuery " NodeRegister
" Gridlet M superReply M updateAvailability 9
4,000,000 3
7
3,000,000
] 6
o
@ = 5
g 2,000,000 S
= [4
o
)
1,000,000 3
—_— 2
0
1000 5000 10000 1
Nodes 0

M

FIGURE 13. Number of exchanged messages.

1 2 3 4 5 6 7 8
Number of Nodes

FIGURE 15. Speedup obtained for job 1, 2 and 3 using from one to

4.5. Overall performance in real environment

In this section, we evaluate the C3P framework as a whole

and assess the effective gains in terms of performance in a 3)
real environment. More precisely, we measure and analyze the

speedup® of applications for a set of key scenarios. To execute

the tests, we relied on two applications and three jobs, listed as

follows.

(1) A POVray image to be rendered in which each gridlet
computes a certain number of line chunks with different
complexity. Owing to that carried complexity, some
gridlets can be computed faster than others.

(2) A POVray image to be rendered, albeit the computa-
tional cost of each task is the same and gridlets should
be completed at the same time. Additionally, this job is
less computationally heavy than the previous one, i.e.
with the highest number of nodes the gains of the par-
allelization may be lower.

eight nodes.

A Monte Carlo simulation for a sum of several given
uniform variables in which the outcome is an image
containing a linear chart. Each task generates a lot of
random numbers and groups them into classes. Then,
the classes are summed between tasks, and a Monte
Carlo curve is drawn. Additionally, all gridlets should
take the same time to be computed.

Among all executed jobs, these ones were carefully chosen
for this article as they highlight the three different, and most
important, impact levels that jobs can have on performance.
For each of these jobs we made eight trials. In the first trial, we
used one node (i.e. no parallelism, as the consumer node is also
the only provider), in the second two nodes and so on until we
had eight nodes in total.

From Figs. 14 and 15, we may see that job 1 and job 3

GTOZ ‘S Yyore) uo 1enb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

performed better. In particular, the speedup of job 3 was
almost linear. This happened due to two major reasons. First,
each generated gridlet for job 3 had the same computational

8Sp = T1/Tp, where) is the speedup with p nodes, Tj is the execution
time with one node and T}, the execution time with p nodes.

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

http://comjnl.oxfordjournals.org/

18 S. ESTEVES et al.

complexity, unlike job 1, and therefore the work was evenly
distributed among provider nodes. In this way, all gridlets
were completed at the same time and the allocated resources
were fully utilized. In job 1, machine providers were loaded
differently, and thus some nodes became free while others were
still computing gridlets.

Second, the input and output of job 1 consisted of files
whose size was in the order of MB, whereas the application
of job 3 only requires a configuration file as input and
generates small-sized text files as output; i.e. the transmission
of data throughout the network had a significant impact on the
performance. This means that jobs with higher CPU/bandwidth
ratio will naturally perform better.

Nevertheless, our results have also shown that the small-
sized gridlets and the pipelining approach (described in
Section 2.3) can improve performance. Considering only one
worker machine as reference, one gridlet with 500 MB took
about 30s to be sent, 1200s to be processed and 22s to be
returned with an output of 250 MB. When we split that gridlet
into smaller ones of 1 MB, we obtained 1200 s of processing
time (with only one worker machine as before), <15s of
transmission time (this time was taken from the first sent
gridlet and the last returned gridlets) and ~3s of additional
overhead. Albeit the gain here was only 3% (with 100 Mbps of
bandwidth), greater gains are expected for wide-area networks
(like the Internet).

Considering the worst result, job 2 is an example of a job
that probably is not worth to parallelize, since its computational
complexity is not high enough to compensate the incurred
framework overhead.

In the next section, we also offer some comparison with
other relevant systems following their description and brief
analysis.

5. RELATED WORK

In this section, we review relevant solutions, within the
current state of the art, regarding the main topics approached
in this work: transparent adaptation of applications, result
verification, CR and RD. We then contrast the most successful
and complete systems with our solution.

5.1. Constituent topics and systems

Transparent adaptation of applications for distributed execu-
tion: To ease the interactions with grid schedulers, earlier work
on Nimrod [7], XtremWeb [8] and Ganga [9] shows special-
ized developments on user interfaces for creation of indepen-
dent tasks. These tools allow the easy creation of parameter
sweep jobs, where each task processes part of an input domain.
The partition of this domain is done by assigning different
input files to different tasks, or the same input file to all tasks,
but dividing some parameter intervals (e.g. chunks of data to

process in each task). Unlike our approach, the partition of
large data files into smaller data units is not possible, which
makes these tools somehow limited.

The work in [10] proposes an interesting generic XML-
based tool for data partitioning in work units that are scheduled
in nodes across the Grid. Resource estimation is based on
probing remote nodes with sample data which assumes full
trust. Therefore, it does not address the same P2P environments
our work does. Their XML descriptions for data partitioning
allow for alternatives of fixed-sized units, cutting on known
separators, user-provided files with cut-points or delegating to
external tools. Result-gathering is left to the user. Our XML
format descriptions are more flexible handling other aspects of
current formats, such as maintaining and adapting headers, and
identifying parts of files that must be in the same unit (full and
predicted frames in MPEG).

The majority of distributed cycle-sharing systems rely on
specific and application-dependent mechanisms for splitting
and merging data that usually will not fit in new applications
that users would like to include in the system. For example,
BOINC requires application owners to create the necessary
code to partition the input domain of the problem in small
work units, each describing the computation to be performed
on every single remote node.

In the same way, Ewert [11] suggests applying grid
technologies for analyzing multimedia content and video files,
such as detecting transitions and faces; however, the proposed
prototype performs the splitting of video scenes through
mechanisms that are hard-coded in the middleware, thus not
allowing the easy addition of new data formats or the use of
the infrastructure to solve different problems.

In our approach, users have not to develop any code to adapt
applications into the system; instead, they have only to provide
a grammar in a high-level language that defines the rules of
the partition and aggregation of tasks and data. In addition, this
grammar could be downloaded automatically from a repository
for a given application, precluding any user intervention in this
process.

Result verification: One of the most typical and effective
methods to identify wrong results is through redundant
execution, on multiple nodes, of a same task and comparison
of its results based on a voting quorum scheme. It is almost
impossible for a fault or byzantine behavior in different
machines to produce the same wrong result; so, in these
cases, the wrong results are easily identified and discarded.
Nevertheless, if a group of nodes colludes, this technique
may fail to identify wrong results. Also, another drawback of
redundant execution is the overhead and resource consumption
it generates, since every job is executed at least three
times. Most of the systems rely on this standard replication
mechanism, such as BOINC.

In [12], is proposed a technique with hash-trees in which
provider nodes are forced to calculate a binary hash-tree
from their results. The leafs of this hash-tree are partitioned

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

CYCLE-SHARING COMPUTING CLOUD 19

sequential results. The hash is calculated using two consecutive
parts of the result concatenated, starting by the leafs and ending
in the root of the tree. Once the tree is complete, the consumer
has only to execute a random part of the result (one leaf) and
calculate its hash. Then this result is compared against the
returned result and the hashes of the whole tree are checked.
This method is very effective, as finding the correct hash-
tree requires more computation than actually performing the
required computation. Although, it does not dissuade providers
that are willing to forge their results at any cost. Also, results
have to be decomposed (large overhead).

CCOF [13] proposes quiz mechanisms consisting of
assigning workunits (like jobs) whose outcome is known
beforehand. It describes two types of quizzes, stand-alone
and embedded quizzes. Stand-alone quizzes are disguised as
regular jobs to check if a node produces the expected result;
while the embedded ones are smaller quizzes that are placed
hidden into a job. The use of the same quiz more than once can
enable malicious nodes to identify them and fool the reputation
mechanisms. In addition, the implementation of embedded
quizzes tends to be complex in most cases.

CR: With respect to reputation systems, the web site eBay
[14] is probably the most famous example. When you buy
a product from another user, you are asked to rate the seller
according to the quality of the service. If a user receives
good reviews, it adds to his reputation and he becomes a
renowned seller, attracting more potential buyers (i.e. less risk
is involved). The reputation values are stored in a central
server considered trusty. Although, there are decentralized
alternatives (especially for p2p) such as the Eigen Trust
Algorithm [15].

In [16], authors develop and test a framework for
propagating trust and distrust, changing the focus from the
number of voters to relationships developed over time, much
like in the real world, where you trust the opinion of a long
acquaintance more than that of 10 strangers. However, this
framework may impact significantly the performance of the
whole system, as many nodes need to keep the reputation
information and propagate it.

The work in [17] presents a mechanism for lightweight and
distributed trust propagation, with the intent of implementation
in low-capacity devices, such as mobile phones. However, it
does not address the particular aspects of resource management
in a P2P cycle-sharing system.

Currency used in [18] is considered appropriate for systems
without a controlling third party, such as the P2P system,
because it has far fewer security concerns than real money.
Other options exist, such as bargaining or auctions [19], where
the consumers not only have the choice of buying or not, but
also influence the value asked. It is up to the resource owner to
decide which method is used.

RD and scheduling: lamnitchi et al. [20] have compared
different searching methods. It was concluded that a learning-
based strategy achieves more performance. Such strategy

consists of forwarding a request to the node that answered
similar requests previously (i.e. using a possibly large cache).
Moreover, results have shown that searching mechanisms that
keep a history of past events are more efficient than the ones
that do not store any information about other nodes, such as the
random walk.

CCOF [21] has tried several approaches, and the one
obtaining best global performance was based on a partially
centralized P2P overlay. Within this approach, some nodes may
acquire a special role in the network and provide a service
of lookup for nodes nearby. This way, nodes advertise their
profiles and address requests to those super-nodes. Whenever
a request is made, super-nodes attempt to match the query
with cached profiles and return a set of candidate nodes.
Nevertheless, the dynamic placement of these super-nodes is
still an open problem.

Cheema et al. [22] proposed a solution for exploiting the
single keyword DHT lookup for CPU cycle-sharing systems.
This solution consists in encoding resource identifiers based
on static and dynamic resource descriptions. The static ones
could be, for instance, the OS configuration, RAM or CPU
speed. While the dynamic descriptions are related to the
availability levels of resources, such as the percentage of idle
CPU. With this encoding mechanism, it is possible to create a
mapping between resources and node identifiers in structured
P2P networks, like Pastry, and take advantage of the efficient
routing of queries.

In cluster scenarios, RD, allocation and scheduling is a
very relevant aspect. Tycoon [23] proposes a distributed
market-inspired resource allocation system. In Tycoon, users
manage accounts and pay for the resources used, based on
the outcome of the matching of bids by requesting users, and
offers by resource donors that make advertisements. It has
low overhead, leverages virtualization technology to execute
tasks, and takes special care regarding network and messaging
overhead.

Mesos [24] is a platform dedicated to cluster sharing among
different computational platforms, as it is becoming common
nowadays. It is able to fulfill high-level policies regarding
resource utilization by each competing framework. It handles
availability and fault-tolerance concerns mostly automati-
cally, and allows better resource utilization regarding more
fine-grained slots of available resources, regarding both time
and space.

YARN [25] is a similar more recent system, fostered
by Apache for next-generation Hadoop. It has significant
performance and resource utilization improvements, and
handles several frameworks simultaneously. It also manages
availability, fault-tolerance, auditability and caters for locality
of data when the jobs and tasks are being scheduled for
increased performance. Both Mesos and YARN assume full
compliance with a new API and do not resort to virtualization
technology which may hinder adoption of similar efforts in
non-dedicated desktop machines of users.

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

20 S. ESTEVES et al.

Merlin [26] goes a step forward regarding the current
scale-up in clusters and proposes specific optimizations for
consolidating workloads in many-core machines, namely
NUMA machines, specifically addressing multi-core and
caching hierarchy issues for resource reconfiguration.

Comparison with C3P: Evaluating the same workloads with
very different platforms is an engineering feat in itself, more
difficult even when the code of some systems is not available
or has completely different requirements and assumptions. We
thus focus on the computational and message complexity of the
approaches, and the overhead introduced to working nodes.

Naturally, regarding full-fledged time-trail assessment, they
are not comparable. C3P is a P2P system, whereas Mesos,
YARN and Tycoon rely mostly on a master—slave model meant
to be run in resourceful datacenters, with dedicated resources
and very low latencies. Therefore, regarding total execution
times, they will be necessarily slower in C3P, mainly due
to the cost of data transfer on wide-area networks (order of
magnitude lower bandwidth) and diminishingly due to the
cost of adaptation, GC and result aggregation. If run on top
of a cluster (not designed for such), C3P will also naturally
benefit from this. They also incur lower overhead because they
execute jobs as native processes or over light virtualization
frameworks, with no overhead to prepare data for processing.
C3P incurs in the mentioned data adaptation overhead and will
almost always execute over heavier virtualization for increased
isolation and user protection.

Tycoon, Mesos and YARN discovery and allocation proto-
cols are based on direct interaction between bidders/requesters
and donors, which is acceptable in clusters but difficult to scale
to P2P networks. Such requirements or obligations of contact-
ing individual nodes (requesters and/or providers) directly to
bid or offer resources, clearly does not scale to P2P networks.
For this, we rely on super-peers to drive the network traffic
down, and to allow smart concise resource representation for
resource and application discovery (another problem not rele-
vant in homogeneous clusters, even if running multiple plat-
forms at once).

Tycoon, Mesos and YARN require the adoption of applica-
tions of framework schedulers and RMs to specific APIs. This
is somewhat natural in a cluster scenario where developers
and system administrators agree to common denominators. It
is clearly not the case in large-scale scenarios, such as P2P
cycle-sharing systems and community clouds, where most
users will only use the same unmodified applications they
are already familiar with, and are unable to modify them, and
unwilling to execute others they do not know well.

Therefore, for communities, small groups of scientists and
even SMEs, who do not possess either the necessary infrastruc-
ture to deploy and run resource-intensive dataflow applications
or sufficient available monetary funds to contract public cloud
computing services, volunteer computing can turn out to be a
paramount option. We want to emphasize this clear separation
between grid p2p and the typical centralized cluster model.

Therefore, while some of their principles and lessons can
be leveraged to other scenarios, by themselves, they cannot be
applied to current cycle-sharing systems such as community
clouds, mainly because they lack the required transparency and
scalability to large-scale networks. Merlin does not consider
distributed settings.

C3P has a decentralized (no central node) RD for scal-
ability to large-scale networks, but incorporating hierarchi-
cal elements (super-peers) for message efficiency and reduced
latency.

5.2. Cycle-sharing systems

Institutional grids: Globus [27] is an enabling technology for
grid deployment. It provides mechanisms for communication,
authentication, network information and data access, amongst
others. The authentication and authorization models are
directed to institutions, making it difficult for ordinary users
to deploy applications on top of the Grid. In contrast, C’P
envisions an open access environment whereby the complexity
of getting credentials to use the Grid is reduced.

Condor [28] allows the integration and use of remote
workstations. It maximizes the utilization of workstations and
expands the resources available to users, by functioning well
in an environment of distributed ownership. Condor’s jobs
rely on executable binary code in which compatible machines
are needed in order to run them. Contrastingly, machine
heterogeneity in C>P is not a problem, since jobs consist of data
files that can be easily read by any computer (i.e. the kind of
architecture and operating system are not relevant). In addition,
many Condor features require some degree of expertise (i.e.
advanced configurations are needed), whereas our platform
keeps the vision of simplicity and tries to do all the necessary
work with almost no interference from users.

Master-Slave model: BOINC [29] is a platform for
volunteer-distributed cycle sharing based on the client—server
model. It relies on an asymmetric relationship where users,
acting as clients, may donate their idle CPU cycles to a server,
but cannot use spare cycles from other clients for themselves.
Besides that, setting up the required infrastructure, developing
applications and gathering enough cycles could be difficult for
an ordinary user. On one hand, users need to have the required
skills to create BOINC projects, and, on the other, hand projects
should have a large visibility to attract users to participate in.
In comparison, C3P is more flexible as users have the same
power to both provide and consume idle cycles to and from
other machines. Moreover, it is possible to use common and
widely used applications with our system.

nuBOINC [30] is a project that attempts to overcome
the drawbacks presented by BOINC. It allows one to use
idle cycles from other users, through servers and making
use of commodity applications. However, C3P relies on a
more scalable model that does not require the intermediation
of servers. Also, when work units are being distributed,

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

CYCLE-SHARING COMPUTING CLOUD 21

our platform takes into account the idleness levels of user
machines, which is disregarded by nuBOINC.

P2P: CCOF [13] is an open P2P system seeking to harvest
idle CPU cycles from its connected users. It shares our goals
of reaching the average user by not requiring any kind of
membership or negotiations in any organization (i.e. in contrast
with institutional grids). Despite that, CCOF is absent in
what concerns the adaptation of applications to their system,
including not presenting any use case with applications and
related performance evaluation.

OurGrid [31] is a P2P network of sites that tries to facilitate
the inter-domain access to resources in an equitable manner.
Each of these sites comprises grid clusters possibly belonging
to different domains. The sharing of resources is made in a
way that makes those who contribute more to get more when
they are in need. Nonetheless, applications need to be modified
in order to run on top of this platform, and the data-based
parallelism is not exploited as in C>P. Besides that, machines
are not distinguished by their idleness levels, whereas our
platform attempts to always select the best available nodes for
a job.

6. CONCLUSION

This article addresses a current reality characterized by: (i)
underused and powerful computational resources connected
throughout possible large and high throughput networks, (ii)
general society and non-expert user’s computational needs and
(iii) computing models oriented for high performance.

We present the design, development and evaluation of
the C3P framework, a flexible solution based on the gridlet
concept, introducing a new application model that can bridge
the gaps between a number of existing infrastructures (e.g.
grids, distributed cycle-sharing and decentralized P2P file-
sharing), bringing Grid technology to home users. We enable
parallel execution of commodity applications in a transparent
manner, i.e. without needing to introduce modifications in
applications’ source or binary code.

A representative selection of relevant solutions are reviewed
and it is concluded that none of them entirely covers the
objectives of C3P. In particular, regarding the distributed cycle-
sharing systems, they fail to reach the common user due
to institutional barriers, they are not portable, they require
modifications to applications and idleness levels of nodes are
disregarded, among other reasons.

In summary, although there is relevant related work
and successful projects in the areas of grid computing,
distributed cycle-sharing and P2P computing, to the best of
our knowledge, none of them provides an application model
and middleware framework that offers improved performance,
with transparency, to existing applications executed by Internet
home users. Thus, we find that C3P, due to its unique
characteristics, is a compelling effort, within the current state
of the art, to unleash and combine the computational power

scattered across different network and architectural settings,
and make it available to Internet users.

ACKNOWLEDGEMENTS

The authors wish to thank students Filipe Paredes, Joao Morais,
Pedro Rodrigues, Jodao Paulino, Jodo Neves and Pedro Oliveira
for their work and enthusiasm, and Rodrigo Rodrigues, Carlos
Ribeiro and Jodo Nuno Silva for their teamwork during the
various stages of this work.

FUNDING

This work was supported by national funds through Fun-
dacdo para a Ciéncia e a Tecnologia with reference
UID/CEC/50021/2013.

REFERENCES

[1] Rowstron, A. and Druschel, P. (2001) Pastry: Scalable,
Decentralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems, Lecture Notes in Computer Science 2218.
Springer, Berlin, 329-350.

Stoica, 1., Morris, R., Karger, D., Kaashoek, M.F. and

Balakrishnan, H. (2001) Chord: A Scalable Peer-to-Peer Lookup

Service for Internet Applications. SIGCOMM °01: Proc. 2001

Conf. Applications, Technologies, Architectures, and Protocols

for Computer Communications, New York, NY, USA, pp. 149—

160. ACM.

Ratnasamy, S., Francis, P., Handley, M., Karp, R. and Schenker,

S. (2001) A Scalable Content-Addressable Network. SIGCOMM

’01: Proc. 2001 Conf. Applications, Technologies, Architectures,

and Protocols for Computer Communications, New York, NY,

USA, pp. 161-172. ACM.

[4] Dongarra, J.J., Luszczek, P. and Petitet, A. (2003) The Linpack

benchmark: past, present, and future. Concurrency Comput.

Pract. Exp., 15, 803-820.

Rowstron, A. and Druschel, P. (2001) Storage management and

caching in past, a large-scale, persistent peer-to-peer storage

utility. SIGOPS Oper. Syst. Rev., 35, 188-201.

Goodwin, P. and Wright, G. (2004) Decision Analysis for

Management Judgment (3rd edn). John Wiley & Sons, Ltd.

[7] Abramson, D., Sosic, R., Giddy, J. and Hall, B. (1995)

Nimrod: A Tool for Performing Parameterised Simulations

using Distributed Workstations. Proc. 4th Int. Symp. High

Performance Distributed Computing (HPDC ’95), Washington,

DC, USA, pp. 112-121.

Germain, C., Nori, V., Fedak, G. and Cappello, F. (2000)

Xtremweb: Building an Experimental Platform for Global

Computing. GRID °00: Proc. Ist IEEE/ACM Int. Workshop on

Grid Computing, London, UK, pp. 91-101. Springer.

[9] Egede, U., Moscicki, J., Patrick, G, Soroko, A. and Tan ,
C. (2005) Ganga User Interface for Job Definition and
Management. Proc. 4th Int. Workshop on Frontier Science: New
Frontiers in Subnuclear Physics, Italy, September. Laboratori
Nazionali di Frascati.

2

—

3

—_—

[5

—

[6

—_

[8

—_—

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

22

S. ESTEVES et al.

(10]

[11]

(12]

(13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

van der Raadt, K., Yang, Y. and Casanova, H. (2005) Practical
Divisible Load Scheduling on Grid Platforms with APST-DV.
Proc. 19th IEEE Int. Parallel and Distributed Processing Symp.
(IPDPS’05), IPDPS 05, Washington, DC, USA, IPDPS °05, pp.
29b-29b. IEEE Computer Society.

Ewerth, R., Friese, T., Grube, M. and Freisleben, B. (2004)
Grid Services for Distributed Video Cut Detection. ISMSE ’04:
Proc. IEEE 6th Int. Symp. Multimedia Software Engineering,
Washington, DC, USA, pp. 164-168. IEEE Computer Society.
Du, W, lJia, J., Mangal, M. and Murugesan, M. (2004)
Uncheatable Grid Computing. Proc. 24th Int. Conf. Distributed
Computing Systems (ICDCS’04), ICDCS '04, Washington, DC,
USA, pp. 4-11. IEEE Computer Society.

Lo, V., Zappala, D., Zhou, D., Liu, Y. and Zhao, S. (2004) Cluster
Computing on the Fly: P2p Scheduling of Idle Cycles in the
Internet. Proc. 3rd Int. Conf. Peer-to-Peer Systems, IPTPS 04,
Berlin, Heidelberg, pp. 227-236. Springer.

Dellarocas, C. (2001) Analyzing the Economic Efficiency of
eBay-like Online Reputation Reporting Mechanisms. Proc. 3rd
ACM Conf. Electronic Commerce, EC 01, New York, NY, USA,
pp- 171-179. ACM.

Kamvar, S.D., Schlosser, M.T. and Garcia-Molina, H. (2003)
The Eigentrust Algorithm for Reputation Management in p2p
Networks. Proc. 12th Int. Conf. World Wide Web, WWW 03,
New York, NY, USA, pp. 640-651. ACM.

Guha, R., Kumar, R., Raghavan, P. and Tomkins, A. (2004)
Propagation of Trust and Distrust. Proc. 13th Int. Conf. World
Wide Web, WWW *04, New York, NY, USA, pp. 403-412. ACM.
Jesi, GP. (2007) Secure gossiping techniques and components.
PhD Thesis, Technical Report UBLCS-2007-08. University of
Bologna (Italy), Department of Computer Science.
Vishnumurthy, V., Chandrakumar, S., Ch, S. and Sirer, E.G
(2003) Karma: A Secure Economic Framework for Peer-to-
Peer Resource Sharing. Proceedings of the 1st Workshop on
Economics of Peer-to-Peer Systems, Berkeley, CA, USA.

Rolli, D., Conrad, M., Neumann, D. and Sorge, C. (2005)
An Asynchronous and Secure Ascending Peer-to-Peer Auction.
Proc. 2005 ACM SIGCOMM Workshop on Economics of
Peer-to-Peer Systems, P2PECON ’05, New York, NY, USA,
pp. 105-110. ACM.

lamnitchi, A. and Foster, 1. (2004) A Peer-to-Peer Approach
to Resource Location in Grid Environments. Grid Resource
Management: State of the Art and Future Trends, Norwell, MA,
USA, pp. 413-429. Kluwer Academic Publishers.

Zhou, D. and Lo, V. (2004) Cluster Computing on the Fly:
Resource Discovery in a Cycle Sharing Peer-to-Peer System.

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

CCGRID °04: Proc. 2004 IEEE Int. Symp. Cluster Computing
and the Grid, Washington, DC, USA, pp. 66-73. IEEE
Computer Society.

Cheema, A.S., Muhammad, M. and Gupta, I. (2005) Peer-
to-Peer Discovery of Computational Resources for Grid
Applications. GRID ’05: Proc. 6th IEEE/ACM Int. Workshop
on Grid Computing, Washington, DC, USA, pp. 179-185. IEEE
Computer Society.

Lai, K., Rasmusson, L., Adar, E., Sorkin, S., Zhang, L.
and Huberman, B.A. (2005) Tycoon: an implementation
of a distributed, market-based resource allocation system.
Multiagent Grid Syst., 1, 169-182.

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph,
A. D., Katz, R. H., Shenker, S. and Stoica, I. (2011) Mesos:
A Platform for Fine-Grained Resource Sharing in the Data
Center. In Andersen, D.G. and Ratnasamy, S. (eds), Proc. 8th
USENIX Symp. Networked Systems Design and Implementation,
NSDI 2011, Boston, MA, USA, March 30-April 1. USENIX
Association.

Vavilapalli, V.K. er al. (2013) Apache Hadoop YARN: Yet
Another Resource Negotiator. In Lohman, GM. (ed.), ACM
Symp. Cloud Computing, SOCC ’13, Santa Clara, CA, USA,
October 1-3, p. 5. ACM.

Tembey, P., Gavrilovska, A. and Schwan, K. (2014) Merlin:
Application- and Platform-Aware Resource Allocation in
Consolidated Server Systems. Proc. ACM Symp. Cloud
Computing, SOCC ’14, New York, NY, USA, pp. 14:1-14:14.
ACM.

Foster, 1. and Kesselman, C. (1997) Globus: a metacomputing
infrastructure toolkit. Int. J. Supercomput. Appl., 11, 115-128.
Litzkow, M., Livny, M. and Mutka, M. (1988) Condor—A
Hunter of Idle Workstations. Proc. 8th Int. Conf. Distributed
Computing Systems, San Jose, CA, USA, June, pp. 104-111.
Anderson, D.P. (2004) Boinc: A System for Public-Resource
Computing and Storage. GRID '04: Proc. 5th IEEE/ACM Int.
Workshop on Grid Computing, Washington, DC, USA, pp. 4—
10. IEEE Computer Society.

de Oliveira e Silva, J.N., Veiga, L. and Ferreira, P. (2008)
Nuboinc: Boinc Extensions for Community Cycle Sharing. 2nd
IEEE Int. Conf. Self-Adaptive and Self-Organizing Systems (3rd
IEEE SELFMAN Workshop), Venice, Italy, October. IEEE.
Andrade, N., Cirne, W., Brasileiro, F. and Roisenberg, P.
(2003) Ourgrid: An Approach to Easily Assemble Grids with
Equitable Resource Sharing. Proc. 9th Workshop on Job
Scheduling Strategies for Parallel Processing, Seattle, WA,
USA, June.

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

CYCLE-SHARING COMPUTING CLOUD

23

APPENDIX
| GingerTask #1 | GingerClient | GingerTask #N |
GridletManager
In_PfEI?S ?:tjreggsex Out_files Worker Hand'er #1 Worker Handler #1
' GridletManager Sender || Receiver Sender || Receiver
| GingerHandler #1 | GingerHandler #N | | ; | J . L]]
I [} J 1 el ik
Y 1 Program in_files Gridlet_i thsk_id
[Partition] [Aggregaﬁon] Argumentq out_regex out files
) } Warker Thread #1 o Worker Thread|#N
Wokker Ranbier #1 Workel Handlet #1 [Recclaiver][Serlder) [Recclaiver][Serlder)
. i y 1 A 1
[Sender][Recewer] [Sender][Recewer]
) e
|Receiver || Sender || [Receiver |(Sender |
Worker Thread #1 Worker Thread #N [-] [Exec #1]
GingerWorker #N | GingerWorker #N

FIGURE Al. C3P gridlet manager.

<all>

<!— delete unnecessary frames and indexes —>

<variable name="rem_size" select="sum($start_frame/preceding—sibling::frame/ @size)
<delete context="$start_frame" select="preceding—sibling::frame"/>

<delete context="$end_frame"

select="following—sibling::frame" />

<delete context="$start_index" select="preceding—sibling::index"/>

<delete context="$end_index"

select="following—sibling::index"/>

<!— update indexes —>
<update select="/idx1/index/chunk—offset" value="@value_—_ $rem_size"/>

<!— update list sizes —>

<update select="/size" value="sum(/*/ @size) — _8"/>

<update select="/movi/size" value="sum(/movi/*x/ @size)_—_8"/>
<update select="/idx1/size" value="sum(/idx1/%/ @size)_—_8"/>

<!— update frame counts —>

<variable name="vfcount" select="count (//frame[substring (chunk—id ,3,1)=?d?])"/>
<variable name="afcount" select="count (//frame[substring (chunk—id ,3,1)=?w?])"/>
<update select="//total —frames" value="$vfcount"/>

<update select="//strh[fccType=?vids?]/length" value="$vfcount"/>

<update select="//strh[fccType=?auds ?]/length" value="<brace>afcount"/>

</all>

Listing 1. XML descriptor for AVI file partitioning.

">

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘S Yyore) uo 18nb Aq /Bio'sfeulnolployxo’ julwooy/:dny wouy psapeojumoq

http://comjnl.oxfordjournals.org/

24

S. ESTEVES et al.

@—‘ {grammar} I@'

— O stan jo—(<> grammer Jo—] Lo |©

<> stnﬂ)®—| pattern rl@

—EEe—E@o(Jo

T=)o—(wome)o

(0.2) <> inclide)@ @ href)
oo
—{ < > interleave @—‘ﬁé_’@
(G oo {mmp
—(() nptinnm)@-—' paﬂemé@
—{ < > zeroOrlore tH paﬂem&@
—((> uneOrr.mre)O—{ paltemé@
L (Gomeno

@ minOccurs
@ maxOccurs
@ occurs |

—{ < > element | @ name)
L-,-

(@ am)oy (8 mm)

1@ type)

o g)e—®

O @ name)
(o (e)oe—<Wo—<Do—_um)

FIGURE A2. Grammar for format and application descriptors.

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS

THE

COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

CYCLE-SHARING COMPUTING CLOUD 25

G)—E {orammar} I@—' O» stant |@—(<} lransrnmthnsj@ @ format)
@—@@

(.)o—(<> sew Jo—] Tax Jor—{(<> s)o@ mn
@ mx
(0.2) veravie]o

—eDe—@e(§)

'—((> :emn)@—[E-a I <3 emer)@ @ by

(o=)

{0 sperstions Jo—(<» operatons Jo—0.%)@ o (32 o Jo—{(1.=)o— wenien O
—@e
e
(E)o—{msmdo
—@
(0.1)0

@
@T (O w)or—a)
@
(0.1)0

D le— (S e — (@ o)
Swr)

(O et Jo—(2 men)oy—(@ =)
o)

(e.1)0—(@)

<3 element |G @ name
& mm)
T g

8 soka)
@ soet)
@ tye)

FIGURE A3. Grammar for partition and aggregation transformations.

SEcTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2015

GTOZ ‘€ Yyore) uo 18nb Aq /Blo'sfeulnolployxo’ julwooy/:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

	1 Introduction
	2 C3P Model and Architecture
	2.1 C3P framework
	2.2 Prototypical setting: a P2P Grid
	2.3 Application adaptation and gridlet management
	2.4 Gridlet-result verification
	2.5 Currency and reputation
	2.6 Resource management and discovery
	2.7 Gridlet-result storage

	3 Implementation
	3.1 Used technology and integration
	3.2 Application adaptation engine
	3.3 EE and supported applications
	3.4 Resource management and discovery
	3.5 Application programming interfaces

	4 Evaluation
	4.1 Transparent adaptation of applications
	4.2 Gridlet-result verification
	4.3 Currency and reputation
	4.4 Resource discovery
	4.5 Overall performance in real environment

	5 Related work
	5.1 Constituent topics and systems
	5.2 Cycle-sharing systems

	6 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG2000
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 20
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG2000
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 20
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages true
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 175
 /MonoImageDepth 4
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

