
Software Architecture Strategies for

Cyber-Foraging Systems

Grace A. Lewis

2016

SIKS Dissertation Series No. 2016-22
The research reported in this thesis has been carried out under the auspices
of SIKS, the Dutch Research School for Information and Knowledge Systems.

This research was made possible, in part, by the kind cooperation of the Soft-
ware Engineering Institute, a federally funded research and development cen-
ter sponsored by the Department of Defense and operated by Carnegie Mellon
University.

Promotiecommissie:
prof.dr. S. Dustdar (Vienna University of Technology)
prof.dr. I. Crnkovic (Chalmers University of Technology)
prof.dr. P. Avgeriou (University of Groningen)
prof.dr.ir. H. E. Bal (VU University Amsterdam)
dr. P. Grosso (University of Amsterdam)

ISBN 978-94-6295-483-0

Copyright © 2016, Grace Alexandra Lewis

All rights reserved unless otherwise stated

Cover design by Klaus Bellon

Published by Uitgeverij BOXpress || proefschriftmaken.nl

Typeset in LATEX by the author

VRIJE UNIVERSITEIT

Software Architecture Strategies for
Cyber-Foraging Systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. V. Subramaniam,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Exacte Wetenschappen

op dinsdag 7 juni 2016 om 13.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door

Grace Alexandra Lewis

geboren te Elizabeth, New Jersey, Verenigde Staten

promotor: prof.dr. P. Lago

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Mobile Cloud Computing and Cyber-Foraging 2
1.3 Software Architecture and Cyber-Foraging 3
1.4 Research Questions . 4
1.5 Thesis at a Glance . 5
1.6 Research Methods . 5
1.7 Outline of Thesis and Publications 7

2 A Systematic Literature Review of Architectural Design De-
cisions for Cyber-Foraging Systems 11
2.1 Research Protocol . 11

2.1.1 Research Question . 11
2.1.2 Search Strategy . 12
2.1.3 Inclusion and Exclusion Criteria 12
2.1.4 Validation . 12

2.2 Identification of Primary Studies 14
2.2.1 Round 1 . 14
2.2.2 Round 2 . 15
2.2.3 Final Round . 15

2.3 Categorization of Primary Studies 23
2.3.1 Studies Per Type . 23
2.3.2 Studies Per Year . 23

2.4 Threats to Validity . 25
2.5 Analysis of Primary Studies . 25

2.5.1 Categorization of Architecture Decisions 25
2.5.1.1 Where to Offload 26
2.5.1.2 When to Offload 28
2.5.1.3 What to Offload 29

2.5.2 Analysis Results . 32
2.5.2.1 Where to Offload 34
2.5.2.2 When to Offload 38
2.5.2.3 What to Offload 40

2.6 Main Observations and Findings from Primary Studies 51
2.7 Related Work . 53
2.8 Summary and Conclusions . 54

v

3 Architectural Tactics for Cyber-Foraging 57
3.1 Introduction . 57
3.2 Functional Architectural Tactics for Cyber-

Foraging . 58
3.2.1 Computation Offload . 60
3.2.2 Data Staging . 63

3.2.2.1 Pre-Fetching 64
3.2.2.2 In-Bound Pre-Processing 67
3.2.2.3 Out-Bound Pre-Processing 69

3.2.3 Surrogate Provisioning 72
3.2.3.1 Pre-Provisioned Surrogate 72
3.2.3.2 Surrogate Provisioning from the Mobile Device 75
3.2.3.3 Surrogate Provisioning from the Cloud 77

3.2.4 Surrogate Discovery . 80
3.2.4.1 Local Surrogate Directory 81
3.2.4.2 Cloud Surrogate Directory 83
3.2.4.3 Surrogate Broadcast 88

3.3 Non-Functional Architectural Tactics for Cyber-Foraging 92
3.3.1 Resource Optimization 92

3.3.1.1 Runtime Partitioning 92
3.3.1.2 Runtime Profiling 94
3.3.1.3 Resource-Adapted Computation 98

3.3.2 Fault Tolerance . 101
3.3.2.1 Local Fallback 102
3.3.2.2 Opportunistic Mobile-Surrogate Data Synchro-

nization . 104
3.3.2.3 Cached Results 107
3.3.2.4 Alternate Communications 110
3.3.2.5 Eager Migration 114

3.3.3 Scalability/Elasticity . 118
3.3.3.1 Just-in-Time Containers 118
3.3.3.2 Right-Sized Containers 120
3.3.3.3 Surrogate Load Balancing 122

3.3.4 Security . 125
3.3.4.1 Trusted Surrogates 127

3.4 Summary and Conclusions . 129

vi

4 Case Study 1: Tactical Cloudlets — Cyber-Foraging for Com-
putation Offload 131
4.1 Introduction . 131
4.2 Case Study Design . 132

4.2.1 Research Questions . 132
4.2.2 Data Collection Procedure 132
4.2.3 Analysis Procedure . 133

4.3 Results . 133
4.3.1 System Context . 133
4.3.2 System Requirements 134

4.3.2.1 Functional Requirements 134
4.3.2.2 Non-Functional Requirements 135

4.3.3 System Architecture and Design 135
4.3.4 Mapping of Architectural Design Decisions to Architec-

tural Tactics . 137
4.3.4.1 Computation Offload 138
4.3.4.2 Pre-Provisioned Surrogate 140
4.3.4.3 Surrogate Broadcast 142
4.3.4.4 Just-in-Time Containers 143

4.3.5 Analysis . 145
4.3.5.1 Mapping between Tactics and Requirements . 145
4.3.5.2 Discussion of Tactics for System Enhancements 149
4.3.5.3 Findings . 151

4.3.6 Threats to Validity . 153
4.4 Conclusions . 153
4.5 Acknowledgments . 154

5 Case Study 2: GigaSight — Cyber-Foraging for Data Staging155
5.1 Introduction . 155
5.2 Case Study Design . 156

5.2.1 Research Questions . 156
5.2.2 Data Collection Procedure 156
5.2.3 Analysis Procedure . 156

5.3 Results . 156
5.3.1 System Context . 156
5.3.2 System Requirements 157

5.3.2.1 Functional Requirements 157
5.3.2.2 Non-Functional Requirements 157

5.3.3 System Architecture and Design 158

vii

5.3.4 Mapping of Architectural Design Decisions to Architec-
tural Tactics . 160
5.3.4.1 Out-Bound Pre-Processing 160
5.3.4.2 Pre-Provisioned Surrogate 163
5.3.4.3 Local Surrogate Directory 165
5.3.4.4 Client-Side Data Caching 167

5.3.5 Analysis . 167
5.3.5.1 Mapping between Tactics and Requirements . 167
5.3.5.2 Discussion of Tactics for System Enhancements 172
5.3.5.3 Findings . 173

5.3.6 Threats to Validity . 175
5.4 Conclusions . 175
5.5 Acknowledgments . 176

6 Case Study 3: AgroTempus — Using Architectural Tactics for
Cyber-Foraging Systems Development 177
6.1 Introduction . 177
6.2 Case Study Design . 178

6.2.1 Research Questions . 178
6.2.2 Data Collection Procedure 178
6.2.3 Analysis Procedure . 179

6.3 Results . 180
6.3.1 System Context . 180
6.3.2 System Requirements 181

6.3.2.1 Functional Requirements 181
6.3.2.2 Non-Functional Requirements 182
6.3.2.3 Constraints and Assumptions 185

6.3.3 Mapping of System Requirements to Architectural Tactics185
6.3.3.1 Computation Offload 186
6.3.3.2 Out-Bound Pre-Processing 187
6.3.3.3 Pre-Fetching 187
6.3.3.4 Pre-Provisioned Surrogate 187
6.3.3.5 Surrogate Broadcast 188
6.3.3.6 Cached Results 188
6.3.3.7 Client-Side Data Caching 188
6.3.3.8 Just-in-Time Containers 189

6.3.4 System Architecture and Design 189
6.3.5 Mapping of Architectural Components to System Re-

quirements . 191

viii

6.3.6 Mapping of Architectural Components to Identified Ar-
chitectural Tactics . 194
6.3.6.1 Computation Offload 194
6.3.6.2 Out-Bound Pre-Processing 194
6.3.6.3 Pre-Fetching 196
6.3.6.4 Pre-Provisioned Surrogate 199
6.3.6.5 Surrogate Broadcast 199
6.3.6.6 Cached Results 201
6.3.6.7 Client-Side Data Caching 203
6.3.6.8 Just-in-Time Containers 205

6.3.7 System Implementation 207
6.3.8 Analysis . 209

6.3.8.1 System Evaluation 209
6.3.8.2 Developer Observation and Feedback 213
6.3.8.3 Findings . 214

6.3.9 Threats to Validity . 216
6.4 Conclusions . 216
6.5 Acknowledgments . 217

7 Characterization of Cyber-Foraging Usage Contexts 219
7.1 Introduction . 219
7.2 Analysis . 220
7.3 Cyber-Foraging Usage Contexts 223
7.4 Computation Offload Usage Contexts 225

7.4.1 Usage Context 1: Computation-Intensive Mobile Appli-
cations (Short Operations) 225

7.4.2 Dynamic Environments 227
7.4.2.1 Usage Context 2: Mobile Applications in Low

Coverage Environments. 228
7.4.2.2 Usage Context 3: Computation-Intensive Mo-

bile applications (Long Operations). 229
7.4.2.3 Usage Context 4: Computation-Intensive Mo-

bile Applications in Hostile Environments. . . 231
7.4.2.4 Usage Context 5: Public Surrogates. 233

7.5 Data Staging Usage Contexts 235
7.5.1 Usage Context 6: Sensing Applications 235
7.5.2 Usage Context 7: Data-Intensive Mobile Applications . 237

7.6 Summary and Conclusions . 239

ix

8 Decision Model for Cyber-Foraging Systems 243
8.1 Introduction . 243
8.2 Mapping the Problem Space to the Solution

Space . 244
8.3 How to Use the Decision Models 246
8.4 Decision Models for Cyber-Foraging Systems 248

8.4.1 Data Staging . 248
8.4.2 Surrogate Provisioning 251
8.4.3 Surrogate Discovery . 253
8.4.4 Resource Optimization 256
8.4.5 Fault Tolerance . 258
8.4.6 Scalability and Elasticity 262
8.4.7 Security . 264

8.4.7.1 Credential Exchange 264
8.4.7.2 Credential Validation 266

8.5 Validation . 266
8.6 Related Work . 268
8.7 Conclusions . 269

9 Conclusions 271
9.1 Contributions . 271

9.1.1 RQ1: What Software Architecture Design Decisions for
Cyber-Foraging Systems can be Identified in the Litera-
ture? . 272

9.1.2 RQ2: What Architectural Tactics can be Derived from
the Identified Architectural Design Decisions? 273

9.1.3 RQ3: What are the Usage Domains and Contexts (De-
fined in Terms of Functional and Non-Functional Re-
quirements) that Benefit from Cyber-Foraging? 274

9.1.4 RQ4: How to Support Architectural Design Decision
Making in Cyber-Foraging Systems? 274

9.2 Future Research . 275
9.2.1 Extension of the Tactics Catalog 275
9.2.2 Quantitative Analysis of the Impact of Tactics Selection 276
9.2.3 Tools for the Development and Analysis of Cyber-Foraging

Systems . 277
9.2.4 Architecture Patterns for Cyber-Foraging Systems . . . 278

x

Acknowledgements

There are so many people that I would like to thank for accompanying me on
this journey.

I have to start by thanking my loving family. Without their continued
support and understanding this journey would have been impossible. To my
husband Mike for being mom and dad when I couldn’t be there. I love you
now and always. To Alex and Andrea for being the light of my life and the
engine that keeps me going. I hope that one day you see this journey as an
example that it is never too late to follow your dreams. I love you so much!

To Patricia Lago, my promotor and my guide. I could not have asked for
a better advisor. I learned so much from you, not only in terms of research,
but as someone who wants to make the world a better place. I am proud to
call you my friend. Thank you!

To my Mom for always telling me that I could do anything that I wanted.
To my sister Ingrid for being the best sister and friend that anyone could ask
for. Gracias mis gordas. Las adoro!

To my bosses Ed and Mark for their invaluable support in making things
easy so I could go on this journey. Thank you.

To the AMS team and friends for putting up with me these past three
years: Aubrey, Ben, Bill, Dan, Gene, James, Jeff, Joe, Keegan, Kevin, Linda,
Luis, Marc, Sebastián, and Soumya. Thanks. You are awesome!

To my friends Tina and Ipek. Having such sweet and caring friends make
life a lot easier. Now we can relax and celebrate.

To my Amsterdam family for providing a home away from home: Damian,
Eltjo, Ermeson, Fahimeh, Giuseppe, Han, Maryam, Mojca, Nelly, and Reuel.
Thanks guys!

To Satya and the Elijah group at Carnegie Mellon University for inspiring
my thesis topic and providing feedback and ideas.

To my thesis committee for their encouragement, insightful comments, and
feedback.

I am sure there are many more people that I need to thank because journeys
never happen alone. All I have left to say is: Thanks for joining me on my
journey!

xi

1
Introduction

1.1 Motivation

Smartphones, tablets, and now phablets, have become for many the preferred
way of interacting with the Internet, social media and the enterprise:

• Mobile devices are increasingly becoming the first go-to device for com-
munications and content consumption [24][25].

• The number of mobile devices will surpass desktops for the first time in
2015 [11].

• The time people spend using their smartphone is now exceeding the time
spent looking at TV screens [45][87].

• It is not uncommon for there to be multiple mobile devices per user and
household [46].

In addition, mobile traffic will keep increasing due to several factors:

• Wearable technology: Wearable technology is showing a consistent in-
crease in popularity [85]. According to Cisco Systems, the wearables
market will grow five-fold in the next five years from 109 million devices
in 2014 to 578 million devices by 2019 [23]. It is expected that this
growth will result in an 18-fold increase in mobile data traffic.

• Demanding content types: According to mobiForge, by the end of 2015,
4G LTE data use will rise by 59% and mobile video will account for 60%
of data traffic [86].

1

• Internet of Things (IoT): According to Gartner, 4.9 billion connected
things will be in use in 2015, up 30 percent from 2014, and will reach 25
billion by 2020 [44]. Cisco Systems forecasts that 99 percent of physical
objects will eventually become part of a network [23].

• Smartphone penetration: Even though worldwide the number of feature
phones is still greater than the number of smartphones, the rate of smat-
phone subscription penetration has been growing steadily over the past
five years [66]. This rate is predicted to increase very quickly given that
it is expected that by 2020, 75% of smartphone buyers will pay less than
$100US dollars for a device [45].

Because of these mobile device trends, organizations are pushing out more
and more content and functionality to mobile users. Therefore, it is not unrea-
sonable for users to expect the performance and capabilities of mobile devices
to be equal to laptops and desktops. However:

• mobile devices will always lag behind their PC counterparts due to size
and battery limitations;

• limited battery life remains a problem especially for computation- and
communication-intensive applications;

• large and variable end-to-end latency between mobile device and cloud,
and the possibility of disruptions, have a negative effect on user experi-
ence; and

• it will only get worse with the amount of network traffic generated by
IoT and growing market share of low-cost smartphones.

Cyber-foraging is a promising technology for providing increased comput-
ing power and network efficiency to mobile devices, while conserving battery
life.

1.2 Mobile Cloud Computing and Cyber-Foraging

Mobile Cloud Computing (MCC) refers to the combination of mobile devices
and cloud computing in which cloud resources perform computation-intensive
tasks and store massive amounts of data [122]. Cyber-foraging is an area of
work within MCC that leverages external resources (i.e., cloud servers or local
servers called surrogates) to augment the computation and storage capabili-
ties of resource-limited mobile devices while extending their battery life [107].

2

There are two main forms of cyber-foraging. One is computation offload, which
is the offload of expensive computation in order to extend battery life and in-
crease computational capability. The second is data staging to improve data
transfers between mobile devices and the cloud by temporarily staging data in
transit on surrogates.

1.3 Software Architecture and Cyber-Foraging

The software architecture of a system is the set of structures needed to reason
about the system, which comprise software elements, relations among them,
and properties of both [13]. Software architectures are created because a sys-
tem’s qualities, expressed as functional and non-functional requirements, can
be analyzed and predicted by studying its architecture.

One of the main challenges of building cyber-foraging systems is the dy-
namic nature of the environments that they operate in. For example, the
connection to an external resource may not be available when needed or may
become unavailable during a computation offload or data staging operation.
As another example, multiple external resources may be available for a cyber-
foraging system but not all have the required capabilities. Adding capabilities
to deal with the dynamicity of the environment has to be balanced against
resource consumption on the mobile device so as to not defeat the benefits of
cyber-foraging. Being able to reason about the behavior of a cyber-foraging
system in light of this uncertainty is key to meeting all its desired qualities,
which is why software architectures are especially important for cyber-foraging
systems.

Given the potential complexity of cyber-foraging systems, it would be of
great value for software architects to have a set of reusable software archi-
tectures and design decisions that can guide the development of these types
of systems, the rationale behind these decisions, and the external context/en-
vironment in which they were made; this is called architectural knowledge
[68][73]. One way to capture architectural knowledge is in the form of software
architecture strategies.

We define a software architecture strategy as the set of architectural de-
sign decisions that are made in a particular external context/environment to
achieve particular system qualities. Software architecture strategies are codi-
fied as architectural tactics that can be reused in the development of software
systems. We define architectural tactics as design decisions that influence the
achievement of a system quality (i.e., quality attribute) [13].

Software architecture strategies for cyber-foraging systems are therefore

3

the set of architectural design decisions, codified as reusable tactics, that can
be used in the development of cyber-foraging systems to achieve particular
system qualities such as resource optimization, fault tolerance, scalability and
security, while conserving resources on the mobile device.

1.4 Research Questions

In an effort to define software architecture strategies for cyber-foraging sys-
tems, we formulate our main research question (RQ) as follows:

RQ: What software architecture strategies can be used to build
cyber-foraging systems?

To define software architecture strategies for building cyber-foraging sys-
tems, we first need to understand the architecture and design decisions that
have been made by others in the development of industrial and academic cyber-
foraging systems. Our first research sub-question is thus:

RQ1: What software architecture design decisions for
cyber-foraging systems can be identified in the literature?

Once architectural design decisions are identified, we need to (1) select
those design decisions that are common across multiple cyber-foraging systems
to achieve functional and non-functional requirements, and (2) codify them as
reusable architectural tactics for cyber-foraging. This leads us to our second
research sub-question:

RQ2: What architectural tactics can be derived from the identified
architectural design decisions?

Because architectural design decisions are always made in a particular ex-
ternal context or environment, we need to understand the functional and non-
functional requirements that drive the development of cyber-foraging systems
in each of these usage contexts. Therefore, our third research sub-question is:

RQ3: What are the usage domains and contexts (defined in terms
of functional and non-functional requirements) that benefit from

cyber-foraging?

Finally, it is important for a software architect to know (1) what tactics can
be used to satisfy different functional and non-functional requirements, and (2)
the effect that combinations of tactics have on functional and non-functional
requirements. Our fourth and final sub-question is thus:

4

RQ4: How to support architectural design decision making in
cyber-foraging systems?

1.5 Thesis at a Glance

Our research context is presented in Figure 1.1, showing how the RQs are re-
lated to the goals of this thesis. This research started by conducting a system-
atic literature review (SLR) of architectural design decisions in cyber-foraging
systems proposed in the literature, expressed as decisions related to where to
offload, when to offload, and what to offload (RQ1). The results of the SLR
showed common architectural design decisions that led to the identification of
functional and non-functional architectural tactics designed to satisfy particu-
lar functional and non-functional requirements. We developed case studies for
three different cyber-foraging systems to validate the application of the tactics
to promote particular functional and non-functional requirements (RQ2). We
then did a literature study to characterize the usage domains and contexts
for the cyber-foraging systems in the primary studies identified in the SLR,
in order to understand the functional and non-functional requirements that
are relevant to these contexts (RQ3). Finally, we created a mapping between
the problem space (functional and non-functional requirements) and the solu-
tion space (functional and non-functional architectural tactics), and identified
dependencies between elements of the problem and solution space, as well as
dependencies between tactics. The result of this mapping was a decision model
to help software architects in the development of cyber-foraging systems that
meet their intended functional and non-functional requirements while under-
standing the effects of their decisions (RQ4).

1.6 Research Methods

In this thesis we used a number of qualitative research methods that are com-
mon in software engineering research.

• Systematic literature review: This research method is an evidence-based
approach to thoroughly search studies relevant to a set of pre-defined
research questions and critically select, assess, and synthesize findings to
answer the research questions [31][63]. We used this method to identify
architectural design decisions in cyber-foraging systems present in the
literature (Chapter 2).

5

 Identification of
Architectural

Design Decisions
for Cyber-
Foraging

SLR

Architectural
Tactics for

Cyber-
Foraging

Case
Study 1

Case
Study 2

Validated
Architectural
Tactics for

Cyber-
Foraging

Decision
Model for

Cyber-
Foraging
Systems

Mapping of
Functional and
Non-Functional
Requirements
to Architectural

Tactics

RQ1

RQ2

RQ3

RQ4

Mapping of Cyber-
Foraging Usage

Contexts to
Functional and Non-

Functional
Requirements

Case
Study 3

Figure 1.1: Research Context

• Literature study: Also called literature review, a literature study is dif-
ferent from a systematic literature review in that it is less formal and
structured, but provides more freedom in selecting relevant studies and
analyzing their content. Although the results might not be as complete
and valid as those of a systematic literature review, thanks to its effec-
tiveness and efficiency, this research method is often used to gain spe-
cific knowledge or understand a topic. We used this method to identify
usage contexts and domains for cyber-foraging systems and map them
to relevant functional and non-functional requirements in each context
(Chapter 7).

• Case study: A case study is an empirical method aimed at investigating
contemporary phenomena in their context [106]. They are descriptive
and detailed, with a narrow focus, combining subjective and objective

6

data. We conducted three case studies to investigate the use of architec-
tural tactics for cyber-foraging in real systems. In Chapter 4 we used a
case study to investigate an existing cyber-foraging system for computa-
tion offload, and in Chapter 5 to investigate an existing cyber-foraging
system for data staging. In addition, in Chapter 6 we used a case study to
investigate the use of architectural tactics for the development of a new
cyber-foraging system for both computation offload and data staging.

1.7 Outline of Thesis and Publications

The research presented in this thesis has either been published previously or is
currently under submission. The following chapters are based on the following
publications.

• Chapter 2: This chapter addresses research question RQ1 and presents
the results of an SLR to investigate architectural design decisions in
cyber-foraging systems. Parts of this chapter were previously published
as:

Grace A. Lewis, Patricia Lago, and Giuseppe Procaccianti. Architecture
Strategies for Cyber-Foraging: Preliminary Results from a Systematic
Literature Review. In proceedings of the 8th European Conference on
Software Architecture, volume 8627 of Lecture Notes in Computer Sci-
ence, pages 154-169. Springer International Publishing, 2014.

• Chapter 3: This chapter addresses research question RQ2 and presents
the set of architectural tactics that were derived from the SLR. Parts of
this chapter were previously published as:

Grace A. Lewis and Patricia Lago. Architectural Tactics for Cyber-
Foraging: Results of a Systematic Literature Review. Journal of Systems
and Software, 107:158-186, 2015.

Grace A. Lewis and Patricia Lago. A Catalog of Architectural Tactics
for Cyber-Foraging. In Proceedings of the 11th International ACM SIG-
SOFT Conference on Quality of Software Architectures, pages 53-62.
ACM, 2015.

• Chapter 4: This chapter addresses research question RQ2 and is the
first of three case studies to validate the architectural tactics presented

7

in Chapter 3. Parts of this chapter were previously published as:

Grace A. Lewis, Sebastián Echeverŕıa, Soumya Simanta, Ben Bradshaw,
and James Root. Cloudlet-Based Cyber-Foraging for Mobile Systems in
Resource-Constrained Edge Environments. In Companion Proceedings
of the 36th International Conference on Software Engineering, pages 412-
415. ACM, 2014.

Grace A. Lewis, Sebastián Echeverŕıa, Soumya Simanta, Ben Bradshaw,
and James Root. Tactical Cloudlets: Moving Cloud Computing to the
Edge. In Military Communications Conference (MILCOM), 2014 IEEE,
pages 1440-1446, Oct 2014.

Grace A. Lewis, Sebastián Echeverŕıa, Soumya Simanta, James Root,
and Ben Bradshaw. Cloudlet-Based Cyber-Foraging in Resource-Limited
Environments. Emerging Research in Cloud Distributed Computing Sys-
tems, pages 92-121, 2015.

Parts of this chapter were submitted as:

Grace A. Lewis, Patricia Lago, Reuel Brion, Sebastián Echeverŕıa, and
Pieter Simoens. A Tale of Three Systems: Case Studies on Application of
Architectural Tactics for Cyber-Foraging Systems. Journal of Software
and Systems.

• Chapter 5: This chapter addresses research question RQ2 and is the sec-
ond of three case studies to validate the architectural tactics presented
in Chapter 3. Parts of this chapter were submitted as:

Grace A. Lewis, Patricia Lago, Reuel Brion, Sebastián Echeverŕıa, and
Pieter Simoens. A Tale of Three Systems: Case Studies on Application of
Architectural Tactics for Cyber-Foraging Systems. Journal of Software
and Systems.

• Chapter 6: This chapter addresses research question RQ2 and is the
third of three case studies to validate the architectural tactics presented
in Chapter 3. Parts of this chapter were submitted as:

8

Grace A. Lewis, Patricia Lago, Reuel Brion, Sebastián Echeverŕıa, and
Pieter Simoens. A Tale of Three Systems: Case Studies on Application of
Architectural Tactics for Cyber-Foraging Systems. Journal of Software
and Systems.

• Chapter 7: This chapter addresses research question RQ3 and presents
a mapping of usage contexts and domains for cyber-foraging systems to
functional and non-functional requirements. Parts of this chapter have
been published as:

Grace A. Lewis and Patricia Lago. Characterization of Cyber-Foraging
Usage Contexts. In proceedings of the 9th European Conference on Soft-
ware Architecture, volume 9278 of Lecture Notes in Computer Science,
pages 195-211. Springer International Publishing, 2015.

• Chapter 8: This chapter addressses research question RQ4 and presents a
mapping of functional and non-functional requirements for cyber-foraging
systems to the architectural tactics presented in Chapter 3. The result
is a decision model for the development of cyber-foraging systems. Parts
of this chapter have been published as:

Grace A. Lewis, Patricia Lago and Paris Avgeriou. A Decision Model for
Cyber-Foraging Systems. In proceedings of the 13th Working IEEE/I-
FIP Conference on Software Architecture (WICSA 2016), IEEE, April
2016.

9

2
A Systematic Literature Review of
Architectural Design Decisions for

Cyber-Foraging Systems

This chapter presents the protocol and results of a Systematic Literature Review
(SLR) to discover architectural design decisions in cyber-foraging systems. It
includes an analysis of the identified primary studies using a categorization of
architecture decisions related to what, when and where to offload computation
and data from mobile devices. The results show that this is an area with many
opportunities for research that will enable cyber-foraging systems to become
widely adopted as a way to support the mobile applications of the present and
the future.

2.1 Research Protocol

To identify work related to architectures for cyber-foraging a SLR was con-
ducted following the guidelines proposed in [31] and [63]. The research ques-
tion, search strategy, inclusion and exclusion criteria, and validation method
are presented in the following subsections.

2.1.1 Research Question

The goal of the SLR is to identify work in cyber-foraging with a software
architecture perspective. To achieve this goal, the following research question
is defined:

11

What software architecture and design decisions for cyber-foraging from
mobile devices can be identified in the literature?

2.1.2 Search Strategy

Three main keywords can be built from the research question: cyber-foraging,
mobile devices, and software architecture. Each of these keywords has a set
of related synonyms and alternative spellings. Based on these keywords and
their related terms the following basic search string was defined:

(cyber foraging OR cyber-foraging OR code offload OR code offloading OR
computation offload OR computation offloading OR data offload OR data

staging) AND (mobile OR handheld OR smartphone) AND (software
architecture OR software design OR system architecture)

The main data source was Google Scholar.1 Snowballing was used to com-
plement the set of primary studies. The advantage of using Google Scholar
was that it included studies that are outside of software engineering, such as
computer engineering and computer science, which is where many of the stud-
ies on cyber-foraging originate. The downside is that it returns many results
which are irrelevant because it performs a full-text search and because there is
no control process that ensures that all results are valid (i.e., are academic or
industrial publications). To make sure that all relevant studies were identified,
the dates were left open even though the term cyber-foraging was coined in
2001.

Details of each study were recorded using JabRef.2 Separate JabRef databases
were created for each round of the primary study identification process.

2.1.3 Inclusion and Exclusion Criteria

The inclusion and exclusion criteria shown in Table 2.1 were defined and ap-
plied to the search results.

2.1.4 Validation

The protocol was validated by executing it on Google Scholar without snow-
balling. The goal was to determine if it was rigorous enough and to improve
it where necessary. The results of multiple iterations of the search string were

1http://scholar.google.com/
2http://jabref.sourceforge.net/

12

http://scholar.google.com/
http://jabref.sourceforge.net/

checked against a set of 17 known relevant studies in the field of cyber-foraging.
This set was validated by an expert in the field. The search string was adjusted
accordingly until it returned all 17 relevant studies either directly or as one
of the references (first-level snowballing). The inclusion and exclusion criteria
were reviewed during the process to ensure that the results were representative
of software architecture and design of cyber-foraging systems.

Table 2.1: Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria

A study that proposes software architec-
tures for cyber-foraging. Rationale: We are
interested in studies that present software
architecture and design of cyber-foraging
systems in which mobile components, sur-
rogate/server components, and offload el-
ements are clearly defined. Example: A
study that presents the software architec-
ture and design of a cyber-foraging system
for both the mobile device as well as the
surrogate/server and clearly defines what
computation or data is being offloaded.

A study that proposes a cyber-foraging sys-
tem that does not present software architec-
ture and design details. Rationale: If the
study does not present architecture and de-
sign details, it does not contain information
that can be abstracted into generic archi-
tectural tactics. Examples: A study that
presents a cyber-foraging solution that dis-
cusses only the benefits of the solution but
does not contain software architecture de-
tails will not be included. A study that
surveys cyber-foraging solutions that have
already been presented in other studies and
does not propose a new cyber-foraging so-
lution will not be included. A study that
only discusses an offload algorithm and not
a complete solution for cyber-foraging will
not be included.

A study that proposes a cyber-foraging sys-
tem for computation offload or data staging
in which the mobile device is augmenting its
computing power by using surrogates such
as cloud resources. Rationale: A cyber-
foraging system leverages surrogates to per-
form computation that would make sense
to execute locally but if executed on the
mobile device would drain resources or not
provide adequate performance, or to stage
data in transit to and from cloud resources
and mobile devices. Example: A study
that presents a cyber-foraging solution that
uses surrogates to offload expensive com-
putation or to store data temporarily until
centralized resources become available.

A study that proposes a system in which
mobile devices simply access cloud ser-
vices or in which computation is partitioned
across similar nodes. Rationale: A system
that simply uses cloud services as parts of
its functionality or that distributes compu-
tation among other mobile devices is not
a case of cyber-foraging because it is not
leveraging a more powerful surrogate to ex-
tend its computing power. Example: A
study that presents a mobile cloud solution
in which cloud services are accessed from
mobile devices simply to fulfill part of its
functionality or a study that represents dis-
tribution of computation across a mobile ad
hoc network (MANET).

Continued on next page

13

Table 2.1 – Continued from previous page

Inclusion Criteria Exclusion Criteria

A study that proposes solutions based on
open technologies that contain enough de-
tail to abstract the main software architec-
ture components. Rationale: Studies that
rely on open technologies are more likely to
present solution details. Example: A study
that presents software architecture views
for a cyber-foraging solution that relies on
open or readily-available technologies will
be included.

A study proposed by a commercial vendor
or that relies on proprietary hardware or
network protocols. Rationale: Studies pro-
duced by vendors are unlikely to contain
architecture information because it is part
of their intellectual property. In addition,
characteristics of solutions that rely on spe-
cific hardware or protocols will not be able
to be abstracted into general architecture
patterns and strategies. Example: A study
that presents a cyber-foraging solution that
only works if connected to a vendor’s net-
work or that requires special hardware, net-
working devices or protocols for communi-
cation will not be included.

A study that is in the form of a published
scientific paper or industrial publication.
Rationale: A scientific paper focuses on
scientific content and follows a process to
guarantee a good level of quality. Also, as
solutions may have been devised by indus-
trial organizations, broader industrial pub-
lications describing such solutions should
be included. Examples: A study in a ref-
ereed journal that is part of a conference
or a technical report that follows a stan-
dard publication template (i.e., abstract,
introduction, description of the problem,
proposed solutions, related work and refer-
ences), a PhD or Masters thesis, or a study
in an industrial publication that presents
details of a cyber-foraging system or archi-
tecture will be included.

A study that is not in the form of a pub-
lished scientific paper or that is in an in-
dustrial publication but only focuses on the
commercial benefits of the solution. Ratio-
nale: Lack of scientific content and rigorous
methods can lead to a low-quality outcome.
In addition, studies in industrial publica-
tions targeted at increasing sales and that
only highlight benefits of the solution do
not add scientific value to the outcome of
the review. Examples: Papers that have
not been published, scientific papers that
do not follow a standard publication tem-
plate, keynote summaries, tables of con-
tents, collections of abstracts, workshop
summaries, project proposals, slide sets,
and commercial product brochures will not
be included.

2.2 Identification of Primary Studies

2.2.1 Round 1

The search string was last entered in Google Scholar on September 17, 2013
and returned 430 results. The complete list of results is available as online
material at http://www.andrew.cmu.edu/user/gritter/InitialStudies-

CyberForaging.html. The studies were evaluated against the inclusion and
exclusion criteria based on the title, abstract, keywords and an initial scan of

14

http://www.andrew.cmu.edu/user/gritter/InitialStudies-CyberForaging.html
http://www.andrew.cmu.edu/user/gritter/InitialStudies-CyberForaging.html

the study. The results are shown in Table 2.2.

Table 2.2: Round 1 Results

Result Studies Description

Yes 91 Studies that met the inclusion and exclusion
criteria based on the title, abstract, keywords
and an initial scan of the study

No 297 Studies that did not meet the inclusion and
exclusion criteria based on the title, abstract,
keywords and an initial scan of the study

Maybe 23 Studies that did not fully meet the inclusion
criteria based on the title, abstract, keywords
and an initial scan of the study, but that war-
ranted a full read due to the coverage of soft-
ware architecture

Duplicate 18 Studies that were identical to other studies or
were a subset of a larger study by the same
author(s) (e.g., a paper that was cross-listed or
a paper that is explicitly a chapter of a PhD or
Masters thesis, in which case we included the
thesis because it is the superset)

Plagiarism 1 Study that was copied from a conference paper
that we co-authored in 2013.

TOTAL 430

TOTAL FOR ROUND 2 114 Studies with Result = Yes and Result =
Maybe

2.2.2 Round 2

The studies with Result = Yes and Result = Maybe from Round 1 were fully
read and evaluated against the inclusion and exclusion criteria. The list of
studies evaluated in Round 2 is available as online material at http://www.

andrew.cmu.edu/user/gritter/Round2Studies-CyberForaging.html. The
results of the evaluation are shown in Table 2.3.

2.2.3 Final Round

The references in each study with Result = Yes from Round 2 were evaluated
against the inclusion criteria based on title, abstract and keywords as an initial
round of snowballing. Those that passed based on this initial scan were fully
read and included if they fully met the inclusion criteria. The results are shown
in Table 2.4.

15

http://www.andrew.cmu.edu/user/gritter/Round2Studies-CyberForaging.html
http://www.andrew.cmu.edu/user/gritter/Round2Studies-CyberForaging.html

Table 2.3: Round 2 Results

Result Studies Description

Yes 50 Studies that met the inclusion and exclusion criteria based on
fully reading the study

No 62 Studies that did not meet the inclusion and exclusion criteria
after reading the study in full

Duplicate 12 Studies that were a subset of a larger study by the same au-
thor(s) (e.g., a paper that after a full read was determined to be
part of a PhD or Masters thesis or a shorter version of a study
that reports the same results from a software architecture per-
spective)

TOTAL 114

Table 2.4: Final Round Results

Result Studies Description

Direct 50 Studies with Result = Yes from Round 2

Snowballing 8 Studies that correspond to references in the Direct results
that met the inclusion and exclusion criteria based on fully
reading the study

TOTAL 58

The list of 58 primary studies is presented in Table 2.5. The Primary Study
column contains the reference for the study. The Type column is the type of
study which can be BC (Book Chapter), CP (Conference Paper), DD (Doctoral
Dissertation), JA (Journal Article), MT (Masters Thesis), or TR (Technical
Report). System Name refers to the name of the cyber-foraging system that
is described in the study. The Form is the form of cyber-foraging which can
be CO (Computation Offload) or (DS = Data Staging). The Domain or Use
Case refers to the targeted domain or use case for the system. Finally, the
Source column is the source of the study which is either GS (Google Scholar)
or S (Snowballing).

Table 2.5: Primary Studies

Primary Study Type System
Name

Form Domain or
Use Case

Source

Ahnn2013 [2] JA mHealthMon CO Healthcare GS

Angin2013 [5] JA Mobile
Agents

CO Java appli-
cations

GS

Continued on next page

16

Table 2.5 – Continued from previous page

Primary Study Type System
Name

Form Domain or
Use Case

Source

Armstrong2006 [6] CP Edge Proxy DS Web page
updates

GS

Aucinas2012 [7] CP Clone-to-
Clone (C2C)

CO Intelligent
transport
systems,
Mobile
multi-
player
online
games

GS

Bahrami2006 [8] CP Mobile
Informa-
tion Access
Archi-
tecture for
Occasionally-
Connected
Computing

DS Occasionally-
connected
operations

GS

Balan2007 [9] CP Chroma CO Mobile
interactive
resource-
intensive
applica-
tions

S

Chang2011 [16] JA Collaborative
Applications

CO Speech
recogni-
tion

GS

Chen2004 [18] JA Computation
and Com-
pilation
Offload

CO Image and
video pro-
cessing

GS

Cheng2013 [19] TR Cloud Media
Services

CO Hybrid
Broadcast
Broad-
band TV
(HBB-
TV)

GS

Chu2004 [20] JA Roam CO Seamless
applica-
tions

GS

Chun2009 [22] CP CloneCloud CO Mobile ap-
plications
in general

GS

Continued on next page

17

Table 2.5 – Continued from previous page

Primary Study Type System
Name

Form Domain or
Use Case

Source

Cuervo2012 [26] DD MAUI
(Mobile
Assistance
Using Infras-
tructure)

CO Operations
that con-
sume and
produce
small
amounts
of infor-
mation
compared
to their
compu-
tational
require-
ments

GS

Kahawai CO Graphics
applica-
tions that
require
high-end
GPU
rendering

Duga2011 [30] MT HPC-as-a-
Service

CO High-
Performance
Comput-
ing (HPC)

GS

Endt2011 [33] BC OpenCL-
Enabled
Kernels

CO Automotive GS

Esteves2011 [35] CP Real Options
Analysis

CO Mobile ap-
plications
in general

GS

Fjellheim2005 [39] JA 3DMA CO Context-
aware
applica-
tions

GS

Flinn2002 [41] CP Spectra CO Mobile
interactive
resource-
intensive
applica-
tions

S

Continued on next page

18

Table 2.5 – Continued from previous page

Primary Study Type System
Name

Form Domain or
Use Case

Source

Flinn2003 [42] CP Trusted and
Unmanaged
Data Staging
Surrogates

DS Distributed
filesystems

GS

Giurgiu2009 [47] CP AlfredO CO Typical
three-
tiered
appli-
cations
imple-
mented
as OSGi3

bundles
for each
tier

S

Goyal2011 [48] DD Collective
Surrogates

CO Mobile ap-
plications
in general

GS

Guan2008 [51] DD Grid-
enhanced
mobile de-
vices

CO Ambient
intelli-
gence

GS

Ha2011 [52] TR Cloudlets CO Computation-
intensive
applica-
tions in
hostile
environ-
ments

GS

Hung2011 [55] JA Virtual
Phone

CO Mobile ap-
plications
in general

GS

Imai2012 [56] MT Single-Server
Offloading

CO Moderately-
slow,
single-
purpose,
computation-
intensive
applica-
tions

GS

Continued on next page

3The Open Service Gateway Initiative, or OSGi, is a specification and Java framework
for developing and dynamically deploying modular software programs and libraries (http:
//www.osgi.org).

19

http://www.osgi.org
http://www.osgi.org

Table 2.5 – Continued from previous page

Primary Study Type System
Name

Form Domain or
Use Case

Source

Cloud Oper-
ating System
to Support
Multi-Server
Offloading

CO Very
computation-
intensive
mobile ap-
plications

Iyer2012 [57] CP Android Ex-
tensions

CO, DS Mobile
applica-
tions that
handle
complex
compu-
tations
or large
amounts
of data

GS

Jarabek2012 [59] CP ThinAV CO Anti-
malware
scanning

GS

Kemp2012 [62] CP Cuckoo CO Mobile ap-
plications
in general

GS

Kosta2012 [64] CP ThinkAir CO Mobile ap-
plications
in general

GS

Kovachev2012 [65] JA MACS
(Mobile
Augmenta-
tion Cloud
Services)

CO Mobile ap-
plications
in general

GS

Kristensen2010 [67] DD Scavenger CO Image
manip-
ulation,
continuous
speech
recogni-
tion, aug-
mented
reality

GS

Kundu2007 [71] JA Telemedik DS Healthcare GS

Continued on next page

20

Table 2.5 – Continued from previous page

Primary Study Type System
Name

Form Domain or
Use Case

Source

Kwon2013 [72] CP AMCO
(Adaptive,
Multitar-
get Cloud
Offloading)

CO Java appli-
cations

GS

Lee2012 [74] BC MCo CO Java appli-
cations

GS

Matthews2011 [82] CP PowerSense CO Telemedicine
(Image
Process-
ing for
Dengue
Detection)

GS

Messer2002 [83] CP AIDE CO Java appli-
cations

GS

Messinger2013 [84] TR Application
Virtual-
ization on
Cloudlets

CO Mobile ap-
plications
in general

GS

Mohapatra2003 [88] TR PARM CO Mobile ap-
plications
in general

GS

Ok2007 [92] CP Resource
Furnishing
System

CO Computation-
intensive
mobile ap-
plications

GS

OSullivan2013 [93] CP Cloud Per-
sonal Assis-
tant (CPA)

CO Cloud Ser-
vices

GS

Park2012 [96] CP SOME
(Selective
Offloading
for a Mobile
computing
Environ-
ment)

CO HTML5
web appli-
cations

S

Phokas2013 [98] CP Feel The
World
(FTW)

DS Participatory
sensing
applica-
tions

GS

Pu2013 [100] CP SmartVirt-
Cloud
(SmartVC)

CO Mobile ap-
plications
in general

GS

Continued on next page

21

Table 2.5 – Continued from previous page

Primary Study Type System
Name

Form Domain or
Use Case

Source

Ra2011 [101] CP Odessa CO Mobile
interactive
perception
applica-
tions

S

Rachuri2012 [102] DD Smartphone-
based social
sensing

CO Social
sensing
applica-
tions

GS

Rahimi2012 [103] CP MAPCloud CO Rich mo-
bile appli-
cations

GS

Satyanarayanan2009 [108] JA VM-Based
Cloudlets

CO Computation-
intensive
mobile ap-
plications

S

Shi2013 [111] TR IC-Cloud CO Mobile ap-
plications
in general

GS

Silva2008 [112] CP SPADE CO Mobile
applica-
tions that
perform
lengthy
tasks

GS

Su2005 [114] CP Slingshot CO Computation-
intensive
mobile ap-
plications

S

Verbelen2012 [117] JA AIOLOS CO Complex
multi-
media
applica-
tions

S

Xiao2013 [119] CP Large-Scale
Mobile
Crowdsens-
ing

DS Crowdsensing
applica-
tions

GS

Yang2008 [121] JA Offloading
Toolkit and
Service

CO Java appli-
cations

GS

Continued on next page

22

Table 2.5 – Continued from previous page

Primary Study Type System
Name

Form Domain or
Use Case

Source

Yang2012 [120] TR Sonora DS Continuous
data
streams

GS

Yang2013 [122] JA Mobile Data
Stream Ap-
plication
Framework

CO Data
stream ap-
plications

GS

Zhang2009 [128] CP Heterogeneous
Auto-
Offloading
Framework
for Mo-
bile Web
Browsers

CO Web pages
with mul-
timedia
content

GS

Zhang2011 [127] JA Weblets CO Web appli-
cations

GS

Zhang2012 [129] JA DPartne CO Java appli-
cations

GS

Zhang2012a [126] CP Elastic
HTML5

CO Web appli-
cations

GS

2.3 Categorization of Primary Studies

2.3.1 Studies Per Type

As shown in Figure 2.1, most of the primary studies are papers published in
conference proceedings (28) followed by journal articles (15). Even though the
scope of the search included industry reports, of the six studies identified as
Technical Reports, only one comes from industry. The others are from univer-
sities (4) and an FP7 project (1). In addition, there were two book chapters,
two Masters Theses and five Doctoral Dissertations. This distribution shows
that even though the topic is of potential interest to industry, most of the
published work in this area comes from academia.

2.3.2 Studies Per Year

As shown in Figure 2.2, the number of primary studies per year has grown since
the first study dated 2002. This shows that it is indeed a topic of interest,
especially in the last three years.

23

0

5

10

15

20

25

30

Journal	Article Book	Chapter Conference	
Paper

Masters	Thesis Doctoral	
Dissertation

Technical	
Report

Figure 2.1: Number of Primary Studies Per Type

0

2

4

6

8

10

12

14

16

18

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Figure 2.2: Number of Primary Studies Per Year

24

2.4 Threats to Validity

Google Scholar was the single data source for the primary studies, and was
complemented by snowballing. The search string was adjusted until it re-
turned the set of studies that was identified by an expert in the field as the
set of seminal studies (either direct results or in the references). However, the
problem is that if a study is not listed in Google Scholar it will not be returned
in the results. For example, Google Scholar returned [22], which is one of the
seminal studies, but did not return a later study on the same system [21].

In addition, the term software architecture (which is part of the search
string) was not widely used until the mid 2000s, which is reflected in the years
of the studies and Figure 2.2. This was mitigated by snowballing.

2.5 Analysis of Primary Studies

2.5.1 Categorization of Architecture Decisions

Defining an architecture for a system that uses cyber-foraging to enhance the
computing power of mobile devices requires making decisions on where, when,
and what to offload, from the perspective of the mobile device. In particular,
the specific questions we identified are:

• Where to offload? Is computation and/or data offloaded to proximate
(single-hop) resources or remote (multi-hop) resources?

• When to offload? With optimization in mind, when does it make sense
to offload?

• What to offload? What is the granularity of the computation or data that
is offloaded? What is the size and type of payload to use the computation
or to offload data?

The answers to the three cyber-foraging questions (where, when and what)
from the 58 primary studies were clustered based on similarity. If an answer did
not belong to an existing category, a new category was created and the answers
to the previously analyzed studies were revisited to see if they needed to be
re-categorized. Figure 2.3 shows the resulting categorization for computation
offload and Figure 2.4 shows the resulting categorization for data staging. The
difference between the two categorizations is in the third question related to
what to offload.

25

Computation Offload Decisions

Where to Offload

Proximate
Connected

Remote

When to Offload

Runtime
decision

Always
offload

What to Offload

Process

Method,
Function, or
Operation

Application,
Program, or

Server

Service

Granularity

Class,
Module,

Component,
or Task

Setup Instructions,
Provisioning Script, or

Workflow

Payload

Computation

Invocation Parameters

Proximate
Disconnected

Device or Application
Context

Source URI

Application State

Continuous Streaming
from Surrogate to

Mobile Device

Partitioning Algorithm

Figure 2.3: Categorization of Architecture Decisions for Computation Offload

2.5.1.1 Where to Offload

In cyber-foraging systems, computation or data is offloaded to resources with
greater computing power. These resources are located in either single-hop or
multi-hop proximity of the mobile devices that use them. For both compu-
tation offload and data staging, the answers to this question were grouped as
follows. The answers map to the leaves under Where to Offload on the left
side of Figures 2.3 and 2.4.

• Remote: Computation or data is offloaded to a remote resource such as
an enterprise cloud or data center, as shown in Part (a) of Figure 2.5. In
this case, it is a synchronous operation that requires multiple network
hops between the mobile device and the enterprise cloud. Even though
the bandwidth between the mobile device and the first hop (i.e., the
first mile) and the last hop and the cloud resource (i.e., the last mile) is
potentially high bandwidth, the bandwidth between the rest of the hops
is likely low.

26

Data Staging Decisions

Where to Stage What to Stage / Offload

Data
Updates

Field-
Collected

Data

Data Files

Application
Data

Data
Type

Data Operations
on Surrogate

Pre-Fetching

In-Bound
Filtering or

Pre-Processing

Out-Bound
Filtering or

Pre-Processing

Data Storage
or

Management

Proximate
Connected

Remote
Proximate

Disconnected

When to Stage

Runtime
decision

Always
offload

Figure 2.4: Categorization of Architecture Decisions for Data Staging

• Proximate Disconnected: Computation or data is offloaded to a surro-
gate located in single-hop proximity of the mobile device, and the sur-
rogate can operate without being connected to the cloud resource, as
shown in Part (b) of Figure 2.5. In this case, the offload operation is
synchronous to a surrogate that is in single-hop proximity over a likely
high bandwidth connection. The communication between the surrogate
and the cloud resource is asynchronous and multi-hop over a likely lower
bandwidth connection.

• Proximate Connected: As in the previous case, computation or data is
offloaded to a surrogate located in single-hop proximity of the mobile
device. However, as shown in Part (c) of Figure 2.5, the surrogate needs
to be connected at runtime to the cloud resource. In this case, the offload
operation is synchronous to a surrogate that is in single-hop proximity
over a likely high bandwidth connection. The communication between
the surrogate and the cloud resource is synchronous and multi-hop over
a likely lower bandwidth connection but communication between the two
is not necessary for every offload operation (i.e., necessary only for initial
provisioning, data synchronization, or to fetch missing data).

27

H1 HnH2
Enterprise Cloud

(Data Center)
... Low Bandwidth Synchronous

Network I/O

High Bandwidth Synchronous
Network I/O

Low Bandwidth Asynchronous
Network I/O

High Bandwidth Asynchronous
Network I/O

Network Hop

(a) Mobile Device Offload to Remote Cloud Resource

Legend
tcloud

HnH2
Enterprise Cloud

(Data Center)
...

(b) Mobile Device Offload to Proximate Disconnected Cloud Resource

Surrogate

tcloudtsurrogate

HnH2
Enterprise Cloud

(Data Center)
...

(c) Mobile Device Offload to Proximate Connected Cloud Resource

Surrogate

tcloudtsurrogate

Figure 2.5: Mobile Device Offload to Proximate and Remote Cloud Resources

The reason why this is an important architectural decision is because if
we assume that t = roundtrip communication time and tsurrogate is less than
tcloud, as defined in Figure 2.5, nearby surrogates are a better option from an
energy consumption and latency perspective [10].

2.5.1.2 When to Offload

In general, offloading is beneficial when large amounts of computation are
needed with relatively small amounts of communication [70]. For both com-
putation offload and data staging, the answers to this question were grouped as
follows. The answers map to the leaves under When to Offload in the middle
of Figures 2.3 and 2.4.

• Always Offload: Computation or data is always offloaded because either
the computation is not available locally or the assumption is that offload-
ing is more efficient from an energy consumption or latency perspective.

• Runtime Decision: Computation or data is only offloaded if remote exe-
cution is better than local execution according to a defined utility func-
tion based on a combination of parameters such as energy, latency and
network bandwidth.

28

The reason why this is an important architectural decision is because a
runtime offload decision implies that the code can execute both locally and
remotely and that data is gathered either statically and/or dynamically to
calculate the optimization function, whereas an always offload decision does
not require a runtime calculation but does assume that the offload target is
always available.

2.5.1.3 What to Offload

What to offload involves two architecture decisions, but these are different for
computation offload and data staging. For computation offload, one decision
has to do with the granularity of the computation that is offloaded to the sur-
rogate or cloud resource, and another has to do with the payload that is sent
from the client to the surrogate or cloud resource in order to execute the off-
loaded computation. Although these seem like low-level decisions, they have
architectural implications because they determine the components that are
needed on the client and the surrogate. For example, processes and methods
create very tight coupling between the client and the surrogate in order to syn-
chronize state, whereas applications, programs and scripts have looser coupling
because all they require is an appropriate container or runtime environment.
In addition, a technique based on methods, threads and module/components
will probably require code to be annotated or re-written while services, appli-
cations, programs and scripts will likely require no changes to the software,
especially if it follows a thin client/thick server paradigm. The answers to this
question were grouped as follows. The answers map to the leaves under What
to Offload on the right side of Figure 2.3.

• Granularity (ordered from smallest to largest)

– Process: A process (or thread) that is executing in the context of
the mobile device is offloaded for execution in an equivalent context
on the surrogate or cloud resource.

– Method, Function or Operation: A method, function or operation
that is part of a larger programming construct (e.g., class, mod-
ule, program) is offloaded for execution on the surrogate or cloud
resource.

– Class, Module, Component or Task: A class, module, component
or task that is composed of methods, functions, sub-modules, sub-
components, or sub-tasks is offloaded for execution on the surrogate
or cloud resource.

29

– Service: A service that exposes a standardized interface is offloaded
for execution on the surrogate or cloud resource.

– Application, Program or Server: A complete application, program,
or server portion of a client/server system is offloaded for execution
on the surrogate or cloud resource.

• Payload

– Computation: The actual computation is sent from the mobile de-
vice to the surrogate or cloud resource so that it can be remotely
executed.

– Partitioning Algorithm: The execution of a partitioning algorithm
that is part of the When to Offload decision is offloaded to the
surrogate or cloud resource to determine what portions of the com-
putation should be executed on the mobile device and which should
be executed on the surrogate or cloud resource.

– Invocation Parameters: The computation already exists on the sur-
rogate or cloud resource and therefore what is sent from the mobile
device are the parameters use when invoking the computation.

– Application State: The state of the application is sent to the com-
putation that exists on the surrogate or cloud resource so that the
remote computation can be executed with the same state as that
of the application running on the mobile device.

– Device Context: Parameters that describe the context of the device
or the application are sent to the surrogate to provide additional
information for the execution of the computation.

– Source Location: What is sent from the mobile device to the sur-
rogate is the location (e.g., URI) from which the computation can
be retrieved so that it can be installed on the surrogate or simply
executed.

– Setup Instructions: Instructions on how to set up and/or assemble
the computation are sent from the mobile device to the surrogate
or cloud resource.

– Continuous Data from Surrogate to Mobile Device: No payload is
sent from the mobile device to the surrogate; the surrogate continu-
ously executes the computation and sends the results to the mobile
device.

30

For data staging, one architectural decision has to do with the type of
data that is being staged and the other has to do with the operations that
are offloaded to the surrogate or cloud resource to be performed on the data.
As with computation offload, the answer to this question has architectural
implications because it requires different components on both sides depending
on how data is stored and forwarded. For data staging the answers to this
question were grouped as follows. The answers map to the leaves under What
to Offload on the right side of Figure 2.4.

• Data Type

– Data Updates: Data is staged on a surrogate and updates are sent to
the mobile device as defined by update policies established between
the surrogate and the mobile device.

– Application Data: Data used by an application on a mobile device
is retrieved from a cloud resource and staged on a surrogate.

– Data Files: Files needed by a mobile user are retrieved from a cloud
resource and staged on a surrogate.

– Field-Collected Data: Data collected in the field, such as sensor
data, is sent from the mobile device to a surrogate as defined by
data forwarding policies established between the surrogate and the
mobile device.

• Data Operations On Surrogate

– Pre-Fetching: Computation executes on the surrogate that attempts
to determine the data that is likely to be used by the mobile devices
that it is serving, and then retrieves that data from cloud resources
and stores it in the surrogate so that it is available for use by the
mobile devices when they need it.

– In-Bound Filtering or Pre-Processing: Computation executes on
the surrogate to process data that is retrieved or pushed from cloud
resources so that the mobile devices that it serves receive data that
is ready to be consumed, or filtered such that the mobile devices
only receive the data that they need.

– Out-Bound Filtering or Pre-Processing: Computation executes on
the surrogate to process data that is received from mobile devices
such that the data that is sent on to the cloud resource is processed
and ready for consumption by the cloud resource (e.g., cleaned,
filtered or merged data)

31

– Data Storage or Management: The surrogate serves as storage for
data in transit between mobile devices and cloud resources. Oper-
ations to process that data (i.e., CRUD operations4) are also avail-
able on the surrogate.

The reason that this is an important architectural decision is because what
to offload determines client and surrogate components.

2.5.2 Analysis Results

A mapping between the primary studies and the architectural decisions pre-
sented in Figures 2.3 and 2.4 is shown in Tables 2.6 and 2.7. Table 2.6 shows
the mapping for the computation offload studies and Table 2.7 shows the
mapping for the data staging studies. A study may appear in both tables if it
presents architectures for both computation offload and data staging systems.
If a study presents more than one architecture, a system identifier is included
in parentheses after the primary study reference for each. Cuervo2012 [26] and
Imai2012 [56] have two entries in Table 2.6 because they present two different
systems for computation offload. Iyer2012 [57] has one entry in Table 2.6 and
one in Table 2.7 because it presents systems for both computation offload and
data staging. Therefore, the total of primary studies is 58 and the total of
systems analyzed is 53 for computation offload and 8 for data staging for a
total of 61 systems.

Table 2.6: Computation Offload Systems in Primary Studies

System
Where When

What

Granularity Payload

P
ro

x
.

D
is

co
n

n
ec

te
d

P
ro

x
.

C
o
n

n
ec

te
d

R
em

o
te

R
u

n
ti

m
e

D
ec

is
io

n

A
lw

a
y
s

O
ffl

o
a
d

P
ro

ce
ss

F
u

n
ct

io
n

C
o
m

p
o
n

en
t

S
er

v
ic

e

A
p

p
li
ca

ti
o
n

C
o
m

p
u

ta
ti

o
n

P
a
rt

it
io

n
in

g
A

lg
o
.

P
a
ra

m
et

er
s

A
p

p
li
ca

ti
o
n

S
ta

te

D
ev

ic
e

C
o
n
te

x
t

S
o
u

rc
e

L
o
ca

ti
o
n

S
et

u
p

In
st

ru
ct

io
n

s

C
o
n
ti

n
u

o
u

s
D

a
ta

mHealthMon [2] X X X X

Mobile Agents [5] X X X X X

Clone-to-Clone (C2C) [7] X X X X

Continued on next page

4CRUD is an acronym for Create Read Update Delete and refers to the main functions
of data management applications.

32

Table 2.6 – Continued from previous page

System
Where When

What

Granularity Payload

P
ro

x
.

D
is

co
n

n
ec

te
d

P
ro

x
.

C
o
n

n
ec

te
d

R
em

o
te

R
u

n
ti

m
e

D
ec

is
io

n

A
lw

a
y
s

O
ffl

o
a
d

P
ro

ce
ss

F
u

n
ct

io
n

C
o
m

p
o
n

en
t

S
er

v
ic

e

A
p

p
li
ca

ti
o
n

C
o
m

p
u

ta
ti

o
n

P
a
rt

it
io

n
in

g
A

lg
o
.

P
a
ra

m
et

er
s

A
p

p
li
ca

ti
o
n

S
ta

te

D
ev

ic
e

C
o
n
te

x
t

S
o
u

rc
e

L
o
ca

ti
o
n

S
et

u
p

In
st

ru
ct

io
n

s

C
o
n
ti

n
u

o
u

s
D

a
ta

Chroma [9] X X X X

Collaborative Applications [16] X X X X X

Computation and Compilation
Offload [18]

X X X X

Cloud Media Services [19] X X X X

Roam [20] X X X X X X X

CloneCloud [22] X X X X

MAUI [26] X X X X X

Kahawai [26] X X X X

HPC-as-a-Service [30] X X X X X

OpenCL-Enabled Kernels [33] X X X X X X

Real Options Analysis [35] X X X X X

3DMA [39] X X X X

Spectra [41] X X X X

AlfredO [47] X X X X X

Collective Surrogates [48] X X X X X X

Grid-Enhanced Mobile Devices
[51]

X X X X X

Cloudlets [52] X X X X X

Virtual Phone [55] X X X X

Single-Server Offloading [56] X X X X

Cloud Operating System [56] X X X X X

Android Extensions [57] X X X X

ThinAV [59] X X X X X

Cuckoo [62] X X X X X X

ThinkAir [64] X X X X X

MACS [65] X X X X X X

Scavenger [67] X X X X X

AMCO [72] X X X X X X

MCo [74] X X X X X

Continued on next page

33

Table 2.6 – Continued from previous page

System
Where When

What

Granularity Payload

P
ro

x
.

D
is

co
n

n
ec

te
d

P
ro

x
.

C
o
n

n
ec

te
d

R
em

o
te

R
u

n
ti

m
e

D
ec

is
io

n

A
lw

a
y
s

O
ffl

o
a
d

P
ro

ce
ss

F
u

n
ct

io
n

C
o
m

p
o
n

en
t

S
er

v
ic

e

A
p

p
li
ca

ti
o
n

C
o
m

p
u

ta
ti

o
n

P
a
rt

it
io

n
in

g
A

lg
o
.

P
a
ra

m
et

er
s

A
p

p
li
ca

ti
o
n

S
ta

te

D
ev

ic
e

C
o
n
te

x
t

S
o
u

rc
e

L
o
ca

ti
o
n

S
et

u
p

In
st

ru
ct

io
n

s

C
o
n
ti

n
u

o
u

s
D

a
ta

PowerSense [82] X X X X

AIDE [83] X X X X X

Application Virtualization [84] X X X X X

PARM [88] X X X X

Resource Furnishing System [92] X X X X X

Cloud Personal Assistant [93] X X X X X

SOME [96] X X X X

SmartVirtCloud [100] X X X X X

Odessa [101] X X X X X

Smartphone-Based Social Sensing
[102]

X X X X X

MAPCloud [103] X X X X X X

VM-Based Cloudlets [108] X X X X X

IC-Cloud [111] X X X X X

SPADE [112] X X X X

Slingshot [114] X X X X

AIOLOS [117] X X X X X X

Offloading Toolkit and Service
[121]

X X X X X X

Mobile Data Stream Application
Framework [122]

X X X X X

Heterogeneous Auto-Offloading
Framework [128]

X X X X

Weblets [127] X X X X

DPartner [129] X X X X X

Elastic HTML5 [126] X X X X X X

2.5.2.1 Where to Offload

Figure 2.6 shows the distribution of systems in the studies for the architectural
decision related to where to offload or stage data. Some of the systems have

34

Table 2.7: Data Staging Systems in Primary Studies

System
Where When

What

Data Type Data Operations

P
ro

x
.

D
is

co
n

n
ec

te
d

P
ro

x
.

C
o
n

n
ec

te
d

R
em

o
te

R
u

n
ti

m
e

D
ec

is
io

n

A
lw

a
y
s

O
ffl

o
a
d

D
a
ta

U
p

d
a
te

s

A
p

p
li
ca

ti
o
n

D
a
ta

D
a
ta

F
il
es

F
ie

ld
-C

o
ll
ec

te
d

D
a
ta

P
re

-F
et

ch
in

g

In
-B

o
u

n
d

P
ro

ce
ss

in
g

O
u

t-
B

o
u

n
d

P
ro

ce
ss

in
g

S
to

ra
g
e

Edge Proxy [6] X X X X

Mobile Information Access Architecture
for Occasionally-Connected Computing [8]

X X X X

Trusted and Unmanaged Data Staging
Surrogates [42]

X X X X

Android Extensions [57] X X X X

Telemedik [71] X X X X X

Feel the World [98] X X X X X X

Large-Scale Mobile Crowdsensing [119] X X X X

Sonora [120] X X X X X X

more than one answer to the question, as indicated by multiple entries under
Where to Offload in Table 2.6 and Where to Stage in Table 2.7. As an example,
Edge Proxy [6] in Table 2.7 can offload to only proximate connected resources
but Telemedik [71] in Table 2.7 can offload to proximate disconnected or remote
resources. A category was created for each combination of answers:

• Proximate Disconnected (only)

• Proximate Connected (only)

• Remote (only)

• Remote or Proximate Disconnected

• Remote or Proximate Connected

• All: Proximate Disconnected, Proximate Connected, and Remote

Tied with the next category, most of the systems in the studies (16/61 or
26%) offload to only proximate disconnected resources, which is expected be-
cause of the advantages of lower latency and battery consumption that come

35

Proximate	
Disconnected(16)	

26%

Remote	(15)	
25%

Remote	or	
Proximate	

Disconnected	
(16)	26%

Remote	or	
Proximate	

Connected	 (7)	
11%

Proximate	
Connected	 (5)	

8%

All	(2)	3%

Figure 2.6: Distribution of Systems for the Architectural Decision Where to
Offload

from using Wi-Fi or short-range radio instead of broadband wireless (e.g.,
3G/4G) [10][75]. These systems include Mobile Information Access Architec-
ture for Occasionally Connected Computing [8], Chroma [9], Collaborative Ap-
plications [16], Computation and Compilation Offload [18], CloneCloud [22],
Kahawai [26], Spectra [41], Trusted and Unmanaged Data Staging Surrogates
[42], Cloudlets [52], Single-Server Offloading [56], Scavenger [67], PowerSense
[82], Application Virtualization on Cloudlets [84], PARM [88], and VM-Based
Cloudlets [108]. Clone-to-Clone (C2C) [7] is a special case because even though
the surrogate is proximate and not connected to the enterprise, it is part of an
overlay network that enables communication with other mobile devices that are
connected to the network. The systems presented in these studies assume that
surrogates can function stand-alone (i.e., do not need to be connected to the
enterprise in order to provide capabilities), whether they are pre-provisioned
(i.e., at system deployment time) or provisioned at runtime from the mobile
devices themselves. However, many of these systems could be adapted to work
with remote cloud servers or any addressable offload target, but would lose the
advantage of lower latency due to proximity.

Tied for the largest set of systems in the studies (also 16/61 or 26%) are
those that offload to remote or proximate disconnected resources. These sys-
tems include MAUI [26], HPC-as-a-Service [30], OpenCL-Enabled Kernels [33],
Real Options Analysis [35], Cuckoo [62], MACS [65], Telemedik [71], AMCO

36

[72], AIDE [83], Odessa [101], Smartphone-Based Social Sensing [102], IC-
Cloud [111], AIOLOS [117], DPartner [129], and Elastic HTML5 [126]. The
Offloading Toolkit and Service [121] is a special case because it assumes multi-
ple connected surrogates on which applications can migrate in case of problems.
In general, these systems have offload targets that can function stand-alone
and are accessible over an IP network, whether local or remote.

The second largest set of systems in the studies (15/61 or 25%) offloads
to remote resources. These systems include mHealthMon [2], Mobile Agents
[5], Cloud Media Services [19], 3DMA [39], AlfredO [47], Virtual Phone [55],
Android Extensions [57], ThinkAir [64], MCo [74], SOME [96], SPADE [112],
Mobile Data Stream Application Framework [122], and Heterogeneous Auto-
Offloading Framework for Mobile Web Browsers [128]. Weblets [127] is a spe-
cial case because the architecture contains a cloud elasticity manager that
manages a set of cloud nodes and decides where to offload. All these sys-
tems assume connectivity to remote cloud resources to offload computation
or data. However, unless connectivity to an enterprise cloud is necessary for
the system to work, these systems could also offload to proximate connected
or disconnected nodes. In fact, the experimentation and validation for many
of the solutions is done with a Wi-Fi-connected server instead of the remote
enterprise cloud.

The next set of systems (7/61 or 11%) offloads to either remote or proxi-
mate connected resources. These systems include Roam [20], Collective Sur-
rogates [48], Grid-Enhanced Mobile Devices [51], ThinAV [59], Resource Fur-
nishing System [92], Cloud Personal Assistant [93], and MAPCloud [103]. The
offload targets in these systems need access to a cloud resource in order to
operate properly, whether to obtain the code to be offloaded [20], access ap-
plication data [92], or to offload computation or data to other cloud resources
(i.e., surrogate acts as an intermediary) [48][51][59] [93][103].

Five out of 61 systems (8%) offload to only proximate resources that are
connected to cloud resources. Edge Proxy [6] requires access to the cloud to
obtain data updates. SmartVC [100] and Large-Scale Mobile Crowdsensing
[119] obtain the offload code from a cloud resource. Slingshot [114] connects a
home server to replicas installed on surrogates so that the home server always
has a safe copy of application state. Cloud Operating System [56] is a special
case because the surrogate is not connected to the enterprise, but to other
surrogates to load balance.

Finally, there are two data staging studies (2/61 or 3%) that can offload to
all three options: remote, proximate connected, and proximate disconnected
resources. Feel the World [98] and Sonora [120] simply need an addressable
offload target, whether proximate or remote.

37

Most systems in the studies offload to a single known surrogate or cloud
resource. The reason for this is that the focus of the studies is on demonstrating
the validity or efficiency of portions of the architecture, such as optimization
engines or partitioning algorithms, and not the operation of the full system.

Some systems include a component in the architecture to discover and
select offload targets. In AlfredO [47] and VM-Based Cloudlets [108], the
offload targets use broadcast methods to announce their presence. Mobile
Agents [5] queries a cloud directory service to obtain a list of available offload
targets in the cloud. Collective Surrogates [48] relies on a surrogate manager
to manage available surrogates. Spectra [41] and SPADE [112] maintain a local
offload target list. Grid-Enhanced Mobile Devices [51], Resource Furnishing
System [92], CAP [93], MAPCloud [103], and Heterogeneous Auto-Offloading
Framework for Mobile Web Browsers [128] rely on an application or service
directory rather than an offload target directory.

2.5.2.2 When to Offload

Figure 2.7 shows the distribution of systems in the studies for the architectural
decision related to where to offload or stage data.

Runtime	
Decision		(34)	

56%

Always	
Offload	(27)	

44%

Figure 2.7: Distribution of Systems for the Architectural Decision When to
Offload

For most of the systems in the studies (34/61 or 56%) offloading is a run-
time decision. The majority of these systems perform a runtime calculation
(often called a utility function) to determine whether it is better to execute
locally or to offload computation by comparing predicted local execution cost
against predicted remote execution cost. Local execution cost typically takes

38

into consideration the energy consumed by local execution as well as the local
execution time. Remote execution cost typically considers the energy con-
sumed by communication based on payload size and network conditions, the
communication time based on payload size and network conditions, and remote
execution time. If local execution cost is lower than remote execution cost then
the computation is executed locally; otherwise, it is executed remotely (i.e.,
offloaded). In systems such as ThinkAir [64] and PowerSense [82], the user
can decide to optimize for energy or execution time (e.g., prefer lower energy
consumption over lower execution time). In Smartphone-Based Social Sensing
[102], the user can also optimize for bandwidth usage.

There are many variations of how a system decides when to offload. Some
systems do not perform a runtime calculation, but instead check environmental
conditions to determine if offloading should take place. For example, Cuckoo
[62] simply checks if the offload target is reachable and, if so, offloads the com-
putation. Roam [20] checks whether a component can be run locally or not
due to device constraints and, if not, it offloads the component to a reachable
resource that can execute it. Other systems have much more complex meth-
ods. For example, Collaborative Applications [16] uses a performance model,
a power model, a model and status of offload servers, location of files that
are needed by the computation, and network conditions to make the offload
decision.

The systems that perform runtime calculations require developer input or
static profiling to obtain the initial values or models that are used in the
calculation, such as required compute cycles, payload size based on input and
output parameters, and required energy for execution and communication.
Other parameters such as current network conditions or load of the mobile
device and offload target are obtained at runtime.

In addition, some systems use runtime profiling to collect data at runtime
to adjust the initial values. The goal is to obtain more realistic values based on
actual execution data. SmartVC [100] collects execution time and power con-
sumption and Odessa [101] collects network measurements as historical data to
improve the offloading decision. MAUI [26] does continuous device, network,
and application profiling to optimize energy efficiency. In Single-Server Off-
loading [56], values are updated at runtime based on real data using the least
squares method only if the prediction error is greater than a certain threshold.
In AMCO [72], the runtime system continuously improves its effectiveness due
to a feedback-loop mechanism.

The rest of the systems in the studies (27/61 or 44%) always offload compu-
tation or data. For computation offload systems, the parts of the system that
are considered computation-intensive, or that simply cannot run on a mobile

39

device, are pre-determined and executed on offload targets. All the data stag-
ing systems fall in this category, which is expected, because by definition the
idea is for the mobile device to send and receive data to and from an enterprise
cloud, either directly or via a surrogate. The decision-making process is not
whether it is efficient or not to stage data but when is the right time to do so.

2.5.2.3 What to Offload

As mentioned earlier, there are two architectural decisions related to what to
offload for computation offload systems; one is the granularity of the compu-
tation that is offloaded and another is the payload that is sent from the mobile
device to the offload target in order to execute the offloaded computation. Fig-
ure 2.8 shows the distribution of computation offload systems in the studies
for the architectural decision related to what to offload for granularity.

Class,	Module,	
Component,	 or	

Task	(28)
53%

Method,	
Function	or	

Operation	 (11)
21%

Application,	
Program,	or	
Server	(7)

13%

Service	(6)
11%

Process	(1)	2%

Figure 2.8: Distribution of Systems for the Architectural Decision What to
Offload: Granularity

All the systems in the studies have an offload client that runs on the mo-
bile device and an offload server that runs on the offload target that together
coordinate the offload operation. The majority of the systems are designed
such that the applications at runtime are not aware that computation is be-
ing offloaded. What changes between systems based on granularity are the
development, build, and runtime dependencies between the offload client and
target, as well as the amount of state synchronization required to guarantee
the correct execution of applications.

As far as granularity, most systems offload at the class, module, compo-
nent, or task level (28/53 or 53%). The type of element that is offloaded varies

40

greatly between systems, but in general they are software elements that exe-
cute inside specific containers or runtime environments such as Java Virtual
Machines (JVMs), OSGi platforms, or custom-built environments that enable
migration between local and remote execution. The advantage of offloading
at this level of granularity is that for the most part these are self-contained
elements, meaning that they store their own state. Once an element is off-
loaded there is no need to synchronize state with the local device unless the
execution is returning to the local device. However, except for the systems
that rely on more standard environments, such as JVMs and OSGi platforms,
there are very tight dependencies between the mobile execution environment
and the execution environment on the offload target, as shown in Table 2.8.
This creates limitations in terms of programming languages and increases the
effort required for application reuse because of the need to use specific libraries
and constructs to enable computation offload.

Table 2.8: Computation Offload Systems that Offload Classes, Modules, Com-
ponents or Tasks with Offload Details and Constraints

System Offload Element Constraints/Requirements

Mobile Agents
[5]

Java classes and/or meth-
ods that have been man-
ually marked by the de-
veloper as remoteable and
packaged as mobile agents

Applications have to be written as mo-
bile agent applications using a develop-
ment environment such as JADE (Java
Agent Development Environment).

Cloud Media
Services [19]

Media processing tasks There are separate specialized VMs
running on the offload target that ex-
ecute media processing tasks (one per
task).

Roam [20] Roamlets (Java compo-
nents with well-defined in-
terfaces)

All devices have resource descriptions
that are used by the runtime optimiza-
tion algorithm. The developer parti-
tions the application into components
and determines how many implemen-
tations of the component there will be,
and then implements each as a Roam-
let.

OpenCL-
Enabled Kernels
[33]

Kernels (program parts)
with OpenCL interfaces

Offload targets are OpenCL-capable.

Real Options
Analysis [35]

Tasks (any component
with an API)

The mobile device runs the ROA (real
options analysis) framework.

Continued on next page

41

Table 2.8 – Continued from previous page

System Offload Element Constraints/Requirements

3DMA [39] Components implemented
as Active Objects

Active Object Spaces are created in
all mobile devices and servers. In ad-
dition, specialized components called
workers are implemented in the system
to coordinate communication between
active objects.

AlfredO [47] OSGi bundles The mobile device and offload target
are running R-OSGi.

Grid-Enhanced
Mobile Devices
[51]

Tasks There is a specialized grid middleware
running on the offload target.

Virtual Phone
[55]

Android activities A VM image that matches the mobile
device OS is available on the offload
target. A FUSE5 filesystem client and
server are installed on the client and
offload target respectively.

Cloud Operating
System (COS)
[56]

Application modules im-
plemented as SALSA ac-
tors that can automatically
or manually migrate be-
tween machines

Applications are written in SALSA
and all interconnected surrogates run
COS.

Android Exten-
sions [57]

Android programming con-
structs (activity, service,
content provider, or broad-
cast receiver)

A Mobile Cloud Manager runs on the
mobile device and is part of the An-
droid stack. A Mobile Cloud Server
runs on the offload target.

Cuckoo [62] Android services Applications have to be written and
built using the Cuckoo framework.
Offloaded code has to be implemented
as an Android service. The Ibis mid-
dleware is used for remote communica-
tion.

MACS [65] Android services Applications have to be developed us-
ing the MACS (Mobile Augmentation
Cloud Services) development frame-
work. Offloaded code has to be im-
plemented as an Android service.

Scavenger [67] Tasks written in Python,
annotated with the tag
@scavenge

A daemon that runs on the offload
target enables task offload (Stackless
Python).

Continued on next page

5FUSE stands for Filesystem in Userspace; a mechanism that enables a user to create a
filesystem without editing kernel code

42

Table 2.8 – Continued from previous page

System Offload Element Constraints/Requirements

AMCO [72] Components (Java meth-
ods, classes, or packages)
marked by the programmer
as energy hotspots

Programmers know the energy
hotspots and annotate the code. Com-
ponents have loose coupling and high
cohesion to avoid back-and-forth de-
pendencies between local and remote
code execution.

MCo [74] Java classes Mobile applications need to be devel-
oped using a development toolkit that
provides capabilities for offload to a
surrogate called a Master Node that
receives computation offload requests
from mobile devices and forwards the
requests to appropriate Worker Nodes
on which migrated classes actually run.

AIDE [83] Java classes Requires a modified JVM.

PARM [88] PARM (power-aware mid-
dleware) components

Applications need to be written using
the PARM (power-aware middleware)
API. Energy profiles are known for all
components. A server is set up as a
power broker. Devices need to regis-
ter with the nearest offload target and
send state information that is used by
the power broker.

Odessa [101] Data processing stages
as defined by the Sprout
framework

Applications are implemented using
the Sprout framework which structures
applications as data flow graphs com-
posed of self-contained stages.

Smartphone-
Based Social
Sensing [102]

Data classification tasks
and subtasks

Applications are implemented using
the computation offloading API.

SPADE [112] Tasks that require file pro-
cessing that can be run
from a command line on
the remote machine

Offload target runs the SPADE mid-
dleware.

AIOLOS [117] Java classes that contain
methods marked as offload-
able

Both the mobile device and the surro-
gate need to run the OSGi platform be-
cause at build time the AIOLOS plugin
generates OSGi bundles that publish
the annotated classes as OSGi services.

Offloading
Toolkit and
Service [121]

Java classes Shadow classes are generated for each
instrumented class. Offload targets are
interconnected and capable of support-
ing VM migration.

Continued on next page

43

Table 2.8 – Continued from previous page

System Offload Element Constraints/Requirements

Mobile Data
Stream Applica-
tion Framework
[122]

Data processing compo-
nents and application par-
titioning algorithm

Applications have a pipe-and-filter ar-
chitecture. There is a centralized re-
source manager that controls all off-
load targets. The resource manager
assigns an offload target as an appli-
cation master for a mobile application.

Weblets [127] Weblets, which are au-
tonomous software entities
that run either on the de-
vice or the offload tar-
get and expose RESTful
web service interfaces via
HTTP

Weblets are self-contained. The ap-
plication is developed as specified by
Weblet framework. A Cloud Elasticity
Manager manages a set of cloud nodes
that each run one or more Weblet con-
tainers.

DPartner [129] Java classes packaged as
OSGi bundles

The OSGi platform runs on the device
and the offload target. A proxy needs
to be created for every module.

Elastic HTML5
[126]

Components and functions
that leverage the HTML5
concept of web workers,
which are background pro-
cesses that run JavaScript
on a web page without
blocking the user interface

Proxy web workers exist on the device
and the offload target.

The second largest set of systems offloads at the method, function or oper-
ation level (11/53 or 21%). In systems such as Collaborative Applications [16],
Computation and Compilation Offload [18], MAUI [26], Spectra [41], ThinkAir
[64], SOME [96], SmartVC [100] and IC-Cloud [111], developers manually mark
the methods that they consider offloadable. Chroma [9] uses a tactic plan to
specify the configuration or set of methods that should be offloaded to obtain
a particular result (i.e., optimize for a particular parameter). In C2C [7], all
code is considered offloadable. In addition to the same types of constraints
and requirements for applications and offload targets outlined for the first set
of systems, the challenge for this type of system is guaranteeing fidelity of
results, which means that executing locally or remotely should produce the
same results. Methods, functions, and operations are part of larger program-
ming constructs such as classes or programs that maintain state at runtime,
typically expressed as class attributes or global variables. This means that the
system has to synchronize state such that it is the same locally and remotely,
either periodically or by sending it as an additional input/output of the offload
operation.

Systems that offload full applications, programs, or servers of a clien-

44

t/server system represent the third largest set of systems in the studies (7/53
or 13%). Kahawai [26] offloads the game engine that performs all the GPU
computations. Collective Surrogates [48], Cloudlets [52], Application Virtual-
izaton on Cloudlets [84], VM-Based Cloudlets [108], and Slingshot [114] offload
the server portion of a client/server system. Resource Furnishing System [92]
offloads full applications and interacts with them using a VNC client.6 The
advantage of offloading at this level of granularity is that execution environ-
ments are much more generic, such as virtual machines or application servers.
This also increases application reuse because servers do not have to be adapted
to run on mobile devices. Clients are very thin and perform the functionality
that cannot be offloaded, such as user interface and sensor operations. How-
ever, the rest of the computation is always offloaded, regardless of whether or
not it would be more efficient to execute on the mobile device.

The fourth largest set of systems in the studies offload services (6/53
or 11%). Services in these studies are coarse-grained capabilities accessed
via standardized interfaces that have been identified by system developers as
computation-intensive. In mHealthMon [2], these correspond to services that
can analyze sensor data. In HPC-as-a-Service [30] these are high-performance-
computing (HPC) services. In ThinAV [59], these are antivirus services; be-
cause the service is long-running in addition to computation-intensive, the
server has a call back to the mobile device. In PowerSense [82], these are
image processing services. In CPA [93] they are general cloud services. In
MAPCloud [103], services are part of an application request modeled as a
workflow. These systems do not have the requirements or constraints of the
systems that offload methods or components because by definition services are
self-contained. Once a decision is made to offload, the service is invoked and
the system either waits for a reply or receives the reply when it is ready.

Finally, CloneCloud [22] is the only system that offloads at the process
level (1/53 or 2%). In this system, the mobile device is fully cloned inside a
VM running on the offload target. When the system encounters a computation
block that is marked for offload, the process enters into a sleep state and process
state is transferred from the mobile device to the clone VM. The clone VM
integrates the process state, executes the computation block from beginning
to end, and then transfers its process state back to the mobile device. The
mobile device reintegrates the process state and wakes up the sleeping process
to continue its execution. This system allows very fine-grained control of
what portions of an application to offload, but requires a very stable network

6VNC stands for Virtual Network Computing and is a protocol for remote access to
graphical user interfaces

45

connection to support state synchronization.
Figure 2.9 shows the distribution of computation offload systems in the

studies for the architecture decision related to what to offload for payload.
Some of the systems have more than one answer to the question, as indicated
by multiple entries under What to Offload – Payload in Table 2.6. As an
example, the payload in Chroma [9] in Table 2.6 is only invocation parameters
but the payload for Collaborative Applications [16] in Table 2.6 is invocation
parameters and application state. A category was created for each combination
of answers:

• Invocation Parameters

• Computation and Invocation Parameters

• Application State

• Setup Instructions and Invocation Parameters

• Continuous Data from Offload Target to Mobile Device

• Partitioning Algorithm and Invocation Parameters

• Application State and Invocation Parameters

• Device Context and Invocation Parameters

• Source Location, Application State and Invocation Parameters

• Source Location and Invocation Parameters

For the majority of the systems, the payload is the Invocation Parameters
used to execute the remote computation (26/53 or 49%). All these systems
assume that the offloaded computation already exists on the offload target,
which leads to a small payload that simply depends on the size of the pa-
rameter data types. However, the systems completely rely on the existence
and currency of the offloaded computation on the offload target, which in turn
would require more complex deployment processes.

For the next largest set of systems, the payload is Computation and Invoca-
tion Parameters (14/53 or 26%). This means that both the actual computation
and its invocation parameters are sent from the mobile device to the offload
target. What differs between systems is the protocol for getting the compu-
tation ready on the offload target. Cuckoo [62], MACS [65], Scavenger [67],
SmartVC [100], and AIOLOS [117] first check if the offload target has the
computation; if not, the computation is sent for deployment. The rest of the

46

26

14

2

2

2

2

2

1

1

1

0 5 10 15 20 25 30

Invocation	Parameters

Computation	 and	 Invocation	Parameters

Application	 State

Setup	Instructions	 and	 Invocation	Parameters

Continuous	 Data	from	Offload	Target	to	Mobile	Device

Partitioning	Algorithm	and	Invocation	Parameters

Application	 State	and	Invocation	Parameters

Device	Context	and	 Invocation	Parameters

Source	Location,	 Application	State	and	 Invocation	Parameters

Source	Location	and	 Invocation	Parameters

Figure 2.9: Distribution of Systems for the Architectural Decision What to
Offload: Payload

systems simply send the computation for deployment on the offload target.
The offload target deploys the computation inside a container or execution
environment, executes it directly in a runtime environment, or distributes it
to other offload targets for deployment. Once the computation is running, the
mobile device sends the invocation parameters for the actual execution. The
exception is the Mobile Agents systems [5] in which what is offloaded is an
agent that already contains its invocation parameters.

For the next set of systems, the payload is Application State (2/53 or 4%).
In CloneCloud [22], the payload is the application state so that the offloaded
process can execute in the offload target with the same state as if it executed
on the mobile device. In Virtual Phone [55], Android activity state is saved
to a user space file system based on FUSE when an activity is paused for
offload. The FUSE client that runs on the mobile device synchronizes state
with the FUSE server that runs on the offload target so that the activity can
be resumed on the offload target with the same state. In both of these systems,
the execution returns to the mobile device and state is synchronized back in
the same way.

For a small set of systems, the payload is Setup Instructions and Invocation
Parameters (2/53 or 4%). This means that the initial payload is not the
computation itself but the instructions of how to set up the computation on
the offload target. In Collective Surrogates [48], the payload is a small program
which is simply a script that offloads code from the Internet, installs, and runs
it. In MAPCloud [103], the payload is an application request modeled as a

47

workflow of tasks. The offload target (broker) locates offload targets that can
perform the tasks and returns a service plan with the URL of each offloaded
workflow task. Once the computation is running, the mobile device sends the
Invocation Parameters for the actual execution.

In the next set of systems (2/53 or 4%), the payload is Continuous Data
from Offload Target to Mobile Device. In Kahawai [26], a system targeted
at GPU-intensive applications such as games, the offload target maintains a
high-fidelity version of the graphics and a low fidelity version that matches the
fidelity of the mobile device. It compares both and sends a compressed video
stream of delta frames to the mobile device. The mobile device decompresses
the stream and applies the deltas to the frames that it renders locally. In
Resource Furnishing System [92], the interaction with the offload target is
done via a VNC client which means that GUI updates are continuously sent
from the offload target to mobile devices and applied locally.

In addition to Invocation Parameters, two systems offload the Partition-
ing Algorithm that determines what computation executes locally and what
computation is offloaded (2/53 or 4%). These systems are AlfredO [47] and
Mobile Data Stream Application Framework [122].

For two systems, the initial payload is local Application State for the mo-
bile device and offload target to synchronize state before invoking the offloaded
computation (2/53 or 4%). AMCO [72] sends the state of the nodes that are
going to be involved in the computation to the offload target. The offload
target synchronizes its state with the received state. The mobile device then
invokes the offloaded computation. When a decision is made to return exe-
cution to the mobile device, the offload target sends its state to the mobile
device so that it is updated. Collaborative Applications [16] uses a suspend/re-
sume approach in which the VM on the mobile device is suspended, state is
transferred to the offload target, and then resumed on the server. Once the
computation is running, the mobile device sends the Invocation Parameters
for the actual execution.

For one system, the initial payload is the Device Context (1/53 or 2%).
Cloud Media Services [19] is a system for media processing. The payload is
the device context (device type, browser type, supported codecs, screen size,
network bandwidth, and latency) such that the appropriate media processing
components are selected. Once the computation is running, the mobile device
sends the Invocation Parameters for the actual execution.

For one system (1/53 or 2%), Roam [20], the initial payload is the Source
Location, or where to obtain the offload computation for installation on the
offload target. Application State is then transferred from the mobile device
to the offload target. Once the computation is running and the state is syn-

48

chronized, the mobile device sends the Invocation Parameters for the actual
execution.

Finally, for one system, Elastic HTML5 [126], the initial payload is the
Source Location (URL) of the offload computation (web worker) and the In-
vocation Parameters (1/53 or 2%).

As mentioned earlier, there are two architectural decisions related to what
to offload for data staging systems; one is the type of data that is being staged
and the other is the operations that are offloaded to the offload target to be
performed on the data. Figure 2.10 shows the distribution of data staging
systems in the studies for the architecture decision related to What to Offload
– Data Type.

Data	Updates	
(1)
12%

Application	
Data	(3)
37%

Data	Files	(1)	
13%

Field-Collected	
Data	(3)
38%

Figure 2.10: Distribution of Data Staging Systems for the Architectural Deci-
sion What to Offload: Data Type

Field-Collected Data is sent to an offload target for staging in three of the
systems (3/8 or 38%). Feel the World [98] and Sonora [120] offload data col-
lected from sensors, either raw or pre-processed. Large-Scale Mobile Crowd-
sensing [119] offloads raw data collected from sensors. Staging sensor data
addresses storage limitations on mobile devices. In addition, data collected
by a surrogate can be shared by other mobile devices connected to the same
surrogate or can be fused or pre-processed before sending it to the enterprise.

Application Data is staged in three of the systems (3/8 or 38%). Mobile
Information Access Architecture for Occasionally Connected Computing [8]
stages data from the enterprise that is likely to be used by applications run-
ning on the mobile device; it also stages data going to the enterprise in case
of disconnected operations. Android Extensions [57] stages data used by ap-

49

plications on a surrogate that handles all access to the cloud. Telemedik [71]
stages data that is likely to be used by applications based on usage patterns
or data alerts. The advantage in this case is lower latency because the data
resides in a nearby surrogate and not in a remote cloud.

In Edge Proxy [6], the surrogate informs the mobile device when marked
areas of a web page have changed. This is a case of data staging from the
enterprise in which the mobile device is only notified when there are updates
(1/8 or 13%).

Finally, in Trusted and Unmanaged Data Staging Surrogates [42], a surro-
gate stages files that might be needed by the mobile device (1/8 or 13%). The
advantage, as in staging application data, is lower latency because the files
reside on a nearby surrogate and not in a remote server. Access to the remote
server is done by the surrogate and only when the file is not available on the
surrogate (similar to a cache miss) or when data on the surrogate has changed
and needs to be consolidated with the data in the remote server.

Figure 2.11 shows the distribution of data staging systems in the studies
for the architectural decision related to What to Offload – Data Operations
on Surrogate.

Pre-Fetching	(2)	
25%

In-Bound	 Filtering		
or	Pre-Processing	

(2)	25%

Out-bound	
Filtering		or	Pre-
Processing	(2)	25%

Storage	or	
CRUD	

Operations	 (2)	
25%

Figure 2.11: Distribution of Data Staging Systems for the Architectural Deci-
sion What to Offload: Data Operations on Surrogate

Mobile Information Access Architecture for Occasionally Connected Com-
puting [8] and Trusted and Unmanaged Data Staging Surrogates [42] are the
two systems that perform pre-fetching operations on the surrogate (2/8 or
25%). Trusted and Unmanaged Data Staging Surrogates [42] executes a pre-
diction algorithm on the surrogate to determine files that are likely needed by

50

the mobile device using file clusters defined by the user as input (files that are
often used together).

Edge Proxy [6] and Telemedik [71] are the two systems that perform in-
bound filtering or pre-processing of data that flows from the enterprise (or
cloud) to the mobile device. The advantage is that the heavy computation or
communication to remote servers happens on the surrogates and not on the
mobile device. In Edge Proxy [6], the mobile device specifies interest in changes
to specific parts of web pages. The surrogate polls the web servers involved,
and if relevant changes have occurred, it aggregates the updates as one batch
that is sent to the mobile device. In Telemedik [71], a healthcare system,
a “context-sensitive priority-based text fragmentation algorithm” determines
when and what information to display to the user. This is an example of using
data staging to address limited screen size of mobile devices in addition to
latency.

Large-Scale Mobile Crowdsensing [119] and Sonora [120] are the two sys-
tems that perform out-bound filtering or pre-processing of data that flows
from the mobile device to the enterprise (or cloud). In Large-Scale Mobile
Crowdsensing [119], sensor data is sent to VMs running on surrogates that
can share sensor data with other applications running on the surrogate or for-
mat the data to send to applications running in the cloud. Sonora [120] uses
a construct called a sync stream that executes on the surrogate and supports
disconnected operations, batching, filtering, and compression of data in transit
to a remote server.

Finally, Android Extensions [57] and Feel the World [98] use the offload
target as an extension of the mobile device’s storage system for Data Stor-
age (CRUD operations). Android Extensions [57] provides a set of libraries
that can be used to invoke remote services as if they were local services by
leveraging the content provider and broadcast receiver Android programming
constructs. In Feel the World [98], collected sensor values can be aggregated
and/or transformed locally on the client and uploaded to the data staging
server in real-time or at a later time. The surrogate gathers and processes the
collected values and can provide visualizations of the collected data.

2.6 Main Observations and Findings from Primary
Studies

The primary studies show very different and novel computation offload and
data staging systems targeted at guaranteeing fidelity of results, and optimiz-

51

ing attributes such as energy consumption, network bandwidth usage, and per-
formance/response time. For computation offload systems, the offload mecha-
nisms range from dynamic approaches in which the computation is provisioned
from the mobile device to more static approaches in which the computation
already exists on the offload target. For data staging systems, the capabilities
of the offload target range from an extension of the mobile device’s storage
to sophisticated algorithms that predict and stage the data that will likely be
needed by the mobile device. As far as distribution, the number of compu-
tation offload systems (53) is much larger than the number of data staging
systems (8).

Analysis of the data shows the following gaps and opportunities for archi-
tectural strategies for cyber-foraging systems.

• Lack of understanding of non-functional requirements beyond energy,
performance, network usage, and fidelity of results: One of the main
challenges of building cyber-foraging systems is the dynamic nature of
the environments in which they operate. For example, the connection
to an external resource may not be available when needed or may be-
come unavailable during a computation offload or data staging operation.
As another example, multiple external resources may be available for a
cyber-foraging system, but not all have the required capabilities. Many
of the cyber-foraging systems, especially those that perform runtime par-
titioning and offloading decisions, have very complex and thorough al-
gorithms for guaranteeing fidelity of results, and optimizing energy con-
sumption, network bandwidth usage, and performance/response time.
Disconnected operations and fault tolerance are supported by some sys-
tems in which the local computation is a fallback mechanism if the remote
computation fails. However, there is very little consideration to other
non-functional requirements that are relevant to cyber-foraging systems,
such as ease of distribution and installation, resiliency, and security. Un-
derstanding these equally-important non-functional requirements is key
to reasoning about the behavior of a cyber-foraging system in light of an
uncertain operating environment.

• Lack of focus on system-level concerns: Related to the previous point,
the systems in the studies tend to have a very narrow focus on prov-
ing that cyber-foraging is possible between one mobile device and one
offload target, which is a very limited view of a real, operational cyber-
foraging system. There is very little discussion of system-level concerns
that have to be addressed when moving from experimental prototypes
to operational systems; for example:

52

– How do the systems perform when there are multiple devices trying
to offload to the same target?

– If there are multiple offload targets available, how does the mobile
device select the target that best fits its requirements?

– What happens if the mobile device loses connectivity to the offload
target?

– In those mechanisms that require custom infrastructures or middle-
ware, what are the mechanisms for ensuring currency and compat-
ibility of mobile-side and server-side components if these may not
have the same distribution mechanisms?

– How does a mobile device know that a discovered surrogate is trust-
worthy?

– What are the tradeoffs between the non-functional requirements
promoted by the system and other non-functional requirements such
as ease of distribution and installation, resiliency, and security?

• Lack of large-scale evaluations: Most of the studies have very limited
case studies or evaluations. For example, even though studies talk about
mobile cloud computing, the experiments are done in controlled environ-
ments over Wi-Fi connections, which is not representative of a real mo-
bile cloud environment with disconnections, high latency, and multiple
heterogeneous users and devices. Large-scale evaluations or simulations
would generate knowledge that would enable developers of cyber-foraging
systems to understand the implications and design decisions to deal with
operational environments.

• Small number of studies on architectures for data staging systems: The
low number of primary studies related to architectures for data staging,
combined with an increasing number of data collection devices in the
field, show that it is a potential area for developing architectural patterns
or tactics that can be leveraged by software architects and developers of
these types of systems.

2.7 Related Work

There are several studies that survey the field of mobile cloud computing and
identify cyber-foraging as a research area and challenge, but are not system-
atic literature reviews and do not have an architectural focus. Abolfazli et al

53

[1] present a survey of cloud-based mobile augmentation (CMA) approaches,
one of which is cyber-foraging. One of the challenges stated by this work is
the lack of a reference architecture for CMA. Dinh at al [28] present a sur-
vey on mobile cloud computing (MCC). Computation offload is discussed as a
technique for extending battery lifetime of mobile devices and listed as one of
the challenges for MCC. Fernando et al [38] present a more complete survey
on MCC. Some of the research that addresses efficient computation offload
and distribution to the cloud and how it differs from traditional distributed
systems is discussed in this paper. Lomotey at al [80] present an additional
survey on MCC and start introducing some of the challenges of ubiquitous
cloud computing (UCC), defined as consistency in cloud service access from
multiple mobile devices owned by a single user. Computational offloading from
mobile nodes to middle-tier servers (i.e., surrogates) is mentioned as one way
to overcome energy and latency limitations of offloading to remote clouds in
this paper. Kumar et al [69] present a survey on computation offloading, but
focus primarily on the algorithms used to partition and offload programs in
order to improve performance or save energy. Finally, Yu et al [123] present
a survey on seamless application mobility, which is the continuous or uninter-
rupted computing experience as a user moves across devices. Code offloading
is mentioned as a future direction for seamless application mobility.

The work that is most similar to ours is by Flinn et al [40] that presents a
discussion of representative cyber-foraging systems and their characteristics.
However, it is limited to a small number of systems and does not follow a
systematic process. To the best of our knowledge, ours is the first systematic
literature review related to architectures for cyber-foraging.

2.8 Summary and Conclusions

This chapter presented the results of an SLR in architectures for cyber-foraging
systems in the context of RQ1, which is to determine what software archi-
tecture design decisions for cyber-foraging systems can be identified in the
literature.

We identified 58 primary studies, containing a total of 61 systems (53 com-
putation offload systems and 8 data staging systems). The systems were an-
alyzed using a categorization of architecture decisions related to what, when,
and where to offload computation and data from mobile devices. While most of
these systems presented very novel methods for computation offload and mak-
ing runtime decisions, there was very little detail on how the systems would
function in a real operational setting. In particular, the analysis allowed us to

54

identify gaps and opportunities for research in (1) non-functional requirements
that are relevant to operational cyber-foraging systems, such as ease of distri-
bution and installation, resiliency, and security, (2) system-level architecture
analysis, (3) large-scale evaluations, and (4) architectures for data staging sys-
tems. Of particular interest was the small number of data staging systems in
the studies. Given the data presented in Section 1.1 related to trends such as
IoT, demanding content types, and increasing mobile traffic, we would have
expected to see more data staging systems in the studies addressing some of
these problems.

The next chapter presents a set of architectural tactics derived from the
architecture decisions identified in the primary studies. The goal of the tac-
tics is to provide reusable elements for architects of cyber-foraging systems
to reason about quality attributes necessary for deployment in operational
environments, beyond energy efficiency, response time, and fidelity of results.

55

3
Architectural Tactics for Cyber-Foraging

This chapter presents a catalog of architectural tactics for cyber-foraging that
was derived from the results of the systematic literature review on architectures
for cyber-foraging systems presented in Chapter 2. Elements of the architec-
tures identified in the primary studies were codified in the form of Architectural
Tactics for Cyber-Foraging. These tactics will help architects extend their de-
sign reasoning towards cyber-foraging as a way to support the mobile applica-
tions of the present and the future.

3.1 Introduction

Architectural tactics are design decisions that influence the achievement of a
quality attribute response [13]. The tactics in this chapter were extracted from
the primary studies based on (1) common components found in the studies,
(2) quality attributes explicitly stated in the studies, and (3) quality attributes
inferred from system and component descriptions.

Figure 3.1 presents the set of identified tactics. The top levels of the figure
are the tactic categories. The boxes with solid lines under each category are
the tactics. A box with a dashed line under a tactic is a variation of that
tactic. Each tactic is described using the following template:

• Motivation: rationale behind the tactic

• Description: components introduced by the tactic and explanation of
their roles

• Constraints: necessary conditions for applying the tactic in an existing
software architecture

57

• Example: application of the tactic in one or more systems; the exam-
ple(s) will map back to the elements of the architecture diagram pre-
sented in the description

• Dependencies: other tactics required by the tactic

• Variations (Optional): slight variations of the tactic

The tactics are divided into functional and non-functional tactics. Func-
tional tactics are broad and basic in nature and correspond to the architectural
elements that are necessary to meet cyber-foraging functional requirements.
Non-functional tactics are more specific and correspond to architecture deci-
sions made to promote certain quality attributes. Non-functional tactics have
to be used in conjunction with functional tactics.

The tactics described in this section will include a surrogate as the offload
target, as depicted in Parts (b) and (c) of Figure 2.5. The notion is that the
elements of the tactic that apply to the surrogate will also apply to a remote
cloud server.

3.2 Functional Architectural Tactics for Cyber-
Foraging

Functional architectural tactics correspond to basic capabilities of a cyber-
foraging system. All the systems in the studies presented in Chapter 2 con-
tained at least the following combination of tactics:

(Computation Offload ∨ Data Staging) ∧ Surrogate Provisioning ∧ Surrogate
Discovery

This means that all cyber-foraging systems contain

• A tactic for computation offload or data staging (or both)

• A tactic for provisioning the surrogate with the offloaded computation
or data processing capabilities

• A tactic for a mobile device to locate a surrogate for offload or data
staging

The following sections describe these basic functional architectural tactics.

58

A
R

C
H

IT
E

C
TU

R
A

L
T

A
C

T
IC

S
 F

O
R

 C
Y

B
ER

-F
O

R
A

G
IN

G

N
O

N
-F

U
N

C
TI

O
N

A
L

FU
N

C
TI

O
N

A
L

C
o

m
p

u
ta

ti
o

n

O
ff

lo
ad

D
a

ta

St
a

gi
n

g
Su

rr
o

ga
te

P

ro
vi

si
o

n
in

g
Su

rr
o

ga
te

D

is
co

ve
ry

P
re

-
Fe

tc
h

in
g

In
-B

o
u

n
d

P

re
-

P
ro

ce
ss

in
g

O
u

t-
B

o
u

n
d

P

re
-

P
ro

ce
ss

in
g

P
re

-
P

ro
vi

si
o

n
e

d

Su
rr

o
g

at
e

Su
rr

o
g

at
e

P
ro

vi
si

o
n

in
g

fr
o

m
 t

h
e

M

o
b

il
e

D
e

vi
ce

Su
rr

o
g

at
e

P
ro

vi
si

o
n

in
g

fr
o

m
 t

h
e

C

lo
u

d

Su
rr

o
g

at
e

B
ro

ad
ca

st

C
lo

u
d

Su

rr
o

g
at

e
D

ir
e

ct
o

ry

Lo
ca

l
Su

rr
o

g
at

e
D

ir
e

ct
o

ry

R
es

o
u

rc
e

O

p
ti

m
iz

a
ti

o
n

Fa
u

lt

T
o

le
ra

n
ce

Sc
al

ab
il

it
y

/
E

la
st

ic
it

y
Se

cu
ri

ty

R
u

n
ti

m
e

P

ar
ti

ti
o

n
in

g

R
u

n
ti

m
e

P

ro
fi

lin
g

R
e

so
u

rc
e

-
A

d
ap

te
d

C

o
m

p
u

ta
ti

o
n

Lo
ca

l F
al

lb
a

ck

O
p

p
o

rt
u

n
is

ti
c

M
o

b
il

e-
Su

rr
o

g
at

e
D

a
ta

Sy

n
ch

ro
n

iz
at

io
n

C
ac

h
e

d
 R

e
su

lt
s

A
lt

e
rn

at
e

C

o
m

m
u

n
ic

a
ti

o
n

s

Ju
st

-i
n

-T
im

e

C
o

n
ta

in
e

rs

R
ig

h
t-

Si
ze

d

C
o

n
ta

in
e

rs

Tr
u

st
ed

Su

rr
o

g
at

es

La
zy

 M
ig

ra
ti

o
n

E
ag

e
r

M
ig

ra
ti

o
n

St
at

e
fu

l
C

o
m

p
u

ta
ti

o
n

O

ff
lo

ad

U
se

r-
G

u
id

e
d

R

u
n

ti
m

e

P
ar

ti
ti

o
n

in
g

R
e

so
u

rc
e

-
A

d
ap

te
d

In

p
u

t

O
p

p
o

rt
u

n
is

ti
c

Su
rr

o
g

at
e-

C
lo

u
d

D

a
ta

Sy

n
ch

ro
n

iz
at

io
n

C
lie

n
t-

Si
d

e
 D

at
a

C
ac

h
in

g

D
yn

a
m

ic
al

ly
-

Si
ze

d

C
o

n
ta

in
e

rs

Su
rr

ro
ga

te

Lo
ad

B

a
la

n
ci

n
g

In
te

rm
ed

ia
ry

C

lo
u

d

Su
rr

o
g

at
e

D
ir

e
ct

o
ry

C
o

m
p

u
ta

ti
o

n

O
ff

lo
ad

Le
ge

n
d T
ac

ti
c

C
a

te
go

ry
Ta

ct
ic

Ta
ct

ic

V
ar

ia
ti

o
n

F
ig

u
re

3.
1:

A
rc

h
it

ec
tu

ra
l

T
ac

ti
cs

fo
r

C
y
b

er
-F

o
ra

g
in

g

59

3.2.1 Computation Offload

A scenario for Computation Offload from a mobile device to a surrogate is
the following: The user of a mobile device executes a cyber-foraging-enabled
mobile application. The application offloads the computation to a nearby
surrogate with minimal disruption to the mobile device user.

The Computation Offload tactic can be found in the computation offload
systems shown in Table 2.6 for which What to Offload - Granularity is Com-
ponent, Service, or Application. It can also be mapped to the data staging
systems in Table 2.7 for which What to Offload - Data Operations corresponds
to Storage because even though these systems are using the surrogate for
extended storage, what they are really offloading is the data management
computation.
Motivation. Mobile devices still do not have the computing power and bat-
tery life that will allow them to perform effectively over long periods of time,
or to execute applications that require extensive communication or compu-
tation. Computation Offload extends battery life by offloading computation-
intensive portions of an application to nearby surrogates with greater compu-
tation power. In addition, the single-hop proximity of surrogates combined
with the use of WiFi or short-range radio instead of broadband wireless (e.g.,
3G/4G) also decreases latency [10][75] and improves the user experience espe-
cially for highly-interactive applications.
Description. Figure 3.2 shows the main components of this tactic with num-
bers that indicate the sequence of operations. The Computation Offload tac-
tic requires an Offload Client running on the Mobile Device and an Offload
Server running on the Surrogate. This pair of components communicates to
coordinate the offload operation. The Cyber-Foraging Enabled Mobile App in-
vokes the Offload Client when it encounters a portion of code that has been
identified as offloadable computation and passes it any App Metadata that is
required to set up the Offloaded Code. The Offload Client then coordinates
with the Offload Server to set up theOffloaded Code so that it can be in-
voked by the Cyber-Foraging Enabled Mobile App. The Offloaded Code runs
inside a Container on the Surrogate. Examples of a Container are a virtual
machine, application server, web server, or the operating system. Figure 3.2
shows the Cyber-Foraging Enabled Mobile App communicating directly with
the Offloaded Code. An alternative is for the Cyber-Foraging Enabled Mobile
App to always communicate through the Offload Client. This latter alter-
native has the potential for performance problems as the number of mobile
clients using the surrogate increases. This is because the Offload Server be-
comes a bottleneck as all communication would go through this component.

60

However, some systems that implement Fault Tolerance tactics (Section 3.3.2)
place the responsibility of detecting and managing disconnections in the Off-
load Client and Offload Server which therefore benefit from the single point
of communication of the latter alternative.

SurrogateMobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Offload
Client

Call

Container
Offloaded

Code
4: Execute (Input)

Offload
Server

3rd Party
Runtime

Component

1: Start Offload 3: Set Up Offloaded Code

2: Start Offload

File
File Read/

Write

App
Metadata

Figure 3.2: Computation Offload Tactic

Constraints. The tactic as described assumes that offloaded computation
already exists on the surrogate (provisioned via the application of a Surrogate
Provisioning tactic (Section 3.2.3)) and that the surrogate is always available.
Example. An example of how to apply the Computation Offload tactic is
the Mobile Agents system [5] shown in Figure 3.3. In the Mobile Agents sys-
tem applications are manually partitioned into components that have to be
executed locally and components that can be offloaded. These offloadable
components are set up as Mobile Agents using the Java Agent Development
Environment (JADE). At runtime, the Execution Manager determines if the
agent marked as offloadable should be offloaded based on a comparison of local
and remote execution times (Section 3.3.1.1 contains details on runtime parti-
tioning). If so, the Execution Manager sends the Mobile Agent (which carries
its input parameters) to the Agent Management System so that it can migrate
the Mobile Agent to the JVM Container in the Cloud Host. After migration,
the offloaded component starts executing and communicates directly with the

61

Mobile App.

<<Surrogate>>

Cloud Host
<<Mobile Client>>

Smartphone

<<Cyber-Foraging Enabled Mobile App>>

Mobile App

<<Offload Client>>

Execution Manager

<<Container>>

JVM Container

<<Offloaded Code>>

Mobile Agent

4: Execute()

<<Offload Server>>

Agent Management
System

1: Start Offload(Mobile Agent)

3: Set Up Offloaded Code(Mobile Agent)

2: Start Offload(Mobile Agent)

Mobile
Agent 1

Mobile
Agent n...

Legend

System
Boundary

Custom
Runtime

Component

Call3rd Party
Runtime

Component

Figure 3.3: Mobile Agents as an Example of the Computation Offload Tactic

Dependencies. The Computation Offload tactic needs to be combined with
a Surrogate Provisioning tactic (Section 3.2.3) that prepares the surrogate for
computation offload. It also needs to be combined with a Surrogate Discovery
tactic (Section 3.2.4) to discover surrogates in the environment. This tactic
is also often combined with non-functional tactics to achieve desired system
qualities. For example, it is often combined with Resource Optimization tactics
(Section 3.3.1) to make better decisions on resource usage and with Fault
Tolerance tactics (Section 3.3.2) to attempt to provide continued operations.
Variation: Stateful Computation Offload. The tactic as described as-
sumes that the offload operation is stateless, which means that no mobile
app state needs to be transferred between the Offload Client and the Offload
Server during the offload operation. This is what happens when the granu-
larity of the offload operation is a module or class, a service, or a complete
application (or server portion of an application) because offloaded code is self-

62

contained. When the granularity of the offload operation is at the process or
at the method level, the state of the program or object that contains the pro-
cess or method being offloaded has to be transferred to the equivalent program
or object on the surrogate. In this case, a state synchronization operation in
a State Manager component that is invoked either periodically or on-demand
has to execute before the offloaded code is executed to guarantee that the state
is equivalent on both sides. This stateful variation of the tactic can be mapped
to the computation offload systems in Table 2.6 for which What to Offload -
Granularity corresponds to Process or Function.

An example of how to apply the Stateful Computation Offload tactic is
the CloneCloud system [22] shown in Figure 3.4, marked with numbers that
indicate the sequence of operations. In CloneCloud, the Container on the Sur-
rogate is a Clone Application VM of the Application VM that is executing on
the mobile device. At runtime, when a computation block of the Instrumented
Mobile App is marked for offload, a Migrator component running in the VM is
invoked that puts the running process into a sleep state and transfers this state
to the Clone Application VM via the pair of Node Managers running on both
the mobile device and the surrogate. The Migrator in the Clone Application
VM creates a new process with the received state and marks it as runnable so
it executes. The cloned process executes from the beginning of the computa-
tion block until it reaches the end of the computation block. The Migrator on
the cloned VM then transfers the new process state back to the mobile device.
The Migrator on the mobile device receives the new process state, merges it
with the sleeping process, and then wakes up the sleeping process to continue
its execution.

3.2.2 Data Staging

A scenario for Data Staging is the following: A mobile application is being
used by multiple users to collect data in the field. Upon detection that it is
close to a surrogate, the mobile application offloads the collected data. When
the operation is complete, the mobile device deletes the transmitted data to
free up storage space. In addition, when the surrogate establishes connectivity
to the main data center in the cloud, it forwards the data that was collected by
the multiple users, where it is integrated into the enterprise data repository.
An additional capability of the application is to provide data visualizations
pertaining to the data collected by the user, the data collected in the region
that is served by the surrogate, and the data collected by the entire set of users.
Therefore, data is pushed from the enterprise data center to the surrogate
either on-demand or periodically so that the data is closer to the user and

63

<<Surrogate>>

Cloud Host
<<Mobile Client>>

Smartphone
<<Container>>

Application VM

<<Cyber-Foraging Enabled Mobile App>>

Instrumented Mobile App

<<Offload Client>>

Node Manager

<<Container>>

Clone Application VM

<<Offload Server>>

Node Manager

1: Start Offload()

4: Create Process(Process State)

3: Start Offload(Process State)

<<State Manager>>

Migrator

2: Start Offload(Process State)

<<Cyber-Foraging Enabled Mobile App>>

Instrumented Mobile App

<<State Manager>>

Migrator

5: Create and Start Process(Process State)

6: Reintegrate State(New Process State)

7: Reintegrate State(New Process State)

8: Reintegrate State(New Process State)

9: Merge Process State(New Process State)

Legend

System
Boundary

Custom
Runtime

Component

Call3rd Party
Runtime

Component

Figure 3.4: CloneCloud as an Example of the the Stateful Computation Offload
Tactic

accessible even if the surrogate is disconnected from the enterprise.
The Data Staging tactics require a configuration such as the one shown in

Part(c) of Figure 2.5 in which the mobile device is connected to a surrogate
and the surrogate is connected to the enterprise or cloud data center, even if
connectivity is intermittent or periodic.

3.2.2.1 Pre-Fetching

The Pre-Fetching tactic can be found in the data staging systems shown in
Table 2.7 for which What to Offload - Data Operations is Pre-Fetching.
Motivation. Data-intensive mobile apps often rely on data located in the
cloud. However, access to this data is likely over a lower-bandwidth and multi-
hop connection, compared to the higher-bandwidth, single-hop connection that
exists between a mobile device and a surrogate. Pre-fetching anticipates data

64

needs in order to minimize communication to the cloud and reduce latency.
The surrogate, according to a defined pre-fetch algorithm, retrieves data from
the cloud and stores it locally so that it is available to the mobile device when
it needs it. Access to the cloud is therefore only necessary when the data is
not already available on the surrogate.
Description. Figure 3.5 presents the main components of this tactic. The
Pre-Fetching tactic requires a Data Staging Client that runs on the Mobile
Client and a Data Staging Manager that runs on the Surrogate. The Data
Staging Client handles all data operations on behalf of a Cyber-Foraging-
Enabled Mobile App. Before sending the data operation to the Data Staging
Manager, the Data Staging Client captures and also sends along any Pre-Fetch
Hints that are used by the Pre-Fetch Algorithm to determine and anticipate
data needs. Examples of pre-fetching hints include mobile device location,
user profile and preferences, and the user’s schedule. TheData Staging Man-
ager first executes the data operation against the local Cache. If the operation
is successful it returns the results of the data operation. If the operation is
not successful the Data Staging Manager obtains the data from the Cloud
Data Repository in the Enterprise Cloud (or the equivalent of a master data
repository), stores it in the local Cache, and returns the results of the data op-
eration to the Mobile Client. Asynchronously, either periodically or triggered
by certain conditions, the Data Staging Manager will use the Pre-Fetch Hints
from the Mobile Client and any local data such as the user’s access history as
parameters to a Pre-Fetch Algorithm that will calculate the data set that is
likely to be needed next by the Cyber-Foraging Enabled Mobile App. It will
then retrieve this data set from the Cloud Data Repository and store it in the
local Cache so that it is available when it is needed by the Cyber-Foraging
Enabled Mobile App. Similarly, either periodically or in response to certain
conditions, that Data Staging Manager will sync the Cache with the Cloud
Data Repository to ensure that data is consistent locally and remotely.
Constraints. The tactic as presented requires connectivity between the mo-
bile device and the surrogate for access to any data that is being staged, and
eventual connectivity between the surrogate and the enterprise cloud to serve
cache misses and synchronize data. The tactic also assumes that there is a
mechanism in place, either manual or automatic, to resolve any synchroniza-
tion conflicts between the Cache and the Cloud Data Repository, especially if
cached data is not read-only.
Example. An example of how to apply the Pre-Fetching tactic is the Trusted
and Unmanaged Data Staging Surrogates system [42] shown in Figure 3.6.
Data is staged on a Staging Server in the Surrogate. A Client Proxy running
on the Wimpy Client intercepts all data operations. If it detects high latency

65

SurrogateMobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Data
Staging
Client

Call

Data Staging
Manager

Execute Data Operation

Execute Data
Operation(Pre-Fetch Hints)

Enterprise
Cloud

File Read/
Write

(Synchronous)

Cache

Repository

Cloud Data
Repository

Data Operation

Data Operation

File Read/Write
(Asynchronous)

File

Pre-Fetch
Hints

Pre-Fetch
Algorithm

Calculate Pre-Fetch Data Set(Pre-Fetch Hints)

Pre-Fetch Data Set

Sync

Cache

Figure 3.5: Pre-Fetching Tactic

it sends the data operation to the Surrogate, which then uses a pre-defined
User Role to determine the initial set of files that the user is going to need
based on this role. The User Role basically establishes the set of files that
are commonly used together. The Staging Server obtains the set of files from
the File Server and caches them on the surrogate.1 After the Cache has been
loaded with the initial data set, all data operations are routed to the Staging
Server. If the requested file exists in the Cache then the data operation takes
place locally on the Surrogate. If the file is not available in the Cache it obtains
the file from the File Server and stores it in the Cache, along with any other
files that are predicted to be required based on the request.
Dependencies. The Pre-Fetching tactic needs to be combined with a Sur-
rogate Provisioning tactic (Section 3.2.3) that prepares the surrogate for data

1For simplicity, the desktop and its trusted authority role are not included in the discus-
sion of this tactic but are addressed in Section 3.3.4.1.

66

<<Surrogate>>

Surrogate

<<Mobile Client>>

Wimpy Client

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

File Client

Custom
Runtime

Component

<<Data Staging Client>>

Client Proxy

Call

<<Data Staging Manager>>

Staging Server

Execute Data Operation

Execute Data
Operation

<<Enterprise Cloud>>

Server

File Read/
Write

(Synchronous)

<<Cache>>

Cache

Repository

<<Cloud Data Repository>>

File Server

Data Operation

Data Operation

File Read/Write
(Asynchronous)

File

<<Pre-Fetch Hints>>

User Role

<<Pre-Fetch Algorithm>>

Prediction
Algorithms

Calculate Pre-Fetch Data Set(User Role)

Pre-Fetch Data Set

Sync

Cache

Start Staging{User Role)

Figure 3.6: Trusted and Unmanaged Data Staging Surrogates as an Example
of the Pre-Fetching Tactic

staging and with a Surrogate Discovery tactic (Section 3.2.4) to discover sur-
rogates in the environment. This tactic is also often combined with other
non-functional tactics to achieve desired system qualities. For example, it
is often combined with Fault Tolerance tactics (Section 3.3.2) to attempt to
provide continued operations.

3.2.2.2 In-Bound Pre-Processing

The In-Bound Pre-Processing tactic can be found in the data staging systems
shown in Table 2.7 for which What to Offload - Data Operations is In-Bound
Processing.
Motivation. Data-intensive mobile apps often rely on data that resides in
the cloud. However, access to this data is likely over a lower-bandwidth and
multi-hop connection, that in addition consumes more energy than the single-
hop connection that exists between a mobile device and a surrogate. In order
to reduce the amount of data received by the mobile device, avoid direct com-
munication to the cloud for every data operation, and avoid the computation

67

costs of processing this data for visualization on mobile devices, the surrogate
pre-processes the data that is retrieved or pushed from the enterprise cloud.
The mobile device receives data that is ready to be consumed, or filtered such
that it only receives data of interest or relevance.
Description. Figure 3.7 shows the main elements of the In-Bound Process-
ing tactic. This tactic requires a Communications Manager that runs on the
Mobile Client and handles all communication with the Data Processor on the
Surrogate. The Mobile Client can request data on demand or periodically
(synchronous) or can register with the surrogate for data of interest (asyn-
chronous). In the case of synchronous requests, as shown by the S# operations
in Figure 3.7, the Cyber-Foraging-Enabled Mobile App requests data via the
Communications Manager. The Data Processor retrieves the data from the
Cloud Data Repository and pre-processes it according to defined algorithm-
s/rules before sending the data to the mobile app. The Data Processor may
store data in its local Cache for additional processing, to serve additional re-
quests based on the same data, or if the algorithm/rules involve partitioning
or priorization of data such that it is sent incrementally upon request. In case
of asynchronous requests, as shown by the A# operations in Figure 3.7, the
Cyber-Foraging-Enabled Mobile App registers for data of interest via the Com-
munications Manager. The Data Processor periodically polls the Enterprise
Cloud for the data of interest (e.g., new data, updated data, data conditions
satisfied) and when conditions are met it sends the data asynchronously back
to the mobile app using some form of callback mechanism.
Constraints. The tactic as presented requires connectivity between the mo-
bile device and the surrogate for access to any data that is being staged, and
connectivity between the surrogate and the enterprise cloud to receive data as
required.
Example. An example of how to apply the In-Bound Pre-Processing tactic is
the Edge Proxy system [6] shown in Figure 3.8. The Edge Proxy system uses
a surrogate called an Edge Server to monitor changes in web pages on behalf
of a Web Browser running on the Mobile Device. The user marks areas of
interest on a web page (e.g., stock prices, temperature, news) and sends them
to an Edge Proxy running on the Edge Server via the Mobile Proxy. The Edge
Proxy saves the current state of the web page along with the areas of interest
in its Cache. The Edge Proxy then does high-frequency polling of the web
page on the Web Server and notifies the Mobile Device if it detects a change
in the areas of interest compared to the cached web page. Instead of sending
separate messages for the web page and its embedded objects, the Edge Proxy
bundles the web page with all its embedded objects in a single batch update
message, further reducing the amount of communication between the Mobile

68

SurrogateMobile Client

Legend

System
Boundary

Cyber-Foraging Enabled
Mobile App

Custom
Runtime

Component

Communications
Manager

Call
(Synchronous)

Data
Processor

S1: Get
Data

A2: Register for Data of Interest

Enterprise
Cloud

File Read/
Write

(Synchronous)

Cache

Repository

Cloud Data
Repository

S3: Data

File Read/Write
(Asynchronous

/Periodic)

S2: Get Data

Return
(Synchronous)

S4: Processed Data

A3: Data

Save Data

A1: Register
for Data of

Interest

Message
(Asynchronous)

A4: Data of Interest

A5: Data
of Interest

S5: Processed
Data

Figure 3.7: In-Bound Pre-Processing Tactic

Device and the Surrogate.
Dependencies. The In-Bound Pre-Processing tactic requires a Surrogate
Provisioning tactic (Section 3.2.3) that prepares the surrogate for data staging.

3.2.2.3 Out-Bound Pre-Processing

The Out-Bound Pre-Processing tactic can be found in the data staging systems
shown in Table 2.7 for which What to Offload - Data Operations is Out-Bound
Processing.
Motivation. Data-intensive mobile apps are often used to collect data in
the field, where Internet connectivity might not be available to mobile devices
or might be costly. In addition, although the field-collected data is valuable,
it might be overwhelming for a device to transmit all data collected to the
enterprise, especially if Internet connectivity is a scarce resource. In these
cases, a surrogate can pre-process – clean, filter, summarize, or merge – the
data that is received from the mobile devices that it serves such that the data
that is sent on to the enterprise cloud is ready for consumption and serves an
immediate need. Complete data from the mobile device and/or the surrogate

69

<<Mobile Client>>

Mobile Device
<<Surrogate>>

Edge Server

Legend

System
Boundary

<<Cyber-Foraging Enabled
Mobile App>>

Web Browser

Custom
Runtime

Component

<<Communications Manager>>

Mobile Proxy

Call
(Synchronous)

<<Data Processor>>

Edge Proxy

Register for Changes
to Web Page

Areas of Interest

<<Enterprise Cloud>>

Web Server

File Read/
Write

(Synchronous)

<<Cache>>

Cache

Repository

<<Cloud Data Repository>>

Web Pages

File Read/Write
(Asynchronous

/Periodic)

Web Pages of Interest
 [High-Frequency Polling]

Web Pages

Register
for Changes

to Web Page
Areas of
Interest

Message
(Asynchronous)

Web Page Changes

Web Page
Changes

Figure 3.8: Edge Proxy an Example of the In-Bound Pre-Processing Tactic

can be uploaded to the cloud when network connectivity is available.
Description. Figure 3.9 shows the main components of the Out-Bound Pre-
Processing tactic. This tactic requires a Mobile Sensing App that uses a Com-
munications Manager on the mobile device to buffer data to send to its coun-
terpart on the Surrogate. The Communications Manager can also batch data
according to user or application preferences to conserve the energy spent on
turning the radio on and off for communication. The Communications Man-
ager on the Surrogate receives the data and stores it in a local Cache. One
or more Data Processing Applications on the Surrogate can either subscribe
to data coming in from the Mobile Device, perform continuous processing and
forwarding of the data as it is coming in, or provide on-demand capabilities to
other mobile devices being served by the same surrogate or cloud applications.
Constraints. The tactic as presented requires eventual connectivity between
the mobile device and the surrogate to offload data captured in the field and
eventual connectivity between the surrogate and the enterprise cloud to offload
data that is staged on the surrogate.
Example. An example of how to apply the Out-Bound Processing tactic is
the Large-Scale Mobile Crowdsensing system [119]. Crowdsensing refers to
individuals using mobile devices with sensors that share information about an
event or task of interest such as environmental monitoring, public safety, traffic

70

SurrogateMobile Client

Legend

System
Boundary

Mobile Sensing App

Custom
Runtime

Component

Communications
Manager

Call
(Synchronous)

Communications
Manager

Send Data(Sensed Data)

Send Data(Sensed Data)

Enterprise
Cloud

File Read/
Write

(Synchronous)

Cache

Repository

Cloud Data
Repository

Raw/Processed Data

Store Data

Register
for Data of

Interest

Message
(Asynchronous)

Data
of Interest

Data Processing
ApplicationData Processing

ApplicationData Processing
Application

Read/Write
Raw/Processed
Data

File Read/Write
(Asynchronous

/Periodic)

Figure 3.9: Out-Bound Pre-Processing Tactic

monitoring, or collaborative searches. As shown in Figure 3.10, the Large-Scale
Mobile Crowdsensing system relies on a single Crowdsensing Participation App
to gather data from one or more sensors on the Mobile Device and create a Data
Sensing Stream that is sent to a Proxy VM on a surrogate called a Cloudlet.
The Proxy VM serves the role of both Communications Manager and Cache
and is essentially a proxy of the mobile device that handles all requests for
sensor data on behalf of the mobile device. A Cloudlet can run one or more
Proxy VMs that each corresponds to a mobile device that is participating in
a crowdsensing task. In addition, the Proxy VM can perform processing on
the data sensing stream to for example enforce privacy settings. One or more
Crowdsensing Application VMs that also run on the surrogate access the Proxy
VM to obtain the sensed data to process locally or to format and send the
data to applications running in an Application Server in the cloud.
Dependencies. The In-Bound Pre-Processing tactic requires a Surrogate
Provisioning tactic (Section 3.2.3) that prepares the surrogate for data staging.

71

<<Surrogate>>

Cloudlet
<<Mobile Client>>

Mobile Device

Legend

System
Boundary

<<Mobile Sensing App>>

Crowdsensing
Participation App

Custom
Runtime

Component

<<Communications Manager>>

Communications Library

Call
(Synchronous)

<<Communications Manager>>
<<Cache>>

Proxy VM

Data Sensing Stream

Data Sensing Stream

<<Enterprise Cloud>>

Cloud

File Read/
Write

(Synchronous)
Repository

<<Cloud Data Repository>>

Application Server

Processed Data

Message
(Asynchronous)

Data Processing Application
Data Processing Application<<Data Processing Application>>

Crowdsensing Application
VM

Processed Data
Sensing Stream

File Read/Write
(Asynchronous

/Periodic)

Figure 3.10: Large-Scale Mobile Crowdsensing as an Example of the Out-
Bound Pre-Processing Tactic

3.2.3 Surrogate Provisioning

To be able to use a surrogate for cyber-foraging, it has to be provisioned with
the offloaded computation and/or the computational elements that enable data
staging. A scenario for surrogate provisioning is as follows: a mobile device
needs to execute a computation-intensive task. Instead of executing the task
locally, it locates a surrogate and sends it a request to execute the computation
on its behalf. The surrogate first checks if it already has the computation to
support the task. Because it does not, it sees if it can locate the computation in
a cloud repository. Because the surrogate is not able to locate the capability
in the cloud, the mobile device sends the computation to the surrogate for
installation. Once the surrogate installs and starts the computation it notifies
the mobile device that it is ready, executes the computation, and sends back
the results of the computation.

3.2.3.1 Pre-Provisioned Surrogate

Many of the systems described in the primary studies assume that the off-
loaded computation and/or data staging elements are already installed (pre-

72

provisioned) on the surrogate at deployment time. The computation offload
systems shown in Table 2.6 that make this assumption are those for which
What to Offload -Payload is (1) Parameters but not Computation, Source Lo-
cation nor Setup Instructions, (2) Application State, (3) Device Context, or
(4) Continuous Data. It is also true of all the data staging systems shown in
Table 2.7. However, for these systems, there is no detail of how the surrogates
were provisioned with the necessary offloaded computation and or data staging
elements. This observation relates to the SLR finding in Section 2.6 that states
that most systems tend to focus on the algorithms and implementation details
for enabling cyber-foraging and not on system-level attributes such as ease of
distribution and installation that have to be considered when moving from
experimental prototypes to operational systems. Indeed, a cyber-foraging sys-
tem could be implemented with a static, hard-coded connection between the
mobile device and the offloaded computation or data staging elements in the
surrogate. However, this static link between mobile device and surrogate does
not enable the flexibility that is implied by cyber-foraging as the opportunistic
leveraging of resource-rich surrogates.
Motivation. Pre-provisioned surrogates have the advantage of shorter re-
sponse time to offload requests from mobile devices because the offloaded
computation or data staging elements already reside on the surrogate. In
an operational setting in which surrogates support multiple clients, a surro-
gate should have minimal management capabilities that (1) help surrogate
administrators to install capabilities (offloaded computation and data staging
computing elements) and appropriate execution containers, and (2) maintain
a list of these capabilities (similar to a service registry).
Description. Figure 3.11 shows the main components of the Pre-Provisioned
Surrogate tactic. This tactic requires a Surrogate Manager that acts as a man-
agement component for the Surrogate. The Surrogate Manager is accessed by
a system administrator from a Local User Interface running on the Surrogate
or a Remote User Interface that resides on an external Admin Client (e.g., lap-
top, desktop, mobile device). When a system administrator uses the Surrogate
Manager to install a new offload or data staging capability on the Surrogate,
the capability is stored in a Capabilities Repository such as a file system or
database. The Capabilities Repository contains the set of capabilities that
are either started when the Surrogate is started, or started on demand when
theOffload Server (from the Computation Offload tactic (Section 3.2.1)) or the
Data Staging Manager (from the Data Staging tactics (Section 3.2.2)) receive
a request from a mobile device. In the latter case, the Capability Metadata
contains metadata that enables the setup of these capabilities on-demand, such
as resource requirements, installation scripts, and configuration data. Installed

73

capabilities are then registered in a Capability Registry that is used by Sur-
rogate Discovery tactics (Section 3.2.4) for advertising capabilities to mobile
cyber-foraging clients.

Surrogate

Surrogate
Manager

Admin Client

Remote User
Interface

Local User
Interface

Legend

System
Boundary

Custom
Runtime

Component

Call
(Synchronous)

File Read/
Write

Repository

Capabilities
Repository

Capability
Metadata

Capability
Registry

Tactic
Boundary

Offload
Server

Data Staging
Manager

Surrogate
Discovery

Figure 3.11: Pre-Provisioned Surrogate Tactic

Examples. This tactic is not present in any of the systems, but could
be integrated into any of the cyber-foraging systems in the primary stud-
ies that assume that offloaded computation and/or data staging elements are
already available on the surrogate at runtime. What would vary between pre-
provisioned systems that implement this tactic is the form of the capabilities
that are stored in the repository and capability metadata, which depend on
the What to Offload - Granularity architecture decision from Figure 2.3.

• For systems that offload at the process level, such as CloneCloud [22]
shown in Figure 3.4, the capabilities take the form of a container to

74

which the process and its state can migrate. For CloneCloud this is an
Application VM.

• For systems that offload at the Method, Function or Operation level
the capabilities take the form of the larger programming construct that
these are a part of (i.e., class, module or program). As an example,
if the MAUI system [26] would implement this tactic, the capabilities
would take the form of .NET component classes that are stored in the
Capabilities Repository and at runtime would be deployed inside a .NET
CLR environment (i.e., execution container).

• For systems that offload at the Class, Module, Component, Task, Service,
Application, Program, or Server level, the capabilities take this exact
form because they are self contained. As an example, if the AIDE system
[83] implemented this tactic the capabilities would take the form of Java
classes that at runtime would be deployed inside a JVM.

In addition, something that would also vary across these systems is whe-
ther the offloaded computation is started once and always running, as in the
mHealthMon system [2], or if it is started upon offload request as in the Grid-
Enhanced Mobile Devices system [51]. In mHealthMon the services that cor-
respond to offloaded computation are running and waiting for requests from
mobile clients. Even though it is not explicitly stated in the study, starting
up the system would involve starting all the services. If mHealthMon im-
plemented this tactic, a startup process would start all the services in the
Capability Repository. In Grid-Enhanced Mobile Devices, upon an offload re-
quest an object called a deputy object is created on the surrogate to manage
all the mobile device’s requests and then destroyed when the mobile device
terminates the connection. This latter approach also promotes scalability and
elasticity, as shown in the Just-In Time Containers tactic (Section 3.3.3.1).

3.2.3.2 Surrogate Provisioning from the Mobile Device

The Surrogate Provisioning from the Mobile Device tactic can be found in the
computation offload systems shown in Table 2.6 for which What to Offload -
Payload is Computation.
Motivation. In Pre-Provisioned Surrogates (Section 3.2.3.1) a mobile device
can only execute applications that already exist on the surrogate. Provisioning
the surrogate from the mobile device has the advantage of enabling the execu-
tion of a greater number of applications because surrogates are provisioned at
runtime. The mobile device sends the offloaded computation to the surrogate

75

at runtime from the mobile devices that use them. The surrogate installs the
computation inside an execution container and starts the application on behalf
of the mobile device.
Description. Figure 3.12 shows the main elements of the Surrogate Provi-
sioning from the Mobile Device tactic with numbers that indicate the sequence
of operations. In this tactic each Cyber-Foraging-Enabled Mobile App has one
or more files that correspond to Offloaded Code for Cyber-Foraging-Enabled
Mobile App, such as a class, module or application. The Cyber-Foraging-
Enabled Mobile App starts the offload process. The Offload Client sends the
Offloaded Code for Cyber-Foraging-Enabled Mobile App to the Offload Server
on the Surrogate. The Offload Server installs the offloaded code in an execu-
tion Container and notifies the mobile app that it is ready for execution. At
this point the Cyber-Foraging-Enabled Mobile App starts the execution of the
offloaded code.

SurrogateMobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Offload
Client

Call

Container
Offloaded

Code
(Installed)

6: Execute (Input)

Offload
Server

3rd Party
Runtime

Component

1: Start Offload
3: Install(Offloaded Code)

2: Start Offload(Offloaded Code)

File Read/
Write

Offloaded Code
for Cyber-
Foraging

Enabled Mobile
App

File Return

4: Application Ready

5: Application Ready

Figure 3.12: Surrogate Provisioning from the Mobile Device Tactic

76

Constraints. The tactic as presented requires a pre-established agreement
between mobile devices and surrogates on the format of the offloaded code (e.g.,
Java class, Python script, Windows application). In addition, depending on
the size of the offloaded code (i.e., payload), the tactic may require additional
components on the mobile device and surrogate to manage and provide reliable
communications during the transmission of the offloaded code.
Example. An example of how to apply the Surrogate Provisioning from the
Mobile Device tactic is the VM-Based Cloudlets system [108]. In this system,
an Application Overlay is created for each cyber-foraging-enabled mobile app
by starting a Base VM (a minimally configured VM with a guest (OS) in-
stalled), installing the application in the Base VM, and then suspending the
VM. The binary difference is calculated between the resulting VM image file
and the Base VM and saved as an Application Overlay. As shown in Figure
3.13, at runtime the Application Overlay is sent by the KCM Client to the
KCM Server. The KCM Server performs VM Synthesis by taking the same
Base VM from which the Application Overlay was created and applying the
overlay to it in order to recreate the VM with the installed application. The
resulting VM is called a Launch VM and is started within a VM Manager (in
this system it is VirtualBox2). Once the Launch VM is started and ready, the
KCM Client is notified that the application is ready for execution. The user
then interacts with the application via a VNC Client.

3.2.3.3 Surrogate Provisioning from the Cloud

The Surrogate Provisioning from the Cloud tactic can be found in the compu-
tation offload systems shown in Table 2.6 for which What to Offload - Payload
is Source Location, which are the Roam [20] and the Elastic HTML5 [126]
systems. For these two systems the payload is the URL of the location of the
offloaded computation. It can also be found in the Collective Surrogates [48]
and MAPCloud [103] systems for which What to Offload - Payload is Setup
Instructions. In the first system the payload is a script that obtains the off-
loaded computation from the cloud; in the second system it is an application
request that is modeled as a workflow of tasks to be located in the cloud.
Motivation. Provisioning surrogates from the mobile device has the advan-
tage of enabling the execution of a greater number of applications (Section
3.2.3.2) compared to pre-provisioned surrogates (Section 3.2.3.1). However,
the size of the computation that is sent to the surrogate at runtime can be
significant. In the examples for the MAUI system [26], the size of the .NET

2https://www.virtualbox.org/

77

https://www.virtualbox.org/

<<Surrogate>>

Cloudlet
<<Mobile Client>>

Mobile Device

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

VNC Client

Custom
Runtime

Component

<<Offload Client>>

KCM Client

Call

<<Container>>

VM Manager (VirtualBox)

<<Offloaded Code>>
Launch VM

6: Execute (Input)

<<Offload Server>>

KCM Server

3rd Party
Runtime

Component

3: Install(Synthesized VM)

1: Start Offload(Application Overlay)

File Read/
Write

<<Offloaded Code for
Cyber-Foraging
Enabled Mobile

App>>

Application
Overlay

File Return

4: VM Ready

5: Start Client

Base

VM

2: Synthesize
VM

Figure 3.13: VM-Based Cloudlets as an Example of the Surrogate Provisioning
from the Mobile Device Tactic

components transmitted at runtime is between 0.2 MB and 13.8 MB. In the
examples for the VM-Based Cloudlets system [108], the size of an application
overlay is between 63 MB and 196 MB. An alternative is to send the location
of the computation in the form of a URL for the surrogate to download and in-
stall. The payload in this case is almost insignificant but the time to provision
may be longer due to potentially higher and unpredictable latency between
the cloud and the surrogate. However, the mobile device is not consuming
battery due to high transmission costs. In addition, because the computation
exists in a defined place in the cloud it is easier to update because it does not
have to be sent to each mobile device after patches or upgrades.

78

Description. Figure 3.14 shows the main elements of the Surrogate Pro-
visioning from the Cloud tactic with numbers that indicate the sequence of
operations. In this tactic the Cyber-Foraging-Enabled Mobile App contains
the URL that indicates the location from which the offloaded code has to be
downloaded. The Cyber-Foraging-Enabled Mobile App starts the offload pro-
cess by sending the URL to the Offload Client, which in turn sends it to the
Offload Server on the Surrogate. The Offload Server downloads the offload
code from an Offload Code Repository at the URL, installs it in an execu-
tion Container and notifies the mobile app that it is ready for execution. At
this point the Cyber-Foraging-Enabled Mobile App starts the execution of the
Offloaded Code.

SurrogateMobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Offload
Client

Call

Container
Offloaded

Code
(Installed)

7: Execute (Input)

Offload
Server

3rd Party
Runtime

Component

1: Start Offload (URL) 4: Install(Offload Code)

2: Get Offload Code(URL)

File Read/
Write

Return

5: Application Ready

6: Application Ready

Cloud Server

Repository

Offload Code
Repository

3: Get Offload Code

Figure 3.14: Surrogate Provisioning from the Cloud

Constraints. The tactic as presented requires connectivity between the sur-
rogate and the cloud and potentially additional components on the surrogate
and cloud server to manage and provide reliable communications during the
transmission of the offloaded code. The computation has to exist at the indi-

79

cated location. In addition, it requires a pre-established agreement between
surrogates and the cloud servers on the format of the offloaded code (e.g., Java
class, Python script, Windows application).
Example. An example of how to apply the Surrogate Provisioning from the
Cloud tactic is the Collective Surrogates system [48]. As shown in Figure 3.15,
at runtime once a Participating Node is assigned to an offload operation, the
Offload Client sends a shell script to a Daemon running on the Participating
Node which executes the script on behalf of the client. The script downloads
the application that corresponds to the offloaded code from an Application
Repository on an Internet Server, installs the application and starts it. Once
the Application is started and ready, the Offload Client is notified that the
application is ready for execution. The user then interacts with the application
via a Client Interface.

<<Surrogate>>

Participating Node
<<Mobile Client>>

Mobile Device

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

Client Interface

Custom
Runtime

Component

<<Offload Client>>

Offload Client

Call

<<Container>>

Virtual Machine

<<Offloaded Code>>
Application

7: Execute (Input)

<<Offload Server>>

Daemon

3rd Party
Runtime

Component

1: Start Offload (Script)
4: Install(Application)

2: Get Offload Code(Script)

File Read/
Write

Return

5: Application Ready

6: Application Ready

<<Cloud Server>>

Internet Server

Repository

<<Offload Code Repository>>

Application Repository

3: Get Offload Code (URL)

Figure 3.15: Collective Surrogates as an Example of the Surrogate Provisioning
from the Cloud Tactic

3.2.4 Surrogate Discovery

In order to leverage cyber-foraging, mobile devices need to be able to locate
available surrogates on which to offload computation or stage data. A sce-

80

nario for surrogate discovery is as follows: a mobile device needs to execute
a computation-intensive task and has already decided that it will offload the
task to a surrogate. The mobile device is able to locate all nearby surrogates
and selects the surrogate that is the best match for the offloaded task.

The Surrogate Discovery tactics are a pre-requisite for Data Staging (Sec-
tion 3.2.2) and Computation Offload (Section 3.2.1) tactics. The surrogate
discovery protocol becomes the initial part of the offload process. Surrogate
Discovery tactics need to be matched with a Surrogate Provisioning tactic
(Section 3.2.3) that prepares the surrogate for cyber-foraging.

3.2.4.1 Local Surrogate Directory

The Local Surrogate Directory tactic can be found in six systems that maintain
a list of potential surrogates on which to offload computation or stage data:
Roam [20], Spectra [41], Cuckoo [62], SPADE [112], Offloading Toolkit and
Service [121], and Heterogeneous Auto-Offloading Framework for Mobile Web
Browsers [128].
Motivation. For mobile devices to leverage nearby surrogates they need to
know where the surrogates are located; that is, they need to know their network
address (i.e., surrogate IP address or URL). A simple solution is for mobile
devices to maintain a list of potential surrogates with their network addresses
or URLs, in addition to any information that can help the mobile device to
select the best offload target in case more than one is available. The list can
be static, or updated based on network conditions or offload execution data.
An advantage of a local list is that it will potentially include only surrogates
that are trusted by the mobile device.
Description. The Local Surrogate Directory Tactic has two parts. One part
involves the Surrogate Directory UI which populates and maintains the Sur-
rogate Directory. The other part involves the components that interact during
the offload process as shown in Figure 3.16 with numbers that indicate the
sequence of operations. At runtime, the Cyber-Foraging Mobile App calls the
Offload Client to start the offload process. The Offload Client obtains that list
of potential surrogates from the Surrogate Directory and pings each Surrogate
to see if it is available for offload. The Offload Server of each available Surro-
gate responds to the Offload Client with any Surrogate Metadata required by
the discovery protocol, such as current load or available capabilities. Based
on this information and any network information available, the Offload Client
selects the best surrogate for offload and starts the actual offload operation
with the selected Surrogate. Optionally, the Offload Client may update the
Surrogate Directory based on the availability and performance of the selected

81

surrogate.

Surrogate

Surrogate

Surrogate

Mobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Offload
Client

Call

Offload
Server

1: Start Offload

7: Start Offload

Surrogate
Directory

Surrogate
Directory UI

File Read/
Write

2: Get Surrogate List

6: Select
Surrogate

8: Update
Surrogate List

[Optional]

3: [For each
Surrogate]

Ping Surrogate

Return

5: Surrogate Metadata

Surrogate
Directory

Surrogate
Metadata

4: Get Surrogate
Metadata

Repository

Figure 3.16: Local Surrogate Directory

Constraints. The tactic as presented places the responsibility of surrogate
identification on the mobile device user. If surrogate metadata changes or
new surrogates are made available, a cyber-foraging system will not have an
automated way of updating the surrogate directory.
Examples. The six systems that implement the Local Surrogate Directory
tactic maintain a list of potential surrogates for offload. What varies between
systems is how the list is populated and whether or not the list is updated
based on network conditions or offload execution data.

• Roam [20] maintains a list of servers that can accept offloadable compo-
nents along with their characteristics. These characteristics are used at
runtime to determine an appropriate offload target.

82

• Spectra [41] keeps a list of surrogates that are willing to host computa-
tion in a configuration file. As the system executes, the status of each
surrogate is updated (e.g., availability, CPU load, file cache state).

• Cuckoo [62] has a component called a Resource Manager that maintains
a list of surrogates. If the surrogate has a visual display, upon loading
it shows a QR code3 that is read by the mobile device and then added
to the list of resources (surrogates) it can use for offload. If it does not
have a visual display, the resource description file for the surrogate has
to be copied to the mobile device so that it can be added to the list.

• SPADE [112] users have to associate remote computers called Cycle Pro-
viders to specific tasks that are part of a job. At runtime, the mobile
device uses this list to locate cycle providers based on each of the tasks
that it needs to execute. An interesting aspect of this system is that
surrogates have functionality to discover other surrogates on the same
network and can provide this list back to the mobile device. However,
the mobile device does not have capabilities to discover surrogates on its
own. Details of this system are shown as an example in Figure 3.17. A
single User Interface acts as the UI for maintaining the Cycle Provider
List and for starting an offload job. The Job Manager selects a Cy-
cle Provider for each task and starts the offload for each in a separate
process so that tasks can execute in parallel.

• Offloading Toolkit and Service [121] maintains a list of surrogates (service
providers) that are queried at runtime for desired capabilities. Each
surrogate maintains its own service registry.

• Heterogeneous Auto-Offloading Framework for Mobile Web Browsers
[128] queries all potential surrogates on its list for matching required
capabilities. Each matching surrogate sends back quality information
(e.g., server capability and network bandwidth) and the client decides
whether to offload the computation to a matching surrogate or execute
locally.

3.2.4.2 Cloud Surrogate Directory

The Cloud Surrogate Directory tactic can be found in 12 systems in which
the mobile device contacts a cloud server that maintains a list of potential

3A QR code, or Quick Response Code, is a machine-readable code consisting of an array
of black and white squares that typically contains URLs or other information that can be
read by the camera on a smartphone (http://www.qrcode.com/en/).

83

http://www.qrcode.com/en/

<<Surrogate>>

Cycle Provider
<<Mobile Client>>

Mobile Device

Legend

System
Boundary

Custom
Runtime

Component

<<Offload Client>>

Job Manager

Call

<<Offload Server>>

SPADE Daemon

1: Start Offload

4: Start Offload

Surrogate
Directory

<<Surrogate Directory UI>>
<<Cyber-Foraging Enabled

Mobile App>>

User Interface

File Read/
Write

2: Get Cycle Provider List

3: Select
Cycle
Provider for
each Job Task

<<Surrogate Directory>>

Cycle Provider List

Repository

Figure 3.17: SPADE as an Example of the Local Surrogate Directory Tactic

surrogates on which to offload computation or stage data: Mobile Agents [5],
HPC-as-a-Service [30], Collective Surrogates [48], Grid-Enhanced Mobile De-
vices [51], ThinAV [59], MCo [74], Resource Furnishing System [92], Cloud
Personal Assistant (CPA) [93], MAPCloud [103], Large-Scale Mobile Crowd-
sensing [119], Mobile Data Stream Application Framework [122], and Weblets
[127].
Motivation. In the Local Surrogate Directory tactic (Section 3.2.4.1) the mo-
bile device is responsible for populating and maintaining the list of surrogates
on which it can offload computation. This is a rather static solution because
as more surrogates become available in the environment there is no automated
way of discovering these new surrogates or updating their metadata as changes
occur. Maintaining the surrogate directory in the cloud has the advantage of
a centralized location for surrogate registration. All surrogate metadata is
populated and updated in this central repository. All the mobile device needs
to know is the network address of the cloud server that manages the surrogate
directory. In addition, optimal surrogate selection algorithms can run in the
cloud, which is an additional offload operation that can lead to battery savings

84

on the mobile device. Regarding trust, in this tactic the mobile device only
needs to trust the cloud surrogate directory server assuming that the directory
only contains trusted surrogates (Section 3.3.4.1).
Description. In the Cloud Surrogate Directory Tactic the Surrogate Di-
rectory is located in a Cloud Server. Figure 3.18 shows the main elements
of the tactic with numbers that indicate the sequence of operations. The
Cyber-Foraging-Enabled Mobile App starts the offload process by querying the
Surrogate Directory via the Surrogate Directory Interface. This is the same
interface that would be used by any program that populates and maintains the
Surrogate Directory or by Surrogates that provide live data. The Surrogate
Directory Interface selects the optimal surrogate from the directory based on
data such as mobile device characteristics, type of offload request, surrogate
availability, surrogate load, or any other data that is available in the directory
or was provided by the mobile device as query parameters. The Surrogate
Directory Interface then sends the Offload Client the data for the selected
surrogate which includes the surrogate address. The Offload Client contacts
the Offload Server of the selected Surrogate to continue the offload process.
Constraints. The tactic as presented requires the mobile device to know
the address of the cloud server that holds the surrogate directory. The cloud
server can become a single-point-of-failure if it becomes unavailable to mobile
devices. In the cases that the cloud server acts as an intermediary it also
becomes a potential bottleneck. Cloud servers that perform service discovery
instead of simply maintaining a surrogate directory suffer from the traditional
challenges of service discovery in service-oriented computing [95].
Examples. The 12 systems that implement the Cloud Surrogate Directory
tactic maintain a list of potential surrogates on a centralized cloud server.
What varies between systems is (1) the parameters that are used for surrogate
selection, (2) whether the surrogate selection algorithm runs on the cloud
server or the mobile device, (3) whether the surrogate directory maintains a
list of surrogates or a list of services that are hosted on each surrogate, and (4)
whether the cloud server returns a surrogate address or forwards the offload
request to the surrogate therefore acting as an intermediary (a variation of
this tactic).

• Mobile Agents [5]: As shown in Figure 3.19, the Execution Manager
on the mobile device contacts a Cloud Directory Service to get a list of
available surrogates and selects the one with the highest communication
link speed with the mobile device as well as the highest computing power.

• HPC-as-a-Service [30]: The mobile device queries a centralized repository

85

Cloud Server

Surrogate

Mobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Offload
Client

Call

Offload
Server

1: Start Offload

6: Start Offload

File Read/
Write

4: Select
Optimal
Surrogate

Return

Surrogate
Directory

Surrogate
Directory
Interface

3: Get Surrogate Data

2: Query Surrogate
Directory

5: Optimal Surrogate
Data

Repository

Figure 3.18: Cloud Surrogate Directory

of HPC (high-performance computing) services to locate a service with
given characteristics.

• Collective Surrogates [48]: The mobile device contacts a Collective Man-
ager that manages a set of surrogates (participating nodes) and uses
profile and historic information to determine the specific surrogate on
which the computation will be offloaded.

• Grid-Enhanced Mobile Devices [51]: Mobile devices contact the Grid
Gateway which locates Grid services available on surrogates and then
forwards the offload request, acting as as intermediary.

• ThinAV [59]: The cloud server (ThinAV Server) submits received off-

86

load requests to surrogates and returns results to mobile clients when
available. The ThinAV Server acts as an intermediary.

• MCo [74]: Upon receipt of computation offloading request from a mobile
device, the cloud server (Master Node) searches its list of surrogates
(Worker Nodes) on which computation can be offloaded. Once a Worker
Node is selected the offload request is forwarded. The Master Node acts
as an intermediary.

• Resource Furnishing System [92]: A Dispatching Surrogate maintains
the software list of known surrogates (application servers), and selects
an application server based on the contents of the request packet and
application server load.

• Cloud Personal Assistant (CPA) [93]: CPA receives a set of tasks to
execute from a mobile device, discovers the necessary cloud services,
invokes them and then delivers the results back to the mobile device,
acting as an intermediary.

• MAPCloud [103]: For each offload request (modeled as a workflow of
tasks) from a mobile device, the Broker consults the registry of available
surrogates and services and returns the addresses of services that can
execute each task.

• Large-Scale Mobile Crowdsensing [119]: A cloud server (Application
Server) consults a global registry for a list of surrogates (Cloudlets) that
are located in a certain area.

• Mobile Data Stream Application Framework [122]: Mobile devices send
offload requests to a cloud server (Resource Manager) which then assigns
a surrogate (Application Master) to handle the request.

• Weblets [127]: A Cloud Elasticity Service (CES) allocates surrogates
to offload requests based on usage information (e.g., compute power,
bandwidth and storage).

Variation: Intermediary Cloud Surrogate Directory. The tactic as
described returns the address of the selected surrogate to the mobile device,
which then contacts the surrogate directly. In Grid-Enhanced Mobile De-
vices [51], ThinAV [59], MCo [74], Cloud Personal Assistant (CPA) [93], and
Large-Scale Mobile Crowdsensing [119] the Cloud Server does not return the
surrogate address to the mobile device, but rather forwards the offload request

87

<<Cloud Server>>

Cloud Server

<<Surrogate>>

Cloud Host

<<Mobile Client>>

Smartphone

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

Mobile App

Custom
Runtime

Component

<<Offload Client>>

Execution Manager

Call

<<Offload Server>>

Agent Management
System

1: Start Offload

6: Start Offload

File Read/
Write

5: Select
Optimal
Surrogate

Return

<<Surrogate Directory>>

Cloud Directory

<<Surrogate Directory Interface>>

Cloud Directory Service

3: Get Surrogate Data

2: Query Surrogate
Directory

4: List of Available Surrogates

Repository

Figure 3.19: Mobile Agents as an Example of the Cloud Surrogate Directory
Tactic

to the selected Surrogate and then returns the results to the mobile device. In
this variation the Cloud Server acts as an intermediary between the Mobile
Device and the Surrogate.

3.2.4.3 Surrogate Broadcast

The Surrogate Broadcast tactic can be found in five systems in which sur-
rogates broadcast or advertise their presence to mobile devices: Scavenger
[67], Real Options Analysis [35], Application Virtualization on Cloudlets [84],

88

VM-Based Cloudlets [108], and Slingshot [114].
Motivation. The Local Surrogate Directory (Section 3.2.4.1) and Cloud Sur-
rogate Directory (Section 3.2.4.2) tactics require a directory of potential sur-
rogates to be maintained either on the mobile device or on a cloud server,
respectively. Having surrogates broadcast their availability and metadata to
mobile devices removes the burden of having to maintain surrogate directories
up to date. It creates a much more dynamic environment in which mobile de-
vices can discover nearby surrogates without needing to know their addresses
in advance or retrieving the addresses from a cloud server that could poten-
tially not be available when needed.
Description. As shown in Figure 3.20, in the Surrogate Broadcast tactic all
Surrogates broadcast selected metadata using a Broadcast Component. The
numbers in the figure indicate the sequence of operations, starting with the
broadcast operation as 0 to mean that it occurs in advance of the offload re-
quest. The Cyber-Foraging-Enabled Mobile App initiates the offload request.
The Offload Client finds available surrogates by analyzing broadcast informa-
tion which will include at least the surrogate address. The Offload Client then
selects the optimal surrogate and starts the offload process by contacting the
Offload Server of the selected surrogate. In addition to basic surrogate meta-
data such as surrogate address, the surrogate can also broadcast data retrieved
from a Capability Metadata repository on the Surrogate as described in the
Pre-Provisioning tactic (Section 3.2.3.1).
Constraints. The tactic as described requires an agreement between mobile
devices and surrogates on the broadcast protocol. Regarding trust, mobile
devices will require additional components to determine whether broadcast
information is coming from a valid, trusted surrogate (Section 3.3.4.1).
Examples. The surrogates in the five systems that implement the Surrogate
Broadcast tactic broadcast their availability and selected metadata to mobile
devices for discovery. What varies between systems is the broadcast mechanism
and the information or metadata that they broadcast.

• Scavenger [67]: Surrogates periodically broadcast their service descrip-
tions using UDP broadcast.4 As shown in Figure 3.21, a Presence Dae-
mon running on each Surrogate periodically packs all its service descrip-
tions into a single UDP packet and broadcasts it onto the local subnet.
An Application running on a mobile device uses the Scavenger Library to
find available surrogates, select the optimal surrogate on which to offload,
and finally contact the Scavenger Front-End of the selected surrogate.

4UDP stands for User Datagram Protocol and is one of the core protocols of the IP suite.
UDP broadcast is the broadcasting of UDP packets to an entire subnet.

89

Surrogate

Surrogate

Surrogate

Mobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Offload
Client

Call

Offload
Server

1: Start Offload

4: Start Offload

Broadcast

2: Find
Available
Surrogates

Broadcast
Component

0: Broadcast Surrogate Metadata

3: Select
Optimal
Surrogate

Figure 3.20: Surrogate Broadcast

• Real Options Analysis [35]: As surrogates come online, they broadcast
their availability and address over a broadcast channel.

• Application Virtualization on Cloudlets [84] and VM-Based Cloudlets
[108]: Surrogate information that includes surrogate address is broadcast
using an implementation of Zeroconf.5

5Zerconf stands for Zero Configuration Networking and is a set technologies that enables
automated network configuration of devices and services without the use of central services
such as DNS or DHCP (www.zeroconf.org).

90

www.zeroconf.org

• Slingshot [114]: This system uses UPnP6 to discover new surrogates in
its surrounding network environment.

Surrogate

Surrogate

Surrogate

<<Mobile Client>>

Client

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

Application

Custom
Runtime

Component

<<Offload Client>>

Scavenger
Library

Call

<<Offload Server>>

Scavenger Front-End

1: Start Offload

4: Start Offload

Broadcast

2: Find
Available
Surrogates

<<Broadcast Component>>

Presence Daemon

0: UDP Broadcast

3: Select
Optimal
Surrogate

Figure 3.21: Scavenger as an Example of the Surrogate Broadcast Tactic

6UPnP stands for Universal Plug and Play and is a set of networking protocols that
enable networked devices to seamlessly discover each other’s presence on the network and
establish functional network services (www.upnp.org).

91

www.upnp.org

3.3 Non-Functional Architectural Tactics for Cyber-
Foraging

The non-functional architectural tactics described in this section are used in
combination with the functional architectural tactics described in Section 3.2
to meet additional requirements placed on cyber-foraging systems.

3.3.1 Resource Optimization

A scenario for Resource Optimization is the following: A mobile app is en-
abled for cyber-foraging. Upon request for execution of computation that has
been targeted for offload, the mobile app first checks if it is better from a
performance and latency perspective to execute the computation locally or
remotely. Given that the the network conditions between the mobile device
and the surrogate are not ideal, the computation is executed locally instead of
offloaded to the surrogate.

3.3.1.1 Runtime Partitioning

The Runtime Partitioning tactic can be found in the computation offload sys-
tems shown in Table 2.6 for which When to Offload is Runtime Decision.
Motivation. In general, offloading is beneficial when large amounts of compu-
tation are needed with relatively small amounts of communication [70]. Run-
time Partitioning enables mobile devices to make runtime decisions regarding
the benefits of offloading. Computation is offloaded only if remote execution is
better than local execution according to a defined optimization function (often
called a utility function). Local execution cost typically takes into considera-
tion the energy consumed by local execution as well as the local execution time.
Remote execution cost typically considers the energy consumed by communi-
cation based on payload size and network conditions, the communication time
based on payload size and network conditions, and remote execution time. If
local execution cost is lower than remote execution cost then the computation
is executed locally; if not, it is executed remotely (i.e., offloaded).
Description. Figure 3.22 shows the main components of the Runtime Parti-
tioning tactic with numbers to indicate the sequence of operations. In addition
to the components required by the Computation Offload tactic, the Runtime
Partitioning tactic requires an Offload Decision Engine component that com-
pares predicted local execution cost against predicted remote execution cost.
The Offload Decision Engine uses App Metadata such as required compute

92

cycles, payload size based on input and output parameters, and required en-
ergy for execution and communication. Even though the App Metadata is
depicted in Figure 3.22 as an external file, this data can also reside within the
code as annotations. Upon a request for execution of a computational element
that is marked for offload, the Cyber-Foraging Enabled Mobile App invokes
the Offload Decision Engine, passing it the necessary metadata for the Off-
loadable Element. In addition, although optional, the Offload Decision Engine
can also make use of Environment Monitors to obtain runtime environment
data such as network conditions or load of the mobile device and surrogate if
these are required by the defined optimization function. It can also make use
of Cost Models (e.g., an energy model for the mobile device) as input to the
optimization function. Based on the results of the optimization function, the
Cyber-Foraging-Enabled Mobile App invokes the local copy of the Offloadable
Element or invokes the Offload Client in order to invoke the remote copy of
the Offloadable Element running on the Surrogate.

Mobile Client Surrogate

Legend

System
Boundary

Cyber-Foraging Enabled Mobile
App

Custom
Runtime

Component

Offload
Client

Call

Container

6: Execute (Input)

Offload
Server

3rd Party
Runtime

Component

3: Start Offload 5: Set Up Offloaded Code

4: Start Offload

File Read/
Write

File

Offload
Decision
Engine

App
Metadata Offloadable

Element 1
Offloadable
Element n

... Offloadable
Element 1

Offloadable
Element n

...

Environment
Monitor

2b: Get Environment Data

2a: Cost DataCost Model

1: Calculate Optimization Function(App Metadata)

Figure 3.22: Runtime Partitioning Tactic

Constraints.The Runtime Partitioning tactic assumes that there is equiva-
lent code for the offloaded computation on both the mobile device and the

93

surrogate. This aspect limits the direct reusability of legacy code because a
version would have to be written for the mobile device or surrogate depending
on the original platform of the legacy code. In addition, the optimization func-
tion should not be a computation-intensive task because it would then cancel
the benefits of cyber-foraging. Finally, data collection of app metadata to be
used as optimization function parameters has to be gathered in advance using
techniques such as static profiling.
Example. An example of how to apply the Runtime Partitioning tactic is
the MACS system [65], as shown in Figure 3.23. In MACS, Cyber-Foraging
Enabled Mobile Apps contain offloadable elements defined as Services. Each
service has Service Metadata related to memory size, code size, and input/out-
put parameter size. When the mobile app is going to execute a service, the
Performance and Context Monitor is invoked to determine the feasibility of
remote execution as well as to compare the cost of local execution of the service
against the cost of remote execution. The Performance and Context Monitor
uses a Mobile Device Monitor implemented as calls to the Android API to ob-
tain available memory information, CPU load and remaining battery. It also
uses a Network Monitor to obtain connectivity and bandwidth information.
In addition, based on a pre-built Energy Model it calculates the energy cost
of local vs. remote execution using the service metadata. If the decision is to
offload, the Offload Manager and Remote Execution Manager coordinate to
set up the offloaded service for remote execution.
Dependencies. The Runtime Partitioning tactic requires the Computation
Offload tactic (Section 3.2.1) as the infrastructure for computation offload.
Variation: User-Guided Runtime Partitioning. The tactic as described
assumes a static optimization function. However, in some systems what to op-
timize is determined based on user preferences or input. In the PowerSense sys-
tem [82] the user can select a Time Saver option to minimize processing time
or an Energy Saver option to minimize energy consumption. The ThinkAir
system [64] offers four optimization options (profiles) to users: execution time
only; energy consumption only; execution time and energy consumption; ex-
ecution time, energy consumption and cost of cloud services. These systems
have a user interface on the mobile device to set these preferences.

3.3.1.2 Runtime Profiling

The Runtime Profiling tactic can be found in ten systems: MAUI [26], Real
Options Analysis[35], Single-Server Offloading [56], ThinkAir [64], AMCO [72],
SmartVC [100], Odessa [101], IC-Cloud [111], AIOLOS [117], and Mobile Data
Stream Application Framework [122].

94

<<Mobile Client>>

Smartphone
<<Surrogate>>

Cloud

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

Elastic Mobile Application

Custom
Runtime

Component

<<Offload Client>>

Offload
Manager

Call

<<Container>>

Java VM

Execute (Input)

<<Offload Server>>

Remote
Execution
Manager

3rd Party
Runtime

Component

Start Offload
Set Up Offloaded Code

Start Offload

File Read/
Write

File

<<Offload Decision Engine>>

Performance and
Context Monitor

Calculate Optimization Function(Service Metadata)

<<App Metadata>>

Service
Metadata <<Offloadable Element>>

Service 1
...

<<Environment Monitor>>

Mobile Device
Monitor

Get Environment Data

<<Cost Model>>

Energy Model

<<Offloadable Element>>

Service n

<<Offloadable Element>>

Service 1
... <<Offloadable Element>>

Service n

<<Environment Monitor>>

Network Monitor

Get Environment Data

Figure 3.23: MACS as an Example of the Runtime Partitioning Tactic

Motivation. Systems that implement the Runtime Partitioning tactic (Sec-
tion 3.3.1.1) require developer input or static profiling to obtain the values or
models that are used in the calculation of the optimization function that deter-
mines whether code should run locally or remotely. However, models tend to
be inaccurate because (1) applications are not deterministic, (2) smartphones
scale the CPU’s voltage dynamically to save energy (i.e., dynamic voltage scal-
ing), (3) energy models highly depend on hardware configuration, usage, and
even the battery model of a mobile device, and (4) network quality is highly
variable and often unpredictable [29]. To account for this variability and take
into consideration current conditions, once the offload operation ends, or pe-
riodically, the system updates the profiling data and models that are used by
the optimization functions.
Description. Figure 3.24 shows the main components of the Runtime Pro-
filing tactic. The difference between the Runtime Profiling tactic and the
Runtime Partitioning tactic (Section 3.3.1.1) is the data that is used in the off-
load decision and what happens after the offloading process ends. The Cyber-
Foraging Enabled Mobile App invokes the Offload Decision Engine, passing
it the necessary metadata for the Offloadable Element. In addition to run-

95

time data obtained from Environment Monitors and Cost Models, the Offload
Decision Engine uses Historical Execution Data as input to the optimization
function. Large differences between estimated and historic cost data might
trigger the Offload Decision Engine to adjust the Cost Models. Based on the
results of the optimization function, the Cyber-Foraging-Enabled Mobile App
invokes the local copy of the Offloadable Element or invokes the Offload Client
in order to invoke the remote copy of the Offloadable Element running on the
Surrogate. After the offload process is completed, the Offload Client saves
current execution data for the offloadable element such as timestamp, input
parameters, energy consumption, network quality, and execution time in the
Historical Execution Data repository. In addition, although optional, the En-
vironment Monitors may store environment data periodically in the Historical
Execution Data repository.

Mobile Client Surrogate

Legend

System
Boundary

Cyber-Foraging Enabled Mobile
App

Custom
Runtime

Component

Offload
Client

Call

Container

6: Execute (Input)

Offload
Server

3rd Party
Runtime

Component

3: Start Offload 5: Set Up Offloaded Code

4: Start Offload

File Read/
Write

File

Offload
Decision
Engine

App
Metadata Offloadable

Element 1
Offloadable
Element n

... Offloadable
Element 1

Offloadable
Element n

...

Environment
Monitor

2b: Get Environment Data

2a: Get/Update
Cost Data

Cost Model

Historical
Execution

Data

Repository

2c: Get Historical
Execution

Data

7: Current Execution Data

Current Environment Data
[Periodic Operation]

1: Calculate Optimization Function(App Metadata)

Figure 3.24: Runtime Profiling Tactic

Constraints. As in the Runtime Partitioning tactic (Section 3.3.1.1), the
Runtime Profiling tactic assumes that there is equivalent code for the offloaded
computation on both the mobile device and the surrogate. In addition, the cost
of profiling is not negligible and can impact overall application performance

96

[26]. System designers need to consider the type and frequency of data to
capture at runtime.
Examples. The ten systems that implement the Runtime Profiling tactic
update the data that is used by the optimization function based on current
execution data and environmental conditions. What varies between systems
is the type of data that is captured and and the frequency of data capture.

• MAUI [26]: As shown in Figure 3.25, the Solver+Profiler uses data from
the annotated method (inputs, outputs and CPU cycles), the Device
Energy Model, network data obtained via a Network Monitor, and Past
Program Execution and Network Data to compute an energy-efficient
program partition. Once an offloaded method terminates, the Client
Proxy updates the Past Program Execution and Network Data to better
predict whether future invocations of the method should be offloaded.

• Real Options Analysis[35]: The system maintains a list of accessible
servers and estimates the network delay to each of them using the default
routing. Once offload completes, the network traffic model is updated.

• Single-Server Offloading [56]: Remote execution time is calculated for
the first execution as communication time plus remote computation time.
The latter is sent back from the surrogate as part of the results. From
the second execution on, the model predicts local and remote execution
time and offloads only if remote execution time is less than local exe-
cution time. The system updates the execution time parameters from
actual computation results only if the difference between predicted and
actual execution times (local and remote) is greater than an established
threshold.

• ThinkAir [64]: When a method is encountered for the first time,the
decision to offload is based only on environmental parameters such as
network quality. From that point on, the profilers start collecting ex-
ecution and energy consumption data for that method. If the method
is invoked again, the decision to offload is based on the method’s past
execution times and energy consumed.

• AMCO [72]: Based on a feedback-loop mechanism, energy consumption
data is updated after the execution of code portions marked as ”energy
hotspots” and used in the calculation of future energy consumption which
drives offload decisions.

97

• SmartVC [100]: The system records the execution time and power con-
sumption for each method as historical data to better inform future
offloading decisions.

• Odessa [101]: The system’s decision engine uses the recent history of
network measurements to determine if offloading or increasing the level
of parallelism will improve performance.

• IC-Cloud [111]: The system uses signal strength and historical informa-
tion of network states to obtain a coarse-grained estimation of network
access quality that influences the offload decision.

• AIOLOS [117]: The system updates the surrogate and network state
data used by the estimation model after every offload operation.

• Mobile Data Stream Application Framework [122]: The profiler on the
mobile device measures the device’s characteristics at startup and contin-
uously monitors its CPU workload and wireless network bandwidth. If
any of the parameters varies by a value exceeding an established thresh-
old, a new partitioning is generated for the application.

Dependencies. The Runtime Profiling tactic requires the Runtime Partition-
ing tactic (Section 3.3.1.1) to enable the system to make a runtime decision
on whether or not to offload computation. It also requires the Computation
Offload tactic (Section 3.2.1) to establish the infrastructure for computation
offload.

3.3.1.3 Resource-Adapted Computation

The Resource-Adapted Computation tactic can be found in the Cuckoo system
[62]. Cuckoo has elements that enable it to use different versions of offloadable
elements to match the resource characteristics of mobile devices and surro-
gates, depending on whether code executes locally or remotely.
Motivation. In the Runtime Partitioning tactic (Section 3.3.1.1) a decision
is made at runtime to execute code locally or remotely depending on an op-
timization function. In this tactic the local and remote code are identical.
Even though this makes development and versioning easier, computation ends
up being limited to what can execute on the mobile device, which will always
lag behind static elements such as surrogates in terms of compute resources
(power, CPU, memory, storage) [107]. Resource-Adapted Computation en-
ables cyber-foraging systems to fully take advantage of the computing power
of surrogates by adapting the computation to the resource on which it will be

98

<<Mobile Client>>

Smartphone
<<Surrogate>>

MAUI Server

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

App

Custom
Runtime

Component

<<Offload Client>>

Client Proxy

Call

<<Container>>

Microsoft .NET Common Language Runtime

<<Offload Server>>
Server Proxy

3rd Party
Runtime

Component

Start Offload(Method(Input))
Execute(Input)

Start Offload(Method(Input))

File Read/
Write

File

<<Offload Decision Engine>>

Solver + Profiler

Calculate Optimization Function(Annotated Method)

<<Offloadable Element 1>>

Instrumented Method
<<Offloadable Element n>>

Instrumented Method
...

<<Environment Monitor>>

Network Monitor

<<Historical Execution Data>>

Past Program Execution
and Network Data

Repository

<<Offloadable Element 1>>

Instrumented Method
<<Offloadable Element n>>

Instrumented Method
...

<<Cost Model>>

Device Energy
Model

Get Network Data

Figure 3.25: MAUI as an Example of the Runtime Profiling Tactic

executing. In an image processing scenario, the object recognition algorithm
that runs on the surrogate can be much more computation-intensive than the
one that runs on the mobile device and can therefore deliver a much more
precise result.
Description. Figure 3.26 shows a simplified representation of the Runtime
Partitioning tactic (Section 3.3.1.1) with additional elements that describe the
Resource-Adapted Computation tactic. At runtime, the Offload Decision En-
gine calculates the optimization function for the Offloadable Element. If the
decision is to execute locally, the Cyber-Foraging Enabled Mobile App executes
the Offloadable Element (Mobile Version) that is adapted to the resource char-
acteristics of the mobile device. However, if the decision is to execute remotely,
the Offloadable Element (Surrogate Version) is executed to take advantage of
the more powerful resources of the Surrogate.
Constraints. The Resource-Adapted Computation tactic requires develop-
ing, profiling and maintaining different versions of offloadable elements.
Example. Cuckoo [62] is an example of a system that implements the Resource-
Adapted Computation tactic. The Cuckoo Framework generates an imple-
mentation of the same interface for a local and a remote service. Initially, the

99

Mobile Client Surrogate

Legend

System
Boundary

Cyber-Foraging Enabled Mobile App

Custom
Runtime

Component

Offload
Client

Call

Container

5: Execute (Input)

Offload
Server

3rd Party
Runtime

Component

2: Start Offload 4: Set Up Offloaded Code

3: Start Offload

File Read/
Write

File

Offload
Decision
Engine

1: Calculate Optimization Function(Offloadable Element)

Offloadable
Element 1

(Mobile Version)

Offloadable
Element n

(Mobile Version)
...

Offloadable
Element 1

(Surrogate Version)

Offloadable
Element n

(Surrogate Version)

...

Optimization
Function

Parameters

Figure 3.26: Resource-Adapted Computation

remote implementation will contain dummy method implementations, which
the developer has to replace with real method implementations that can be
executed at the remote location.The real methods can be identical to the local
service implementation, but may also be completely different, because the re-
mote implementation can run a different algorithm, use a different library, or
take advantage of parallelization on the more powerful surrogate. Figure 3.27
shows the Cuckoo system at runtime with numbers to indicate the sequence
of operations. The Cuckoo Framework intercepts all service calls. It then uses
the Cuckoo Resource Manager to decide whether to execute the local or the
remote implementation of the service. In the current implementation it will
execute the remote implementation if a surrogate is available (details of how
it locates surrogates are in Section 3.2.4.1. If a surrogate (Cuckoo Server) is
not available, the Local Service Implementation is executed. If a surrogate is
available, it uses the Ibis Middleware to invoke the Remote Service Implemen-
tation.
Dependencies.The Resource-Adapted Computation tactic requires the Run-
time Partitioning tactic (Section 3.3.1.1) to enable the system to make a run-
time decision on whether or not to offload computation. It also requires the
Computation Offload tactic (Section 3.2.1) to establish the infrastructure for
computation offload.

100

<<Mobile Client>>

Android Device
<<Surrogate>>

Cuckoo Server

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

Instrumented App

Custom
Runtime

Component

<<Offload Client>>

Cuckoo
Framework

Call

<<Container>>

JVM

<<Offload Server>>

Ibis Middleware

3rd Party
Runtime

Component

1: Service Invocation 4: Execute

3b: Execute Remote Implementation

File Read/
Write

File

<<Offload Decision Engine>>

Cuckoo Resource
Manager

2: Calculate Optimization Function(Offloadable Element)

<<Offloadable Element 1
(Mobile Version)>>

Local Service
Implementation 1

<<Offloadable Element n
(Mobile Version)>>

Local Service
Implementation n

... <<Offloadable Element 1
(Surrogate Version)>>

Remote Service
Implementation 1

<<Offloadable Element 1
(Surrogate Version)>>

Remote Service
Implementation n

...

<<Optimization
Function Parameters>>

Surrogate Status

Ibis
Middleware

3a: Service Invocation

Figure 3.27: Cuckoo as an Example of the Resource-Adapted Computation
Tactic

Variation: Resource-Adapted Input. A variation of this tactic is for the
Offloadable Element (Mobile Version) and the Offloadable Element (Surro-
gate Version) to be identical, but what varies is the input parameters. The
enabler is that different input parameters will lead to different resource con-
sumption. PowerSense [82] is an image processing system for dengue detection
that implements this variation of the tactic. PowerSense uses the same algo-
rithm (implementation) locally and remotely for image processing, but uses
images of lower resolution if processed locally and higher resolution if processed
remotely because processing these higher quality images requires greater com-
puting power.

3.3.2 Fault Tolerance

A scenario for Fault Tolerance is the following: A mobile app is enabled for
cyber-foraging and is leveraging a surrogate for computation offload. During

101

the execution of the remote computation the mobile device loses connectivity
to the surrogate. The mobile device detects the situation and executes the
local copy of the computation instead with minimal effect on user experience.

3.3.2.1 Local Fallback

The Local Fallback tactic can be found in the MAUI [26] and ThinkAir [64]
systems. These systems have elements that enable them to use the local copy
of the offloadable computation in case the connectivity to the surrogate is lost.
Motivation. Due to movement of a mobile device to an area with no connec-
tivity to the surrogate, problems with network quality, or service disruption,
the mobile device may lose connectivity to the surrogate during the compu-
tation offload or data staging process. The Local Fallback tactic enables the
cyber-foraging enabled mobile app to detect loss of connectivity and revert to
local execution of the offloaded element.
Description. Figure 3.28 is an extension of the Computation Offload tactic
(Section 3.2.1) marked with numbers that indicate the sequence of operations
that trigger the local fallback. The Cyber-Foraging Enabled Mobile App starts
the computation offload process by contacting the Offload Client which in turn
contacts the Offload Server that sets up the Offloaded Code on the Surrogate.
Upon completion of the setup process the Cyber-Foraging Enabled Mobile App
starts execution of the Offloaded Code on the Surrogate. During execution the
Cyber-Foraging Enabled Mobile App detects a timeout in the communication
with the Surrogate (or a network monitor detects loss of connectivity). At this
point the Cyber-Foraging Enabled Mobile App executes the local version of the
offloaded code.
Constraints. The Local Fallback tactic assumes that there is equivalent code
for the offloaded computation on both the mobile device and the surrogate.
Because disconnection may happen at any point in the offload process, this
tactic is best fit for stateless request-response operations that can be restarted
on the mobile device if the operation fails. For stateful operations, program
state has to be synchronized between the local and remote versions of the
computation. In cases of data staging, results would need to be cached locally
until connectivity is available and would have to use local data that can poten-
tially be out-of-date. For systems that implement the Just-In-Time Containers
tactic (Section 3.3.3.1) with the Local Fallback tactic, these systems would re-
quire a component or a periodic clean-up process that destroys containers that
are not being used in order to reduce the load on the surrogate.
Examples. The following two examples illustrate the Local Fallback tactic:

102

SurrogateMobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Offload
Client

Call

Container

Offloaded
Code

4: Execute (Input)

Offload
Server

3rd Party
Runtime

Component

1: Start Offload

3: Set Up Offloaded Code

2: Start Offload

5: Detect Timeout

6: Execute(Input)

Figure 3.28: Local Fallback

• MAUI [26]: MAUI detects failures using a simple timeout feature that
returns control back to the mobile device. If a disconnect occurs, MAUI
resumes running the method on the local smartphone. After every offload
operation, MAUI returns program state as part of the results, which is
applied to the local computation so that state is synchronized between
the local and remote computation. Figure 3.29 is based on Figure 3.25
to reflect what occurs in the MAUI system after the remote execution
decision has been made. The App starts the offload process by invoking
the Client Proxy which invokes the Server Proxy that invokes the remote
method. When the Client Proxy detects a timeout, it invokes the local
method.

• ThinkAir [64]: If the connection fails for any reason during remote exe-
cution, the framework falls back to local execution, discarding any data

103

collected by the profiler. There is no need to synchronize state because
an offload request includes the computation itself along with its state
and parameters.

<<Surrogate>>

MAUI Server
<<Mobile Client>>

Smartphone

Legend

System
Boundary

Custom
Runtime

Component

<<Offload Client>>

Client Proxy

Call

<<Offload Server>>

Server Proxy

3rd Party
Runtime

Component

1: Start Offload(Method 1(Input})

<<Container>>

Microsoft .NET Common Language Runtime

3: Execute(Input)

2: Start Offload (Method 1(Input))

4: Detect Timeout

<<Cyber-Foraging Enabled Mobile App>>

App

<<Offloadable Element 1>>

Instrumented Method
<<Offloadable Element n>>

Instrumented Method
...

<<Offloadable Element 1>>

Instrumented Method
<<Offloadable Element n>>

Instrumented Method
...

5: Execute(Input})

Figure 3.29: MAUI as an Example of the Local Fallback Tactic

Dependencies. The Local Fallback tactic requires a Surrogate Provisioning
tactic (Section 3.2.3) to enable the surrogate for computation offload or data
staging, and a Computation Offload tactic (Section 3.2.1) or Data Staging
tactic (Section 3.2.2) to enable the actual computation offload or data staging
process.

3.3.2.2 Opportunistic Mobile-Surrogate Data Synchronization

The Opportunistic Mobile-Surrogate Data Synchronization tactic for fault tol-
erance is not present in any of the cyber-foraging systems in the primary
studies. However, the Collaborative Applications [16] and Virtual Phone [55]
systems could easily implement this tactic.
Motivation. Data-reliant cyber-foraging systems, as their name indicates,
rely on stored data to fulfill their operations. As in the Local Fallback tactic
(Section 3.3.2.1), the mobile device may lose connectivity to the surrogate
during the computation offload or data staging process. The Opportunistic
Mobile-Surrogate Data Synchronization tactic keeps data synchronized during

104

periods of connection such that the system can continue operating in periods
of disconnection.
Description. Figure 3.30 shows the main elements of the tactic. The data
synchronization process can be triggered by the Cyber-Foraging Enabled Mo-
bile App right before computation offload by synchronously invoking the Data
Synchronization Client that ensures that App Data is synchronized. It can
also be started by the Data Synchronization Client asynchronously according
to pre-defined Data Synchronization Policies that determine an optimal time
for synchronization such as periodic synchronization, optimal bandwidth, or
detection of re-connection.

SurrogateMobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Offload
Client

Call

Container

Offloaded Code
Execute (Input)

Offload
Server

3rd Party
Runtime

Component

Start Offload Set Up Offloaded Code

Start Offload

Repository

App
Data

App
Data

File Read/
Write

Data
Synchronization

Client

Sync Data

Data
Synchronization

Server

Sync Data

Message
(Asynchronous)

File

Data
Synchronization

Policies

Sync Data

Figure 3.30: Opportunistic Mobile-Surrogate Data Synchronization

105

Constraints. Systems that implement this tactic need to be aware of the
energy consumption on the mobile device for keeping data synchronized. Also,
while disconnected, it is possible that data may not be up-to-date, which may
lead to incorrect results for applications that operate on time-sensitive data.
Finally, like in any distributed data system, conflict resolution between systems
that update data simultaneously is challenging.
Examples. As mentioned earlier, there are no systems in the primary stud-
ies that implement the Opportunistic Mobile-Surrogate Data Synchronization
tactic for fault tolerance as described, but the principle of using distributed
storage is the same: to opportunistically keep data/state synchronized without
placing the responsibility on the actual applications. The Collaborative Appli-
cations [16] and Virtual Phone [55] are computation offload systems that use
FUSE for state synchronization between the mobile device and the surrogate
to guarantee fidelity of results, meaning that the local and remote computation
produce identical results because they are operating on the same state.
Dependencies. The Opportunistic Mobile-Surrogate Data Synchronization
tactic requires a Surrogate Provisioning tactic (Section 3.2.3) to enable the
surrogate for computation offload or data staging, and a Computation Off-
load tactic (Section 3.2.1) or Data Staging tactic (Section 3.2.2) to enable the
computation offload or data staging process.
Variation: Opportunistic Surrogate-Cloud Data Synchronization.
The principles of the Opportunistic Mobile-Surrogate Data Synchronization
technique can also be applied to handle disconnection between the surrogate
and the cloud, especially for data staging systems. Opportunistic Surrogate-
Cloud Data Synchronization enables a system to continue operating in the
event of disconnection between the surrogate and the cloud and to synchronize
data when reconnection occurs. To support this tactic, the Data Synchro-
nization Client runs on the Surrogate and the Data Synchronization Server
runs in the cloud. The Trusted and Unmanaged Data Staging Surrogates [42]
is a data staging system that implements this tactic. It uses a distributed
filesystem based on Coda7 between the surrogate and the cloud that supports
disconnected operations to maintain data opportunistically synchronized such
that it is available on the surrogate when needed. In Figure 3.6 the Staging
Server includes a Coda Client and the File Server includes a Coda Server.

7Coda is a an advanced networked filesystem that supports disconnected operations.
More information is available at http://www.coda.cs.cmu.edu/

106

http://www.coda.cs.cmu.edu/

3.3.2.3 Cached Results

The Cached Results tactic can be found in the Mobile Agents [5], 3DMA
[39], Grid-Enhanced Mobile Devices [51], CPA [93], and Sonora [120] sys-
tems. These systems contain elements that enable them to cache results on
the surrogate that can be delivered to, or retrieved by a mobile device after a
disconnection.
Motivation. Offload requests from mobile devices are not always as simple as
request-response interactions. Some requests may take a long time to execute
or may rely on data that has been gathered and maintained over time. In
the case of disconnection between a mobile device and a surrogate during an
offload operation, restarting the offload request or losing data is not desired.
The Cached Results tactic enables a system to cache results and state on a
surrogate until the mobile device is able to reconnect.
Description. Figure 3.31 shows the main elements of the Cached Results
tactic with numbers that indicate the sequence of operations. Steps 1 through
4 describe the basic computation offload process. Starting at Step 5, the Off-
loaded Code on the Surrogate executes the offloaded operation and tries to
send the results back to the Cyber-Foraging Enabled Mobile App. However, it
detects that the mobile device is disconnected and therefore saves the results
in the Results Cache along with information that associates the results with a
particular mobile client/user. When the Mobile Client reconnects to the Off-
loaded Code on the Surrogate, the Offloaded Code retrieves the results from
the Results Cache and send them back to the Cyber-Foraging Enabled Mobile
App. Detecting disconnection could be implemented using assured delivery
mechanisms that require receipt acknowledgment, or an external component
that detects when a mobile device has been disconnected. In systems that al-
ways go through the Offload Client and the Offload Server for interaction, the
disconnection detection mechanism and the interaction with the Results Cache
would be the responsibility of the Offload Server. As another option, using
message-oriented middleware for communications would enable the results to
be delivered automatically to the Mobile Client upon reconnection without
requiring a Results Cache.
Constraints. The tactic as described is best fit for asynchronous interac-
tions between mobile devices and surrogates or applications that are not time-
sensitive or require immediate results. In addition, the tactic requires a mech-
anism for detecting disconnection from mobile devices.
Examples. The following systems implement the Cached Results tactic:

• Grid-Enhanced Mobile Devices [51]: An example of how this system im-
plements the tactic is shown in Figure 3.32 with numbers to indicate

107

Surrogate

Container

Mobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Offload Client

Call

Offloaded Code

4: Execute (Input)

Offload Server

3rd Party
Runtime

Component

1: Start Offload

3: Set Up Offloaded Code

2: Start Offload

Repository

Results
Cache

File Read/
Write

Return

5: Results

6: Detect
Disconnection

7: Save Results

8: Get Results

9: Get Results

10: Results

[Upon Reconnection]

Figure 3.31: Cached Results

sequence of operations. The User Interface starts the offload process by
invoking the Connection Manager with the task to be offloaded. The
Connection Manager contacts the Grid Gateway Adapter on the Surro-
gate which locates a Grid Service that can execute the task. Periodically,
the Connection Manager sends a keep-alive message to the Grid Gate-
way Adapter. If the mobile device fails to send a keep-alive message,
after a certain period the Grid Gateway Adapter assumes that the mo-
bile device has disconnected, whether voluntarily or involuntarily, and
informs the Device Monitor to update the device status as disconnected.

108

When the results from the Grid Service come back, the Grid Gateway
Adapter first checks the device status. If it is disconnected, it saves the
results in the Cache. When the mobile device is re-connected, the Grid
Gateway Adapter gets the results from the Cache and sends them back
to the mobile device.

• Mobile Agents [5]: Offloadable elements in the form of autonomous mo-
bile agents are migrated from a mobile device to a surrogate for asyn-
chronous execution. The mobile agent platform (JADE) handles the
migration back to the client once execution is completed and the mobile
device is available.

• 3DMA [39]: The middleware used in the 3DMA system uses the concept
of spaces to enable asynchronous communication and message buffering.
Offload requests from mobile devices are placed in a space, are processed
on the surrogate, and results are placed in the same space. When a
device becomes disconnected, it waits until a connection is restored, and
then reads all available messages (results) from the space.

• CPA [93]: Offload requests are sent to the Cloud Personal Assistant
component on the surrogate. The request is added as a user task, the task
executes, and the status and result data are added as task information. If
the mobile device is disconnected, the user can later log in to the system
to check task status and results.

• Sonora [120]: Sonora uses a construct called a sync stream that buffers
data during disconnections and resumes normal operation upon recon-
nection. Connectivity interruptions can either be handled transparently
or a mobile app may decide to be notified when disconnections occur.

Dependencies. The Cached Results tactic requires a Surrogate Provisioning
tactic (Section 3.2.3) to enable the surrogate for computation offload or data
staging, and a Computation Offload tactic (Section 3.2.1) or Data Staging
tactic (Section 3.2.2) to enable the computation offload or data staging process.
Variation: Client-Side Data Caching. The tactic as described caches
results on the surrogate and sends them to mobile clients upon request or re-
connection. A variation of this tactic that is useful for data staging systems
that implement the Out-Bound-Pre-Processing (Section 3.2.2.3) is to cache
collected data on the mobile device and send it to the surrogate upon recon-
nection, as shown in Figure 3.33. The Feel the World system [98] is an example

109

<<Surrogate>>

Grid Gateway
<<Mobile Client>>

Mobile Device

Legend

System
Boundary

<<Cyber-Foraging Enabled
Mobile App>>

User Interface

Custom
Runtime

Component

<<Offload Client>>

Connection Manager

Call

<<Offload Server>>

Grid Gateway
Adapter

Device Monitor

3rd Party
Runtime

Component

1: Start Offload(Task)
5: Update Device Status

2: Start Offload(Task)

Repository

<<Results Cache>>

Cache

File Read/
Write

Return

8: Save Results 10: Get Results

11: Results

[Upon Reconnection]

<<Enterprise Cloud>>

Grid Resource

<<Offloaded Code>>

Grid Service

3: Execute(Task)

Message
(Asynchronous)

4: [Periodically] Keep Alive

6: Results

7: Get Device Status
12: Results

9: [Periodically] Keep Alive

Figure 3.32: Grid-Enhanced Mobile Devices as an Example of the Cached
Results Tactic

of this variation that collects sensor data that can be aggregated and/or trans-
formed locally on the mobile client and uploaded to the surrogate in real-time
if the connection is available, or at a later moment if it is unavailable.

3.3.2.4 Alternate Communications

The Alternate Communications tactic is present in the Edge Proxy system [6].
The system enables a user to be notified when web pages of interest change
(Section 3.2.2.2 contains system details).
Motivation. Cyber-foraging systems typically leverage single-hop, higher
bandwidth communication mechanisms such as WiFi or short-range radio in-
stead of broadband wireless (e.g., 3G/4G) because of the potential for energy
savings and faster response time (Section 2.5.2.1). However, these mechanisms
require the mobile device to be in proximity of the surrogate. The Alternate

110

SurrogateMobile Client

Legend

System
Boundary

Mobile Sensing
App

Custom
Runtime

Component

Communications
Manager

Call

Communications
Manager

1: Send Data(Sensed Data)

2: Send Data(Sensed Data)

File Read/
Write

Surrogate Cache

Repository

3: Detect
Disconnection

Mobile Cache
8: Store Data

4: Store Sensed Data

6: Get Sensed Data

7: Send Data(Sensed Data)

5: Detect
Reconnection

Figure 3.33: Client-Side Data Caching

Communications tactic enables the system to switch to an alternate, poten-
tially less energy-efficient communications mechanism, to continue serving the
mobile user in spite of disconnection (even if in a degraded mode due to less
amount of information or less timely responses).
Description. Figure 3.34 shows the main elements of the Alternate Commu-
nications tactic with number to indicate the sequence of operations. Steps 1 to
11 correspond to the basic offload process using the Default Communications
Manager. In this tactic the interaction between the Cyber-Foraging Enabled
Mobile App and the Offloaded Code happens through the Offload Client and
the Offload Server. When the Offload Server is ready to send the results
back to the mobile device it detects that it is disconnected. Therefore, the

111

results are delivered to the mobile device using the Alternate Communications
Manager.

Surrogate

Container

Mobile Client

Legend

System
Boundary

Cyber-Foraging
Enabled Mobile

App

Custom
Runtime

Component

Offload Client

Call

Offloaded
Code

10: Execute (Input)

Offload Server

3rd Party
Runtime

Component

1: Start Offload

5: Set Up Offloaded Code

2: Start Offload

Return

13: Results

12: Detect
Disconnection

Default
Communications

Manager

Alternate
Communications

Manager

6: Execute (Input)

7: Execute (Input)

3: Start Offload

8: Execute (Input)

Default
Communications

Manager

Alternate
Communications

Manager

4: Start Offload

9: Execute (Input)

14: Results

15: Results

16: Results

11: Results

Figure 3.34: Alternate Communications

Constraints. The Alternate Communications tactic as described assumes
that the mobile device is enabled to use the alternate communication mecha-
nism. In addition, depending on the type of interaction between the surrogate
and the mobile device (i.e., responding to a single offload request or sending
data periodically to the mobile device), the surrogate would require a mech-
anism to determine when connectivity has been restored so it can go back to
the default communications mechanism.
Example. Edge Proxy [6] is a data staging system that implements the Al-
ternate Communications tactic. The system enables a user to be notified when
web pages of interest change (Section 3.2.2.2 contains system details). Steps
1 to 4 in Figure 3.35 show the registration process using the WiFi Manager.
When the Edge Proxy is ready to send web page changes to the Mobile De-
vice and detects that it s disconnected, it leverages the existing Short Message
Service (SMS) infrastructure that most wireless carriers provide. It creates a
single SMS message with two parts and sends it using the SMS Manager. The
first part contains control information which includes the number of updates

112

and the size of the download. The second part is an update summary that
includes a list of the pages that have changed, and if particular values were
being monitored, the changes that occurred. The Mobile Proxy intercepts the
SMS message, extracts the control information, and passes the update sum-
mary back to the SMS Manager for delivery to the user via the SMS Client.
The Mobile Proxy uses the control information to make a decision on how to
acquire the updates. Because the user receives an update summary, it may be
the case that the information of interest is already there and therefore there
is no immediate need to reconnect.

<<Mobile Client>>

Mobile Device
<<Surrogate>>

Edge Server

Legend

System
Boundary

<<Cyber-Foraging
Enabled Mobile App>>

Web Browser

Custom
Runtime

Component

<<Offload Client>>

Mobile Proxy

Call
(Synchronous)

<<Offload Serverr>>

Edge Proxy

2: Register for Changes
to Web Page

Areas of Interest

File Read/
Write

(Synchronous)

Web Page

Cache

Repository
File Read/Write
(Asynchronous

/Periodic)

Web Pages

1: Register
for Changes
to Web Page
Areas of
Interest

Message
(Asynchronous)

6: Web Page Changes
(Adapted for SMS)

<<Default
Communications

Manager>>

WiFi Manager

<<Alternate
Communications

Manager>>

SMS Manager

<<Default
Communications

Manager>>

WiFi Manager

<<Alternate
Communications

Manager>>

SMS Manager

SMS
Client

5: Detect
Disconnection

Web Pages of
Interest from Enterprise

Cloud Web Server
 [High-Frequency Polling]

3: Register for Changes
to Web Page

Areas of Interest

4: Register for Changes
to Web Page

Areas of Interest

8:Web Page
Changes

(Adapted for
SMS)

10: SMS Message

7: Web Page Changes
(Adapted for SMS)

9: SMS
Message

Figure 3.35: Edge Proxy as an Example of the Alternate Communications
Tactic

Dependencies. The Alternate Communications tactic requires a Surrogate

113

Provisioning tactic (Section 3.2.3) to enable the surrogate for computation
offload or data staging, and a Computation Offload tactic (Section 3.2.1) or
Data Staging tactic (Section 3.2.2) to enable the computation offload or data
staging process.

3.3.2.5 Eager Migration

The Eager Migration tactic is present in the Offloading Toolkit and Service
system [121]. This system has elements that enable the surrogate to migrate
the offloaded computation to another connected surrogate when it detects that
it might not be able to continue serving the mobile device that generated the
offload request.
Motivation. Due to mobile device mobility or decrease in the quality of the
communications channel between the mobile device and the surrogate, the
mobile device might lose connectivity to the surrogate. The Local Fallback
(Section 3.3.2.1), Cached Results (Section 3.3.2.3), and Alternate Communi-
cations (Section 3.3.2.4) tactics for fault tolerance are reactive; that is, they
perform a corrective action after the disconnection is detected. The Eager
Migration tactic takes a more proactive approach and migrates the offloaded
computation to a connected surrogate before it becomes disconnected from the
mobile device so that it can continue supporting the offload or data staging
operations.
Description. Figure 3.36 shows the main elements of the Eager Migration
tactic with numbers to indicate the sequence of operations. Steps 1 to 4 are
part of the basic offload process from the Mobile Client to the Source Sur-
rogate. Periodically, the Offload Client sends connection information to the
Offload Server that it uses to determine if there is a potential for disconnection.
This information could be location, signal strength, or available bandwidth.
An alternative is for the Offload Server to obtain this information periodically
using a network monitor. Once the Offload Server determines that there is a
potential for disconnection, it starts the migration process by contacting the
Offload Server of the Target Surrogate to migrate the offloaded code. It may
be the case that there is more the one Target Surrogate available, in which case
the Offload Server would have to select one based on a defined optimization
function such as connection bandwidth, load, or available resources on the tar-
get. Depending on the granularity of the offloaded code (Section 2.5.1.3) and
whether state needs to be transfered or not, the migration process can range
from changing the endpoint for communication to migrating just the offloaded
code to migrating the full container. Once the migration is complete, the
Offload Server informs the Offload Client to connect to the Target Surrogate.

114

Optionally, the Offload Server may need to clean up the offload process by for
example stopping running instances, deleting state files, or terminating VMs.
The Target Surrogate takes over the execution entirely. The interaction be-
tween the Cyber-Foraging Mobile App and the Source Surrogate finishes. The
results from invoking the Offloaded Code will come from the Target Surrogate
and any new interactions will be with the Target Surrogate.
Constraints. The tactic as described requires the source and target surro-
gates to be connected. The impact on the user experience will highly depend
on the bandwidth between surrogates. In addition, the system has to be able
to obtain any parameters for the algorithm that determine potential discon-
nection such as the distance and communications quality between the mobile
device and both the source and target surrogate.
Example. The Offloading Toolkit and Service [121] system implements the
Eager Migration technique as shown in Figure 3.37. If the communication
between the Surrogate (Source) and the Mobile Handheld deteriorates based
on reaching an established threshold for connection quality, the execution of
the offloaded Classes is terminated on the Source Surrogate and migrated from
the Source Surrogate to a Connected Target Surrogate. The migration consists
of serializing and sending the Classes from the JVM on the Source Surrogate
to the JVM on the Connected Target Surrogate where they are deserialized
and loaded.
Dependencies. The Eager Migration tactic requires a Surrogate Provisioning
tactic (Section 3.2.3) to enable the surrogate for computation offload or data
staging, and a Computation Offload tactic (Section 3.2.1) or Data Staging
tactic (Section 3.2.2) to enable the computation offload or data staging process.
Variation: Lazy Migration. In Eager Migration the offloaded computation
fully moves from a Source Surrogate to a Target Surrogate and the Mobile
Client continues its interaction with the Target Surrogate. In Lazy Migration,
the execution of the offloaded computation remains on the Source Surrogate
but the interaction with the Mobile Client is handed off to the Target Surrogate.
This means that all interaction between the Mobile Client and the Source
Surrogate goes through the Target Surrogate that acts as an intermediary.
This tactic is not present in any of the systems but was considered as an
alternative for the Offloading Toolkit and Service [121] system. It was not
selected because of the high bandwidth between surrogates that enabled the
system to perform a fast full migration.

115

Target Surrogate

Source Surrogate

Container

Mobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Offload Client

Call

Offloaded
Code

4: Execute (Input)

Offload Server

3rd Party
Runtime

Component

1: Start Offload

3: Set Up Offloaded Code

2: Start Offload

Return

6: Detect
Potential
Disconnection

5: [Periodically] Connection Information

Container

Offloaded
Code

Offload Server

8: Set Up Offloaded Code

7: Migrate Offloaded Code

9: Connect to Surrogate (Target)

10: Clean Up Offload (Optional)

11: Results

12: Execute (Input)

Message
(Asynchronous)

Figure 3.36: Eager Migration

116

<<Target Surrogate>>

Connected Target
Surrogate

<<Source Surrogate>>

Source Surrogate

<<Container>>

JVM

<<Mobile Client>>

Mobile Handheld

Legend

System
Boundary

<<Cyber-
Foraging
Enabled

Mobile App>>

Application

Custom
Runtime

Component

<<Offload
Client>>

Offloading
Service

Call

<<Offloaded
Code>>

Classes

4: Execute (Input)

<<Offload
Server>>

Remote
Execution
Manager

3rd Party
Runtime

Component

1: Start Offload(Classes)

3: Load(Classes)

2: Start Offload(Classes)

Return

6: Detect
Potential
Disconnection

5: [Periodically] Connection Information

<<Container>>

JVM

<<Offloaded
Code>>

Classes

<<Offload Server>>

Remote Execution Manager

8:Load(Classes)

7: Migrate(Classes)

9: Connect to Surrogate (Target)

10: Stop JVM

11: Results

12: Execute (Input)

Message
(Asynchronous)

Figure 3.37: Offloading Toolkit and Service as an Example of the Eager Mi-
gration Tactic

117

3.3.3 Scalability/Elasticity

A scenario for Scalability/Elasticity is the following: A mobile app is enabled
for cyber-foraging and is leveraging a surrogate for computation offload that
is also being leveraged by other mobile apps on other mobile devices. The
surrogate is able to optimize computing resources either locally or by leveraging
other connected surrogates so that multiple mobile devices can be supported
with the goal of minimal effect on user experience due to surrogate load.

3.3.3.1 Just-in-Time Containers

The Just-In-Time Containers tactic is present in the Grid-Enhanced Mobile
Devices [51] and VM-Based Cloudlets [108] systems.
Motivation. In an operational cyber-foraging scenario a single surrogate may
support multiple mobile users. To decrease the load on a surrogate, and there-
fore support a greater number of offload requests, the Just-in-Time Containers
tactic creates a container and/or an instance of the offloaded code upon receipt
of an offload request and then destroys the instance of the offloaded code when
the offload request is completed.
Description. Figure 3.38 contains the main elements of the Just-In-Time
Containers tactic with numbers to indicate the sequence of operations. The
Cyber-Foraging Enabled Mobile App starts the offload process by invoking
the Offload Client. When the Offload Server on the Surrogate receives the
offload request, it creates and starts an instance of the Offloaded Code inside
the Container. The Cyber-Foraging Enabled Mobile App interacts with the
Offloaded Code until it finishes the offload request or closes. At this time the
Cyber-Foraging Enabled Mobile App ends the offload process by invoking the
Offload Client. When the Offload Server receives the request to end the offload
process it destroys the instance of the Offloaded Code, thereby releasing the
resources that were allocated to it.
Constraints. The tactic as described has a greater startup time than a tactic
in which the offloaded code is already running because it has to set up the
container, which is the execution environment for the offloaded code.
Examples. In the Grid-Enhanced Mobile Devices [51] system a Deputy Object
is created for each offload request (task) from a mobile device in the Grid
Gateway. When the task is completed and the mobile device terminates the
connection to the Grid Gateway, resources on the surrogate are released and
the Deputy Object is destroyed. The Grid Gateway has a gateway capacity
that measures its load. Offload requests are granted by the Grid Gateway
only if load values are below the gateway capacity. If not, offload requests

118

SurrogateMobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Offload
Client

Call

Container

Offloaded Code4: Execute (Input)

Offload Server

3rd Party
Runtime

Component

1: Start Offload

2: Start Offload

3: Create Offloaded Code Instance
5: End Offload

7: Destroy Offloaded Code Instance

6: End Offload

Figure 3.38: Just-In-Time Containers

have to wait until resources are released. In the VM-Based Cloudlets system
[108] shown in Figure 3.39, offloaded computation is prepared for execution
on a Cloudlet using a technique called VM Synthesis (details are provided
in Section 3.2.3.2). The KCM Client starts the offload process. The KCM
Server creates and installs the synthesized VM inside the VM Manager and
informs the KCM Client that the VM is ready for execution. The KCM Client
starts a VNC Client that is used to interact with the Launch VM. When the
VNC Client closes, the KCM Client ends the offload process by invoking the
KCM Server, which terminates the Launch VM. The term used by the authors
to describe the approach is transient customization of cloudlet infrastructure
using hardware VM technology.
Dependencies. The Just-In Time Containers tactic requires a Surrogate
Provisioning tactic (Section 3.2.3) to enable the surrogate for computation
offload or data staging, and a Computation Offload tactic (Section 3.2.1) or
Data Staging tactic (Section 3.2.2) to enable the computation offload or data
staging process.

119

<<Surrogate>>

Cloudlet
<<Mobile Client>>

Mobile Device

Legend

System
Boundary

<<Cyber-
Foraging
Enabled

Mobile App>>

VNC Client

Custom
Runtime

Component

<<Offload
Client>>

KCM Client

Call

<<Container>>

VM Manager (VirtualBox)

<<Offloaded Code>>

Launch VM

6: Execute (Input)

<<Offload Server>>

KCM Server

3rd Party
Runtime

Component

1: Start Offload(Application Overlay)

3: Install(Synthesized VM)
5: Start Client 9: Terminate Launch VM

8: End Offload

2: Synthesize
VM

Return

4: VM Ready

7: Close

Figure 3.39: VM-Based Cloudlets as an Example of the Just-In-Time Con-
tainers Tactic

3.3.3.2 Right-Sized Containers

The Right-Sized Containers tactic is present in the ThinkAir system [64]. This
system has elements that create execution containers that are of the appropri-
ate size for the offloaded computation in order to optimize resource usage on
the surrogate.
Motivation. In an operational cyber-foraging scenario, a single surrogate
may support multiple mobile users. However, not all mobile users are offload-
ing the same computation. Some users may be executing a small task that
does not require a large quantity of surrogate resources while others may be
executing very computation-intensive tasks that require much more resources.

120

To optimize resources on a surrogate, and therefore support a greater number
of offload requests, the Right-Sized Containers tactic creates a container for
the offloaded code that is of the smallest size possible in order to run the off-
loaded computation, based on computation requirements metadata related to
the offloaded code.
Description. Figure 3.40 shows the main elements of the Right-Sized Con-
tainers tactic. The Cyber-Foraging Enabled Mobile App starts the offload pro-
cess by invoking the Offload Client with Offloaded Code Metadata that indi-
cates the computing requirements for the Offloaded Code. In the case of pre-
provisioned surrogates (Section 3.2.3.1) the Offloaded Code Metadata could
reside on the Surrogate. Based on the metadata received from the Offload
Client, the Offload Server obtains a container from the Container Repository
that best matches the metadata, meaning that the resources that are required
from the Surrogate are sufficient to execute the Offloaded Code. The Offload
Server then starts the container and sets up the Offloaded Code so that it is
ready for execution from the Cyber-Foraging Enabled Mobile App.
Constraints. The tactic as described requires a surrogate to maintain dif-
ferent container configurations. In addition, similar to the Just-In-Time Con-
tainers tactic (Section 3.3.3.1), it has a greater startup time than a tactic in
which the offloaded code is already running because it has to set up the right
container as the execution environment for the offloaded code.
Example. The ThinkAir system [64] implements the Right-Sized Containers
tactic, as shown in Figure 3.41. When a surrogate (Application Server) re-
ceives an offload request, the ThinkAir Framework on the Application Server
determines the configuration of the VM (or VMs) to allocate for the task
based on App Requirements in the offload request that indicate the need for
extra computing power (the system has six VM configurations which differ in
terms of CPU and memory). The ThinkAir Framework starts the selected VM
configuration and sets up the offloaded code (Code and Data) in the VM.
Dependencies. The Right-Sized Containers tactic requires a Surrogate Pro-
visioning tactic (Section 3.2.3) to enable the surrogate for computation offload
or data staging, and a Computation Offload tactic (Section 3.2.1) or Data
Staging tactic (Section 3.2.2) to enable the computation offload or data stag-
ing process.
Variation: Dynamically-Sized Containers. The ThinkAir system [64]
also implements this tactic. If an error occurs at runtime that would indicate
that the VM does not have the necessary computing power for the task, such
as an OutOfMemoryError error, the Client Handler starts a more powerful
VM and moves the offload request to the newly started VM.

121

SurrogateMobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Offload
Client

Call

Container

Offloaded
Code

5: Execute (Input)

Offload
Server

3rd Party
Runtime

Component

1: Start Offload(Metadata)

2: Start Offload(Metadata)

4: Setup Offloaded Code

Repository
File Read/

Write
File

Offloaded
Code

Metadata

Container
Repository

3: Get Right-Sized Container(Metadata)

Figure 3.40: Right-Sized Containers

3.3.3.3 Surrogate Load Balancing

The Surrogate Load Balancing tactic is present in the The Cloud Operating
System to Support Multi-Server Offloading [56].
Motivation. In an operational cyber-foraging scenario the relationship be-
tween mobile devices and surrogates may be many-to-many, meaning that
multiple mobile devices may be leveraging multiple surrogates for computa-
tion offload and data staging. The Surrogate Load Balancing tactic enables
surrogates to send offloaded computation or data to other less-loaded, con-
nected surrogates in order to provide a better user experience to all mobile
devices.
Description. The Surrogate Load Balancing tactic uses the same computa-

122

<<Surrogate>>

Application Server<<Mobile Client>>

Android Phone

Legend

System
Boundary

<<Cyber-
Foraging
Enabled

Mobile App>>

App

Custom
Runtime

Component

<<Offload Client>>

ThinkAir
Framework

Call

<<Container>>

VirtualBox

<<Offloaded Code>>

Code and Data
5: Execute (Input)

<<Offload Server>>

ThinkAir
Framework

3rd Party
Runtime

Component

1: Start Offload(App Requirements)

2: Start Offload(Metadata)

4: Setup Offloaded Code

Repository
File Read/

Write
File

<<Offloaded
Code

Metadata>>

App
Requirements

<<Container Repository>>

VM Configuration
Repository

3: Get VM Configuration(App Requirements)

Figure 3.41: ThinkAir as an Example of the Right-Sized Containers Tactic

tion migration techniques as the Eager Migration tactic (Section 3.3.2.5) but
for a different purpose (scalability/elasticity instead of fault tolerance). Fig-
ure 3.42 shows the main elements of the tactic with numbers that indicate the
sequence of operations. Steps 1 to 4 are part of the basic offload process from
the Mobile Client to the Source Surrogate. During the execution of the Off-
loaded Code, the Load Monitor informs the Offload Server that the Surrogate
has reached its load threshold. The Offload Server then migrates one or more
instances of Offloaded Code to a Target Surrogate. It may be the case that
there is more than one connected Target Surrogate available, in which case the
Offload Server would have to select one based on a defined optimization func-
tion which should balance the load among all connected surrogates, but may

123

also include connection bandwidth or available resources on the Target Surro-
gate. Depending on the granularity of the offloaded code (Section 2.5.1.3) and
whether state needs to be transfered or not, the migration process can range
from changing the endpoint for communication to migrating just the offloaded
code (application-level migration) to migrating the full container (container-
level migration). Once the migration is complete, the Offload Server informs
the Offload Client to connect to the Target Surrogate. The Offload Server
terminates the instance of the Offloaded Code by stopping running instances,
deleting state files, or terminating VMs in order to reduce the load on the
Source Surrogate. The Target Surrogate takes over the execution entirely. The
interaction between the Cyber-Foraging Mobile App and the Source Surrogate
finishes. The results from invoking the Offloaded Code will come from the
Target Surrogate and any new interactions will be with the Target Surrogate.
Constraints. The tactic as described requires the source and target surro-
gates to be connected. The impact on the user experience will highly depend
on the bandwidth between surrogates. The source surrogate requires a mech-
anism to access the load level of all connected surrogates in order to migrate
computation to the less-loaded one and keep the load on all the surrogates
balanced.
Example. The Cloud Operating System to Support Multi-Server Offloading
(COS) system [56] implements this tactic. Surrogates in COS are not con-
nected to the enterprise but to other surrogates to load balance. As shown in
Figure 3.43, application modules are implemented as SALSA Actors that are
self-contained and therefore can easily migrate between a Source Node and a
Target Node (application-level migration). The Target Node is selected based
on resource availability, communication cost with other actors, and the cost
for migration. Because migrating actors is similar to performing a split (re-
moving an actor from a VM on a Source Node) and merge (adding an actor
to a VM on a Target Node operation, COS refers to this aspect of the system
as VM malleability. The system also has a COS Manager that is connected
to all Node Managers and is contacted during the Identify Target Surrogate
operation (Step 6 in Figure 3.43). The COS Manager can run on any COS
node or in a separate node. When the Source Node reaches a load threshold,
the Node Manager informs the COS Manager, which determines the optimal
Target Node and then prepares the Target Node for migration.
Dependencies. Even though the Surrogate Load Balancing tactic does not
require any other tactic in order to be implemented, it only makes sense if
combined with a Surrogate Provisioning tactic (Section 3.2.3) to enable the
surrogate for computation offload or data staging, and a Computation Offload
tactic (Section 3.2.1) or Data Staging tactic (Section 3.2.2) to enable the com-

124

Target Surrogate

Source Surrogate

Container

Mobile Client

Legend

System
Boundary

Cyber-
Foraging
Enabled

Mobile App

Custom
Runtime

Component

Offload Client

Call

Offloaded
Code

4: Execute (Input)

Offload Server

3rd Party
Runtime

Component

1: Start Offload

3: Set Up Offloaded Code

2: Start Offload

Return

5: Load Threshold
Reached

Container

Offloaded
Code

Offload Server

8: Set Up Offloaded Code

7: Migrate Offloaded Code

9: Connect to Target Surrogate

10: Terminate Offloaded Code Instance

12: Results

11: Execute (Input)

Message
(Asynchronous)

Load
Monitor

6: Identify
Target

Surrogate

Figure 3.42: Surrogate Load Balancing

putation offload or data staging process. The Surrogate Load Balancing tactic
then provides scalability to a computation offload or data staging system.

3.3.4 Security

As stated in the main findings from the primary studies (Section 2.6), there is
very little discussion of system-level concerns that have to be addressed when

125

<<Target Surrogate>>

Target Node

<<Source Surrogate>>

Source Node

<<Container>>
Xen Hypervisor

<<Mobile Client>>

Mobile Phone

Legend

System
Boundary

<<Cyber-
Foraging
Enabled

Mobile App>>

Application

Custom
Runtime

Component

<<Offload Client>>

Client

Call

<<Offloaded Code>>

SALSA Actor

4: Execute (Input)

<<Offload Server>>

Node Manager

3rd Party
Runtime

Component

1: Start Offload(Actor)

3: Set Up Offloaded Code(Actor)

2: Start Offload(Actor)

Return

5: Load Threshold
Reached

<<Container>>

Xen Hypervisor

<<Offloaded Code>>

SALSA Actor

<<Offload Server>>

Node Manager

8: Set Up Offloaded Code(Actors)

7: Migrate Offloaded Code(Actors)

9: Connect to Target Node

10: Remove Actor

12: Results

11: Execute (Input)

Message
(Asynchronous)

<<Load Monitor>>
Load Balancer

6: Identify
Target Node

<<Offload Server>>

Node Manager

Figure 3.43: Cloud Operating System to Support Multi-Server Offloading as
an Example of the Surrogate Load Balancing Tactic

moving from experimental prototypes to operational systems. One of these
system-level concerns is security.

A scenario for Security is the following: A mobile app is enabled for cyber-
foraging and is in the process of discovering a surrogate for computation off-
load. User and surrogate credentials are exchanged and validated before the
offload process so that the mobile app and surrogate can interact according to
agreed security policies.

126

3.3.4.1 Trusted Surrogates

Motivation. When a mobile device discovers a surrogate it expects a trust-
worthy surrogate execution environment, meaning that once an offload oper-
ation starts, code and data are not maliciously modified or stolen and that it
provides trustful services. In the same way, a surrogate expects that a mobile
device is a valid client and that it will not offload malicious code or use it as a
vehicle to other code and data offloaded by other mobile devices. The Trusted
Surrogate tactic adds this trust element to the interaction between a mobile
device and a surrogate.
Description. As mentioned earlier, there is not much discussion about se-
curity or trust in the primary studies. An approach that is shown in some of
the primary studies is to own the surrogate. Roam [20] assumes that a user
would only offload applications among his/her personal devices such as cell
phones, PDAs, and home PCs. Collaborative Applications [16] and SPADE
[112] offload only to personal trusted servers such as a home server. The Grid-
Enhanced Mobile Devices system [51] assumes a pre-existing trust relationship
between mobile devices, the Grid Gateway that serves as an intermediary be-
tween the mobile device and the surrogates, and the surrogates (Grid Service
Providers). In the proposed implementation, the mobile user uses his own
desktop as the Grid Gateway and all Grid Service Providers are owned by the
user’s organization.

Another hardware-based approach that is suggested for establishing trust,
but not implemented in any of the primary studies, is to use an on-board
secure hardware component such as Trusted Platform Module (TPM). TPM
is a device/chip that has a unique and secret RSA key that is burned into it
when it is produced.8 Collaborative Applications [16], Virtual Phone [55] and
VM-Based Cloudlets [108] suggest the use of TPM for stronger levels of trust.

In the Collective Surrogates system [48] only the trusted Collective Man-
ager that serves as the broker between mobile devices and surrogates has
direct access to the VM running on a surrogate (Participating Node). This
system exploits the isolation provided by VM technology for safely running
arbitrary code provided by mobile devices. However, the system assumes a
trust relationship between mobile device and the Collective Manager.

While a password- or hardware-based approach is useful for some scenarios,
it is not appropriate in more dynamic scenarios in which mobile devices dis-
cover nearby surrogates that are not owned by the owner of the mobile device
(Section 3.2.4.3). These scenarios require more dynamic ways of establish-

8The ISO/IEC 11889 specification for TPM is available at http://standards.iso.org/

ittf/PubliclyAvailableStandards/index.html

127

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

ing trust between mobile devices and surrogates, such as a third-party, online
trusted authority that validates credentials or a certificate authority that pro-
vides certificates and keys for authentication, to determine if data or code has
been tampered with, or even encryption (as an example, the Virtual Phone
system [55] has a fully-encrypted filesystem on the surrogate to ensure that
data is not accessible by surrogate owners or other virtual machines running
on the surrogate).
Constraints. Each of the approaches listed above has constraints related
to how the trust relationship is established. Password-based approaches such
as those employed by systems in which surrogates are owned by the mobile
device user require users to be registered on the surrogate. Hardware-based
approaches such as TPM require surrogates to have TPM chips on them.
Systems that rely on third parties have to be connected to online authorities or
require certificates and keys to be obtained from a central certificate authority.
Example. The only system that implements a trust solution that uses a
third-party trusted authority is the Trusted and Unmanaged Data Staging
Surrogates system [42]. This system was used as an example for the Pre-
Fetching tactic in Figure 3.6. A subset of this figure with detail related to
the trust components is presented in Figure 3.44 with numbers to indicate the
sequence of operations. The user’s idle Desktop serves as the trusted third
party that sits in between the Server and the Surrogate. When the File Client
requests a file, the Client Proxy communicates with the Data Pump that runs
on the Desktop to obtain the key and hash for the requested data file. The
Data Pump retrieves the data file from the File Server and encrypts it before
sending it to the Surrogate for staging it in the Cache. It then sends the Client
Proxy the key and hash for the file so it can be compared it to the hash of
the file that is retrieved from the Surrogate to determine if the file has been
tampered with.
Dependencies. Even though the Trusted Surrogate tactic does not require
any other tactic in order to be implemented, it only makes sense if combined
with a Surrogate Provisioning tactic (Section 3.2.3) to enable the surrogate
for computation offload or data staging, and a Computation Offload tactic
(Section 3.2.1) or Data Staging tactic (Section 3.2.2) to enable the computation
offload or data staging process. The Trusted Surrogate tactic then provides a
trusted environment for computation offload or data staging.

128

<<Mobile Client>>

Wimpy Client

<<Trusted Third Party>>

Desktop

<<Surrogate>>

Surrogate

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

File Client

Custom
Runtime

Component

<<Data Staging Client>>

Client Proxy

Call

<<Data Staging Manager>>

Staging Server

1: Get Data File

<<Enterprise Cloud>>

Server

3: Get Data File

File Read/
Write

<<Cache>>

Cache

Repository

<<Cloud Data Repository>>

File Server

6: Cache Encrypted Data File

File

2: Get Key and Hash for Data File [Secure Channel]

Data Pump

Return

7: File Keys and Hash [Secure Channel]

5: Send Encrypted File

4: Encrypt
Data File

8: Get Data File

10: Encrypted Data File

9: Get Encrypted Data File

11: Decrypt
Data File and
Verify Hash

Figure 3.44: Trusted and Unmanaged Data Staging Surrogates as an Example
of the Trusted Surrogates Tactic

3.4 Summary and Conclusions

This chapter presented a set of architectural tactics for cyber-foraging, derived
from the architectural design decisions in the primary studies identified in the
SLR described in Chapter 2. Common design decisions present in the cyber-
foraging systems were codified into architectural tactics for cyber-foraging, and
then grouped into functional and non-functional tactics.

Functional tactics provide the basic cyber-foraging operations. The pri-
mary studies show that at a minimum a cyber-foraging system implements (1)
a tactic for computation offload and/or data staging, (2) a tactic for surrogate
provisioning, and (3) a tactic for surrogate discovery.

Non-functional tactics are combined with the functional tactics to support
required system qualities. We identified tactics for resource optimization, fault
tolerance, scalability/elasticity, and security. Even though the latter is a key
system quality to guarantee in a cyber-foraging system, especially in situations
in which mobile devices discover available surrogates in the environment, there
was minimal reference to security and trust in the primary studies. There are

129

also other system qualities, such as ease of deployment and reliability, that
are not considered by the studied cyber-foraging systems, yet are key for the
deployment of operational cyber-foraging systems. We see these gaps as an
opportunity for research and development.

The goal of the tactics is to serve as a reference for architects designing
cyber-foraging systems. A software architect would first select the functional
tactics that implement the essence of a cyber-foraging system:

• A computation offload and/or data staging tactic that fulfills cyber-
foraging functionality

• A surrogate provisioning tactic so that the offloaded code or data stag-
ing/processing code is available on the surrogate

• A surrogate discovery tactic so that mobile devices can locate and con-
nect to available surrogates

Then, based on additional non-functional requirements, a software archi-
tect would navigate the catalog identifying tactics that can fulfill the require-
ments. However, there are always tradeoffs when making architectural deci-
sions, which make decision models such as the ones that will be presented in
Chapter 8 a valuable tool for architects.

In the meantime, the next three chapters present case studies that validate
the architectural tactics described in this chapter.

130

4
Case Study 1: Tactical Cloudlets —

Cyber-Foraging for Computation Offload

This chapter addresses research question RQ2 and is the first of three case
studies to validate the architectural tactics presented in Chapter 3. The goal
of this case study is to discover the architectural design decisions in the exist-
ing implementation of the Tactical Cloudlets system developed by the Carnegie
Mellon Software Engineering Institute to support computation offload in tacti-
cal environments [32], and then verify the mapping of the architectural design
decisions to architectural tactics for cyber-foraging.

4.1 Introduction

A set of architectural tactics for cyber-foraging was presented in Chapter 3.
However, these tactics need to be validated in real cyber-foraging systems to
fully address research question RQ2: What architectural tactics can be derived
from the identified architectural design decisions?.

The goal of this first case study is to discover the architectural design deci-
sions in the existing implementation of the Tactical Cloudlets system developed
by the Carnegie Mellon Software Engineering Institute to support computation
offload [32], and then verify the mapping of the architectural design decisions
to the architectural tactics for cyber-foraging.

We followed the guidelines for conducting case studies from [15] and [118].
Accordingly, the structure of the chapter follows the steps proposed in these
guidelines. Section 4.2 presents the case study design, including research ques-
tions and procedures for data collection and analysis. Section 4.3 presents the
results of the case study and threats to validity. Section 4.4 concludes the

131

chapter with a summary of the findings as well as their implications and limi-
tations.

4.2 Case Study Design

4.2.1 Research Questions

Given the goal to discover architectural design decisions in the existing imple-
mentation of the Tactical Cloudlets system, we defined the following research
questions to be answered in the execution of the case study.

• Which of the architectural tactics for cyber-foraging can be identified in
the Tactical Cloudlets system?

• How do the implemented tactics support their intended functional and
non-functional requirements?

4.2.2 Data Collection Procedure

Data collection involves identifying the data to be collected, defining a data
collection plan, and defining how the data will be stored [15]. Given that
the goal of this case study is to discover the architectural design decisions in
an existing system implementation, and both the system artifacts and system
developers are available, the data collection is executed with an independent
analysis of work artifacts (third degree data collection method) combined with
developer interviews for validation (first degree data collection method) [118].

We therefore define the following steps to collect data about the design and
implementation of the Tactical Cloudlets system that will enable us to answer
the case study research questions:

1. Understand system requirements: System requirements are gathered
from the project Wiki, system documentation, and publications. The
identified requirements are documented and confirmed by members of
the development team.

2. Recover software architecture: The software architecture is recovered
from the project Wiki, system documentation, and publications. The
as-designed architecture is compared to the as-is architecture through
code inspection of the code available at https://github.com/SEI-AMS/
pycloud and verification with the development team.

132

https://github.com/SEI-AMS/pycloud
https://github.com/SEI-AMS/pycloud

3. Map architectural design decisions to system requirements: Architectural
design decisions are mapped to system requirements in order to fully
understand how each requirement was met.

4.2.3 Analysis Procedure

Once the system requirements and architectural design decisions are fully un-
derstood we perform two activities as part of the analysis.

1. Map architectural design decisions to architectural tactics: The identi-
fied architectural design decisions are mapped to elements of the tactics
presented in Chapter 3. We do this by (1) selecting tactics that could
meet systems requirements based on the description of the tactic, and (2)
mapping components of the tactics to component(s) in the architecture
that perform each component role. Both matches and gaps are identified
in order to determine completeness of the tactics, as well as variations
of the tactics implemented in the system to fulfill specific requirements.

2. Qualitatively and quantitatively (if possible) determine if the imple-
mentation of the tactics meets the corresponding system requirements:
Through system testing, data collected (and published) by system devel-
opers, as well as discussions with the system developers, we determine if
the implementations of the tactics meet their intended requirements.

4.3 Results

4.3.1 System Context

Tactical environments, such as those in which first responders and military
personnel operate, are characterized by dynamic context, limited computing
resources, disconnected-intermittent-limited (DIL) network connectivity, and
high levels of stress. Forward-deployed, discoverable, virtual-machine-based
tactical cloudlets can be hosted on vehicles or other platforms to

• provide infrastructure to offload computation,

• provide forward data staging for a mission,

• perform data filtering to remove unnecessary data from streams intended
for mobile users, and

• serve as collection points for data heading for enterprise repositories.

133

The forward-deployed, single-hop proximity to mobile devices promotes
energy efficiency as well as lower latency (faster response times).

Given the uncertainty and dynamicity of tactical environments, one of the
main drivers for the Tactical Cloudlets system is survivability, defined as the
capability of a system to continue functioning in spite of adversity [32].

4.3.2 System Requirements

The requirements of the Tactical Cloudlets system can be divided into func-
tional and non-functional requirements.

4.3.2.1 Functional Requirements

Tactical Cloudlets need to satisfy the following functional requirements.

• FR1: Offload of Computation-Intensive Operations: Applica-
tions that are useful to first responders and military personnel include
speech and image recognition, natural language processing, and situa-
tional awareness. These are all computation-intensive tasks that take a
heavy toll on the device’s battery power and computing resources and
should therefore be offloaded to proximate, more powerful cloudlets.

• FR2: Cloudlet Discovery: Due to the dynamic nature and poten-
tial mobility of cloudlets in tactical environments (e.g., vehicle-hosted
cloudlets), mobile devices need to be able to discover nearby cloudlets.

• FR3: Disconnected Operations: In tactical environments it is not
possible to guarantee connectivity between cloudlets in the field and
the cloud. Therefore, offloaded capabilities should be self-contained and
pre-loaded so they do not require connectivity to the cloud in order to
operate.

• FR4: Support for Separate Deployment of Mobile Devices and
Cloudlets: Cloudlets should be able to be used by mobile devices al-
ready deployed or available in the field. Therefore the cloudlet should
enable mobile devices to be provisioned with the required apps to use its
capabilities.

• FR5: Optimal Cloudlet Selection: If more than one cloudlet is
available, the mobile device should offload computation to the cloudlet
that is likely to return a response in the shortest amount of time, before
the mobile device loses connectivity to the cloudlet.

134

• FR6: Cloudlet Management: In addition to being able to provision
the cloudlet with capabilities for use by mobile devices, the cloudlet
administrator should be able to see what capabilities have been started
from mobile devices as well as start capabilities and stop capabilities as
needed.

• FR7: Cloudlet Migration: Due to the potential mobility of cloudlets
in tactical environments, offloaded capabilities should be able to migrate
between cloudlets when requested.

4.3.2.2 Non-Functional Requirements

Tactical Cloudlets need to satisfy the following non-functional requirements.

• NFR1: Energy Efficiency: Energy consumption on the mobile device
when offloading computation-intensive operations (request, execution,
and response) should be less than energy consumed by local execution.

• NFR2: Scalability and Elasticity: Tactical cloudlets cannot be
servers with huge computing power due to power availability and size
limitations of what can be carried into a tactical environment to support
a mission. Tactical Cloudlets therefore should only run capabilities when
they are actively being used by mobile devices.

• NFR3: Ease of Deployment and Re-Deployment: First respon-
ders and military personnel executing a mission cannot rely on the avail-
ability of IT personnel in the field to help with cloudlet setup. Therefore,
tactical cloudlets should be easy to set up by non-IT personnel.

4.3.3 System Architecture and Design

The as-is architecture for the Tactical Cloudlets system is shown in Figure 4.1.
The main elements of the architecture are:

• Client: Mobile device running Android 4.x that hosts three main com-
ponents:

– Cloudlet-Ready App(s): Mobile apps that are set up to offload
computation to a cloudlet.

– Cloudlet Client GUI: Mobile app that is used to access the app
store capability.

135

Cloudlet Host (Linux – Ubuntu 12.04)

QEMU-KVM Instance

Service Repository

Cloudlet Metadata
(MongoDB)

Cloudlet-Ready App
Packages

(Filesystem)

Client (Android 4.x)

Legend

System
Boundary

Cloudlet-Ready
App [Java]

(Android App)

Custom Runtime
Component

Cloudlet Client
Library [Java]

(Android Library)

Read/
Write

Call-
ReturnFile

Service VM

Application ServerInput data

Cloudlet API
[Python]
(Pylons

Application)

Discovery Service
(Avahi Daemon)

Cloudlet Server IP Address/Port

Multicast
DNS

Query-Reply
(ZeroConf)

Service ID

HTTP
3rd Party
Runtime

Component

Non-
Blocking

Call

Cloudlet-Ready Application
Service IP Address/Port

P
or

t F
w

d.
 (U

se
r N

et
w

or
ki

ng
)

libvirtd

APK File

Repository TCP/IP

qemu-img

VM Images
(Filesystem)

VM Image
Files

SSH Server
(OpenSSH)

Service
Metadata

Cloudlet Manager
[Python]
(Pylons

Application)

Cloudlet Client
GUI [Java]

(Android App) Pycloud Library [Python]
Paste
HTTP
Server

Admin (PC)

Admin Request
Browser

Admin Response

gvncviewer

Cloudlet-
Ready App
Metadata

Service
VM

Metadata

Figure 4.1: High-Level Architecture of the Tactical Cloudlets System

– Cloudlet Client Library: Library that is used by the two compo-
nents above to discover cloudlets, retrieve cloudlet metadata, select
cloudlets, and offload computation. It interacts with the Cloudlet
Host using HTTP.

• Cloudlet Host: Linux server that runs a tactical cloudlet. The main
components are:

– PyCloud Library: Python component that implements the core

136

cloudlet functionality.

– Cloudlet API: Python component that is used by the Cloudlet
Client Library to start Services as Service VMs.

– Cloudlet Manager: Python web application that is used by an ad-
ministrator to manage Services (along with their VM Images) and
Cloudlet-Ready Apps.

– Service Repository: Each capability that is made available to mobile
apps is considered a service. A running service is called a Service
VM. Each service has associated metadata (Service Metadata), the
actual capabilities packaged as VM disk and memory images (VM
Images), and one or more Cloudlet-Ready Apps that can use the
capability (Cloudlet-Ready App Packages). In addition, the reposi-
tory stores metadata related to running services (Service VM Meta-
data) and the available Cloudlet-Ready Apps (Cloudlet-Ready App
Metadata)

– QEMU-KVM Instance: Each Service VM runs inside a QEMU-
KVM virtual machine instance.

• Admin (PC): Browser that is used to access the Cloudlet Manager web
application.

4.3.4 Mapping of Architectural Design Decisions to Ar-
chitectural Tactics

The mapping of functional and non-functional requirements to components of
the architecture is shown in Table 4.1.

Architectural design decisions implemented in the Tactical Cloudlets sys-
tem were mapped to functional and non-functional architectural tactics de-
scribed in Chapter 3. The mapping was performed in the following way:

1. For each system requirement, we selected a tactic that could meet system
requirements based on its description.

2. For each component in the selected tactic, we identified component(s) in
the architecture that performed the functionality described in the tactic.

3. We created an architecture diagram for the Tactical Cloudlets system
in which component names in the tactic are used as stereotypes in the
architecture components to indicate the mapping between components.

137

Table 4.1: Mapping of Functional and Non-Functional Requirements to the
Architecture of the Tactical Cloudlets System

Component F
R

1
:

O
ffl

o
a
d

F
R

2
:

D
is

c
o
v
e
r
y

F
R

3
:

D
is

c
o
n

n
e
c
te

d
O

p
s.

F
R

4
:

S
e
p

a
r
a
te

D
e
p

lo
y
m

e
n
t

F
R

5
:

S
e
le

c
ti

o
n

F
R

6
:

M
a
n

a
g
e
m

e
n
t

F
R

7
:

M
ig

r
a
ti

o
n

N
F

R
1
:

E
n

e
r
g
y

E
ffi

c
ie

n
c
y

N
F

R
2
:

S
c
a
la

b
il

it
y

N
F

R
3
:

E
a
se

o
f

D
e
p

lo
y
m

e
n
t

Cloudlet Client Library X X X X X

Discovery Service X

Pycloud Library X X X X X X X X X

Service Repository X X X X X X X X

Cloudlet Metadata X X

Cloudlet Client GUI X

Cloudlet Manager X X X

QEMU-KVM Instance X X X

4. We then added components found in the Tactical Cloudlets system that
were not present in the tactic, but were important for the implementation
of the tactic.

The follwing subsections describe how each selected tactic was identified
and implemented in the Tactical Cloudlets system.

4.3.4.1 Computation Offload

The Computation Offload tactic (Section 3.2.1) enables mobile clients to off-
load expensive computation to surrogates, as shown in Figure 4.2(a). In sum-
mary, a component on the mobile client (Offload Client) coordinates the offload
process with its counterpart on the surrogate (Offload Server). The Offload
Server sets up the offloaded code in an execution container for the Cyber-
Foraging-Enabled Mobile App to use.

The Computation Offload tactic can be identified in the Tactical Cloudlets
architecture as shown in Figure 4.2(b), with numbers to indicate the sequence

138

<<Surrogate>>

Cloudlet Host<<Mobile Client>>

Client

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

Cloudlet-Ready App

Custom
Runtime

Component

<<Offload Client>>

Cloudlet Client
Library

Call

<<Container>>

QEMU-KVM Instance

<<Offloaded Code>>

Service VM
12: Execute (Input)

<<Offload Server>>

3rd Party
Runtime

Component

1: Start Offload (Service ID)

6: Start Service VM(Metadata, VM Image File)

File

File Read/
Write

H
TT

P
 P

as
te

 S
er

ve
r

C
lo

u
d

le
t

A
P

I

3: Start Service VM (ID)

Py
cl

ou
d

Li
b

ra
ry

4: Start Service VM (ID)

Service Repository

Cloudlet MetadataVM Images

VM Image
Files

Service
Metadata

Service
VM Metadata

Repository

5: Get Service Metadata and VM Image File(ID) 7: Save Service VM Metadata(ID)

Return

8: Service VM
IP Address
and Port

9: Service VM
IP Address
and Port

10: Service VM
IP Address
and Port

2: Start Offload(Service ID)
[HTTP]

11: Service VM
IP Address
and Port

SurrogateMobile Client

Cyber-
Foraging
Enabled

Mobile App

Offload
Client

Container

Offloaded
Code

4: Execute (Input)

Offload
Server

1: Start Offload 3: Set Up Offloaded Code

2: Start Offload

App
Metadata

(a) Computation Offload Tactic

(b) Tactical Cloudlets Implementation

Figure 4.2: Tactical Cloudlets Implementation of the Computation Offload
Tactic

139

of operations. The component names in Figure 4.2(a) are used as stereotypes
for the components in Figure 4.2(b) to indicate the mapping between compo-
nents. Only the components that are relevant to the tactic are included. The
computation offload operation takes place as follows:

1-4. The Cloudlet-Ready App requests to offload service Service ID.

5. The Pycloud Library retrieves Service Metadata and VM Image
Files for Service ID.

6. The Pycloud Library starts the Service VM as a QEMU-KVM
Instance.

7. The Pycloud Library saves Service VM Metadata in the Service
Repository.

8-11. The Pycloud Library returns the IP address and port on which
the Service VM is listening.

12. The Cloudlet-Ready App opens a socket to the given IP address
and port and starts interacting with the Service VM.

4.3.4.2 Pre-Provisioned Surrogate

In the Pre-Provisioned Surrogate tactic (Section 3.2.3.1) surrogates are pro-
visioned before their deployment with the capabilities that are offloaded by
mobile clients, as shown in Figure 4.3(a). In summary, an Admin Client en-
ables cloudlet administrators to add capabilities to a surrogate via a Surrogate
Manager.

The Pre-Provisioned Surrogate tactic can be identified in the Tactical
Cloudlets architecture as shown in Figure 4.3(b), with numbers to indicate
the sequence of operations. The component names in Figure 4.3(a) are used
as stereotypes for the components in Figure 4.3(b) to indicate the mapping
between components. Only the components that are relevant to the tactic
are included. Provisioning a cloudlet with a service capability takes place as
follows:

140

<<Surrogate>>

Cloudlet Host
<<Surrogate Manager>><<Admin Client>>

Admin

<<Local or Remote
User Interface>>

Browser

1: Add Service(ID, VM Image Disk File, Metadata)

H
TT

P
 P

as
te

 S
er

ve
r

C
lo

ud
le

t
M

an
ag

er

Pycloud

Library

Service Repository

<<Capability Metadata>><<Capability Registry>>

Cloudlet Metadata

<<Capabilities Repository>>

Cloudlet-Ready App
Packages

APK File

<<Capabilities Repository>>

VM Images

VM Image
Files

Service
Metadata

Cloudlet-
Ready App
Metadata

2: Add Service(...) 3: Add Service(...)

4: Start Service
VM(VM Image
Disk File)

5: Suspend
Service VM

6: Save VM Images Files and Service Metadata

Surrogate

Surrogate
Manager

Admin Client

Remote User
Interface

Local User
Interface

Capabilities
Repository

Capability
Metadata

Capability
Registry

Offload
Server

Data Staging
Manager

Surrogate
Discovery

(a) Pre-Provisioned Surrogate Tactic

(b) Tactical Cloudlets Implementation

File
3rd Party
Runtime

Component

Legend

System
Boundary

Custom
Runtime

Component

Call
(Synchronous)

File Read/
Write

Repository

Tactic
Boundary

Figure 4.3: Tactical Cloudlets Implementation of the Pre-Provisioned Surro-
gate Tactic

141

1-3. The Admin client requests to add a new service Service ID to a
cloudlet.

4. In order to provide a faster startup time for when service capa-
bilities are requested, the Pycloud Library first starts the Service
VM from the given VM Image Disk File.

5. The Pycloud Library then suspends the Service VM, which gener-
ates a VM Image Memory File. The faster startup time is because
the Service VM will be started from a suspended state instead of
a cold state.

6. Both the VM image disk and memory file are saved as VM Image
Files in the Service Repository along with Service Metadata.

This same general process is followed when adding a Cloudlet-Ready App
to the Service Repository. Cloudlet-Ready Apps are linked to services by
Service ID. At runtime, the Cloudlet-Ready App uses the Service ID provided
in steps 1-3 to start the computation offload process.

4.3.4.3 Surrogate Broadcast

In the Surrogate Broadcast tactic (Section 3.2.4.3) surrogates advertise their
availability and selected metadata to mobile devices for discovery, as shown
in Figure 4.4(a). In summary, the Broadcast Component on the surrogate
broadcasts surrogate metadata for the Offload Client on the mobile client to
discover.

The Surrogate Broadcast tactic can be identified in the Tactical Cloudlets
architecture as shown in Figure 4.4(b), with numbers to indicate the sequence
of operations. The component names in Figure 4.4(a) are used as stereotypes
for the components in Figure 4.4(b) to indicate the mapping between compo-
nents. Only the components that are relevant to the tactic are included.

Cloudlet discovery in the Tactical Cloudlets system is based on the Avahi
daemon1 that implements Zeroconf (Zero Configuration Networking).2 Avahi
uses DNS Service Discovery (DNS-SD) along with Multicast DNS to enable a
client to request a service without knowing the IP address of the server that
provide the service. Cloudlet discovery by cloudlet-ready apps takes place as
follows:

1http://avahi.org
2http://zeroconf.org

142

0. When the cloudlet starts, its Discovery Service joins a specific
Cloudlet Multicast IP Address as a listener.

1. The Cloudlet-Ready App requests to offload service Service ID.

2. The Cloudlet Client Library sends a DNS-SD Query for cloud-
let services (defined as a cloudlet. tcp service) through Multicast
DNS to the Cloudlet Multicast IP Address. The query reaches the
Discovery Service of any cloudlets in the network through Multi-
cast DNS. The Discovery Service replies with a DNS-SD Response
indicating the IP address and port of the cloudlet server.

3-9. The Cloudlet Client Library sends a request for cloudlet metadata
and the list of available services to each cloudlet that replied.

10. The Cloudlet Client Library selects the cloudlet that contains the
service Service ID and has the lowest load, based on the assump-
tion that it will have the fastest processing and response time.
The architecture enables other algorithms to be plugged in.

11. The Cloudlet Client Library starts the computation offload pro-
cess (Section 4.3.4.1) with the selected cloudlet.

4.3.4.4 Just-in-Time Containers

The Just-in-Time Containers tactic (Section 3.3.3.1) creates a container and/or
an instance of the offloaded code upon receipt of an offload request and then
destroys the instance of the offloaded code when the offload request is com-
pleted, as shown in Figure 4.5(a).

In the Tactical Cloudlets system, as shown in Figure 4.2(b), the computa-
tion offload process presented in Section 4.3.4.1, a QEMU-KVM Instance for
a Service VM is only created upon an offload request.

In addition, to promote greater scalability and elasticity, when adding a
service to a cloudlet (Section 4.3.4.2), one of the elements of the Service Meta-
data is whether the service will be shared or non-shared. A non-shared service
will start a separate instance with every request. However, a shared service
will only start an instance for its first request. All other requests will share
the same instance. A counter of active users for the service is maintained as
Service Metadata. This means that Step 6 in Figure 4.2 only takes place if the
service is non-shared, or if it is the first request for a shared service.

The final step in the computation offload process presented in Section
4.3.4.1 is that the Cloudlet-Ready App starts the interaction with the Service
VM. To implement the Just-in-Time Containers tactic, when the Cloudlet-
Ready App is closed, the operations shown in Figure 4.5(b) take place. The

143

<<Surrogate>>

Cloudlet Host
<<Surrogate>>

Cloudlet Host
<<Surrogate>>

Cloudlet Host

<<Mobile Client>>

Client

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

Cloudlet-Ready App

Custom
Runtime

Component

<<Offload Client>>

Cloudlet Client
Library

Call

<<Offload Server>>

1: Start Offload(Service ID)

11: Start Offload(Service ID)

Broadcast

2: Find
Available
Cloudlets

<<Broadcast Component>>

Discovery Service

0: Cloudlet Server IP Address
and Port

10: Select Optimal
Cloudlet(Cloudlet Metadata)

3: [For Each Cloudlet]
Get Cloudlet Metadata and Service List

H
TT

P
 P

as
te

 S
er

ve
r

C
lo

ud
le

t
A

P
I4: Get Cloudlet Metadata ...

P
y

cl
o

u
d

 L
ib

ra
ry5: Get Cloudlet Metadata ...

7: Cloudlet Metadata and
Service List

8: Cloudlet Metadata and
Service List9: Cloudlet Metadata and Service List

Service Repository

Cloudlet Metadata

File Read/
Write

6: Get Cloudlet Metadata and Service List

Repository

Surrogate

Surrogate

Surrogate

Mobile Client

Cyber-
Foraging
Enabled

Mobile App

Offload
Client Offload

Server

1: Start Offload

4: Start Offload

2: Find
Available
Surrogates

Broadcast
Component

0: Broadcast Surrogate Metadata

3: Select
Optimal
Surrogate

(a) Surrogate Broadcast Tactic

(b) Tactical Cloudlets Implementation

Figure 4.4: Tactical Cloudlets Implementation of the Surrogate Broadcast
Tactic

144

component names in Figure 4.5(a) are used as stereotypes for the components
in Figure 4.5(b) to indicate the mapping between components. Only the com-
ponents that are relevant to the tactic are included.

1-4. The Cloudlet-Ready App requests to stop service Service ID.

5. If the service is non-shared or the number of active users for the
service is one (i.e., last active user), the Pycloud Library stops the
instance of the service Service ID.

6. Service Metadata and Service VM Metadata are updated to in-
dicate that the service has stopped and/or the number of active
users for the shared service is one less.

4.3.5 Analysis

4.3.5.1 Mapping between Tactics and Requirements

The review of the Tactical Cloudlets architecture resulted in the identifica-
tion of four architectural tactics for cyber-foraging. The mapping between
the identified tactics and the Tactical Cloudlets functional and non-functional
requirements is shown in Table 4.2.

Table 4.2: Mapping of Architectural Tactics to Functional and Non-Functional
Requirements

Tactic F
R

1
:

O
ffl

o
a
d

F
R

2
:

D
is

c
o
v
e
r
y

F
R

3
:

D
is

c
o
n

n
e
c
te

d
O

p
s.

F
R

4
:

S
e
p

a
r
a
te

D
e
p

lo
y
m

e
n
t

F
R

5
:

S
e
le

c
ti

o
n

F
R

6
:

M
a
n

a
g
e
m

e
n
t

F
R

7
:

M
ig

r
a
ti

o
n

N
F

R
1
:

E
n

e
r
g
y

E
ffi

c
ie

n
c
y

N
F

R
2
:

S
c
a
la

b
il

it
y

N
F

R
3
:

E
a
se

o
f

D
e
p

lo
y
m

e
n
t

Computation Offload X X

Pre-Provisioned Surrogate X X

Surrogate Broadcast X X

Just-in-Time Containers X X

The Computation Offload tactic supports the requirement to offload

145

<<Surrogate>>

Cloudlet Host<<Mobile Client>>

Client

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

Cloudlet-Ready App

Custom
Runtime

Component

<<Offload Client>>

Cloudlet Client
Library

Call

<<Container>>

QEMU-KVM Instance

<<Offloaded Code>>

Service VM

<<Offload Server>>

3rd Party
Runtime

Component

1: Stop Service (Service ID)

[if (non-shared service or number of active users = 1]
 5: Stop Service VM(ID)

File

File Read/
Write

H
TT

P
 P

as
te

 S
er

ve
r

C
lo

ud
le

t
A

P
I

3: Stop Service VM (ID)
Py

cl
ou

d
Li

b
ra

ry
4: Stop Service VM (ID)

Service Repository

Cloudlet Metadata

Service
Metadata

Service
VM Metadata

Repository

6: Update Service
 and Service

VM Metadata(ID)

Return

2: Stop Service(Service ID)
[HTTP]

SurrogateMobile Client

Cyber-
Foraging
Enabled

Mobile App

Offload
Client

Container

Offloaded Code4: Execute (Input)

Offload Server

1: Start Offload

2: Start Offload

3: Create Offloaded Code Instance
5: End Offload

7: Destroy Offloaded Code Instance

6: End Offload

(a) Just-in-Time Containers Tactic

(b) Tactical Cloudlets Implementation

Figure 4.5: Tactical Cloudlets Implementation of the Just-in-Time Containers
Tactic

expensive computation to nearby surrogates (FR1) as well as the energy ef-
ficiency requirement (NFR1). The developers of the tactical cloudlets sys-

146

tem split applications into a very thin client (Cloudlet-Ready App) and a
very computation-intensive server (Service VM) such that energy efficiency
is reached on the mobile device. The mapping between the tactic and the
Tactical Cloudlet implementation in Figure 4.2 shows two differences:

1. The Tactical Cloudlets system does not use an external App Metadata
file in the offload process. This is because the only metadata that is
required is the Service ID which is hard-coded in the Cloudlet-Ready
App. An improvement for a future version of the tactic is to mark the
App Metadata component as optional.

2. The Tactical Cloudlets system has an additional Service Repository com-
ponent from which offloaded code is fetched and then started as a Service
VM. This additional step would be required of any system that imple-
ments the Computation Offload tactic together with the Pre-Provisioned
Surrogate tactic, as is the case of the Tactical Cloudlets system (Section
4.3.4.2). An additional improvement for the catalog would be to include
variations of the Computation Offload tactic when used with the different
surrogate provisioning tactics.

The Pre-Provisioned Surrogate tactic supports the requirement for dis-
connected operations (FR3) because cloudlets are pre-provisioned with capa-
bilities that are needed for a mission. In addition, because cloudlets are also
pre-provisioned with the apps to use the capabilities, the tactic also supports
the requirement to enable mobile devices to be provisioned in the field (FR4).
The mapping between the tactic and the Tactical Cloudlet implementation is
complete, as shown in Figure 4.3.

The Surrogate Broadcast tactic supports the requirement for cloudlet
discovery (FR2) as well as the requirement for optimal cloudlet selection when
more than one cloudlet is available (FR5). The mapping between the tactic
and the Tactical Cloudlet implementation in Figure 4.4. shows two differences:

1. The cloudlet selection process is a two-step process in which the Cloud-
let Server IP Address and Port broadcast by the Broadcast Component
(Step 0) is used to query each cloudlet for capabilities (Step 3). The rea-
son for this is that the Zeroconf protocol used by the Tactical Cloudlets
implementation has a size limitation for broadcast information. While
not a gap in the tactic itself, what this shows is that technology se-
lection can introduce variations in the implementation of a tactic. An
improvement for the catalog would be to include variations of the Sur-
rogate Broadcast tactic when used with different technologies (or known
limitations of technologies).

147

2. For this same reason, the Surrogate Repository is added to the implemen-
tation of the tactic. The cloudlet metadata and service list is obtained
from the repository when the cloudlet is queried for its capabilities. This
component would be part of the variation introduced by the broadcast
protocol size limitation.

The Just-in-Time Containers tactic supports the requirement for ca-
pabilities to only be running when they are being used in order to promote
scalability and elasticity (NFR2). The mapping between the tactic and the
Tactical Cloudlet implementation in Figure 4.5 shows two differences:

1. The Tactical Cloudlets system introduces the concept of shared and non-
shared capabilities, which is not specified in the original tactic. This is
why the container is destroyed only if is it is a non-shared capability or
the number of active users is one (i.e., only active user of the capabil-
ity). An improvement for the catalog would be to include a variation
of the Just-in-Time Containers tactic to support shared and non-shared
capabilities.

2. For the same reason, the Surrogate Repository is added to the implemen-
tation of the tactic. Service Metadata and Service VM Metadata needs
to be updated based on the results of the request to end the offload re-
quest. This component would be part of the variation introduced by the
support for shared/non-shared capabilities.

Although not stated as a benefit of the tactic in Section 3.3.3.1, and not stated
as a requirement for the system in Section 4.3.2, the Just-in-Time Containers
tactic also supports energy efficiency on the cloudlet, which is critical in tactical
environments where access to power might not always be available.

The requirement to provide a form of management console for a cloudlet
admin to use (FR6) does not map to any of the tactics, as shown in Table
4.2. This fact is expected as it relates to one of the findings from the SLR
that states a lack of focus on system-level concerns that is required when
moving from experimental prototypes to operational systems (Section 2.6).
One of these concerns is management of deployed capabilities. Related to
this fact, there is not a tactic in the catalog that maps to ease of deployment
and re-deployment (NFR3). However, in the Tactical Cloudlets system, the
Admin component that implements the Admin Client in the Pre-Provisioned
Surrogates tactic (Figure 4.3) is a lightweight, web-based interface that enables
cloudlet management and easy deployment and redeployment of capabilities
(FR6 and NFR3). It provides the following functionality:

148

• Service VM creation, edit and deletion

• Service VM import and export

• Service VM Instance start, stop and migration

• Cloudlet-Ready App repository (i.e., app store)

The extension of the catalog with tactics for ease of deployment and manage-
ment would be useful for moving from experimental prototypes to operational
cyber-foraging systems.

The requirement to be able to migrate capabilities between cloudlets when
requested (FR7) does not map directly to any of the tactics either. However,
the functionality in the Pycloud Library that enables this migration is very
similar to that explained in the Eager Migration tactic once the monitoring
component detects that the connection between the mobile device and the
cloudlet is deteriorating (Section 3.3.2.5). The Admin component of the tacti-
cal cloudlets system that implements the Admin Client in the Pre-Provisioned
Surrogates tactic (Figure 4.3) also contains functionality to manually migrate
a Service VM Instance to another connected cloudlet. An improvement for
the catalog would be to include a variation of the Eager Migration tactic to
support manual migration.

To determine if the tactics meet their intended functional and non-functional
requirements, the developers conducted extensive system testing and collected
data to support their design and implementation decisions. In addition to suc-
cessful test results, data collected included cloudlet provisioning time, energy
consumption on the mobile device, payload size and response time. All im-
plementation details and supporting data are available in several publications
[32][76][77][78].

4.3.5.2 Discussion of Tactics for System Enhancements

The development team was presented with the complete list of architectural
tactics for cyber-foraging so they could confirm the identified tactics. In addi-
tion, the team was asked what tactics not implemented in the system would
be useful to address some of the characteristics of tactical environments. The
team identified the following architectural tactics:

Eager Migration (Section 3.3.2.5) and Surrogate Load Balancing
(Section 3.3.3.3): As stated in Section 4.3.5.1, the migration of capabilities
in the tactical cloudlets system is manual. Adding capabilities for automated
migration could enable load balancing, similar to what is done in cloud data

149

centers for resource optimization, or to enable migration to a more powerful or
nearby cloudlet to improve response time and provide continued operations.

Trusted Surrogates (Section 3.3.4.1): The tactical cloudlets system
relies on the underlying network to provide the secure communication between
the mobile device and the cloudlet. While this may be enough in some sce-
narios, it is not enough for many military scenarios. A common solution for
establishing trust between two nodes is to use a third-party online trusted
authority that validates the credentials of the requester, similar to what hap-
pens in the Trusted Surrogate tactic. However, the characteristics of tactical
environments do not consistently provide access to that third-party author-
ity because tactical cloudlets operate in what is known as DIL environments
(disconnected, interrupted, low bandwidth). The team is currently developing
a trusted identity mechanism for use in disconnected environments that does
not rely on a third party for validation of credentials. Instead, it generates
server and device credentials in the field and relies on out-of-band channels for
transfer of credentials to the device and therefore generates trust between the
mobile device and the cloudlet.

Cached Results (Section 3.3.2.3): The system has been tested and
demonstrated with applications that take between 8 and 12 seconds to receive
a response, such as speech recognition, face recognition, and object recogni-
tion [76]. However, there are many other applications, such as sample analysis
or data analysis, that could take a much longer time to respond. Given that
tactical cloudlets operate in DIL environments, it is likely that a mobile device
could lose connectivity to the cloudlet while the cloudlet is executing the off-
loaded operation. If this happens in the current tactical cloudlets system the
mobile device is simply informed that connectivity has been lost. Implement-
ing the Cached Results tactic would enable the cloudlet to cache the results
of the offloaded operation until the mobile device regains connectivity.

Pre Fetching (Section 3.2.2.1) and Out-Bound Pre-Processing
(Section 3.2.2.3): Even though the tactical cloudlets system was built with
computation offload in mind, the reality is that many applications useful in
tactical environments rely on data to provide better capabilities and would
benefit from data staging tactics. For example, face recognition can work with
a pre-loaded face database, but a better capability would be for that database
to synchronize with a central database as windows of connectivity become
available. The Pre-Fetching tactic would enable the system to download faces
from a central database for people in the area of the cloudlet location to up-
date the local database as connectivity becomes available. The Out-Bound
Pre-Processing tactic would enable faces collected in the field to be checked
for quality and duplication, and pre-processed before sending to the central

150

database during moments of connectivity.

4.3.5.3 Findings

The goal of the case study was to discover (1) which of the architectural tactics
for cyber-foraging can be identified in the Tactical Cloudlets system, and (2)
how do the implemented tactics support their intended functional and non-
functional requirements. The context for the case study is the validation of
the tactics in real systems.

The analysis of the Tactical Cloudlets system identified four architectural
tactics for cyber-foraging. As a starting point, tactics were identified to satisfy
the main functional requirements for a cyber-foraging system presented in
Section 3.2:

• Pre-Provisioned Surrogate was used for surrogate provisioning

• Surrogate Broadcast was used for surrogate discovery

• Computation Offload was used to implement computation offload capa-
bilities

To meet the scalability non-functional requirement, the Just-in-Time Con-
tainers tactic was used to create containers for computation when they are
needed, and destroyed when they are no longer needed.

However, there were some gaps in the identified tactics (Section 4.3.5.1)
that create opportunities for improvement of the tactics catalog:

1. Tactics should differentiate between core and optional components and
interactions. Each optional component/interaction should contain ratio-
nale for when it is necessary to include it in the implementation of the
tactic.

2. As tactics are implemented in operational cyber-foraging systems it is
likely that variations will arise. The Tactical Cloudlets system intro-
duced several potential tactic variations:

• Variations of the Computation Offload tactic based on the surrogate
provisioning tactic selected for the system

• A variation of the Just-in-Time Containers tactic to support shared
and non-shared capabilities

• A variation of the Eager Migration tactic to support manual migra-
tion

151

3. Technology selection can also lead to tactic variations. As tactics are
implemented and evaluated in cyber-foraging systems, technology lim-
itations and constraints may require the implementation of additional
components or interactions between components. The Tactical Cloud-
lets system introduced a variation of the Surrogate Broadcast tactic due
to limitations in broadcast message size.

4. There is great potential for extending the catalog with tactics to support
system qualities necessary for moving from experimental prototypes to
operational systems. The Tactical Cloudlets system showed the need for
tactics to support Ease of Deployment and Manageability.

5. Even if tactics are targeted at promoting a particular system quality,
the tactics may have an effect on other system qualities. As an example,
the Just-in-Time Containers tactic is a tactic for scalability/elasticity
but also promotes energy efficiency on the surrogate. Even though the
secondary effect of the tactic is positive, it could also have been a negative
effect. This observation makes decision models such as the ones that
will be presented in Chapter 8 a valuable tool for software architects to
understand the potential effects of their decisions.

6. Related to the previous point, energy efficiency in cyber-foraging systems
is mainly targeted at energy savings on mobile devices because of battery
limitations. However, the Tactical Cloudlets system showed the need for
tactics to support energy efficiency on surrogates, especially if deployed
in areas with power limitations.

The utility of the tactics was supported by the main developer for the Tacti-
cal Cloudlets system in the following statement: “Having a set of architectural
tactics for cyber-foraging systems would help considerably when starting the
design of a new system. Cyber-foraging software has very particular require-
ments, and it is not easy to know how to create the architecture for the overall
system to properly satisfy the appropriate quality attributes. A set of tactics
would be an invaluable guide to make decisions at this stage.”

The identification and analysis of these tactics in the Tactical Cloudlets
system therefore answers the research questions for the case study, and in
combination with the utility statement from the main system developer, serves
as a validation of the tactics in cyber-foraging systems for computation offload.

152

4.3.6 Threats to Validity

There are two main threats to the validity of the results of this case study.
The first is related to internal validity because the data collection and analysis
was conducted by a single researcher and therefore subjective interpretations
might exist. To mitigate this threat, collected data was reviewed by system
developers that confirmed that the data collected was an accurate representa-
tion of the system. The developers also confirmed that the identified tactics
were indeed present in the system. The second threat is related to external
validity, specifically whether the findings are generalizable given that the re-
sults are drawn from the analysis of a single system. To mitigate this threat
we conducted two additional case studies that are reported in Chapters 5 and
6. In addition, the system developers were provided the full set of tactics and
asked to identify tactics that could be used to enhance the current system.
The developers identified several tactics and recognized the potential for the
tactics to build a better system.

4.4 Conclusions

This chapter presented the results of the first of three case studies to validate
the architectural tactics for cyber-foraging presented in Chapter 3, in the con-
text of RQ2, which is to identify the architectural tactics that can be derived
from the architectural design decisions identified by the SLR.

For this case study two research sub-questions were defined for an existing
computation offload system.

1. Which of the architectural tactics for cyber-foraging can be identified in
the Tactical Cloudlets system?

The analysis of the Tactical Cloudlets system resulted in the identifica-
tion of four architectural tactics for computation offload, cloudlet provision-
ing, cloudlet discovery and scalability/elasticity. In addition, elements of the
Pre-Provisioned Surrogate tactic were also used to meet cloudlet management
and ease of deployment and re-deployment requirements.

Although based on the analysis of a single system, the results show that
a subset of the architectural tactics was found in an existing cyber-foraging
system for computation offload. In addition, several gaps were identified that
show that there is great potential to further extend the tactics catalog as more
operational cyber-foraging systems are developed and evaluated.

2. How do the implemented tactics support their intended functional and
non-functional requirements?

153

System testing and data collection show that the implemented tactics meet
their intended functional and non-functional requirements.

More importantly, the results of this case study show that there is potential
for taking a tactics-driven approach to fulfill functional and non-functional
requirements for cyber-foraging systems. As indicated by the developers of
the Tactical Cloudlets system, a catalog of architectural tactics would have
been useful not only to discover ways to implement system requirements, but
also to identify aspects of the system that had not been considered. The next
case study explores the same case study research questions in the context of a
data staging system.

4.5 Acknowledgments

Very special thanks to Sebastián Echeverŕıa and the rest of the development
team at the Carnegie Mellon Software Engineering Institute for their invaluable
support during the execution of this case study.

154

5
Case Study 2: GigaSight —

Cyber-Foraging for Data Staging

This chapter addresses research question RQ2 and is the second of three case
studies to validate the architectural tactics presented in Chapter 3. The goal of
this case study is to discover the architectural design decisions in the existing
implementation of the GigaSight data staging system for crowd-sourced video
[113], and then verify the mapping of the design decisions to the identified
architectural tactics for cyber-foraging.

5.1 Introduction

This chapter continues the validation of the architectural tactics for cyber-
foraging presented in Chapter 3, in the context of research question RQ2:
What architectural tactics can be derived from the identified architectural de-
sign decisions?

The goal of this second case study is to discover the architectural design
decisions in the existing implementation of the GigaSight system developed by
Ghent University, Aalto University, Intel Labs, and Carnegie Mellon University
to support data staging of crowd-sourced video [113], and then verify the
mapping of the architectural design decisions to the architectural tactics for
cyber-foraging.

As in the case study in the previous chapter, we followed the guidelines for
conducting case studies from [15] and [118]. Accordingly, the structure of the
chapter follows the steps proposed in these guidelines. Section 5.2 presents
the case study design, including research questions and procedures for data
collection and analysis. Section 5.3 presents the results of the case study and

155

threats to validity. Section 5.4 concludes the chapter with a summary of the
findings as well as their implications and limitations.

5.2 Case Study Design

5.2.1 Research Questions

Given the goal to discover architectural design decisions in the existing imple-
mentation of the GigaSight system, we defined the following research questions
to be answered in the execution of the case study.

• Which of the architectural tactics for cyber-foraging can be identified in
the GigaSight system?

• How do the implemented tactics support their intended functional and
non-functional requirements?

5.2.2 Data Collection Procedure

Given that the research sub-questions identified for this case study are the
same as for the Tactical Cloudlets system, the data collection procedure is the
same (Section 4.2.2). The main difference between systems is that Tactical
Cloudlets is targeted at computation offload while the GigaSight system is
targeted at data staging.

The code for the GigaSight system that is analyzed as part of the data col-
lection procedure is available at https://github.com/cmusatyalab/GigaSight.

5.2.3 Analysis Procedure

The analysis procedure is also equivalent to procedure defined for the Tactical
Cloudlets system (Section 4.2.3).

5.3 Results

5.3.1 System Context

GigaSight is a cyber-foraging system targeted at continuous collection of crowd-
sourced video from mobile devices and wearables [113]. Given the potentially-
sensitive nature of video, GigaSight collects video on surrogates called cloudlets
where privacy-sensitive information is automatically removed from the video

156

https://github.com/cmusatyalab/GigaSight

based on user-defined privacy settings related to time, location, and content
— a process called denaturing. Denatured video is then indexed and resulting
tags and metadata are uploaded to a cloud catalog where users can perform
content-based searches on the total catalog of denatured videos.

Use cases for crowd-sourced video systems such as GigaSight include mar-
keting and advertising; location of missing people, pets and things; creation of
family vacation albums; public safety; and fraud detection [110].

5.3.2 System Requirements

The requirements of the GigaSight system can be divided into functional and
non-functional requirements.

5.3.2.1 Functional Requirements

GigaSight needs to satisfy the following functional requirements.

• FR1: Video capture: The mobile device captures and stores video.

• FR2: User-specified privacy settings: Users are able to specify pri-
vacy settings based on location, time, and image content. These settings
are used by the denaturing process to automatically remove privacy-
sensitve content from videos.

• FR3: Video upload to cloudlets: When a cloudlet becomes available,
the mobile device uploads captured video and privacy settings.

• FR4: Offload of video denaturing and indexing processes: The
highly computation-intensive denaturing and indexing operations are ex-
ecuted on the cloudlet according to user-specified privacy settings.

• FR5: Index upload to cloud catalog: Video metadata and tags
generated by the indexing process are uploaded from the cloudlet to a
cloud catalog that can be queried by users.

• FR6: User requests for denatured videos: A user of the cloud
catalog can request denatured videos from cloudlets.

5.3.2.2 Non-Functional Requirements

GigaSight needs to satisfy the following non-functional requirements.

157

• NFR1: Energy Efficiency: Energy consumption on the mobile device
when offloading the computation-intensive denaturing and indexing op-
erations should be less than energy consumed by executing them locally.

• NFR2: Scalability: One cloudlet should be able to process and store
video from multiple users.

• NFR3: Fault Tolerance: If a cloudlet is not available for upload, the
mobile device should be able to cache video until a cloudlet becomes
available.

• NFR4: Privacy: Privacy-sensitive information should not be made
available to users of the cloud catalog.

Mobile Device (Android 4.0.4)

GigaSight
App [Java]
(Android

App)

User and
Privacy
Settings

File
Uploader

[Java]
(Android

App)

Android Media
Storage

Camera

Video + Metadata

Video + Metadata

Upload Video(Personal VM IP
and Port, Privacy Settings)

Settings

Cloudlet (Linux 3.2.0)

Personal VM [KVM]
Personal VM [KVM]

Personal VM [KVM]

GigaSight
Server
[C++]

Upload Video(Video,
Metadata, Privacy Settings)

Data Management VM [KVM]

Data
Manager
[Python]

Storage and
Metadata
Database
[MySQL]

Denatured Video +
Metadata + Tags

Denaturing
Process [C++]

Denature(Video, Privacy Settings)

Denatured Video +
Metadata Encrypted Video

Encrypted Video

Video Content
Indexer VM [KVM]

Cloud

Indexer
[Python]

Denatured Video

Tags

Global
Catalog
[Django]

Video Metadata
 + Tags

OpenCV

Legend

System
Boundary

Custom Runtime
Component

Read/
Write

Call-
Return

File
3rd Party
Runtime

Component

Persistent
Storage

Repository

Diamond
Search
Module

Search Videos(Video List, Query)

Denatured Video

Diamond
Client

Search Videos

Figure 5.1: High-Level Architecture of the GigaSight System

5.3.3 System Architecture and Design

The as-is architecture for the GigaSight system is shown in Figure 5.1. The
main elements of the architecture are:

158

• Mobile Device: The mobile device is an Android 4.0.4 device. It leverages
the device’s built-in camera for video capture.

– GigaSight App: Performs all the user and privacy setting man-
agement. User settings include IP address and port of its Personal
VM. Privacy settings include time filters, location filters and object-
based filters. The object-based filters are currently limited to the
faces present in the training set of the face recognition algorithms.

– File Uploader: Connects to the user’s Personal VM and uploads
video files and metadata. Once files are successfully uploaded, these
are removed from the mobile device to make space for more video
content.

• Cloudlet: Cloudlets are data staging points for denatured video data en
route to the cloud. Cloudlets in GigaSight are implemented as servers
running Linux 3.2.0.

– Personal VM: Each mobile device user is associated to a Personal
VM that performs the customized denaturing for that user ac-
cording to the user-defined privacy settings. The Denaturing Pro-
cess that executes inside this VM is implemented using C++ and
OpenCV 2.4.21 as a multi-step pipeline: video decoding, early-
discard of frames based on metadata and sampling rate, content-
based blurring, and video encoding. The output of the denaturing
process is a low-frame-rate denatured video file. For additional
privacy, an encrypted version of the original video is also created
during the upload process. Both files are stored in the Data Man-
agement VM so that they are accessible to other VMs on the cloud-
let.

– Data Management VM: The Data Manager inside this VM handles
all video and metadata storage and retrieval in the Storage and
Metadata Database. It notifies the Indexer when new denatured
video is available for indexing. In addition, each time the Indexer
adds tags to the database, these are automatically synchronized
with the Global Catalog running in the Cloud.

– Video Content Indexer VM: The Indexer inside this VM is a back-
ground activity that extracts metadata about denatured videos
(e.g., owner (anonymized), location of capture, start and end time

1http://www.opencv.org

159

http://www.opencv.org

of capture, cloudlet address where stored, and tags) and sends it
to the Data Manager which in turn pushes this information to the
Global Catalog in the Cloud. The metadata is also stored locally
for use by search algorithms that could be implemented inside the
Personal VM for personal use.

– Diamond Search Module: The Diamond Search Module is a third-
party component for interactive search of non-indexed data.2

• Cloud: Cloud-based data center that aggregates video metadata from a
set of associated cloudlets.

– Global Catalog: The Global Catalog is a web application imple-
mented using Django3 that stores and manages the metadata from
denatured videos available on cloudlets. The front end to the ap-
plication enables users to browse through the metadata and select
videos of interest for viewing.

– Diamond Client: Once a user selects videos of interest, the Diamond
Client contacts the Diamond Server of each cloudlet that contains
a video of interest to initiate content-based search.

5.3.4 Mapping of Architectural Design Decisions to Ar-
chitectural Tactics

The mapping of functional and non-functional requirements to components of
the architecture is shown in Table 5.1.

Architectural design decisions implemented in the GigaSight system were
mapped to functional and non-functional architectural tactics described in
Chapter 3. The process that was used to perform the mapping was the same
as described in Section 4.3.4 for the Tactical Cloudlets system.

The following subsections describe how each selected tactic was identified
and implemented in the GigaSight system.

5.3.4.1 Out-Bound Pre-Processing

In the Out-Bound Pre-Processing tactic (Section 3.2.2.3) surrogates collect
data from mobile devices and pre-process the data – clean, filter, summarize,
or merge — such that the data that is sent on to the enterprise cloud is ready
for consumption and serves an immediate need, as shown in Figure 5.2(a).

2http://diamond.cs.cmu.edu
3http://www.djangoproject.com

160

http://diamond.cs.cmu.edu
http://www.djangoproject.com

Table 5.1: Mapping of Functional and Non-Functional Requirements to the
Architecture of the GigaSight System

Component F
R

1
:

V
id

e
o

C
a
p

tu
r
e

F
R

2
:

P
r
iv

a
c
y

S
e
tt

in
g
s

F
R

3
:

V
id

e
o

U
p

lo
a
d

to
C

lo
u

d
le

t

F
R

4
:

C
o
m

p
u

ta
ti

o
n

O
ffl

o
a
d

to
C

lo
u

d
le

t

F
R

5
:

V
id

e
o

In
d

e
x

U
p

lo
a
d

to
C

lo
u

d

F
R

6
:

U
se

r
R

e
q
u

e
st

s

N
F

R
1
:

E
n

e
r
g
y

E
ffi

c
ie

n
c
y

N
F

R
2
:

S
c
a
la

b
il

it
y

N
F

R
3
:

F
a
u

lt
T

o
le

r
a
n

c
e

N
F

R
4
:

P
r
iv

a
c
y

Camera X

Android Media Storage X X

GigaSight App X X X X

File Uploader X X X

Personal VM X X

GigaSight Server X

Denaturing Process X X X

Data Manager (+ Storage) X X X

Video Context Indexer VM X

Indexer X X

Diamond Search Module X

Global Catalog X X

Diamond Client X

In summary, data collected from mobile devices is stored in a Cache on the
Surrogate and then pre-processed by a Data Processing Application(s) before
it is sent to a Cloud Data Repository.

The Out-Bound Pre-Processing tactic can be identified in the GigaSight
architecture as shown in Figure 5.2(b), with numbers to indicate the sequence
of operations. The component names in Figure 5.2(a) are used as stereotypes
for the components in Figure 5.2(b) to indicate the mapping between compo-

161

<<Mobile Client>>
Mobile Device

<<Mobile
Sensing App>>

GigaSight App

User and
Privacy
Settings

<<Communications
Manager>>

File Uploader

Android Media
Storage

2: Video + Metadata

1: Upload Video(Personal VM IP
and Port, Privacy Settings)

Settings

<<Surrogate>>
Cloudlet

Personal VM [KVM]
Personal VM [KVM]

Personal VM

<<Communications
Manager>>

GigaSight Server

3: Upload Video(Video,
Metadata, Privacy Settings)

<<Cache>>
Data Management VM

Data
Manager

Storage and
Metadata
Database

10: Denatured Video +
Metadata + Tags

<<Data Processing
Application>>
Denaturing

Process

4: Denature(Video, Privacy Settings)

7: Denatured Video +
Metadata 5: Encrypted Video

6: Encrypted Video

Video Content
Indexer VM

<<Enterprise Cloud>>
Cloud

<<Data
Processing

Application>>
Indexer

8: Denatured Video

9: Tags

<<Cloud Data
Repository>>

Global Catalog

11: Video Metadata + Tags

(b) GigaSight Implementation

SurrogateMobile Client

Legend

System
Boundary

Mobile Sensing App

Custom
Runtime

ComponentCommunications
Manager

Call
(Synchronous)

Communications
Manager

Send Data(Sensed Data)

Send Data(Sensed Data)

Enterprise
Cloud

File Read/
Write

(Synchronous)

Cache

Repository

Cloud Data
Repository

Raw/Processed Data

Store Data

Register
for Data of

Interest

Message
(Asynchronous)

Data
of Interest

Data Processing
ApplicationData Processing

ApplicationData Processing
Application

Read/Write
Raw/Processed
Data

File Read/Write
(Asynchronous

/Periodic)
(a) Out-Bound Pre-Processing Tactic

Figure 5.2: GigaSight Implementation of the Out-Bound Pre-Processing Tactic

162

nents. Only the components that are relevant to the tactic are included. The
out-bound pre-processing takes place as follows:

1-3 GigaSight App uploads stored video and metadata to the Per-
sonal VM identified by Personal VM IP Address and Port using
the File Uploader.

4 The GigaSight Server receives the video, metadata and privacy
settings for the user and sends these to the Denaturing Process
for denaturing according to the user’s privacy settings.

5-6 The GigaSight Server encrypts the original video and sends it to
the Data Manager for storage.

7 The GigaSight Server sends the denatured video and metadata to
the Data Manager for storage and indexing.

8-9 The Data Manager sends the denatured video to the Indexer for
indexing, which returns the set of tags for elements identified in
the video.

10 The Data Manager stores the denatured video, metadata and
tags.

11 The Data Manager sends the video metadata and tags to the
Global Catalog in the Cloud.

5.3.4.2 Pre-Provisioned Surrogate

In the Pre-Provisioned Surrogate tactic (Section 3.2.3.1) surrogates are provi-
sioned before their deployment with the capabilities that are offloaded by mo-
bile clients, as shown in Figure 5.3(a). In summary, an Admin Client enables
surrogate administrators to add capabilities to a Surrogate via a Surrogate
Manager.

Some elements of the Pre-Provisioned Surrogate tactic can be identified in
the GigaSight architecture as shown in Figure 5.3(b). The component names
in Figure 5.3(a) are used as stereotypes for the components in Figure 5.3(b)
to indicate the mapping between components. Only the components that are
relevant to the tactic are included.

In the GigaSight system all data processing capabilities are provisioned on
the cloudlet before deployment. However, this is a manual process. There is
not the equivalent of a Surrogate Manager component to help with the pro-
visioning process as shown in the tactic. In addition, because capabilities are
not advertised, but rather each mobile device stores the IP Address and Port
of its Personal VM as part of the User Settings, there is not the equivalent of

163

<<Surrogate>>

Cloudlet

<<Admin Client>>

Telnet/SSH Client

<<Remote User Interface>>

Terminal

<<Local User Interface>>

Terminal

<<Capabilities Repository>>

Linux Filesystem

File

Add VM Image File

Data
Management
VM Image File

Video Content
Indexer VM
Image File

Personal VM
Image File

KVM Manager

3rd Party
Runtime

Component

Read VM Image File

Add VM Image File

Start VM (VM
Image File)

Surrogate

Surrogate
Manager

Admin Client

Remote User
Interface

Local User
Interface

Legend

System
Boundary

Custom
Runtime

Component

Call
(Synchronous)

File Read/
Write

Repository

Capabilities
Repository

Capability
Metadata

Capability
Registry

Tactic
Boundary

Offload
Server

Data Staging
Manager

Surrogate
Discovery

(a) Pre-Provisioned Surrogate Tactic

(b) GigaSight Implementation

Figure 5.3: GigaSight Implementation of the Pre-Provisioned Surrogate Tactic

164

a Capability Metadata component nor the equivalent of a Capability Registry
component.

As depicted in Figure 5.3(b), prior to deployment the Terminal program
that comes with the Linux distribution is executed locally or remotely to copy
the Data Management VM Image File, the Video Content Indexer VM Image
File, and the Personal VM Image File that contains the denaturing capabili-
ties into the Linux Filesystem. The KVM Manager program that also comes
with the Linux distribution is initially used to start one instance of the Data
Management VM and one or more instances of the Video Content Indexer
VM.4 A Personal VM is then started for each mobile device that wants to use
the GigaSight system for video offload. After starting the Personal VM the
mobile device user is provided with its IP Address and Port, which needs to
be added to the User Settings using the GigaSight app shown in Figure 5.1.

5.3.4.3 Local Surrogate Directory

In the Local Surrogate Directory tactic (Section 3.2.4.1), mobile devices main-
tain a list of surrogates with their network addresses or URLs, in addition to
any information that can help the mobile device to select the best offload tar-
get in case more than one is available, as shown in Figure 5.4(a). In summary,
the list of surrogates is retrieved from the Surrogate Directory before starting
the offload process and an optimal surrogate is selected for offload.

The process is much simpler in the GigaSight system, as shown in Figure
5.4(b). There is not a cloudlet selection process because every mobile device
is assigned a Personal VM on a single Cloudlet. The location of a cloudlet for
data upload takes place as follows:

0 As indicated in Section 5.3.4.2, when a Personal VM is started
for a Mobile Device, the GigaSight App in its role as Surrogate
Directory UI is used to save the Personal VM IP Address and
Port to the User and Privacy Settings file.

1 When the video upload process is started by the GigaSight App
in its role of Offload Client, it reads the Personal VM IP Address
and Port from the User and Privacy Settings file.

2-3 Video and Metadata are uploaded to the Personal VM at the
provided IP Address and Port.

4Deployment of more than one Video Context Indexer VM is an architectural design
decision for scalability, as discussed in Section 5.3.5

165

<<Surrogate>>

Cloudlet

<<Mobile Client>>

Mobile Device

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>
<<Surrogate Directory UI>>

GigaSight App

Custom
Runtime

Component

<<Offload Client>>

File Uploader

Call

Personal VM

<<Offload Server>>

GigaSight Server

2: Upload Video(Personal VM IP
and Port, Privacy Settings)

3: Upload Video
(Video,

Metadata,
Privacy Settings)

File Read/
Write

<<Surrogate Directory>>

User and Privacy
Settings

File

0: Save Personal VM
IP and Port

1: Get Personal VM
IP and Port, Privacy Settings

3rd Party
Runtime

Component

Android Media
Storage

Video + Metadata

Repository

Surrogate

Surrogate

Surrogate

Mobile Client

Cyber-
Foraging
Enabled

Mobile App

Offload
Client

Offload
Server

1: Start Offload

7: Start Offload

Surrogate
Directory

Surrogate
Directory UI

2: Get Surrogate List

6: Select
Surrogate

8: Update
Surrogate List

[Optional]

3: [For each
Surrogate]

Ping Surrogate

5: Surrogate Metadata

Surrogate
Directory

Surrogate
Metadata

4: Get Surrogate
Metadata

Return

(a) Local Surrogate Directory Tactic

(b) GigaSight Implementation

Figure 5.4: GigaSight Implementation of the Local Surrogate Directory Tactic

166

5.3.4.4 Client-Side Data Caching

The Client-Side Data Caching tactic is a variation of the Cached Results tactic
(Section 3.3.2.3). Data collected by a mobile client is cached on the mobile
device and sent to the surrogate upon connection or re-connection, as shown
in Figure 5.5(a).

The Client-Side Data Caching tactic can be identified in the GigaSight
architecture as shown in Figure 5.5(b), with numbers to indicate the sequence
of operations. The only difference between the implementation and the tactic
is that the sensed data (video + metadata) is saved in the cache upon capture,
instead of upon disconnection. The component names in Figure 5.5(a) are used
as stereotypes for the components in Figure 5.5(b) to indicate the mapping
between components. Only the components that are relevant to the tactic are
included. The client-side data caching takes place as follows:

0 Video captured using the Camera on the Mobile Device is stored in
the Android Media Storage along with metadata such as location.

1-4 The GigaSight App tries to upload video to its Personal VM to be
encrypted, denatured, and stored in the Data Management VM
on the Cloudlet.

5-7 Only if the operation is successful, the just uploaded video is
deleted from the Android Media Storage to make room for new
video. If it is not successful the user gets an error message and is
asked to try the upload at a later time.

5.3.5 Analysis

5.3.5.1 Mapping between Tactics and Requirements

The review of the GigaSight architecture resulted in the identification of four
architectural tactics for cyber-foraging. The mapping between the identified
tactics and the GigaSight functional and non-functional requirements is shown
in Table 5.2.

The Out-Bound Pre-Processing tactic supports all of the functional
requirements because it maps well to sensing applications such as GigaSight.
Because denaturing and indexing are extremely computation-intensive activi-
ties that are executed on the cloudlet and not on the mobile device (as demon-
strated via experimentation in [113]), the tactic also supports energy efficiency
(NFR1). Finally, the pre-processing that occurs on the cloudlet in the Dena-
turing Process, supports the privacy requirement (NFR4). Because the Per-
sonal VM is assigned to one and only one mobile device, there is a guarantee

167

<<Surrogate>>

Cloudlet

<<Mobile Client>>

Mobile Device

Legend

System
Boundary

<<Mobile Sensing App>>

GigaSight App

Custom
Runtime

Component

<<Communications Manager>>

File Uploader

Call

1: Upload Video
(Personal VM IP
And Port, Privacy Settings)

3: Upload Video
(Video, Metadata,
Privacy Settings)

File Read/
Write

Repository

6: [If Success]
Delete Uploaded Video

<<Mobile Cache>>

Android Media
Storage

4: Store Encrypted
and Denatured Video
and Metadata

0: Store Video
+ Metadata

2: Get Video +
Metadata

Camera

<<Surrogate Cache>>

Data Management VM

<<Communications Manager>>

Data Management VM

Return
3rd Party
Runtime

Component

5: Success/Failure

7: [If Success] Delete Uploaded
Video

SurrogateMobile Client

Mobile Sensing
App

Communications
Manager

Communications
Manager

1: Send Data(Sensed Data)

2: Send Data(Sensed Data)

Surrogate Cache

3: Detect
Disconnection

Mobile Cache
8: Store Data

4: Store Sensed Data

6: Get Sensed Data

7: Send Data(Sensed Data)

5: Detect
Reconnection

(a) Client-Side Data Caching Tactic

(b) GigaSight Implementation

Figure 5.5: GigaSight Implementation of the Client-Side Data Caching Tactic

168

Table 5.2: Mapping of Functional and Non-Functional Requirements to the
Architecture of the GigaSight System

Component F
R

1
:

V
id

e
o

C
a
p

tu
r
e

F
R

2
:

P
r
iv

a
c
y

S
e
tt

in
g
s

F
R

3
:

V
id

e
o

U
p

lo
a
d

to
C

lo
u

d
le

t

F
R

4
:

C
o
m

p
u

ta
ti

o
n

O
ffl

o
a
d

to
C

lo
u

d
le

t

F
R

5
:

V
id

e
o

In
d

e
x

U
p

lo
a
d

to
C

lo
u

d

F
R

6
:

U
se

r
R

e
q
u

e
st

s

N
F

R
1
:

E
n

e
r
g
y

E
ffi

c
ie

n
c
y

N
F

R
2
:

S
c
a
la

b
il

it
y

N
F

R
3
:

F
a
u

lt
T

o
le

r
a
n

c
e

N
F

R
4
:

P
r
iv

a
c
y

Out-Bound Pre-Processing X X X X X X X X

Pre-Provisioned Surrogate X X X X X

Local Surrogate Directory X X

Client Side Data Caching X X X X

that the raw video is only processed by the Personal VM. Because the video is
encrypted before it is stored in the Data Management VM, access to the raw
video would only be possible via the Personal VM which is the only system
component that knows the encryption key. The mapping between the tactic
and the GigaSight implementation in Figure 5.2 shows three main differences:

1. The GigaSight system has an additional User and Privacy Settings file
that is read by the GigaSight App to obtain settings for uploading video
to the cloudlet. This is reasonable and equivalent to the App Metadata
component in the Computation Offload tactic (Section 3.2.1), which is
where the setttings for the offload process are stored. An improvement
for a future version of the Out-Bound Pre-Processing tactic is to include
a more general Settings component that performs this role and mark it
as optional.

2. The GigaSight system has an additional Android Media Storage com-
ponent because video and metadata sent to the cloudlet are read from
internal storage. This component makes sense for a system that stores

169

data before sending it to the surrogate, as opposed to sending data as
it is received. An improvement for a future version of the tactic is to
include a more general Data Storage component that performs this role
and mark it as optional.

3. The GigaSight system has an instance of the GigaSight Server (Commu-
nications Manager) for each user, as opposed to a single instance. This
is done to support the privacy requirement and will be discussed shortly
when the mapping to the Pre-Provisioned Surrogate tactic is analyzed.

The Pre-Provisioned Surrogate tactic supports computation offload to
the cloudlet (FR4) and video index upload to the cloud (FR5). These are
capabilities that are pre-provisioned on the cloudlet in the form of VMs. Be-
cause the capabilities already exist on the cloudlet, there is no need to transfer
any extra computation from the mobile device or the cloud, leading to en-
ergy efficiency (NFR1). The mapping between the tactic and the GigaSight
implementation in Figure 5.3 shows two main differences:

1. The GigaSight system does not have the equivalent of the Surrogate
Manager, as discussed in Section 5.3.4.2. Adding this component to
the system would promote ease of deployment and manageability as Gi-
gaSight moves from a prototype to an operational system.

2. As also discussed in Section 5.3.4.2, the GigaSight system does not have
the equivalent of the Capabilities Metadata and Capability Registry com-
ponents because (1) capabilities are not advertised and (2) capabilities
on all surrogates are the same. Therefore, an improvement for a future
version of the tactic would be to mark these two components as optional.

Even though having a pre-provisioned surrogate by itself does not support
scalability (NFR2), in this particular system it does. Mobile devices are as-
signed a specific Personal VM on a cloudlet (by IP address and port) and
therefore the number of mobile devices supported by a cloudlet can be con-
trolled. Once a defined disk and memory threshold on a cloudlet has been
reached, new mobile devices would need to be assigned to a different cloudlet.
In essence, a pre-provisioned surrogate has more control over its load.

The Local Surrogate Directory tactic supports scalability (NFR2) be-
cause a cloudlet can support multiple users by instantiating multiple instances
of a Personal VM. It also supports privacy (NFR4) because the Personal VM
is the cloud-based counterpart of the mobile device: an entity that the user
trusts to store personal content, but with much more computational and stor-
age resources [113]. The mapping between the tactic and the GigaSight im-
plementation in Figure 5.4 shows two main differences:

170

1. The GigaSight system has an additional Android Media Storage com-
ponent because video and metadata sent to the cloudlet are read from
internal storage. This is not a gap in this particular tactic but an area
for improvement for the Out-Bound Pre-Processing tactic, as discussed
earlier.

2. The GigaSight system does not have a Surrogate Metadata component
because there is not a cloudlet selection process. An improvement for a
future version of the tactic would be to mark this component as optional,
as well as the surrogate selection process (Steps 3-6 in Figure 5.4(a)).

The Client-Side Data Caching tactic supports video capture and upload
to a cloudlet (FR1 and FR2). It supports energy efficiency (NFR1) because
uploading longer segments (instead of uploading as video is captured) requires
the device to wake up less frequently from the sleep state, while the total
number of bytes transmitted remains constant [113]. Finally, it supports fault
tolerance (NFR3) because video is not uploaded until a cloudlet is available,
and is not deleted from the device until the cloudlet confirms the upload. The
mapping between the tactic and the GigaSight implementation in Figure 5.5
shows two differences:

1. The GigaSight system contains a Camera component as the data source.
An improvement for a future version of the tactic would be to include a
more general Data Source core component to indicate the source of the
data that is stored in the Mobile Cache.

2. As indicated in Section 5.3.4.4, sensed data is saved in the cache upon
capture, instead of upon disconnection. This difference could be added
as a variation of the Client-Side Data Caching tactic.

It is important to note that some non-functional requirements in GigaSight
are supported by specific technology selection as opposed to the use of tac-
tics. The use of VMs as containers for data and computation on the cloudlet
promotes scalability and elasticity because of the ease for container creation,
migration, and destruction provided by VM management tools. For example,
additional instances of the content indexer can be instantiated on one or more
cloudlets to handle increasing loads. A Personal VM can also be easily moved
to another cloudlet as long as the device is informed of its new address. The
use of VMs as containers also promotes privacy in the system because Per-
sonal VMs are single-user and VM isolation is a well-known property of VMs.
Although there are potential vulnerabilities and attacks, for the most part this
property can be guaranteed [60].

171

To determine if the tactics meet their intended functional and non-functional
requirements, the developers conducted extensive system testing and collected
data to support their design and implementation decisions. In addition to
successful test results, data collected included system throughput, cloudlet
performance, algorithm accuracy, and energy consumption on the mobile de-
vice. All implementation details and supporting data are available in several
publications [110][113].

5.3.5.2 Discussion of Tactics for System Enhancements

The two main GigaSight developers were presented with the complete list of
architectural tactics for cyber-foraging so they could confirm the identified
tactics. In addition, they were asked what tactics not implemented in the
system would be useful to address some of the GigaSight requirements or
desired features. The developers identified the following architectural tactics:

Surrogate Provisioning from the Mobile Device (Section 3.2.3.2)
and Surrogate Provisioning from the Cloud (Section 3.2.3.3): While
having cloudlets pre-provisioned with a user’s Personal VM as presented in
Section 5.3.4.2 is acceptable for a prototype implementation, a more flexible
form of provisioning would be necessary to make the system production-ready.
A hybrid strategy that combines provisioning from the cloud and the mobile
device would work well for the GigaSight system. Generic Personal VMs could
be provisioned from the cloud. For privacy reasons, the filters used in the dena-
turing process could be provisioned from the mobile device. For the GigaSight
system, the latency drawback of provisioning from the cloud does not apply:
only in very few cases, such as a lost child scenario, would it be important to
have the indexed tags of the denatured videos rapidly available.

Resource-Adapted Computation (Section 3.3.1.3): This tactic could
be explored in GigaSight to address content that is highly sensitive. For ex-
ample, coarse-grained denaturing of entire frames with sensitive content could
take place on the device before sending to the cloudlet. The denaturing pro-
cess on the cloudlet is more fine-grained, where only parts of individual frames
are denatured. The fine-grained denaturing process that takes place on the
cloudlet is much more computation intensive than the coarse-grained one that
would execute on the mobile device.

Just-in-Time Containers (Section 3.3.3.1): In the current GigaSight
system, the Video Content Indexer VM is started at cloudlet startup and is
always running. An alternative approach is to run the indexer only when
needed (e.g., when there is a batch of N new videos available).

Surrogate Load Balancing (Section 3.3.3.3): Additional cloudlets

172

could be selected and started for denaturing and indexing video based on
network connectivity and existing load on the cloudlet.

Trusted Surrogates (Section 3.3.4.1): A mechanism in which the mo-
bile device could confirm the identity of the cloudlet would be crucial to im-
plement because it would increase the user’s trust in the GigaSight system for
denaturing raw videos with potentially sensitive information.

As additional information, the GigaSight system is the basis for a new
large-scale event participation platform for the wireless transmission of user-
generated videos. The goal of the system is to boost audience involvement
and immersion by, for example, integrating user-generated content into the
event experience [27]. The system is in the field test phase (as of December
2015). Two tactics will be considered for resource optimization and therefore
scalability of the system to deal with large amounts of users:

• Resource-Adapted Computation (Section 3.3.1.3): Some of the
analytics that run on the cloudlets could run on the device itself at
a lower scale to detect shakiness, blurred, or dark/bright video. This
should help in only uploading higher-quality videos.

• Right-Sized Containers (Section 3.3.3.2): The moments when the
load on the system will be high could be predicted based on the script
of the event, i.e., some moments of the show are more interesting to
capture than others. At these times, larger containers could be created
to process larger amounts of captured video.

5.3.5.3 Findings

The goal of the case study was to discover (1) which of the architectural tactics
for cyber-foraging can be identified in the GigaSight system, and (2) how do
the implemented tactics support their intended functional and non-functional
requirements. The context for the case study is the validation of the tactics
in real systems.

The analysis of the GigaSight system identified four architectural tactics for
cyber-foraging. Similar to the Tactical Cloudlets analysis, tactics were iden-
tified to satisfy the main functional requirements for a cyber-foraging system
presented in Section 3.2:

• Pre-Provisioned Surrogate was used for surrogate provisioning

• Local Surrogate Directory was used for surrogate discovery

173

• Out-Bound Pre-Processing was used to implement data staging capabil-
ities

In addition, the Client-Side Data Caching tactic was used to implement
a fault tolerance non-functional requirement to store captured video until a
surrogate is available so that it can continue functioning despite being discon-
nected from a surrogate.

However, there were some gaps in the identified tactics (Section 5.3.5.1)
that create opportunities for improvement of the tactics catalog:

1. Consistent with the Tactical Cloudlets system (Section 4.3.5.3), tactics
should differentiate between core and optional components and interac-
tions. Each optional component/interaction should contain rationale for
when it is necessary to include it in the implementation of the tactic.

2. Consistent with the Tactical Cloudlets system, even if tactics are targeted
at promoting a particular system quality, the tactics may have an effect
on other system qualities, further supporting the value of decision models
such as the ones that will be presented in Chapter 8.

3. Consistent with the Tactical Cloudlets system, as tactics are imple-
mented in operational cyber-foraging systems it is likely that variations
will arise. The GigaSight system introduced a potential tactic varia-
tion of the Client-Side Data Caching tactic that always caches data, as
opposed to only caching data when a surrogate is not found.

4. Functional and non-functional requirements in cyber-foraging systems
can also be met by technology selection, rather than by the use of a par-
ticular tactic. In the GigaSight system, the use of VMs as containers had
a positive effect on scalability/elasticity as well as privacy. Insights that
are gained from the implementation and evaluation of cyber-foraging
systems could be added as notes to the tactics to provide even greater
value to software architects.

The utility of the tactics was supported by the main developer for the
GigaSight system in the following statement: “It is helpful for developers to
have some ‘best practices’ in software architecture for cyber foraging. Today,
we already have many patterns (e.g., Gang of Four [43]), but these are very
focused on object-orientation, rather than on taking into account the actual
deployment. Having a reference list of tactics, plus possibly coding elements in
the future, would, in my view, be very helpful in designing production-grade
cyber-foraging applications. So far, cyber-foraging has not truly left the lab

174

prototype phase and typically good software design practices are second hand
during this phase of the research. But with cloudlets, micro data centers, and
edge clouds appearing everywhere, there will emerge a need from industry on
this.”

The identification and analysis of these tactics in the GigaSight system
therefore answers the research questions for the case study, and, in combina-
tion with the utility statement from one of the system developers, serves as a
validation of the tactics in cyber-foraging systems for data staging.

5.3.6 Threats to Validity

There are two main threats to validity of the results of this case study. The
first is related to internal validity because the data collection and analysis
was conducted by a single researcher and therefore subjective interpretations
might exist. To mitigate this threat, collected data was reviewed by system
developers that confirmed that the data collected was an accurate representa-
tion of the system. The developers also confirmed that the identified tactics
were indeed present in the system. The second threat is related to external
validity, specifically whether the findings are generalizable given that the re-
sults are drawn from the analysis of a single system. To mitigate this threat
we conducted two additional case studies that are reported in Chapters 4 and
6. In addition, the system developers were provided with the full set of tactics
and asked to identify tactics that could be used to enhance the current system.
The developers identified several tactics and recognized the potential for the
tactics to build a better system.

5.4 Conclusions

This chapter presented the results of the second of three case studies to val-
idate the architectural tactics for cyber-foraging presented in Chapter 3, in
the context of RQ2, which is to identify the architectural tactics that can be
derived from the architectural design decisions identified by the SLR.

For this case study, as in the Tactical Cloudlets system, two research ques-
tions were defined for an existing data staging system:

1. Which of the architectural tactics for cyber-foraging can be identified in
the GigaSight system?

The analysis of the GigaSight system resulted in the identification of four
architectural tactics for data staging, cloudlet provisioning, cloudlet discovery
and fault tolerance. In addition, elements of these tactics were also used to

175

meet energy efficiency requirements as well as privacy requirements. Scala-
bility requirements were met by a combination of tactics plus the selection of
virtual machines as containers for data processing applications.

Although based on the analysis of a single system, the results show that
a subset of the architectural tactics was found in an existing cyber-foraging
system for data staging. In addition, several gaps were identified that further
show that there is great potential to further extend the tactics catalog as more
operational cyber-foraging systems are developed and evaluated.

2. How do the implemented tactics support their intended functional and
non-functional requirements?

System testing and data collection show that the implemented tactics meet
their intended functional and non-functional requirements.

More importantly, the results of this case study further show that there
is potential for taking a tactics-driven approach to fulfill functional and non-
functional requirements for cyber-foraging systems. As indicated by the de-
velopers of the GigaSight system, a catalog of architectural tactics would def-
initely be an asset for the development of real cyber-foraging systems. The
next case study explores the use of the architectural tactics in the development
of a new computation offload and data staging cyber-foraging system.

5.5 Acknowledgments

Very special thanks to Pieter Siemons from Ghent University and Zhou Chen
from Carnegie Mellon University for their invaluable support during the exe-
cution of this case study.

176

6
Case Study 3: AgroTempus — Using

Architectural Tactics for Cyber-Foraging
Systems Development

This chapter addresses research question RQ2 and is the final of three case
studies to validate the architectural tactics presented in Chapter 3. The goal
of this case study is to demonstrate the use of the architectural tactics in the
development of a cyber-foraging system for both computation offload and data
staging targeted at agricultural knowledge exchange in resource-challenged re-
gions, to then determine how the selected tactics support their intended func-
tional and non-functional requirements.

6.1 Introduction

This chapter continues the validation of the architectural tactics for cyber-
foraging presented in Chapter 3, in the context of research question RQ2:
What architectural tactics can be derived from the identified architectural de-
sign decisions?

The goal of this third case study is to identify tactics that could be used in
the development of the AgroTempus system, targeted at agricultural knowl-
edge exchange in resource-challenged regions, and then to validate if the imple-
mentation of each of the tactics met its intended functional and non-functional
requirements.

As in the case studies in the previous two chapters, we followed the guide-
lines for conducting case studies from [15] and [118]. Accordingly, the struc-
ture of the chapter follows the steps proposed in these guidelines. Section 6.2

177

presents the case study design, including research questions and procedures for
data collection and analysis. Section 6.3 presents the results of the case study
and threats to validity. Section 6.4 concludes the chapter with a summary of
the findings as well as their implications and limitations.

6.2 Case Study Design

6.2.1 Research Questions

Given the goal to determine if the architectural tactics for cyber-foraging iden-
tified in Chapter 3 can be used in the development of the AgroTempus system,
we defined the following research questions to be answered in the execution of
the case study. These questions are slightly different from the previous two
case studies as the context is the use of the tactics in new development, as
opposed to the analysis of an existing system to identify tactics.

• Which of the architectural tactics for cyber-foraging can be used in the
development of the AgroTempus system to fulfill its functional and non-
functional requirements?

• How do the selected tactics support their intended functional and non-
functional requirements?

6.2.2 Data Collection Procedure

Data collection involves identifying the data to be collected, defining a data
collection plan, and defining how the data will be stored [15]. Given that the
goal of this case study is to determine if the architectural tactics for cyber-
foraging can be used in the development of a new system, the data collection is
executed with direct observation of the development process (first degree data
collection method) combined with developer and project stakeholder interviews
for validation (first degree data collection method) [118].

We therefore define the following steps to collect data about the use of
architectural tactics for cyber-foraging in the development of the AgroTempus
system that will enable us to answer the case study research questions:

1. Gather system requirements: System requirements are gathered by the
system developer from the main project stakeholder. The identified re-
quirements are documented and confirmed by the main stakeholder.

178

2. Map system requirements to architectural tactics for cyber-foraging:
The system developer maps system requirements to functional and non-
functional tactics for cyber-foraging that could be used in the realization
of the requirements.

3. Develop system architecture: The system developer designs the software
architecture for the AgroTempus system using components derived from
the identified architectural tactics, combined with components to address
requirements that are outside the scope of the architectural tactics for
cyber-foraging. The system architecture is documented as a component-
and-connector diagram.

4. Map architecture components to system requirements: The system de-
veloper maps architecture components to system requirements to ensure
that all system requirements are assigned to components of the architec-
ture.

5. Map architecture components to identified architectural tactics: The
system developer maps architecture components and design decisions to
elements of the identified tactics.

6. Implement system based on system architecture: The system developer
implements the system according to specifications provided by the sys-
tem architecture.

6.2.3 Analysis Procedure

Once the system is implemented, we perform two activities as part of the
analysis:

1. Qualitatively and quantitatively (if possible) determine if the implemen-
tation of the tactics meets the corresponding system requirements: The
system is validated against the system functional and non-functional
requirements to determine if requirements are met as intended by the
architectural tactics..

2. The developer is observed and interviewed throughout the design and
implementation of the system to understand how the architectural tactics
were used and how they influenced the development process.

179

6.3 Results

6.3.1 System Context

As many developing areas have to deal with the lack of proper access to re-
sources such as Internet and electricity, cyber-foraging offers potential solutions
to these resource challenges by leveraging proximate surrogates that can pro-
vide services that involve heavy computation such as image processing, store
large sets of data collected in the field, or store information retrieved from
data centers during scarce moments of Internet connectivity.

The goal of the AgroTempus system is to enable people involved in agri-
culture (e.g., farmers and non-governmental organization (NGO) employees
helping farmers), who work in environments with little to no access to the
Internet or electricity, to collect and retrieve data about the weather in their
area. AgroTempus performs different types of computation on the collected
data as examples of valuable services for its users.

End users interact with the system with smartphones, the proliferation
of which is predicted to rise significantly in the coming years in developing
regions [34][125]. The capabilities of the mobile applications running on the
smartphone are extended by surrogates in the form of single-board computers
running on solar power. To be able to eventually store all collected data in a
cloud-based back-end, a mobile hub carrying a computer system with increased
storage capabilities will connect to each surrogate periodically, and eventually
connect to the Internet. This also makes it possible to propagate data from
the Internet to the surrogates and mobile devices. This setup was inspired by
the DakNet project in India [97].

Figure 6.1 shows an overview of the system. The mobile hub (3) is a
computer system with networking and storage capabilities (e.g., laptop) carried
by a vehicle. It can move from villages that lack access to the Internet to a
larger city that does have access (1), such that it can store as well as retrieve
data that can then be used for services in the villages. Surrogates (4) are single-
board computers (e.g., Raspberry Pi1), extended with network adapters and
solar batteries. Mobile devices (2) are smartphones, most of which will be in
the low-end range, generally with computing capability and storage capacity
lower than the surrogates.

1http://www.raspberrypi.org/

180

http://www.raspberrypi.org/

Figure 6.1: AgroTempus System Context

6.3.2 System Requirements

6.3.2.1 Functional Requirements

The AgroTempus system needs to satisfy the following functional require-
ments.

• FR1: Store weather data: NGO employees and farmers can store
weather data related to a certain area via a mobile app.

• FR2: Retrieve weather data: NGO employees and farmers can re-
trieve weather data related to a certain area using a mobile app. This
data is derived from earlier reports (FR1), as well as from a third-party
weather API accessible via the Internet.

• FR3: Perform regressions on weather data: NGO employees can
select a weather information dataset and perform a regression on it using
the mobile app. A visualization of the results will be available when the
operation completes.

• FR4: Predict future weather data values: NGO employees and
farmers can obtain predictions of future values of variables related to

181

the weather, based on data collected in the field, up to a week in the
future.

• FR5: Surrogate setup: Surrogates are assigned to serve a certain
region and as such need a setup procedure that enables NGO employees
to enter the correct settings before it can be used.

• FR6: Forecast delivery: Weather forecasts for the region that the
user is in can be retrieved using a mobile app.

• FR7: Integration with cloud-based storage systems: The system
eventually stores all data collected from mobile devices in a cloud-based
system such as ERS [17].

• FR8: Voice interface: The user interface for the farmers can support
voice instructions to help users navigate the app.

• FR9: Synchronize weather data: Periodically, the latest weather
forecasts and data for relevant regions are retrieved from a third-party
weather API on the Internet. This data is eventually stored on the
surrogates.

• FR10: Surrogate registration on mobile hub: When new surro-
gates are added to the system and are operational, their identification
and location information (as provided in FR5) is stored on the mobile
hub so that it can collect relevant data for this surrogate (FR9).

6.3.2.2 Non-Functional Requirements

The AgroTempus system needs to satisfy the following non-functional require-
ments.

• NFR1: Fault tolerance and reliability: The system should be able
to recover from failures such as crashes and loss of connection between
mobile devices and surrogates.

– Because it is expected that there will be few people proficient in
IT in the regions where the system will be used, surrogates should
be able to detect failures in the services that they offer and restart
them accordingly.

– Losing connection during the interaction between surrogates and
mobile hubs, as well as between surrogates and mobile devices,

182

should not cause the services running on the surrogates to stop
functioning.

– Because it is expected that mobile app users will regularly be mov-
ing in and out of range of surrogates during use of the system, this
should not cause users to lose results of completed computations or
lose data that they have stored on the mobile app.

• NFR2: Ease of deployment: The system should be easy to deploy.

– The mobile app can be installed through an app store and does not
have to be configured. It should detect and connect to surrogates
automatically.

– Surrogates have to be configured locally (FR5), and this process
should be able to be performed by NGO personnel with only basic
IT knowledge. It should be a simple process, comparable to entering
data in a form and confirming.

– Active surrogates should register with the mobile hub automatically
on first connection.

• NFR3: Usability: Literacy among users of mobile devices will vary.
Most end users will have low technical knowledge as well. The interfaces
to the functionality that they use should be understandable to them.

– Text in English, including voice explanations.

– Text in French, including voice explanations (one of the target lan-
guages, but will not be implemented in the AgroTempus system).

• NFR4: Extensibility: Developing new functionality and adding it to
the system should be supported and made easy. A standard format for
services that perform either computation offload or data staging should
be available to future developers, including documentation and an ex-
ample.

• NFR5: Energy efficiency: The mobile device and surrogate systems
will run in an energy-challenged environment. Access to electrical power
is limited and not always available.

– Energy use on mobile devices should be minimized.

– Energy use on surrogates should be minimized, but energy efficiency
for mobile devices has higher priority.

183

• NFR6: Capacity: Low-end smartphones have low storage capacity
and therefore storage should, for the most part, be the responsibility of
the surrogates and mobile hubs.

– The surrogate should be able to provide computation offload and
data staging capabilities to multiple users at the same time.

– Storage used on smartphones should be kept under 100 MB, not
counting results for calculations that the user has saved.

– Surrogates should be able to run 10 instances of services at the same
time.

• NFR7: Availability: Capabilities provided by surrogates should, in
principle, be available 24 hours a day. However, because surrogates will
run on solar energy, it is expected that they can run out of energy during
heavy use, especially during periods with no or little sunshine.

– Every 24-hour period, the surrogate should be able to deliver ser-
vices amounting to 4 hours of surrogate activity. This does not
provide guarantees about unavailability due to crashes (which is
discussed in NFR1 and NFR9).

– When remaining battery life drops below 10% of the battery’s ca-
pacity, computations that will take longer than 5 minutes should
be queued until the battery is recharged to above 15%.

• NFR8: Performance: There are no hard performance requirements,
except for the transfer of data between the mobile hub and the surro-
gate. This is because the window during which there is opportunity to
interchange data is short and infrequent.

– The transfer of data between the mobile hub and the surrogate
should be prioritized over other offloaded computation or data stag-
ing operations that the surrogate is performing.

– The only operation with higher priority is the registration of a new
surrogate.

– The mobile hub should check for a surrogate broadcast signal at
least 10 times per second, as long as it is not interacting with one
already.

– The surrogate should broadcast its presence at least 10 times per
second.

184

• NFR9: Recovery: When a surrogate has crashed, restarting the hard-
ware should have it operational again within 10 minutes. Similarly, when
a mobile hub has crashed, resetting the hardware should have it opera-
tional again within 10 minutes.

• NFR10: Data integrity: When weather data is entered on the mo-
bile app, it should be checked for valid values, e.g., temperature values
between certain valid limits. The same applies to setup data during the
setup process.

6.3.2.3 Constraints and Assumptions

The following constraints for the development of the AgroTempus system were
identified:

• C1: Low cost infrastructure and hardware: End-users will mostly
use low-end mobile devices, while the rest of the system will be deployed
on hardware locally, for which the cost should be as low as possible.

• C2: Use of FirefoxOS: Agrotempus has to be developed for the Fire-
foxOS mobile operating system [89]. FirefoxOS is open source, based on
standard Web APIs, and targeted at low-end smartphones and develop-
ing markets.

• C3: Use of open standards: There is a preference for open source
components and the use of open standards where possible.

• C4: Use of Java: Because the implementation platform for surrogates
is still evolving, the preference is to use Java due to its portability.

Only one assumption for the system was identified:

• A1: Concurrent access to multiple surrogates: Surrogate signals
do not overlap because there is only one surrogate per village. This
means the mobile devices and mobile hub can connect to different sur-
rogates, but never at the same time.

6.3.3 Mapping of System Requirements to Architectural
Tactics

Based on the functional and non-functional requirements for the AgroTempus
system, several tactics were identified by the developer as feasible for their

185

fulfillment. The mapping of system requirements to architectural tactics from
the catalog presented in Chapter 3 is shown in Table 6.1. The rationale for
the selection of each tactic, as indicated by the developer, is provided in the
following sub-sections.

Table 6.1: Mapping of System Requirements to Architectural Tactics

Tactic F
R

1
:

S
to

r
e

W
e
a
th

e
r

D
a
ta

F
R

2
:

R
e
tr

ie
v
e

W
e
a
th

e
r

D
a
ta

F
R

3
:

D
a
ta

R
e
g
r
e
ss

io
n

F
R

4
:

F
u

tu
r
e

W
e
a
th

e
r

V
a
lu

e
s

F
R

5
:

S
u

r
r
o
g
a
te

S
e
tu

p

F
R

6
:

F
o
r
e
c
a
st

D
e
li

v
e
r
y

F
R

7
:

In
te

g
r
a
ti

o
n

C
lo

u
d

S
to

r
a
g
e

F
R

8
:

V
o
ic

e
In

te
r
fa

c
e

F
R

9
:

S
y
n

c
h

r
o
n

iz
e

W
e
a
th

e
r

D
a
ta

F
R

1
0
:

S
u

r
r
o
g
a
te

R
e
g
is

tr
a
ti

o
n

N
F

R
1
:

F
a
u

lt
T

o
le

r
a
n

c
e

N
F

R
2
:

E
a
se

o
f

D
e
p

lo
y
m

e
n
t

N
F

R
3
:

U
sa

b
il

it
y

N
F

R
4
:

E
x
te

n
si

b
il

it
y

N
F

R
5
:

E
n

e
r
g
y

E
ffi

c
ie

n
c
y

N
F

R
6
:

C
a
p

a
c
it

y

N
F

R
7
:

A
v
a
il

a
b

il
it

y

N
F

R
8
:

P
e
r
fo

r
m

a
n

c
e

N
F

R
9
:

R
e
c
o
v
e
r
y

N
F

R
1
0
:

D
a
ta

In
te

g
r
it

y

Computation Offload X X X X

Out-Bound Pre-Processing X X X

Pre-Fetching X X X X

Pre-Provisioned Surrogate X X X X X X X X X X X

Surrogate Broadcast X X X

Cached Results X X X X

Client-Side Data Caching X X X

Just-in-Time Containers X X X X

6.3.3.1 Computation Offload

The Computation Offload tactic (Section 3.2.1) enables mobile clients to off-
load expensive computation to surrogates. Regression and weather value pre-
diction using extrapolation (FR3 and FR4) are computation-intensive opera-
tions that are initiated by the user on the mobile device, but the computation is
offloaded to the surrogate. Data sets on which these operations are performed
are located at the surrogates and can be reasonably large, while the input
for the operations is a small set of variables of simple data types. Offload-
ing small input/output, energy-intensive computations to the surrogate is the
main method to minimize energy consumption on the mobile device (NFR5).

186

Offloading from from low-end mobile devices to surrogates with more compu-
tational power and data storage facilities increases the capacity of the system
(NFR6).

6.3.3.2 Out-Bound Pre-Processing

In the Out-Bound Pre-Processing tactic (Section 3.2.2.3) surrogates collect
data from mobile devices and pre-process the data – clean, filter, summarize,
or merge — such that the data that is sent on to the enterprise cloud is ready
for consumption and serves an immediate need. Weather data collected on
mobile devices (FR1) is stored locally until it has been successfully transferred
to a surrogate. The surrogates will store this data indefinitely, both to make
it accessible to mobile users in the future, but also to make it available to
the mobile hub, which will collect all data eventually. This data will not be
saved on the mobile device after it has been successfully transferred to the
surrogate because storage is limited on the low-end mobile devices (NFR6).
The mobile hub will eventually be able to store new data that was entered on
the mobile device in the cloud when it connects to the Internet (FR7). In the
AgroTempus system there are therefore two levels of data staging: first at the
surrogate and then at the mobile hub.

6.3.3.3 Pre-Fetching

The Pre-Fetching tactic (Section 3.2.2.1) anticipates data needs in order to
minimize communication to the cloud and reduce latency. The mobile hub,
according to a defined pre-fetch algorithm, retrieves weather data using a
third-party weather API (FR9) based on the registered location of all the
surrogates that it serves. Data retrieved from the mobile hub is stored on the
surrogates and not the mobile devices to address storage limitations of low-end
mobile devices (NFR6). Mobile devices that request weather data (FR2) will
always obtain it from a surrogate where this data is staged, unless it has been
explicitly saved on the mobile device by the user. The same is true for forecasts
(FR6), which are calculated based on data downloaded from the mobile hub.

6.3.3.4 Pre-Provisioned Surrogate

In the Pre-Provisioned Surrogate tactic (Section 3.2.3.1) surrogates are pro-
visioned before their deployment with the capabilities that are offloaded by
mobile clients. All required functionality will be available on the surrogate
from the start (FR1, FR2, FR3, FR4, FR6, FR7, FR9, FR10). Because all

187

surrogates serving all regions have the same capabilities, it is easier to provi-
sion them using the same OS image (e.g, Raspberry Pi with cloned SD card)
(NFR2). The only difference between surrogates is the location and identi-
fication settings provided during the setup procedure (FR5). Restarting a
pre-provisioned surrogate is easier to do if started from a common OS image
(NFR9).

6.3.3.5 Surrogate Broadcast

In the Surrogate Broadcast tactic (Section 3.2.4.3) surrogates advertise their
availability and selected metadata to mobile devices for discovery. Mobile de-
vice users should be able to make use of system functionality as soon as they
install the app and come in range of a surrogate. To increase the ease of deploy-
ment (NFR2), surrogates broadcast their presence and mobile devices in need
of surrogate services can pick up on these broadcasts. Surrogate broadcast is
also key for the automatic registration of newly deployed surrogates with the
mobile hub as soon as they are in communication range (FR10). Lastly, be-
cause the opportunities for interaction between surrogates and the mobile hub
are scarce, both the surrogate broadcasting its presence continuously and the
mobile hub continuously trying to discover surrogates are key to the system’s
performance (NFR8).

6.3.3.6 Cached Results

The Cached Results tactic (Section 3.3.2.3) enables a system to cache results
and state on a surrogate until the mobile device is able to reconnect. The
interaction between mobile devices and surrogates is susceptible to loss of
connection in the AgroTempus system. When computation offload (FR3, FR4)
has been correctly initiated, but the mobile user moves out of range of the
surrogate during the computation, results should be cached (NFR1) so they
can be sent to the user as soon as the mobile device connects to the surrogate
again to promote availability (NFR7).

6.3.3.7 Client-Side Data Caching

The Client-Side Data Caching tactic is a variation of the Cached Results tactic
(Section 3.3.2.3). Data collected by a mobile client is cached on the mobile de-
vice and sent to the surrogate upon connection or re-connection. Because mo-
bile devices are not always in proximity of a surrogate, when entering weather
data (FR1) without an available connection, data is cached on the mobile

188

device (NFR1), which will periodically try to resend the data. In this case,
caching is used to enable users to keep working with the app, saving new read-
ings, and not having to worry about the data being saved immediately on the
surrogate, therefore promoting availability (NFR7).

6.3.3.8 Just-in-Time Containers

The Just-in-Time Containers tactic (Section 3.3.3.1) creates a container and/or
an instance of the offloaded code upon receipt of an offload request and then
destroys the instance of the offloaded code when the offload request is com-
pleted. Data regression (FR3) and weather value prediction (FR4) are heavy
computations that will be used infrequently. Therefore, as opposed to the
other services offered by surrogates, these services are better suited to run in
their own containers, such that small operations will not get queued behind
these large computations. To be able to handle multiple computation offload
requests at the same time, as well as to not let these large computations cause
small data transfers to have to wait for them (NFR6), each time a request for
a computation offload is received at the surrogate, a container with the nec-
essary functionality is created. Because requests for computation offload will
be infrequent, often with long periods of time between requests, only creating
containers for these capabilities when they are needed is a tactic that will save
energy on the surrogate (NFR5).

6.3.4 System Architecture and Design

Based on the identified tactics, the developer created the high-level architec-
ture for the AgroTempus system shown in Figure 6.2 as a UML component
diagram. Some components of the architecture were derived from the archi-
tectural tactics and others were added to fulfill requirements not addressed by
the tactics. The detailed components and mapping to the tactics are presented
in Section 6.3.6. The main elements of the architecture are:

• Mobile Device Components

– CD1: Voice Support Manager: Manages the voice snippets that
map to the user interface elements.

– CD2: Cyber-Foraging Enabled App User Interface: User interface
component of the mobile app.

– CD3: Mobile App Storage Manager: Manages storage of all per-
manent data and user settings on the mobile app, except for data

189

that is being staged before moving to the surrogate. Storing and
retrieving data is done through its interfaces: Store app data and
Retrieve app data.

– CD4: Offload Client: Handles computation offload from the mobile
app to the surrogate, initiated through component CD2.

– CD5: Mobile App Data Exchange Client: Handles staging data
and transferring it from the mobile app to the surrogate after it has
been entered via component CD2. It also handles requesting and
receiving data from the surrogate.

– CD22: Surrogate Discovery Manager: Finds available surrogate ser-
vices.

• Surrogate Components

– CD6: Offload Server: Handles requests for computation offload
from mobile devices.

– CD7: Setup Manager: Implements the setup process for newly de-
ployed surrogates. Provides the interface Setup surrogate, which is
used by component CD10 when the setup process is started.

– CD8: Data Request Server: Handles requests for data stored on the
surrogate from mobile devices, as well as from the mobile hub.

– CD9: Offloaded Computation Manager: Creates containers that
run offloaded computation and ensures that results are eventually
stored in component CD13.

– CD10: Surrogate User Interface: User interface component for the
surrogate, available when a screen and mouse/keyboard are con-
nected to the surrogate (e.g., during the setup process or to check
console output).

– CD11: Broadcast Manager: Broadcasts the presence of the surro-
gate and its capabilities through the interface Broadcast services.
It is key for all requirements in which interaction between the sur-
rogate and other system nodes is involved.

– CD12: Data Storage Server: Handles requests from mobile devices
and the mobile hub for storing data on the surrogate.

– CD13: Surrogate Storage Manager: Manages storage of all perma-
nent data, computation results, and settings on the surrogate. The
interfaces for data retrieval include the possibility to delete data
after a successful transmission.

190

• Mobile Hub Components

– CD14: Surrogate Registration Manager: Handles the registration of
surrogates that are new to the system by picking up broadcasts from
component CD11 and storing new surrogate data in component
CD19.

– CD15: Mobile Hub Synchronization Client: Manages synchroniza-
tion of data between the mobile hub and the surrogate.

– CD16: Mobile Hub User Interface: User interface component for
the mobile hub.

– CD17: Cloud Synchronization Client: Ensures that data stored in
the system is backed up to a cloud repository by interacting with
component CD20.

– CD18: API Data Fetcher: Retrieves weather data from a third
party API and stores it on the mobile hub via component CD19.
It also periodically checks whether the surrogate list stored by this
component has new entries.

– CD19: Mobile Hub Storage Manager: Handles storage and retrieval
of data on the mobile hub, including settings, staged data, perma-
nent weather data, and the list of known surrogates.

• Cloud Repository Component (External)

– CD20: Cloud Repository Storage Manager: Third-party component
that interacts with component CD17 to ensure that data stored in
the system is backed up to a cloud repository.

• Internet Weather Service (External)

– CD21: Weather API: Third-party component that provides weather
data and forecasts through a REST interface.

6.3.5 Mapping of Architectural Components to System
Requirements

The mapping of functional and non-functional requirements to components of
the architecture is shown in Table 6.2. All requirements are implemented by
one or more components, with the exception of NFR4: Extensibility because
this requirement is related to the creation of artifacts to support developers,
such as templates and documentation, and not to specific runtime components.

191

F
ig

u
re

6.
2:

H
ig

h
-L

ev
el

A
rc

h
it

ec
tu

re
o
f

th
e

A
g
ro

T
em

p
u

s
S

y
st

em

192

Table 6.2: Mapping of System Requirements to Architecture Componentss

Component F
R

1
:

S
to

r
e

W
e
a
th

e
r

D
a
ta

F
R

2
:

R
e
tr

ie
v
e

W
e
a
th

e
r

D
a
ta

F
R

3
:

D
a
ta

R
e
g
r
e
ss

io
n

F
R

4
:

F
u

tu
r
e

W
e
a
th

e
r

V
a
lu

e
s

F
R

5
:

S
u

r
r
o
g
a
te

S
e
tu

p

F
R

6
:

F
o
r
e
c
a
st

D
e
li

v
e
r
y

F
R

7
:

In
te

g
r
a
ti

o
n

C
lo

u
d

S
to

r
a
g
e

F
R

8
:

V
o
ic

e
In

te
r
fa

c
e

F
R

9
:

S
y
n

c
h

r
o
n

iz
e

W
e
a
th

e
r

D
a
ta

F
R

1
0
:

S
u

r
r
o
g
a
te

R
e
g
is

tr
a
ti

o
n

N
F

R
1
:

F
a
u

lt
T

o
le

r
a
n

c
e

N
F

R
2
:

E
a
se

o
f

D
e
p

lo
y
m

e
n
t

N
F

R
3
:

U
sa

b
il

it
y

N
F

R
4
:

E
x
te

n
si

b
il

it
y

N
F

R
5
:

E
n

e
r
g
y

E
ffi

c
ie

n
c
y

N
F

R
6
:

C
a
p

a
c
it

y

N
F

R
7
:

A
v
a
il

a
b

il
it

y

N
F

R
8
:

P
e
r
fo

r
m

a
n

c
e

N
F

R
9
:

R
e
c
o
v
e
r
y

N
F

R
1
0
:

D
a
ta

In
te

g
r
it

y

CD1: Voice Support Manager X X X

CD2: App User Interface X X X X X X X X X

CD3: App Storage Manager X X X X X X X X X

CD4: Offload Client X X X X X

CD5: App Data Exch Client X X X X

CD6: Offload Server X X X X X X X

CD7: Setup Manager X X X X X X X

CD8: Data Request Server X X X X X X X X X X

CD9: Offloaded Comp Manager X X X X X X X X

CD10: Surrogate UI X X X X X X

CD11: Broadcast Manager X X X X X X X X X X X X X X

CD12: Data Storage Server X X X X X X X X

CD13: Surrogate Storage Mgr X X X X X X X X X X X

CD14: Surrogate Reg Mgr X X X X X X

CD15: Mobile Hub Sync Client X X X X X X X X X

CD16: Mobile Hub UI X X

CD17: Cloud Sync Client X X X

CD18: API Data Fetcher X X X X X

CD19: Mobile Hub Storage Mgr X X X X X X X

CD20: Cloud Repo Storage Mgr X

CD21: Weather API X X X

CD22: Surrogate Discovery Mgr X X X X X X X X X

193

6.3.6 Mapping of Architectural Components to Identi-
fied Architectural Tactics

The mapping between architecture components and the architectural tactics
identified in Section 6.3.3 is provided in the following subsections to show
component details, as well as the mapping to specific architectural tactic el-
ements. All design decisions described at this point correspond to the as-
initially-designed system. The final implementation decisions are described in
Section 6.3.7.

6.3.6.1 Computation Offload

The Computation Offload tactic is designed in the AgroTempus architecture
as shown in Figure 6.3(b), with numbers to indicate the sequence of opera-
tions. The component names in Figure 6.3(a) are used as stereotypes for the
components in Figure 6.3(b) to indicate the mapping between components.
Only the components that are relevant to the tactic are included. The offload
operation takes place as follows:

1-2. The Cyber-Foraging Enabled App User Interface requests to start
an offloaded computation with input Input.

3. The Offload Server receives the request and invokes the Offloaded
Computation Manager.

4. The Offloaded Computation Manager starts the offloaded compu-
tation in a separate Java Thread inside the JVM.

The main difference between the Computation Offload tactic and the AgroTem-
pus architecture is how the offloaded computation is executed. In the tactic
shown in Figure 6.3(a), after the offloaded computation is set up, the con-
trol returns to the Cyber-Foraging Enabled Mobile App, which then executes
the offloaded computation via the operation 4:Execute(Input). This is be-
cause the assumption is that the app interacts with the offloaded code in a
request/response manner until the app closes. In the AgroTempus system,
offloaded computation corresponds to a lengthy computation that is executed
only once in an offload request. Therefore, the Input to the offloaded compu-
tation is sent in the initial request to offload.

6.3.6.2 Out-Bound Pre-Processing

The Out-Bound Pre-Processing tactic is designed in the AgroTempus archi-
tecture as shown in Figure 6.4(b), with numbers to indicate the sequence of
operations. The component names in Figure 6.4(a) are used as stereotypes for

194

SurrogateMobile Client

Cyber-
Foraging
Enabled

Mobile App

Offload
Client

Container
Offloaded

Code
4: Execute (Input)

Offload
Server

1: Start Offload 3: Set Up Offloaded Code

2: Start Offload

App
Metadata

(a) Computation Offload Tactic

<<Surrogate>>

Surrogate
<<Mobile Client>>

Mobile Device

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

cd2: Cyber-Foraging Enabled App
User Interface

Custom
Runtime

Component

<<Offload Client>>

cd4: Offload
Client

Call

<<Container>>

JVM

<<Offloaded Code>>

Java Thread

<<Offload Server>>

3rd Party
Runtime

Component

1: Start Offload (Input)

4: Set Up Offloaded Code(Input)

2: Start Offload(Input) cd6: Offload
Server

cd9: Offloaded
Computation

Manager

3: Set Up Offloaded Code(Input)

(b) AgroTempus Implementation

Figure 6.3: Mapping of the AgroTempus Architecture to the Computation
Offload Tactic

195

the components in Figure 6.4(b) to indicate the mapping between components.
Only the components that are relevant to the tactic are included. The data
staging from the mobile device to the operation takes place as follows:

1. The Cyber-Foraging Enabled App User Interface captures weather
data and sends it to the Mobile App Data Exchange Client.

2-3. The Mobile App Data Exchange Client queues the weather data
until a surrogate is in range and then sends it to the Data Stor-
age Server for storage on the surrogate via the Surrogate Storage
Manager.

4. The Data Request Server on the surrogate waits for a weather
data request from the Mobile Hub Synchronization Manager (this
happens when the mobile hub is in range of the surrogate).

5-6. The Data Request Server retrieves the weather data and sends it
to the mobile hub for storage on the mobile hub via the Mobile
Hub Storage Manager.

7-9. Once the Cloud Synchronization Client on the mobile hub has
connectivity to the cloud repository, it retrieves the weather data
from the Mobile Hub Storage Manager and sends it to the Cloud
Repository Storage Manager for storage in the Cloud Repository.

The difference between the AgroTempus architecture and the Out-Bound
Pre-Processing tactic is that the AgroTempus system performs data staging
at two levels to get data from the mobile devices to the cloud: first at the
surrogate and then at the mobile hub. Therefore, the Data Request Server on
the surrogate and the Cloud Synchronization Client on the mobile hub perform
two roles: data processing application for the cached data and communication
manager for passing the information to the next level en route to the enterprise
cloud.

6.3.6.3 Pre-Fetching

The Pre-Fetching tactic is designed in the AgroTempus architecture as shown
in Figure 6.5(b), with numbers to indicate the sequence of operations. The
component names in Figure 6.5(a) are used as stereotypes for the components
in Figure 6.5(b) to indicate the mapping between components. Only the com-
ponents that are relevant to the tactic are included. The pre-fetching of data
from the enterprise cloud to the surrogates serving mobile devices takes place
as follows:

196

SurrogateMobile Client

Legend

System
Boundary

Mobile Sensing App

Custom
Runtime

ComponentCommunications
Manager

Call
(Synchronous)

Communications
Manager

Send Data(Sensed Data)

Send Data(Sensed Data)

Enterprise
Cloud

File Read/
Write

(Synchronous)

Cache

Repository

Cloud Data
Repository

Raw/Processed Data

Store Data

Register
for Data of

Interest

Message
(Asynchronous)

Data
of Interest

Data Processing
ApplicationData Processing

ApplicationData Processing
Application

Read/Write
Raw/Processed
Data

File Read/Write
(Asynchronous

/Periodic)
(a) Out-Bound Pre-Processing Tactic

<<Surrogate>>

Surrogate
<<Mobile Client>>

Mobile Device

<<Mobile Sensing App>>

cd2: Cyber-Foraging
Enabled App User

Interface

<<Communications Manager>>

cd5: Mobile App Data
Exchange Client

<<Communications Manager>>

cd12: Data Storage Server

1: Send Data
(Weather Data)

<<Enterprise Cloud>>

Cloud Repository

<<Cloud Data Repository>>

Cloud Repository

9: Weather
Data

5: Get Data
(Weather Data)

<<Data Processing Application>>
<<Communications Manager>>

cd8: Data Request Server

<<Cache>>

cd13: Surrogate Storage
Manager

2: Send Data
(Weather Data)

3: Store Data
(Weather Data)

<<Surrogate>>

Mobile Hub

<<Data Processing Application>>
<<Communications Manager>>

cd17: Cloud
Synchronization Client

6: Store Data
(Weather Data)

<<Communications Manager>>

cd15: Mobile Hub
Synchronization Manager

<<Cache>>

cd19: Mobile Hub Storage
Manager

8: Get Data
(Weather Data)

4: Get Data
(Weather Data)

cd20: Cloud
Repository

Storage
Manager

7: Send Data
(Weather Data)

(b) AgroTempus Implementation

Figure 6.4: Mapping of the AgroTempus Architecture to the Out-Bound Pre-
Processing Tactic

1. When the Mobile Hub has access to the Internet Weather Service,
the Cloud Synchronization Client retrieves all weather data for
the surrogates that it serves from the Weather API, based on
the Surrogate Location List. It then caches the retrieved weather
data.

2-3. When the Mobile Hub is in proximity of a Surrogate that it serves,
the Mobile Hub Synchronization Manager reads the data for the
surrogate location and pushes it to the Data Request Server on
the Surrogate.

4. The Data Request Server caches the data on the Surrogate via
the Surrogate Storage Manager.

5-7. When the mobile app has a request for weather data, the data is
obtained from the Surrogate.

197

SurrogateMobile Client

Cyber-
Foraging
Enabled

Mobile App

Data
Staging
Client

Data Staging
Manager

Execute Data Operation

Execute Data
Operation(Pre-Fetch Hints)

Enterprise
Cloud

Cache

Cloud Data
Repository

Data Operation

Data Operation

Pre-Fetch
Hints

Pre-Fetch
Algorithm

Calculate Pre-Fetch Data Set(Pre-Fetch Hints)

Pre-Fetch Data Set

Sync

Cache

(a) Pre-Fetching Tactic

<<Surrogate>>

Mobile Hub
<<Surrogate>>

Surrogate
<<Mobile Client>>

Mobile Device

<<Cyber-Foraging
Enabled Mobile App>>

cd2: Cyber-Foraging
Enabled App User

Interface

<<Data Staging Client>>

cd5: Mobile App Data
Exchange Client

<<Data Staging Manager>>

cd12: Data Storage Server

5: Get Weather
Data

<<Enterprise Cloud>>

Internet Weather
Service

<<Cloud Data Repository>>

cd21: Weather API

Weather Data
(Surrogate
Locations)

4: Cache
(Weather Data)

<<Data Staging Client>>

cd8: Data Request Server

<<Cache>>

cd13: Surrogate Storage
Manager

7: Get Weather Data

<<Data Staging Manager>>
<<Pre-Fetch Algorithm>>

cd17: Cloud
Synchronization Client

3: Get Data
(Weather Data)

<<Data Staging Manager>>

cd15: Mobile Hub
Synchronization Manager

<<Cache>>

cd19: Mobile Hub Storage
Manager

1: Cache
(Weather Data)

2: Push Data
(Weather Data)

Legend

System
Boundary

Custom
Runtime

Component

Call
File Read/

Write
(Synchronous)

Repository

File Read/Write
(Asynchronous)

File

6: Get Weather
Data

<<Pre-Fetch Hints>>

Surrogate
Location List

(b) AgroTempus Implementation

Figure 6.5: Mapping of the AgroTempus Architecture to the Pre-Fetching
Tactic

There are two differences between the AgroTempus architecture and the
Pre-Fetching tactic:

1. The AgroTempus system performs data staging at two levels to pre-fetch
data from the cloud and host it on the surrogates: first from the cloud
to the mobile hub, and then from the mobile hub to the surrogate.

2. The Pre-Fetch Algorithm and Pre-Fetch hints reside on the mobile hub
and not on the mobile client. This is because the mobile hub needs to

198

fetch data from the cloud at a point in time when it is not likely that
it will be near a surrogate or a mobile device. The Surrogate Location
List is populated during Surrogate Registration (FR10).

6.3.6.4 Pre-Provisioned Surrogate

The Pre-Provisioned Surrogate tactic is designed in the AgroTempus archi-
tecture as shown in Figure 6.6(b), with numbers to indicate the sequence of
operations. The component names in Figure 6.6(a) are used as stereotypes
for the components in Figure 6.6(b) to indicate the mapping between compo-
nents. Only the components that are relevant to the tactic are included. The
provisioning of capabilities on the surrogate takes place as follows:

1. A Terminal on the Surrogate is used to load the Surrogate Com-
ponent Code Files on the Surrogate.

2-3. The Terminal is used to start the Surrogate User Interface to
obtain setup parameters for the surrogate, such as location.

4-6. The Surrogate User Interface invokes the Setup Manager to start
the remaining surrogate components.

Step 1 of the provisioning process is only executed once prior to surro-
gate deployment. Steps 2 and 3 are executed only once during surrogate
deployment. Steps 4-6 are executed manually during deployment, and then
automatically on start/restart of the surrogate. There is not the equivalent of
the Capability Metadata component nor a Capability Registry component be-
cause the capabilities provided to all mobile devices are the same and are not
advertised. In addition, there is not the equivalent of a Remote User Interface
because surrogates are envisioned to be low cost, low-end servers that are set
up on site.

6.3.6.5 Surrogate Broadcast

The Surrogate Broadcast tactic is designed in the AgroTempus architecture as
shown in Figure 6.7(b), with numbers to indicate the sequence of operations.
The component names in Figure 6.7(a) are used as stereotypes for the com-
ponents in Figure 6.7(b) to indicate the mapping between components. Only
the components that are relevant to the tactic are included. The discovery of
a surrogate takes place as follows:

199

Surrogate

Surrogate
Manager

Admin Client

Remote User
Interface

Local User
Interface

Capabilities
Repository

Capability
Metadata

Capability
Registry

Offload
Server

Data Staging
Manager

Surrogate
Discovery

(a) Pre-Provisioned Surrogate Tactic

<<Surrogate>>

Surrogate

<<Local User Interface>>

Terminal

Legend

System
Boundary

Call
(Synchronous)

File Read/
Write

Repository

<<Capabilities Repository>>

Filesystem

File

1: Surrogate
 Components

3rd Party
Runtime

Component

Surrogate
Component
Code Files

Custom
Runtime

Component

<<Local User Interface>>

cd10: Surrogate
User Interface

<<Surrogate Manager>>

cd7: Setup Manager

3: Start

4: Setup(Parameters)

2: Surrogate
Components

6: Surrogate
Components

5: Start Remaining
Surrogate
Components

Tactic
Boundary

(b) AgroTempus Implementation

Figure 6.6: Mapping of the AgroTempus Architecture to the Pre-Provisioned
Surrogate Tactic

200

0. The Broadcast Manager running on the Surrogate broadcasts its
address.

1. The Cyber-Foraging Enabled Mobile App User Interface requests
an offload operation.

2. The Offload Client receives the request and obtains the surrogate
address from the Surrogate Discovery Manager.

3. The Offload Client sends the offload operation to the Offload
Server at the surrogate address.

The difference between the AgroTempus architecture and the Surrogate
Broadcast tactic is that there is no need to find an optimal surrogate because
only one surrogate is available for a mobile device. The assumption as stated
in Section 6.3.2.3 is that there is only one surrogate per village, and surrogate
signals do not overlap. Even though not shown in the Figure 6.7, the surrogate
also broadcasts its presence to the mobile hub via the same mechanism.

6.3.6.6 Cached Results

The Cached Results tactic is designed in the AgroTempus architecture as
shown in Figure 6.8(b), with numbers to indicate the sequence of operations.
The component names in Figure 6.8(a) are used as stereotypes for the com-
ponents in Figure 6.8(b) to indicate the mapping between components. Only
the components that are relevant to the tactic are included. The caching of
results on a surrogate takes place as follows:

1-2. The Cyber-Foraging Enabled App User Interface requests to start
an offloaded computation with input Input.

3. The Offload Server receives the request and invokes the Offloaded
Computation Manager.

4-7. The Offloaded Computation Manager assigns the computation a
unique identifier called a Ticket, starts the offloaded computation
in a separate Java Thread inside the JVM, and returns an Ac-
knowledgment to the Cyber-Foraging Enabled App User Interface
with the assigned Ticket.

8. The Offloaded Computation executes and saves the results in the
Surrogate Storage Manager with the assigned Ticket.

9-10. The Cyber-Foraging Enabled App User Interface, via the Mobile
App Data Exchange Client, sends a request to the Data Request
Server on the Surrogate for the results for the received Ticket.

201

Legend

System
Boundary

Custom
Runtime

Component

Call Broadcast

Surrogate

Surrogate

Surrogate

Mobile Client

Cyber-
Foraging
Enabled

Mobile App

Offload
Client Offload

Server

1: Start Offload

4: Start Offload

2: Find
Available
Surrogates

Broadcast
Component

0: Broadcast Surrogate Metadata

3: Select
Optimal
Surrogate

(a) Surrogate Broadcast Tactic

<<Surrogate>>

Surrogate

<<Mobile Client>>

Mobile Device

<<Cyber-Foraging Enabled Mobile App>>

cd2: Cyber-Foraging Enabled
Mobile App User Interface

<<Offload Client>>

<<Offload Server>>

cd6: Offload Server

1: Start Offload

3: Start Offload

<<Broadcast Component>>

cd11: Broadcast
Manager

0: Broadcast

cd4: Offload
Client

cd22: Surrogate
Discovery
Manager

2: Find Surrogate

(b) AgroTempus Implementation

Figure 6.7: Mapping of the AgroTempus Architecture to the Surrogate Broad-
cast Tactic

202

11-12. The Data Request Server retrieves the results from the Surrogate
Storage Manager.

13. The Data Request Server returns the results to Mobile App Data
Exchange Client.

14-16. If the connection to the Mobile Device breaks during the trans-
mission, the results remain on the Surrogate until they can be
successfully sent to the Mobile Device.

17. After successful transmission the results associated with the
Ticket are deleted from the surrogate.

There are two differences between the AgroTempus architecture and the
Cached Results tactic:

1. Because the offloaded computation is expected to be a lengthy operation,
the Surrogate always saves the results in the Results Cache instead of
attempting the send the results to the Mobile Device immediately.

2. The Surrogate Storage Manager resides outside the Container because it
is shared by all offloaded computation and other surrogate components.

6.3.6.7 Client-Side Data Caching

The Client-Side Data Caching tactic is designed in the AgroTempus archi-
tecture as shown in Figure 6.9(b), with numbers to indicate the sequence of
operations. The component names in Figure 6.9(a) are used as stereotypes for
the components in Figure 6.9(b) to indicate the mapping between components.
Only the components that are relevant to the tactic are included. The storing
of collected data on a mobile device until a surrogate is available takes place
as follows:

203

Surrogate

Container

Mobile Client

Cyber-
Foraging
Enabled

Mobile App

Offload Client

Offloaded Code

4: Execute (Input)

Offload Server

1: Start Offload

3: Set Up Offloaded Code

2: Start Offload

Results
Cache

5: Results

6: Detect
Disconnection

7: Save Results

8: Get Results

9: Get Results

10: Results

[Upon Reconnection]

(a) Cached Results Tactic

<<Surrogate>>

Surrogate
<<Mobile Client>>

Mobile Device

Legend

System
Boundary

<<Cyber-Foraging Enabled Mobile App>>

Custom
Runtime

Component

Call

3rd Party
Runtime

Component

1: Start Offload
(Input)

<<Offload Server>>

2: Start Offload(Input)

Repository

<<Results Cache>>

cd13: Surrogate
Storage Manager

File Read/
Write

Return

5: Acknowledgement(Ticket)

<<Container>>

JVM

8: Save Results(Ticket)

cd2: Cyber-
Foraging

Enabled App
User Interface

cd5: Mobile
App Data
Exchange

Client

9: New Ticket
(Ticket)

<<Offload Client>>

cd4: Offload
Client

cd6: Offload
Server

cd9: Offloaded
Computation

Manager

3: Set Up Offloaded Code(Input)

4: Set Up Offloaded
Code(Input, Ticket)

6: Acknowledgement(Ticket)

7: Acknowledgement
(Ticket)

<<Offloaded Code>>

Java Thread

cd8: Data
Request
Server

10: Get Ticket
(Ticket)

13: Results:

14: Detect
Disconnection

15: Get Ticket
(Ticket)

16: Results:

11: Get Ticket
(Ticket)

12: Results

17: Delete Results(Ticket)

(b) AgroTempus Implementation

Figure 6.8: Mapping of the AgroTempus Architecture to the Cached Results
Tactic

204

1. The Cyber-Foraging Enabled App User Interface requests the Mo-
bile App Data Exchange Client to add collected weather data its
outbound queue.

[Repeat Until Outbound Queue is Empty]

2. The Mobile App Data Exchange client tries to find a surrogate
(Section 6.3.6.5).

[If a Surrogate is Found]

3-4. Queued data is sent to the Data Storage Server for storage on the
surrogate.

5-6. Is the storage operation is successful the sent data is deleted from
the queue.

There are two differences between the AgroTempus architecture and the
Client-Side Data Caching tactic:

1. Because the collection of weather data is likely going to be in the field
where there will not be a Surrogate in proximity, the Mobile Device al-
ways queues the results in the Mobile App Data Exchange Client instead
of attempting to send the results to the Surrogate immediately.

2. The Mobile Cache, implemented as a queue, is part of the Mobile Data
Exchange Client instead of a separate storage component.

6.3.6.8 Just-in-Time Containers

The Just-in-Time Containers tactic is designed in the AgroTempus architec-
ture as shown in Figure 6.10(b), with numbers to indicate the sequence of
operations. The component names in Figure 6.10(a) are used as stereotypes
for the components in Figure 6.10(b) to indicate the mapping between compo-
nents. Only the components that are relevant to the tactic are included. The
creation and destruction of containers for offloaded computation takes place
as follows:

205

SurrogateMobile Client

Mobile Sensing
App

Communications
Manager

Communications
Manager

1: Send Data(Sensed Data)

2: Send Data(Sensed Data)

Surrogate Cache

3: Detect
Disconnection

Mobile Cache
8: Store Data

4: Store Sensed Data

6: Get Sensed Data

7: Send Data(Sensed Data)

5: Detect
Reconnection

(a) Client-Side Data Caching Tactic

<<Surrogate>>

Surrogate

<<Mobile Client>>

Mobile Device

Legend

System
Boundary

<<Mobile Sensing App>>

Custom
Runtime

Component
CallRepository

<<Surrogate Cache>>

cd13: Surrogate
Storage Manager

File Read/
Write

4: Store Data
(Weather Data)

cd2: Cyber-Foraging Enabled
App User Interface

<<Communications Manager>>
<<Mobile Cache>>

cd5: Mobile App Data
Exchange Client

1: Add to Outbound
Queue (Weather Data)

<<Communications Manager>>

cd12: Data Storage Server

2: Find
Surrogate

[If Surrogate Found]
3: Store Data

(Weather Data)

[Repeat Until
Outbound
Queue is
Empty]

5: Success

Return

6: Delete
Sent Data
from
Queue

(b) AgroTempus Implementation

Figure 6.9: Mapping of the AgroTempus Architecture to the Client Side Data
Caching Tactic

206

1-2. The Cyber-Foraging Enabled App User Interface requests to start
an offloaded computation with input Input.

3. The Offload Server receives the request and invokes the Offloaded
Computation Manager.

4. The Offloaded Computation Manager starts the offloaded compu-
tation in a separate Java Thread inside the JVM.

5. Upon finishing the execution of the offloaded computation, the
thread is terminated, therefore releasing allocated resources.

As with the Computation Offload tactic (Section 6.3.6.1), the main differ-
ence between the Just-in-Time Containers tactic and the AgroTempus archi-
tecture is that because the offloaded computation is only executed once, the
Input to the offloaded computation is sent in the initial request to offload.

6.3.7 System Implementation

A demo implementation of the AgroTempus system is available and docu-
mented at http://reuelbrion.github.io/AgroTempus/. Only the mobile
app and surrogate components were developed as part of the demo because
this is where the identified tactics are mainly implemented. The mobile hub
and cloud components were simulated for the testing and evaluation of the sys-
tem. The surrogate software was packaged for Raspberry Pi as a Raspbian OS
image with an auto-start script. Raspbian is a Linux distribution optimized
for Raspberry Pi [105]. The image was tested on a Raspberry Pi 2 Model B
with a TP-Link TL-WN722N wireless adapter, as shown in Figure 6.11.

The mobile app (Mobile Device components in Figure 6.2) is a Firefox
OS app, which is essentially a Web app consisting of HTML pages, CSS style
sheets, and Javascript code. Most of the app logic is written in plain Javascript
with minimal use of the JQuery library [116].

The surrogate (Surrogate components in Figure 6.2) was implemented in
Java as a multi-threaded application. The component CD9: Offloaded Com-
putation Manager that performs weather data regression and prediction makes
use of the Java chart library JFreeChart [91] that offers tools to perform regres-
sion on data sets, as well as to generate plot images to visualize the results in
common image formats. The same component also makes use of the Apache
Commons Codec libraries [115] to convert images generated by JFreeChart
into Base642 binary string format.

2Base64 is a set of binary-to-text encoding schemes commonly used when sending binary
data over a network.

207

http://reuelbrion.github.io/AgroTempus/

SurrogateMobile Client

Cyber-
Foraging
Enabled

Mobile App

Offload
Client

Container

Offloaded Code4: Execute (Input)

Offload Server

1: Start Offload

2: Start Offload

3: Create Offloaded Code Instance
5: End Offload

7: Destroy Offloaded Code Instance

6: End Offload

(a) Just-in-Time Containers Tactic

<<Surrogate>>

Surrogate
<<Mobile Client>>

Mobile Device

<<Cyber-Foraging Enabled Mobile App>>

cd2: Cyber-Foraging Enabled App
User Interface

<<Offload Client>>

cd4: Offload
Client

<<Container>>

JVM

<<Offloaded Code>>

Java Thread

<<Offload Server>>
1: Start Offload (Input)

4: Set Up Offloaded Code(Input)

2: Start Offload(Input) cd6: Offload
Server

cd9: Offloaded
Computation

Manager

3: Set Up Offloaded Code(Input)

5: Terminate
Thread

(b) AgroTempus Implementation

Legend

System
Boundary

Custom
Runtime

Component

Call

3rd Party
Runtime

Component

Figure 6.10: Mapping of the AgroTempus Architecture to the Just-inTime
Containers Tactic

208

Figure 6.11: AgroTempus Surrogate Setup

For communication between components residing on different nodes, JSON
(JavaScript Object Notation) [61] was selected as the standard message and
data storage structure. This format is used by free weather APIs such as
OpenWeatherMap [94] and works well with Javascript. To be able to use
JSON objects in the surrogate code, the system makes use of the JSON.simple
toolkit [36]. JSON is also used by IndexedDB, the selected data storage API
for FirefoxOS [90].

6.3.8 Analysis

6.3.8.1 System Evaluation

The AgroTempus system implementation included seven of the eight tactics
listed in Table 6.1. At implementation time, no working ad-hoc networking
library was found for Firefox OS. Therefore, the Surrogate Broadcast tactic
could not be used for surrogate discovery in the mobile app. The Local Surro-
gate Directory tactic (Section 3.2.4.1) was instead used for surrogate discovery.
A list of surrogates, including connection details, is maintained on the mobile
app. This way, whenever a surrogate service is needed, the mobile app tries

209

to connect to each surrogate one by one until it can make a connection to a
surrogate that provides the needed capabilities.

Extensive testing of the system was performed in order to verify that the
implemented system satisfies its intended functional and non-functional re-
quirements. The implementation details for each tactic are detailed below.

The Computation Offload tactic was implemented as designed and tested
successfully. It is used to perform data regression (FR3) and prediction of
future weather values (FR4), two computation-intensive operations. In ad-
dition, the generation of the regression chart images is another potentially
computation-intensive operation that is also performed on the surrogate. Even
though energy consumption was not measured on the mobile device to demon-
strate energy efficiency (NFR5), these are two examples of operations that
consume and produce small amounts of information compared to their com-
putational requirements, which is known benefit from cyber-foraging [70]. The
data regression operation takes as input a weather variable name (Tempera-
ture, Humidity, Pressure or Wind Speed), regression type (currently accepts
only Linear, but can be easily extended to support other types such as Lo-
gistic and Polynomial), a start date, and the number of days to extrapolate,
and produces a graph (PNG image) showing all the data points and the re-
gression line. The weather value prediction operation has a weather variable
name as input and produces a list of predictions for the variable for the next
7 days. Given that the mobile devices that the AgroTempus app is intended
to run on are low-end smartphones with limited computing and storage capa-
bilities, the Raspberry Pi surrogate, although limited as well, still offers more
computational power and data storage to increase the capacity of the system
(NFR6). The smartphone used for test and evaluation was a ZTE Open C
4.0 with an MSM8210 Dual-Core 1.2GHz CPU and 512MB RAM [131]. The
Raspberry Pi 2 Model B has a 900MHz quad-core ARM Cortex-A7 CPU and
1GB RAM [104], and supports SD cards up to 32GB for storage. Given the
successful implementation of the tactic as designed, an improvement for the
tactics catalog would be to include a variation of the Computation Offload
tactic for cases where there is a single request to offload instead of a continued
request/response interaction between a mobile device and a surrogate.

The Out-Bound Pre-Processing tactic is used for intermediate storage
of weather data on the surrogate (FR1) and eventual storage of weather data
in the cloud (FR7). It was implemented as designed between the mobile de-
vice and the surrogate. Data captured on the mobile device was successfully
transmitted and stored on the surrogate. Transmission of the weather data to
the mobile hub and eventual storage on the cloud was simulated. As indicated
in the evaluation of the Computation Offload tactic, data storage on the surro-

210

gate is larger than what is available on the mobile device, therefore increasing
the storage capability of the system (NFR6). In addition, as will be described
in the implementation of the Client-Side Data Caching tactic, weather data is
deleted on the mobile device after successful transmission to the surrogate to
also increase storage capacity. Although not tested end-to-end with real data,
there is potential for the Out-Bound Pre-Processing tactic to implement more
than one level of data staging as long as the client and surrogate roles are
replicated across levels. An improvement for the catalog would be to include a
variation of the Out-Bound Pre-Processing tactic for multi-level data staging.

The Pre-Fetching tactic was simulated in the demo implementation by
loading a static set of weather data on the surrogate at startup time and tested
successfully. The data was used and retrieved by the mobile app (FR2). Be-
cause of the lack of a mobile hub and cloud implementation, the complete
fetching of data from the cloud to the surrogate (FR9) was not tested. How-
ever, the implementation of the fetch and store capabilities implemented in
surrogate components CD8: Data Request Server and CD13: Surrogate Stor-
age Manager would be equivalent to the discover and store capabilities on the
mobile hub that would act as an intermediary between the cloud and the sur-
rogate (CD17: Cloud Synchronization Client and CD19: Mobile Hub Storage
Manager). As indicated in the evaluation of the previous two tactics, data
storage on the surrogate is larger than what is available on the mobile device,
therefore increasing the storage capability of the system (NFR6). Similar to
the Out-Bound Pre-Processing tactic, there is potential for the Pre-Fetching
tactic to implement more than one level of data staging as long as the client
and surrogate roles are replicated across levels. An improvement for the tactics
catalog would be to include a variation of the Pre-Fetching tactic for multi-level
data staging.

The Pre-Provisioned Surrogate was implemented as designed and tested
successfully. It enables all the functional requirements of the system, except
for the voice interface (FR8) which was not implemented in the demo. All
offloaded computation (short and long operations) is loaded on the surrogate
upon setup and is packaged inside a Raspbian OS image with auto-start ca-
pabilities, as mentioned earlier, to support ease of deployment (NFR2). This
same auto-start capability enables surrogate recovery after crashes (NFR9).
Similar to the GigaSight system implementation of the Pre-Provisioned Sur-
rogate tactic (Section 5.3.5.1), the AgroTempus implementation confirms that
an improvement for a future version of the tactic would be to mark the Ca-
pabilities Metadata and Capability Registry components as optional because
they are not necessary when capabilities are not advertised.

The Surrogate Broadcast tactic was not implemented in the AgroTem-

211

pus system as indicated earlier. The Local Surrogate Directory tactic was
used for surrogate discovery and implemented as indicated in the tactic. Ease
of deployment (NFR2) is not as strongly supported by this tactic as would
have been with the Surrogate Broadcast tactic. In the current implementation
the list of surrogates is hard-coded in the mobile app. The original intent
was to include surrogate metadata in a QR code on a sticker that would be
placed on the surrogate. A mobile device that would want to make use of the
surrogate would read the QR code, which would add the metadata to the list
of available surrogates. However, as of the time of implementation, there were
no QR libraries available for Firefox OS. Even though it was not tested with a
mobile hub, there are multiple options for surrogate broadcast for Java which
could be used by the surrogate to broadcast its presence to the mobile hub,
such as the ZeroConf protocol used by the Tactical Cloudlets system (Section
4.3.4.3). To satisfy the performance requirement (NFR8), once a surrogate
is contacted by a mobile hub, all running threads would be suspended until
synchronization with the mobile hub is complete.

The Cached Results tactic was implemented in the surrogate as designed
and tested successfully. Results of the data regression (FR2) and weather value
prediction (FR4) operations are always stored on the surrogate and not sent to
the mobile device until requested in order to support fault tolerance (NFR1).
This is in case the mobile device moves out of the range of the surrogate
before the computation completes. The results are saved until the mobile
device connects to the surrogate, therefore promoting availability (NFR7).
The change made in the design to always saves results on the surrogate when
offloaded operations are expected to be lengthy, instead of attempting to send
results to the mobile device immediately, could be added as a variation of the
Cached Results tactic.

The Client-Side Data Caching tactic was implemented as designed and
tested successfully. Data captured in the field (FR1) is stored on the mobile
device until a surrogate is available, to promote fault tolerance (NFR1). The
results are saved on the mobile device until it can connect to a surrogate,
therefore promoting availability (NFR7). Similar to the Cached Results tactic,
the change made in the design to always queue the results instead of attempting
to send the results to the surrogate immediately could be added as a variation
of the Client-Side Data Caching tactic.

The Just-in-Time Containers tactic was implemented as designed and
tested successfully. When data regression (FR3) and prediction of future
weather values (FR4) are offloaded, the system starts the computation in a
separate thread, which is destroyed upon completion, therefore increasing the
available capacity of the system (NFR6). In addition, because the computation

212

only runs upon request, energy is saved on the surrogate (NFR5).
Based on this analysis, nine of the ten functional requirements were suc-

cessfully supported through one or more of the available tactics, as shown in
Table 6.1. The Voice Interface requirement (FR8) was not implemented due
to project constraints but also because it was known that it would not be
implemented through any of the tactics.

Similarly, seven of the ten non-functional requirements were successfully
supported through one or more of the available tactics, as also shown in Table
6.1. The usability requirement to support multiple languages (NFR3), sim-
ilar to the voice interface requirement, was not implemented due to project
constraints, but also because it was known that it would not be implemented
through any of the tactics. The extensibility requirement to support the de-
velopment of new services (NFR4) was partially implemented outside of the
tactics, through the initial implementation of the project website that con-
tains the mobile app and surrogate code, as well as documentation (http:
//reuelbrion.github.io/AgroTempus/). The current documentation needs
to be augmented to fully support the requirement by providing more de-
tailed guidance to developers (e.g., location of extension points, templates for
new services). Finally, the data integrity requirement to provide data checks
(NFR10) was not implemented due to project constraints, but could be easily
be implemented outside of the tactics through input validation code in the
user interface components.

6.3.8.2 Developer Observation and Feedback

Throughout the process we met with the developer once a week to check on
project status and observe how the tactics were being used. The general
development process that was followed is consistent with the structure of this
section: (1) requirements elicitation, (2) mapping of requirements to tactics,
(3) architecture, (4) mapping of components to architecture, (5) design, (6)
implementation, and (7) testing and evaluation. Because of the nature of the
case study, the developer was asked to document the project during the entire
process.

The developer found the tactics easy to understand and use. The most
difficult part for the developer was determining, based on the tactics, which
of the components would be needed to implement the requirements. Feedback
for a future version of the tactics is to provide differentiation between core
and optional components of the tactic, consistent with the findings from the
previous two case studies. Another recommendation from the developer was
to include sample code and potentially a list of libraries/platforms that can

213

http://reuelbrion.github.io/AgroTempus/
http://reuelbrion.github.io/AgroTempus/

be used to implement common requirements of cyber-foraging systems. The
inclusion of sample code with the tactics is consistent with the feedback from
the main developer of the GigaSight system (Section 5.3.5.3).

The developer also found the tactics to be useful in the development of
the system. As stated by the developer: “The models that were used as a
blueprint during development were in large constructed from the tactics; they
were instrumental in providing a good foundation for the application.”

6.3.8.3 Findings

The goal of the case study was to discover (1) which of the architectural
tactics for cyber-foraging can be used in the development of the AgroTempus
system to fulfill its functional and non-functional requirements, and (2) how
do the selected tactics support their intended functional and non-functional
requirements. The context for the case study is the validation of the tactics
in real systems.

Eight tactics were identified to satisfy system requirements, of which seven
were implemented in the system, and one had to be replaced by an alter-
native tactic due to a technology constraint. As in the Tactical Cloudlets
and GigaSight systems discussed in the two previous chapters, tactics were
identified and implemented to satisfy the main functional requirements for a
cyber-foraging system, as presented in Section 3.2:

• Pre-Provisioned Surrogate was used for surrogate provisioning

• Local Surrogate Directory was used for surrogate discovery (replacing
Surrogate Broadcast)

• Computation Offload was used to implement computation offload capa-
bilities

• Out-Bound Pre-Processing and Pre-Fetching were used to implement
data staging capabilities

Two fault tolerance tactics, Cached Results and Client-Side Data Caching,
were used to satisfy fault tolerance and availability requirements. Just-In-
Time Containers, a resource optimization tactic, was used to satisfy surrogate
capacity and energy efficiency requirements.

All the tactics were implemented as designed, but there were several changes
that were made at design time to better fulfill requirements. Even though the
essence of each tactic remained the same, these changes create opportuni-
ties for improvement of the tactics catalog. In particular, variations to the

214

the Computation Offload, Out-Bound Pre-Processing, Cached Results, and
Client-Side Data Caching tactics were identified.

The case study shows that there are different ways to implement tactics,
mainly determined by system constraints and assumptions, but also by mobile
device and surrogate computing power and specifications, as well as usage
contexts. For example, VMs are used as data and computation containers in
the Tactical Cloudlets and GigaSight systems (Chapters 4 and 5) because of
the flexibility that they provide, but also because the surrogates are expected
to be high-end servers. For the AgroTempus system the selection of using
JVMs as computation containers is a better choice because they have less
overhead and consume less resources on the machine. They do not provide the
flexibility of VMs, but this is not required in the more static usage context of
AgroTempus.

The case study also showed that technology selection can sometimes be
a barrier to the use of tactics and therefore effective satisfaction of require-
ments. The use of Firefox OS as the mobile device operating system did not
allow the implementation of the Surrogate Broadcast tactic because of the lack
of libraries for discovery in this platform. In addition, the lack of libraries for
QR code reading also affected the ease of deployment requirement that was
associated to the Local Surrogate Directory tactic that replaced that Surro-
gate Broadcast tactic for surrogate discovery. These technology insights that
are gained from the implementation and evaluation of cyber-foraging systems
could be added as notes to the tactics to provide even greater value to software
architects.

Finally, as more real cyber-foraging systems are deployed, more tactics
and non-functional requirements will emerge. For example, recovery was not
a requirement that was identified as part of the SLR (Chapter 2) on archi-
tectural tactics for cyber-foraging. However, it is highly likely that this will
be a requirement for cyber-foraging systems in resource-challenged environ-
ments, such as the AgroTempus usage context. Recovery in the AgroTempus
system was implemented via the use of Java threads combined with a mon-
itoring capability. Because service instances run in separate threads after
the initial connection, a failed service thread will not affect the main service
thread. Passing data between threads happens through thread-safe queues
(java.util.concurrent.
ConcurrentLinkedQueue). The main surrogate process periodically checks
whether all service threads are alive, and crashed threads are restarted. A
generalization of this approach could easily be codified as a Surrogate Recov-
ery tactic.

In summary, the tactics were successfully used to create an architecture and

215

implementation of the AgroTempus system that fulfills most of its relevant
requirements, which answers the research questions for the case study. In
combination with the utility statement from the system developer, this serves
as a validation of the tactics for development of cyber-foraging systems for
computation offload and data staging.

6.3.9 Threats to Validity

There are two main threats to validity of the results of this case study. The
first is related to internal validity because the data collection and analysis was
conducted by a single researcher and therefore subjective interpretations might
exist. To mitigate this threat, data collected from several sources (evolving
system documentation, the code base, and ongoing developer interviews) was
confirmed by the developer such that we could have immediate feedback. The
second threat is related to external validity, specifically whether the findings
are generalizable given that the results are drawn from the development of
a single system. To mitigate this threat we conducted two additional case
studies that are reported in Chapters 4 and 5. The results of this case study
are consistent with the previous two case studies, with a confirmation from
the developer on the usefulness of the tactics to build cyber-foraging systems.

6.4 Conclusions

This chapter presented the results of the last of three case studies to validate
the architectural tactics for cyber-foraging presented in Chapter 3, in the con-
text of RQ2, which is to identify the architectural tactics that can be derived
from the architectural design decisions identified by the SLR.

For this case study two research questions were defined for the development
of a cyber-foraging system for computation offload and data staging.

1. Which of the architectural tactics for cyber-foraging can be used in
the development of the AgroTempus system to fulfill its functional and non-
functional requirements?

The analysis of the AgroTempus system resulted in the identification of
eight architectural tactics, seven of which were implemented in the system.
One tactic had to be replaced due to technology constraints. In addition,
elements of these tactics were also used to meet energy efficiency, ease of
deployment, and performance requirements. The recovery requirement was
implemented via a mechanism that could easily be codified as a new tactic,

216

especially applicable to cyber-foraging systems in resource-constrained envi-
ronments. In addition, several tactic variations were identified.

Although based on the analysis of a single system, the results show that
a tactics-driven approach can be used for the development of cyber-foraging
systems for computation offload and data staging.

2. How do the selected tactics support their intended functional and non-
functional requirements?

System testing shows that the implemented tactics meet their intended
functional and non-functional requirements. As indicated by the developer of
the AgroTempus system, the architectural tactics constituted a strong foun-
dation for the development of the system.

The variety of the usage contexts explored in only these three case studies
shows that there is potential for many uses of cyber-foraging systems. The
next chapter identifies the usage contexts that benefit from cyber-foraging,
along with the functional and non-functional requirements that drive systems
development.

6.5 Acknowledgments

Very special thanks to Reuel Brion from VU University Amsterdam for his
invaluable support during the execution of this case study.

217

7
Characterization of Cyber-Foraging

Usage Contexts

This chapter addresses research question RQ3 and presents a characteriza-
tion of usage contexts for cyber-foraging defined in terms of functional and
non-functional requirements for cyber-foraging systems. The goal of the char-
acterization is to provide context for software engineering life cycle activities
for cyber-foraging systems, such as requirements engineering, software archi-
tecture, and quality assurance, with the intent of developing systems that fully
realize the benefits of cyber-foraging.

7.1 Introduction

Surrogate-based cyber-foraging enables mobile devices to extend their com-
puting power and storage by offloading computation or data to more powerful
servers located in in single-hop proximity (i.e., surrogates). There are many
domains and applications that can benefit from the longer battery life and
better application performance on mobile devices that is typically associated
to the use of cyber-foraging, such as field operations, sensor systems, and en-
tertainment. However, obtaining these benefits in operational systems requires
meeting functional and non-functional requirements that vary depending on
the usage context of the cyber-foraging system.

This chapter presents the characterization of the usage domains and con-
texts that benefit from surrogate-based cyber-foraging, defined in terms of
functional and non-functional requirements. The goal of this characterization
is to provide context for software engineering life cycle activities for cyber-
foraging systems, such as requirements engineering, software architecture, and

219

quality assurance, with the intent of developing systems that fully realize the
benefits of cyber-foraging.

The next section describes the analysis that led to the characterization
of usage contexts for cyber-foraging. Sections 7.3, 7.4, and 7.5 contain the
details of each identified usage context. Finally, Section 7.6 summarizes and
concludes the chapter.

7.2 Analysis

In Chapter 2 we presented the results of a systematic literature review (SLR)
on architectures for cyber-foraging. Common design decisions present in the
cyber-foraging systems described in the primary studies were codified into
architectural tactics for cyber-foraging and then grouped into functional and
non-functional architectural tactics as shown in Chapter 3.

To identify cyber-foraging usage contexts we started with the same set of
primary studies identified in the SLR. In the first phase, for each primary study
we extracted the names of the environments and types of applications that were
being targeted in the cyber-foraging systems described in each study, either as
examples or case studies. We then clustered these results based on similarity.
The results of the mapping between usage contexts and primary studies is
shown in Table 7.1. The first column contains the name given to the cluster of
studies that defines the usage context. The second column contains the set of
the applications and domains used in the primary studies as examples or case
studies. The last column contains the names of the cyber-foraging systems
from the primary studies.

In the second phase we revisited the primary studies in each usage con-
text extracting functional requirements (FRs) and nonfunctional requirements
(NFRs) explicitly and implicitly stated in each study, with the goal of identi-
fying recurring requirements in each usage context. Each FR and NFR that
was stated in at least three of the primary studies was considered a recurring
requirement. The exception is the Mobile Applications in Hostile Environ-
ments usage context which only has two studies, in which case we considered
it recurring if it was stated in both studies.

The identified FRs and NFRs for each usage context are shown in the
conceptual model in Figure 7.1, inspired by UML class diagrams and the in-
heritance relationship. The rectangles with the rounded top corners represent
a context characterization and include FRs and NFRs that are common across
more than one usage context. The rectangles marked with UC# represent
the usage contexts derived from Table 7.1 and include FRs and NFRs that

220

are unique to that usage context. Each usage context inherits FRs and NFRs
from context characterizations and other usage contexts, as defined by the
inheritance relationship between elements. The FRs and NFRs are labeled in
order to facilitate the mapping to the description of the usage contexts in the
next section, along with the benefits of cyber-foraging for the usage context
and the constraints for obtaining these benefits. Some FRs, such as FR1, ap-
pear in several context characterizations and usage contexts. In this case, the
inheriting element is “overriding” the FR with specific details for the context
characterization or usage context. As a reference, Table 7.2 included at the end
of this chapter contains a summary of recurring functional and non-functional
requirements for each usage context.

221

Table 7.1: Cyber-Foraging Usage Contexts: Mapping of Primary Studies

Usage Context Example Applications
and Domains

Systems in Primary Studies

Computation-
Intensive Mobile
Applications
(Short
Operations)

Image, audio and video
processing and
manipulation
Face detection and
recognition
Speech recognition
Speech translation
Antivirus/Anti-malware
Gaming (AI-based)

Chroma [9]
Computation and Compilation
Offload [18]
Cloud Media Services [19]
CloneCloud [22]
HPC-as-a-Service [30]
OpenCL-Enabled Kernels [33]
Real Options Analysis [35]
Collective Surrogates [48]
Virtual Phone [55]
Single-Server Offloading [56]
Android Extensions [57]
ThinAV [59]
Cuckoo [62]
ThinkAir [64]
MACS [65]
Scavenger [67]
AMCO [72]
MCo [74]
PowerSense [82]
AIDE [83]
PARM [88]
Resource Furnishing System [92]
SOME [96]
SmartVirtCloud [100]
MAPCloud [103]
VM-Based Cloudlets [108]
IC-Cloud [111]
AIOLOS [117]
Heterogeneous Auto-Offloading
Framework for Mobile Web Browsers
[128]
Weblets [127]
DPartner [129]
Elastic HTML5 [126]

Mobile
Applications in
Low Coverage
Environments

Resource-challenged
environments
Field operations (e.g.,
researchers, medics, sales
and marketing)

Mobile Agents [5]
Edge Proxy [6]
Mobile Information Access
Architecture for Occasionally
Connected Computing [8]
MAUI [26]
3DMA [39]
Spectra [41]

Continued on next page

222

Table 7.1 – Continued from previous page

Usage Context Example Applications
and Domains

Systems in Primary Studies

Computation-
Intensive Mobile
Applications
(Long
Operations)

Service-based
applications
Workflow-based
applications
Search-based applications
(discrete tasks or single
replicated task)

Cloud Operating System to Support
Multi-Server Offloading [56]
Odessa [101]
SPADE [112]
Offloading Toolkit and Service [121]

Mobile
Applications in
Hostile
Environments

Emergency response
Military operations

Cloudlets [52]
Application Virtualization on
Cloudlets [84]

Public
Surrogates

Everyday use Collaborative Applications [16]
Roam [20]
Trusted and Unmanaged Data
Staging Surrogates [42]
Slingshot [114]

Sensing
Applications

Healthcare
Intelligent transport
systems
Ambient intelligence
Environmental
monitoring
Context-aware
applications
Participatory sensing
(Crowdsensing)

mHealthMon [2]
C2C [7]
Grid-Enhanced Mobile Devices [51]
Feel The World [98]
Smartphone-Based Social Sensing
[102]
Large-Scale Mobile Crowdsensing
[119]
Sonora [120]
Mobile Data Stream Application
Framework [122]

Data-Intensive
Mobile
Applications

Mobile cloud applications
Online gaming
Data-rich domains

Kahawai [26]
AlfredO [47]
Telemedik [71]
Cloud Personal Assistant [93]

7.3 Cyber-Foraging Usage Contexts

As shown in the General context characterization in Figure 7.1, cyber-foraging
systems in all usage contexts need to satisfy three non-functional requirements.

223

FR NFR

(N
FR

1
)

E
n

er
gy

 e
ff

ic
ie

n
cy

(N
FR

2
)

Fa
st

er
 r

e
sp

o
n

se
 t

im
e

(N
FR

3
)

In
cr

e
as

ed
 c

o
m

p
u

ti
n

g
 p

o
w

e
r

G
e

n
e

ra
l

FR NFR

Co
m

p
ut

at
io

n
O

ff
lo

ad

(F
R

1
)

O
ff

lo
ad

 o
f

co
m

p
u

ta
ti

o
n

-i
n

te
n

si
ve

 o
p

e
ra

ti
o

n
s

FR NFR

D
at

a
St

ag
in

g

(F
R

7
)

St
a

gi
n

g
 d

at
a

 in
 t

ra
n

si
t

to
/f

ro
m

 t
h

e
cl

o
u

d

(N
FR

1
4

)
B

a
n

d
w

id
th

 e
ff

ic
ie

n
cy

FR NFR

U
C

1
:

C
o

m
p

ut
at

io
n

-I
n

te
n

si
ve

 M
o

b
ile

A

pp
lic

at
io

n
s

(S
ho

rt
 O

p
er

at
io

ns
)

(N
FR

4
)

M
ai

n
ta

in
a

b
il

it
y

 a
n

d
 E

v
o

lv
a

b
il

it
y

FR NFRD
yn

am
ic

 E
n

vi
ro

nm
en

ts

(N
FR

5
)

Fa
u

lt
 t

o
le

ra
n

ce

FR NFR

D
yn

am
ic

 S
u

rr
o

ga
te

 E
n

vi
ro

n
m

en
t

(F
R

2
)

A
cc

e
ss

 t
o

 d
at

a
re

si
d

in
g

in
 t

h
e

cl
o

u
d

(F
R

3
)

D
is

co
n

n
e

ct
e

d
 o

p
e

ra
ti

o
n

s
b

e
tw

e
e

n

su
rr

o
ga

te
s

an
d

 t
h

e
 c

lo
u

d

FR NFRU
C

2
:

M
o

b
il

e
 A

p
p

lic
a

ti
o

n
s

in

Lo
w

 C
o

ve
ra

ge
 E

n
vi

ro
nm

en
ts

(N
FR

6
)

E
as

e
 o

f
co

n
fi

gu
ra

ti
o

n

FR NFR

U
C

3
:

Co
m

p
ut

at
io

n
-I

n
te

n
si

ve
 M

o
b

ile

A
pp

lic
at

io
n

s
(L

on
g

O
p

er
at

io
n

s)

(N
FR

8
)

Sc
al

ab
il

it
y

(F
R

1
)

O
ff

lo
ad

 o
f

ve
ry

 c
o

m
p

u
ta

ti
o

n
-

in
te

n
si

ve
 o

p
e

ra
ti

o
n

s
(F

R
5

)
P

a
ra

ll
el

 o
ff

lo
adFR NFRD

yn
am

ic
 M

o
b

ile
 D

ev
ic

e
 E

n
vi

ro
n

m
en

t

(F
R

4
)

D
is

co
n

n
e

ct
e

d
 o

p
e

ra
ti

o
n

s
b

e
tw

e
e

n

m
o

b
il

e
d

ev
ic

e
s

an
d

 s
u

rr
o

ga
te

s

FR NFR

U
C

4
:

M
o

bi
le

 A
p

p
lic

at
io

n
s

in
 H

o
st

ile

En
vi

ro
n

m
en

ts

(N
FR

9
)

E
as

e
 o

f
d

ep
lo

ym
e

n
t

(N
FR

1
0)

 S
u

rv
iv

a
b

ili
ty

FR NFR

U
C

5
:

P
u

b
lic

 S
u

rr
o

ga
te

s

(N
FR

1
1)

 T
ru

st
(N

FR
1

2)
 P

o
rt

ab
il

it
y

(N
FR

1
3)

 L
o

ss
le

ss
 u

se
r

e
xp

e
ri

en
ce

(F
R

1
)

O
p

p
o

rt
u

n
is

ti
c

o
ff

lo
a

d
 o

f
co

m
p

u
ta

ti
o

n
-i

n
te

n
si

ve
 o

p
e

ra
ti

o
n

s
(F

R
6

)
D

is
co

ve
ra

b
le

 s
u

rr
o

g
at

e
s

FR NFR

U
C

6
:

Se
ns

in
g

A
p

p
lic

at
io

ns

(N
FR

1
5

)
A

va
il

ab
il

it
y

(F
R

7
)

St
a

gi
n

g
 d

at
a

 in
 t

ra
n

si
t

to
 t

h
e

cl

o
u

d
(F

R
8

)
Se

n
so

r
d

at
a

a
n

d
/o

r
co

n
ti

n
u

o
u

s
d

a
ta

 s
tr

e
a

m
 p

ro
ce

ss
in

g
(F

R
9

)
Lo

ca
l d

a
ta

 s
h

ar
in

g
 a

n
d

co

lla
b

o
ra

ti
o

n

FR NFRU
C

7
:

D
at

a-
In

te
n

si
ve

 M
ob

ile

A
pp

lic
at

io
n

s

(N
FR

1
6)

 Q
u

e
ry

 e
ff

ic
ie

n
cy

(F
R

7
)

St
a

gi
n

g
 d

at
a

 in
 t

ra
n

si
t

fr
o

m
 t

h
e

cl
o

u
d

(F
R

1
0

)
D

is
p

la
y

o
f

p
ri

o
ri

ti
ze

d
/

re
le

v
an

t
in

fo
rm

at
io

n

FR NFR

Co
nt

e
xt

 C
h

ar
ac

te
ri

za
ti

o
n

Fu
nc

ti
o

n
al

 R
eq

u
ir

em
e

nt
s

N
o

n-
Fu

nc
ti

o
n

al
 R

eq
u

ir
em

e
nt

s

FR NFR

U
C

#:
 U

sa
ge

 C
o

n
te

xt

Fu
nc

ti
o

n
al

 R
eq

u
ir

em
e

nt
s

N
o

n-
Fu

nc
ti

o
n

al
 R

eq
u

ir
em

e
nt

s

Le
ge

n
d

A B

B
 in

h
e

ri
ts

re

q
u

ir
e

m
e

n
ts

fr

o
m

 A

(N
FR

7
)

C
o

d
e

/D
a

ta
 m

o
b

il
it

y

F
ig

u
re

7.
1:

C
on

ce
p

tu
al

M
o
d

el
fo

r
C

y
b

er
-F

o
ra

g
in

g
U

sa
g
e

C
o
n
te

x
ts

224

(NFR1) Energy efficiency: Offloading computation should con-
sume less energy than local execution based on the premise that off-
loading is beneficial when large amounts of computation are needed
with relatively small amounts of communication [70].

(NFR2) Faster response time: Offloading computation should lead
to a faster response time that local execution.

(NFR3) Increased computing power: Offloading computation
and data should take advantage of the greater computing power of
surrogates.

Depending on whether the main goal of the usage context is computation
offload or data staging, additional FRs and NFRs need to be satisfied, as shown
in the following sections.

7.4 Computation Offload Usage Contexts

Cyber foraging systems that perform computation offload need to satisfy a
general requirement related to the offload operation, as shown in the Compu-
tation Offload context characterization in Figure 7.1.

(FR1) Offload of computation-intensive operations: A
cyber-foraging-enabled application, upon encountering computation-
intensive code explicitly marked for offload, determines if the condi-
tions are appropriate for offload (e.g., surrogate availability, network
conditions, remaining battery). If so, the mobile device locates a sur-
rogate for offload, offloads the computation, and waits for a response
from the surrogate.

7.4.1 Usage Context 1: Computation-Intensive Mobile
Applications (Short Operations)

The systems in this usage context are mobile applications that contain computa-
tion-intensive operations which if executed on a mobile device would take in
the order of tens of seconds, but if offloaded could improve response time con-
siderably. These are typically request-response, synchronous operations such
as:

225

• Image, audio, and video processing and manipulation

• Face detection and recognition

• Speech recognition and translation

• Virus and malware detection

• Gaming algorithm execution (typically AI-based)

As shown in the usage context UC1 in Figure 7.1, in addition to FR1,
NFR1, NFR2, and NFR3, cyber-foraging systems in this usage context need
to satisfy a functional requirement related to maintainability and evolvability.

(NFR4) Maintainability and Evolvability: Systems may perform
a runtime decision to offload. In this case, two versions of the same
code (local and remote) need to be maintained and evolved over time.

Benefits
The main benefit of cyber-foraging in this usage context is augmented exe-

cution capability due to computation offload (FR1) to more powerful resources
(NFR3). Computation offload also reduces battery consumption (NFR1) which
leads to longer battery life and provides better response times (NFR2) due to
offload to proximate resources instead of remote cloud resources [10].

Constraints
Systems that make runtime decisions in this usage context to execute lo-

cally or remotely have the advantage of additional battery savings because
offload only occurs when conditions are conducive to battery savings based on
code characteristics, surrogate availability, and environment conditions (e.g.
network quality, available bandwidth). Also, because operations take seconds
to execute, restarting an operation locally due to a disconnected surrogate
may not have a large negative effect on user experience if recovering does not
exceed an acceptable wait time and the user is informed of the situation.

However, care has to be given to maintainability and evolvability (NFR4)
because it is likely that two versions of the code have to be maintained: one
for the mobile device and one for the surrogate. If not managed carefully it
can lead to increased effort in parallel code maintenance and evolution.

226

7.4.2 Dynamic Environments

Cyber-foraging systems often operate in dynamic environments where connec-
tivity between mobile devices and surrogates, or between surrogates and the
cloud, cannot be guaranteed. These systems need to be able to detect and re-
act to periods of disconnection, therefore requiring fault tolerance mechanisms
as shown in the Dynamic Environments context characterization in Figure 7.1.

(NFR5) Fault tolerance: Mobile devices leveraging surrogates, and
surrogates connected to the cloud, should be able to detect and react
appropriately to periods of disconnection.

In situations in which connectivity between the surrogates and the cloud
cannot be guaranteed, there is a need for surrogates to continue supporting
the computational and data needs of mobile devices even during periods of
disconnection, as shown in the Dynamic Surrogate Environment context char-
acterization in Figure 7.1.

(FR2) Access to data residing in the cloud: Surrogates serve
as caches for data located in the cloud that is required by mobile
applications.

(FR3) Support for disconnected operations between surro-
gates and the cloud: Surrogates should contain data that is required
by mobile applications, and take advantage of available connectivity
to the cloud to synchronize with master data sources and cache data
that might be required given changes in context, user preferences, or
user actions.

In situations in which connectivity between the mobile devices and sur-
rogates cannot be guaranteed, there is a need for surrogates to save results
of offload operations until connectivity is restored, or where computation can
move as mobile devices move, as shown on the Dynamic Mobile Device Envi-
ronment context characterization in Figure 7.1.

(FR4) Support for disconnected operations between mobile
devices and surrogates: If a mobile device loses contact with the
surrogate before it can obtain a result, the surrogate should save the
results until the mobile device is reachable.

227

(NFR7) Code/Data mobility: If multiple connected surrogates are
available the system should be able to move code and data to other
surrogates to fulfill application needs and continuity of operations.

7.4.2.1 Usage Context 2: Mobile Applications in Low Coverage
Environments.

Low coverage environments are characterized by disconnection, or occasional
connectivity, between surrogates and the cloud, but potentially good connec-
tivity between mobile devices and surrogates. Examples of applications and
domains include:

• Resource-challenged environments: Less-privileged regions characterized
by limited Internet access, limited electricity and network access, and
potentially low levels of literacy can leverage surrogates, deployed in, for
example, kiosks, to obtain information to support their communities.

• Field operations: People that spend time away from their main offices
or labs, such as researchers, medics, and sales personnel, can leverage
portable surrogates to support their computation and data needs.

As shown in the usage context UC2 in Figure 7.1, in addition to FR1, FR2,
FR3, NFR1, NFR2, NFR3, and NFR5, cyber-foraging systems in this usage
context need to satisfy a functional requirement related to ease of configura-
tion.

(NFR6) Ease of configuration: Surrogates should contain capabil-
ities that enable administrators to load surrogates with the computa-
tion and data needed to support the mobile applications that will be
using it, especially in areas where there might not be technical staff
available.

Benefits
Mobile applications in low coverage environments can benefit from cyber-

foraging in the following ways:

• Augmented execution due to computation offload (FR1) to more power-
ful resources (NFR3). In the case of resource-challenged environments,
surrogates can execute computation-intensive operations such as speech,
image or gesture recognition as alternate forms of input to account for
low levels of literacy.

228

• Reduced battery consumption (NFR1) due to offload of computation-
intensive operations which leads to longer battery life, especially in en-
vironments where recharging mobile devices is difficult.

• Better response times (NFR2) as well as lower energy consumption (NFR1)
due to offload to proximate surrogates instead of remote cloud servers.

• Pre-provisioned surrogates (FR2) can carry all computation and data
that is needed by surrogate users and can function disconnected from
the cloud (FR3).

Constraints
The benefits of cyber-foraging are only possible if surrogates are properly

pre-provisioned, that is, they contain all the data and computation required by
the mobile applications that use them. Processes that predict computation and
data usage based on user profiles, workflows, or access history are necessary
to support ease of configuration (NFR6).

In addition, cyber-foraging systems operating in low coverage environments
require fault tolerance (NFR5) mechanisms to be able to detect periods of
connection and disconnection between surrogates and the cloud and seamlessly
switch between operating in connected and disconnected mode. Surrogates
should continue supporting mobile applications when disconnected from the
cloud, even if in degraded mode.

7.4.2.2 Usage Context 3: Computation-Intensive Mobile applica-
tions (Long Operations).

The systems in this usage context are mobile applications that contain computa-
tion-intensive operations which if executed on a mobile device would take min-
utes to hours, but if offloaded could improve response time considerably. In
most cases there is not an option for local execution given the computing re-
quirements of the offloaded operations. These requirements are likely greater
than what is available locally, or would drain the battery before returning a
result. The types of applications that contain long operations — that are also
typically asynchronous to avoid blocking — include:

• Service-based applications: Applications that are composed of a number
of possibly independent services which may perform long operations.

• Workflow-based applications: Applications that execute a workflow that
may include steps that are long-running, such as business applications in
which the mobile application initiates a long-running business process.

229

• Search-based applications: Applications that require searching through
large data sets, such as data analytics applications or applications that
combine data from different sources. These applications can be composed
of discrete tasks or single replicated tasks (i.e., executing the same search
against different data sources).

While systems in this usage context still need to satisfy FR1 (computation
offload), it would have to be redefined as Offload of very computation-intensive
operations, as shown in UC3 in Figure 7.1. What this means is that upon
encountering very computation-intensive code marked for offload, the mobile
application locates a surrogate for offload, offloads the code, and either waits
for a response from the surrogate (synchronous) or is notified by the surrogate
that the operation is complete (asynchronous, i.e., at a later time and without
blocking the application).

In addition to the redefined FR1, FR4, NFR1, NFR2, NFR3, NFR5, and
NFR7, cyber-foraging systems in this usage context need to satisfy additional
requirements related to parallel offload, if this option is available.

(FR5) Parallel offload: If surrogates are connected to other sur-
rogates and operations are parallelizable, the cyber-foraging system
should attempt to leverage the combined computing power of the set
of available surrogates.

(NFR8) Scalability: If multiple connected surrogates are available,
and offloaded operations are parallelizable, the system should be able
to determine the optimal amount of surrogates to utilize for execution
of the offloaded computation.

Benefits
Mobile applications that contain long computation-intensive operations can

benefit from cyber-foraging in the following ways:

• Augmented execution capability due to computation offload (FR1) to
more powerful resources (NFR3)

• Reduced battery consumption (NFR1) due to offload of long computation-
intensive operations which leads to longer battery life

• Better response times (NFR2) as well as lower energy consumption (NFR1)
due to offload to proximate resources instead of remote cloud resources.

230

Constraints
Long computation-intensive operations may require the resources of more

than one surrogate in order to achieve the benefits of cyber-foraging. If pos-
sible, due to parallelization of these long computation-intensive operations,
multiple connected surrogates would need to implement load balancing for
scalability (NFR8, FR5). However, load balancing requires moving computa-
tion and data between surrogates, which in turn requires execution containers
such as virtual machines that support code and data mobility (NFR7).

In addition, given that a mobile device may lose contact with a surrogate
before the operation finishes, mechanisms such as caching data until the mobile
device is reconnected, or using alternative communication mechanisms to reach
the mobile device (e.g., SMS) are necessary (FR4). A user should be informed
when this happens so that he/she knows that the results will not be available
until reconnection (NFR5).

7.4.2.3 Usage Context 4: Computation-Intensive Mobile Applica-
tions in Hostile Environments.

Hostile environments, such as those in which emergency responders or military
personnel operate, are characterized by very dynamic environments in which
disconnected operations — or occasionally-connected operations — between
surrogates and the cloud, and between mobile devices and surrogates, are
highly likely.

In addition to FR1, FR2, FR3, FR4, NFR1, NFR2, NFR3, NFR5 and
NFR6, systems in this usage context need to satisfy two non-functional re-
quirements related to the hostility of the environment and potential loss of
resources.

(NFR9) Ease of deployment: It should be easy to deploy surrogates
in the field to support a mission (e.g., on vehicles, in tents, or in
provisional operations centers).

(NFR10) Survivability: Surrogates and mobile applications should be
able to continue operating in spite of disruptions caused by the oper-
ational environment.

Benefits
Mobile applications in hostile environments can benefit from cyber-foraging

in the following ways:

231

• Augmented execution capability due to computation offload (FR1) to
more powerful resources (NFR3)

• Reduced battery consumption (NFR1) due to offload of computation-
intensive operations which leads to longer battery life, especially in these
environments where recharging mobile devices may be difficult.

• Better response times (NFR2) as well as lower energy consumption (NFR1)
due to offload to proximate resources instead of remote cloud resources.

• Pre-provisioned surrogates (FR2) can carry all data that is needed by
surrogate users executing a mission and can function disconnected from
the cloud (FR3).

• Runtime partitioning can be based on a basic algorithm that simply
detects surrogate availability such that operations execute locally if a
surrogate is not available (FR4).

• In case of disconnection, surrogates can cache offload operation results
(FR4) until the mobile device is reconnected.

• If computation is self-contained (e.g., in a VM) and more than one sur-
rogate is available, computation can migrate between surrogates due to
mobile device mobility (i.e., mobile device moves beyond the range of a
surrogate) and/or surrogate mobility (e.g., in case surrogates reside in
vehicles) (FR4, NFR7).

Constraints
The benefits of cyber-foraging are only possible if surrogates are properly

pre-provisioned, that is, they contain all the data and computation required
by the mobile applications that use them. Processes that predict computation
and data usage based on mission profiles, user profiles, workflows, or access
history are necessary to support ease of configuration (NFR6).

In addition, cyber-foraging systems operating in hostile environments re-
quire fault tolerance mechanisms (NFR5) to be able to detect periods of con-
nection and disconnection, and seamlessly switch between operating in con-
nected and disconnected mode. Because of the uncertainty of connections
between mobile devices and surrogates, fallback to local execution is required
in case of unavailable surrogates or disconnection during offload operations
(FR4).

Finally, hostile environments require systems to continue operating in spite
of the uncertainly of the environment in order to ensure the success of missions.

232

Mechanisms to ensure ease of deployment (NFR9) and configuration (NFR6)
such as self-contained capabilities and management consoles can support quick
setup of surrogates and capabilities to support a mission. In addition, mecha-
nisms that promote survivability (NFR10) such as multiple discoverable, con-
nected surrogates that can load balance or transfer offloaded computation in
case of disconnection (NFR7), are key to reaching the benefits of cyber-foraging
in these environments.

7.4.2.4 Usage Context 5: Public Surrogates.

Publicly-available surrogates on which any user can offload computation-intensive
operations is a vision for cyber-foraging cited by the studies included in Table
7.1 for this usage context, as well as Balan et al [9]: “Although deployment of
compute servers for public use is not imminent, our work addresses future en-
vironments where they may be as common as water fountains, lighting fixtures,
chairs or other public conveniences that we take for granted today. When pub-
lic infrastructure is unavailable, other options may exist.” The goal of mobile
applications that leverage public surrogates is seamless mobility, that is, the
capability to move code (and data) between mobile devices and surrogates
with minimal human intervention.

Although this usage context falls under Dynamic Environments, it is differ-
ent from the other usage contexts in this group because computation offload is
opportunistic instead of user-triggered. This is why FR1 is redefined as Oppor-
tunistic offload of computation-intensive operations. What this means is that
upon discovery of an available surrogate, running mobile applications that are
determined to be computation-intensive migrate their execution to the discov-
ered surrogate (either manually or automatically). When the mobile device
leaves the vicinity of the surrogate (or because of termination actions such
as expiration time or manual intervention), the computation on the surrogate
migrates back to the mobile device.

In addition to the redefined FR1, cyber-foraging systems in this usage con-
text need to satisfy a functional requirement related to surrogate discovery.

(FR6) Discoverable surrogates: Surrogates should broadcast their
presence to cyber-foraging-enabled mobile applications for discovery.

Also, in addition to NFR1, NFR2, NFR3 and NFR5, cyber-foraging sys-
tems in this usage context need to satisfy other non-functional requirements
related to computation migration between mobile devices and offload to public
surrogates.

233

(NFR11) Trust: When a mobile device discovers a surrogate it ex-
pects a trustworthy surrogate execution environment, meaning that
once an offload operation starts, code and data are not maliciously
modified or stolen, and that it provides trustful services. In the same
way, a surrogate expects that a mobile device is a valid client and that
it will not offload malicious code or use it as a vehicle to other code
and data offloaded by other mobile devices.

(NFR12) Portability: Offloaded computation should be able to run
on a variety of surrogate platforms.

(NFR13) Lossless user experience The migration of computation
(and data) between a mobile device and a surrogate should cause min-
imal disruption to a user, other than what is defined in the migration
process or protocol (e.g, authentication, manual disconnection).

Benefits
A benefit of cyber-foraging using public surrogates is augmented execution

due to opportunistic computation offload (FR1) to more powerful, discover-
able resources (FR6, NFR3). Reduced battery consumption (NFR1) due to
offload of computation-intensive operations, which leads to longer battery life,
is also a benefit. Finally, faster response times (NFR2) as well as lower energy
consumption (NFR1) are expected due to offload to proximate, more powerful
resources.

Constraints
Offload to public surrogates implies that the mobile user does not own the

surrogate. Trust (NFR11) has to be built into the cyber-foraging system such
that the mobile user trusts that code and data offloaded to the surrogate is
not going to be compromised, and the surrogate trusts that the user will not
use it to install malicious code.

In addition, given that the relationship between the mobile device and
the surrogate is transient, fault tolerance (NFR5) mechanisms are required
to detect when a mobile device is in proximity of a surrogate and when it
is not such that it can seamlessly switch between local execution and remote
execution (NFR13).

Finally, in public surrogates there is likely no control over their configu-
ration. Portability of offloaded code and data (NFR12) is required in order
to adapt to multiple execution environments. Virtual machines as execution

234

containers would be a good match for public surrogates.

7.5 Data Staging Usage Contexts

Cyber foraging systems that perform data staging need to satisfy two general
requirements related to data staging and efficiency, as shown in the Data Stag-
ing context characterization in Figure 7.1.

(FR7) Staging data in transit to/from the cloud: Surrogates
should act as intermediate data caches between mobile devices and the
cloud.

(NFR14) Bandwidth efficiency: Mobile devices should offload
data to surrogates, and surrogates should send data to mobile devices,
only when conditions are conducive to bandwidth efficiency, such as
when network quality is above an established threshold, when network
traffic is below an established threshold, or when cached data reaches
an established bundle size for sending.

7.5.1 Usage Context 6: Sensing Applications

The systems in this usage context are mobile applications that perform context,
environment, or urban sensing using on-board sensors (e.g., camera, micro-
phone, accelerometer) or connected sensors (e.g. gas, ambient temperature).
The sensing applications collect data from these sensors and send it to surro-
gates as these become available. Examples of domains and applications in this
usage context include:

• Context-aware applications: A mobile application uses sensors to acquire
contextual information and send it to surrogates for processing, such as
complex activity or scene recognition

• Healthcare: A mobile application is used by patients carrying body sen-
sors to gather data from these sensors and send it on to surrogates for
analysis.

• Intelligent transport systems: A mobile application integrated into a ve-
hicle can obtain readings from multiple sensors and send the data to
surrogates located at various points throughout the city to, for example,

235

perform traffic analysis and control, surveillance, or emergency manage-
ment.

• Ambient intelligence: Ambient intelligence can be supported by mobile
applications that sense contextual data and send it to surrogates for rapid
processing to provide personalized, adaptive, and anticipatory services
such as ambient control (e.g., lighting, music, temperature) and calendar
management.

• Environmental monitoring: Mobile applications equipped with environ-
mental sensors such as gas, pressure, or temperature collect data to send
to surrogates for processing for disaster prevention, detection, and re-
sponse activities.

• Participatory sensing (Crowdsensing): Crowdsensing refers to individu-
als using mobile devices with sensors that share information about an
event or task of interest such as environmental monitoring, public safety,
traffic monitoring, or collaborative searches.

In this usage context, surrogates typically act as intermediaries as sensed
data flows from the mobile devices to the cloud, which is why FR7 (data
staging) needs to be redefined as Staging data in transit to the cloud as shown
in UC6 in Figure 7.1. This means that data collected on surrogates is stored
for upload to the enterprise cloud when possible.

In addition to the redefined FR7, NFR1, NFR2, NFR3, and NFR14, cyber-
foraging systems in this usage context need to satisfy additional requirements
related to the role of surrogates as proximate, intermediate data caches.

(FR8) Sensor and/or continuous data stream processing: As
surrogates become available, sensor data collected by the mobile device
is sent to the surrogate for processing and storage.

(FR9) Local data sharing and collaboration: Surrogates store
and process collected data to make it available to mobile devices that
they are serving.

(NFR15) Availability: Surrogates should be available for data off-
load from mobile devices. A corollary to this requirement is that mobile
devices need to be able to deal with unavailable surrogates.

Benefits
There are multiple benefits of cyber-foraging for sensing applications:

236

• Offloading data (FR7) to surrogates releases storage space on mobile
devices to continue data collection activities (the surrogate storage can
be considered an extension to mobile device storage (NFR3)).

• Data staging on surrogates (FR8) enables data sharing and collabora-
tion (FR9) between mobile devices leveraging the same surrogate and
eventual upload of that data to the enterprise cloud (FR7).

• Similar to computation offload systems, offloading data processing op-
erations to surrogates minimizes battery consumption (NFR1) on the
mobile device.

• Proximate surrogates also enable faster response times (NFR2) for data
processing and queries than sending data/queries to remote clouds.

• Implementing a runtime decision mechanism for offloading data to surro-
gates optimizes available bandwidth (NFR14) and minimizes data trans-
fers thereby minimizing battery consumption (NFR1).

Constraints
Availability (NFR14) of the surrogate is key to realizing most of the stated

benefits of cyber-foraging for sensing applications. In addition to implementing
availability tactics on the surrogate, such as fault detection, recovery, and
prevention [13], a sensing application needs to detect surrogate unavailability,
cache data when the surrogate is unavailable, and make decisions on what
to do when operating in disconnected mode and storage capacity limits are
reached (e.g., perform local data processing, discard data, or stop operations).

7.5.2 Usage Context 7: Data-Intensive Mobile Applica-
tions

Data-intensive mobile applications rely on large sets of data to provide their
functionality. Data typically resides in data centers or in the enterprise cloud.
Examples of data-intensive applications and domains include:

• Mobile cloud applications: These applications provide a front end to data
residing in the cloud, such as social media apps, map and navigation
apps, and e-commerce applications.

• Online gaming applications: Online gaming requires continuous stream-
ing of data to and from the cloud in order to synchronize with other
players.

237

• Data-rich domains: Healthcare and other data-rich domains are charac-
terized by large sets of connected data, which means that queries for one
type of data typically trigger queries for other sets of related data.

Data-intensive mobile applications require large amounts of data that re-
sides in the cloud and surrogates serve as intermediaries between mobile de-
vices and the cloud to avoid direct communication to the cloud for every data
operation. FR7 (data staging) is therefore redefined as Staging data in transit
from the cloud, as shown in UC7 in Figure 7.1.

In addition to the redefined FR7, NFR1, NFR2, NFR3 and NFR14, cyber-
foraging systems in this usage context need to satisfy additional requirements
related to efficient data flows between the surrogate and the mobile device.

(FR10) Display of prioritized/relevant information: Mobile de-
vices have small(er) screen sizes that limit the amount of information
that can be displayed at a time. Surrogates pre-process data that is re-
trieved or pushed from the cloud, such that mobile devices receive data
that is ready to be displayed, or filtered such that they only receive
data of interest or relevance.

(NFR16) Query Efficiency: Queries should be executed against
data located in proximate surrogates instead of data residing in the
cloud.

Benefits
For data-intensive mobile applications, surrogates can cache data from the

cloud (FR7) to minimize high latency communication between mobile devices
and the cloud, which decreases response time (NFR2); provides extended,
proximate data storage for applications (NFR3); and reduces battery con-
sumption (NFR1).

Surrogates can perform data filtering and priorization (FR10) so that mo-
bile device users receive only the data that they need (NFR2).

Constraints
Data-intensive mobile applications only benefit from cyber-foraging if the

data that they need is already on the surrogate, in order to avoid direct com-
munication to the cloud. This means that there have to be mechanisms on
the surrogate to predict what data will be needed next by mobile applications
(NFR16). Data may be pre-fetched based on mobile device context (e.g., lo-
cation), user profile (e.g., preferences), access history (i.e., data that the user

238

has accessed in the past), or data relations (e.g., querying a purchase order
also fetches vendor, product, and other data related to that order).

7.6 Summary and Conclusions

This chapter presented a characterization of usage contexts for cyber-foraging
defined in terms of functional and non-functional requirements for cyber-
foraging systems. The usage contexts ranged from the typical offload of short
computation operations, to mobile applications in low coverage environments,
to the much more demanding and visionary use of public surrogates. Each us-
age context showed that NFRs can encompass both benefits and constraints.
What this means is that there are NFRs that enable a system to achieve the
benefits of cyber-foraging, and there are other NFRs that, if not met, will
compromise the benefits of cyber-foraging for mobile systems.

The goal for characterizing usage contexts is to help developers of computa-
tion- and data-intensive mobile systems (1) determine if cyber-foraging is the
appropriate paradigm for reaching desired functional and non-functional re-
quirements, (2) better understand the requirements that need to be met to
realize the full benefits of cyber-foraging as well as the constraints for real-
izing those benefits, (3) develop scenarios and test cases that can be used to
determine if requirements are being met.

The goal of the model is to provide context for software engineering life
cycle activities for computation- and data-intensive mobile systems, with the
intent of developing systems that fully realize the benefits of cyber-foraging.

• Requirements engineers can use the model to determine if cyber-foraging
is the appropriate paradigm for reaching desired functional and non-
functional requirements

• Software architects and designers can use the model to better understand
the requirements that need to be met to realize the full benefits of cyber-
foraging, as well as the constraints for realizing those benefits

• Quality assurance personnel can develop scenarios and test cases that
can be used to determine if system requirements are being met.

As cyber-foraging becomes a standard feature for computation- and data-
intensive mobile systems, it will become even more important to have models
such as the one presented in this chapter. These usage contexts combined with
the architectural tactics for cyber-foraging identified in Chapter 3 provide
a standard language and set of reusable design decisions that will help in

239

developing better and more standard mobile systems that leverage all the
potential benefits of cyber-foraging, as well as mobile devices and operating
systems that enable and facilitate these benefits.

Table 7.2: Cyber-Foraging Usage Contexts: Functional and Non-Functional
Requirements

Usage Context Recurring FRs Recurring NFRs

UC1:
Computation-
Intensive Mobile
Applications
(Short
Operations)

(FR1) Offload of
computation-intensive
operations

(NFR1) Energy efficiency
(NFR2) Faster response time
(NFR3) Increased computing
power
(NFR4) Maintainability and
Evolvability

UC2: Mobile
Applications in
Low Coverage
Environments

(FR1) Offload of
computation-intensive
operations
(FR2) Access to data
residing in the cloud
(FR3) Disconnected
operations between
surrogates and the cloud

(NFR1) Energy efficiency
(NFR2) Faster response time
(NFR3) Increased computing
power
(NFR5) Fault tolerance
(NFR6) Ease of configuration

UC3:
Computation-
Intensive Mobile
Applications
(Long
Operations)

(FR1) Offload of very
computation-intensive
operations
(FR4) Disconnected
operations between mobile
devices and surrogates
(FR5) Parallel offload

(NFR1) Energy efficiency
(NFR2) Faster response time
(NFR3) Increased computing
power
(NFR5) Fault tolerance
(NFR7) Code/Data mobility
(NFR8) Scalability

UC4: Mobile
Applications in
Hostile
Environments

(FR1) Offload of
computation-intensive
operations
(FR2) Access to data
residing in the cloud
(FR3) Disconnected
operations between
surrogates and the cloud
(FR4) Disconnected
operations between mobile
devices and surrogates

(NFR1) Energy efficiency
(NFR2) Faster response time
(NFR3) Increased computing
power
(NFR5) Fault tolerance
(NFR6) Ease of configuration
(NFR7) Code/Data mobility
(NFR9) Ease of deployment
(NFR10) Survivability

Continued on next page

240

Table 7.2 – Continued from previous page

Usage Context Recurring FRs Recurring NFRs

UC5: Public
Surrogates

(FR1) Opportunistic offload
of computation-intensive
operations
(FR6) Discoverable
surrogates

(NFR1) Energy efficiency
(NFR2) Faster response time
(NFR3) Increased computing
power
(NFR5) Fault tolerance
(NFR11) Trust
(NFR12) Portability
(NFR13) Lossless user
experience

Sensing
Applications

(FR7) Staging data in
transit to the cloud
(FR8) Sensor data and/or
continuous data stream
processing
(FR9) Local data sharing
and collaboration

(NFR1) Energy efficiency
(NFR2) Faster response time
(NFR3) Increased computing
power
(NFR14) Bandwidth efficiency
(NFR15) Availability

Data-Intensive
Mobile
Applications

(FR7) Staging data in
transit from the cloud
(FR10) Display of
prioritized/relevant
information

(NFR1) Energy efficiency
(NFR2) Faster response time
(NFR3) Increased computing
power
(NFR14) Bandwidth efficiency
(NFR16) Query efficiency

241

8
Decision Model for Cyber-Foraging

Systems

This chapter addresses research question RQ4 and presents a decision model
based on a mapping of functional and non-functional requirements for cyber-
foraging systems to the architectural tactics presented in Chapter 3, as well as
relationships between tactics. The goal of the decision model is to guide the
architecture and evolution of cyber-foraging systems that meet their intended
functional and non-functional requirements, while understanding the effects of
architectural decisions.

8.1 Introduction

There is a large amount of research in cyber-foraging as shown in Chapter
2, but the reality is that there are not many deployed, operational cyber-
foraging systems. Given the promising results of cyber-foraging in terms of
energy efficiency, reduced latency, and increased availability, combined with
the emergence of cloudlets, micro data centers, and edge clouds [109], the need
for cyber-foraging systems will arise from industry and government, along with
a need for guidance for system architects and developers.

We present a decision model for cyber foraging systems that maps func-
tional and non-functional requirements to the architectural tactics presented
in Chapter 3. The goal of the decision model is to provide guidance for the
architecture and evolution of cyber-foraging systems that meet their intended
functional and non-functional requirements, while understanding the effects of
decisions.

243

8.2 Mapping the Problem Space to the Solution
Space

The creation of a decision model involves mapping elements of the problem
space to elements of the solution space. In software architecture and design,
the problem space is commonly represented as a set of requirements and the
solution space is represented as a set of design elements [14][58]. For the
development of a decision model for cyber-foraging systems, we represent the
problem space as a set of functional and non-functional requirements, and the
solution space as a set of architectural tactics, as shown in Figure 8.1. A single-
headed arrow between a requirement and a tactic signifies that the tactic can
be used to satisfy the requirement, as shown by the satisfies relationship in
the figure. All architectural decisions have benefits and tradeoffs [13]. The
benefits of using a tactic are represented in the decision model with a plus
sign (+) followed by the promoted system quality. The tradeoffs of using a
tactic are represented with a minus sign (-) followed by the system quality
that is negatively affected.

To represent that a tactic could be used in combination with another tactic
to address tradeoffs (i.e., applied together), we use a line with a double-headed
arrow between tactics, as shown by the complements relationship in Figure 8.1.
It is qualified in the same way as the satisfies relationship. If the use of a com-
plementary tactic improves a system quality beyond the original tactic, or
affects the system quality negatively beyond the original tactic, this is repre-
sented by a double plus sign (++) or a double negative sign (- -), respectively.
If there are conditions that have to be true for the tactic to effectively satisfy
the requirement, or for a tactic to complement another tactic, these are rep-
resented as constraints connected to the satisfies or complements relationship
with a dashed line. When a tactic complements another tactic it means that
the initial tactic is required. Therefore, the qualities that come from using
the initial tactic also apply to the combination of the tactics. For example,
in Figure 8.1, the use of Tactic N to complement Tactic 1 means that the
resulting system qualities of using the combination of the tactics are System
Quality 1, Tradeoff 1, System Quality N, and Tradeoff N. If a system quality is
associated to both the initial tactic and the complementary tactic but with a
different qualification, the qualification of the complementary tactic overrides
the qualification of the initial tactic.

To represent that there are several tactics that could complement a tactic
and lead to the same result, we use the label [alternatives] to qualify the
complements relationship. For example, in Figure 8.1, Tactics 3 and 4 are

244

alternatives for complementing Tactic 2. Note that the even though the result
of applying either tactic is the same, the effect on system qualities can be
different, as shown by System Quality 3, Tradeoff 3, System Quality 4, and
Tradeoff 4

FR
Functional

Requirement
Tactic 1

NFR
Non-

Functional
Requirement

PROBLEM SPACE SOLUTION SPACE

Tactic 2

Tactic N

satisfies
+ System Quality 1

- Tradeoff 1

satisfies
+ System Quality 2

- Tradeoff 2

complements + System Quality N
- Tradeoff NConstraint

Legend

Tactic
Tactic B
satisfies

Requirement A
Constraint

Functional or
Non-

Functional
Requirement

A B C D

Tactic D
complements

Tactic C

E

Constraint E
applies to

Relationship r

r

Tactic 3

complements

[alternatives]

complements

Tactic 4

+ System Quality 3
- Tradeoff 3

+ System Quality 4
- Tradeoff 4

[alternatives]

B
C

D

Tactics C and D are alternatives
for complementing Tactic B

Figure 8.1: Decision Model Notation

245

Figure 8.1 will be used as the template for the decision models for cyber-
foraging systems described in the following sections. The legend in this figure
applies to all the decision model figures. The requirements in the solution space
are derived from the requirements presented in Chapter 7, complemented with
requirements from the case studies presented in Chapters 4, 5, and 6. The
tactics in the problem space are the architectural tactics for cyber-foraging
presented in Chapter 3.

8.3 How to Use the Decision Models

Cyber-foraging systems have, at a minimum, the following combination of
functional requirements (Section 3.2), which map to the first four tactic selec-
tion steps in Figure 8.2.

• A need for computation offload, data staging, or both

• A need to provision a surrogate with the offloaded computation or data
staging capabilities

• A need for the mobile device to locate a surrogate at runtime

Then, based on additional functional and non-functional requirements,
such as fault tolerance, resource optimization, scalability/elasticity, and se-
curity, complementary tactics are selected. As tactics in the decision models
are combined, it is possible that system qualities are affected positively by one
tactic and negatively by another. This is represented by the Conflict? deci-
sion point in Figure 8.2. This conflict needs to be analyzed to determine if the
positive effects offset the negative effects, or if there is indeed a conflict. For
example, if the negative effect on availability of using one tactic is because a
surrogate may become disconnected (unreachable), and the positive effect of
another tactic on availability is that it provides mechanisms for continuing op-
eration when a surrogate is not available, then they offset each other (i.e., one
tactic addresses the specific shortcoming of the other). However, if the positive
effect of the second tactic on availability is that it enables surrogates to recover
from failure, then the tactic is not addressing the specific shortcoming of the
first tactic. In this case there is a conflict. Architecture evaluation techniques
such as ATAM [13] could be used to further understand the resulting effect
of the combination of tactics. If there is a conflict, the architect should look
for additional tactics, or components outside of the tactics, to address the
shortcomings. The following section contains the decision models for tactic
selection.

246

Select Computation
Offload Tactic

Select Data
Staging Tactics

Select Surrogate
Provisioning Tactic

Select Surrogate
Discovery Tactic

Select
Resource

Optimization
Tactics

Select
Fault

Tolerance
Tactics

Select
Scalability
/Elasticity

Tactics

Select
Security
Tactics

Conflict?

Yes

Analyze
Conflict

Yes

No

Conflict
Remaining

?
No

Legend

Process
Decision

Point

Start/End Or

Figure 8.2: How to Use the Decision Models

247

8.4 Decision Models for Cyber-Foraging Systems

The Computation Offload tactic (Section 3.2.1) enables mobile clients to off-
load expensive computation to surrogates. The decision model in Figure 8.3
starts from a functional requirement stating that a mobile system has a com-
puting requirement in which the cost to execute the computation locally on the
mobile client is greater than the cost to send and execute the computation on
a surrogate. The result of using this tactic is increased computing power and
increased energy efficiency. However, this tactic is based on an always-offload
strategy (Section 2.5.1.2), which means that computation is always offloaded
to a surrogate and never executed locally. There are two assumptions in this
case that might not always be true (1) the surrogate is always available, and (2)
it is always more beneficial to offload. The result of the first assumption is the
potential for reduced availability because the computation will only execute if a
surrogate is available. The result of the second assumption is the potential for
reduced resource efficiency because even though executing the expensive com-
putation on a surrogate leads to energy efficiency, changing network conditions
might cause greater resource consumption (e.g., battery, memory, bandwidth)
due to retransmissions and switching between power modes [29].

FR
Mobile system has

computing
requirement(s) in

which computation
cost on mobile device

is greater than
communication cost to

send and execute
computation on

surrogate

Computation
Offload

+ Computing Power
+ Energy Efficiency

- Availability
- Resource Efficiency

Figure 8.3: Decision Model for Computation Offload

8.4.1 Data Staging

Figure 8.4 presents a decision model for selecting data staging tactics. The
Out-Bound Pre-Processing tactic (Section 3.2.2.3) enables mobile devices to
collect data in the field, which is then stored on surrogates that can pre-
process the data, such that the data that is sent on to the cloud is ready for

248

consumption and serves an immediate need. Data is uploaded to the cloud
when network connectivity is available. This tactic increases computing power
in the form of greater storage and data processing capabiities on the surrogate.
It also provides increased energy efficiency because of the energy savings from
using WiFi or short-range radio instead of broadband wireless to connect to
the cloud [10]. Finally, it provides increased bandwidth efficiency between the
surrogate and the cloud because the surrogate can clean, filter, or summarize
data before sending it to the cloud. However, availability is compromised when
systems require continued or eventual connectivity between mobile devices and
surrogates, and between surrogates and the cloud, to function properly.

The In-Bound Pre-Processing tactic (Section 3.2.2.2) enables a mobile de-
vice to access data that is stored in the cloud via an intermediate surrogate.
The data received from the surrogate is pre-processed such that it is ready
to be consumed, or filtered such that it is data of interest or relevance. This
tactic provides increased computing power in the form of greater storage and
data processing power on the surrogate. It provides increased bandwidth and
storage efficiency because it enables the surrogate to control the amount of
data received by the mobile device. It increases computing power and en-
ergy efficiency as in the Out-Bound Pre-Processing tactic, but in addition
by (1) avoiding direct communication to the cloud for every data operation,
and (2) processing data for adequate visualization on mobile devices on the
surrogate instead of the mobile device. However, similar to the Out-Bound
Pre-Processing tactic, availability is compromised when system nodes require
continued or eventual connectivity to function properly.

The Pre-Fetching tactic (Section 3.2.2.1) can be used to complement the
In-Bound Pre-Processing tactic, but can also be used on it own to enable
a mobile device to access data that is stored in the cloud via an intermedi-
ate surrogate, while providing elements to deal with intermittent connectivity
between surrogates and the cloud and therefore improving availability. The
surrogate, according to a defined pre-fetch algorithm, retrieves data from the
cloud and stores it locally so that it is available to the mobile device when
it needs it. This tactic increases computing power as in the In-Bound Pre-
Processing tactic. It also improves response time because it anticipates data
needs in order to minimize communication to the cloud and reduce latency.
Access to the cloud is therefore only necessary when the data is not already
available on the surrogate. However, it can affect bandwidth efficiency nega-
tively between surrogates and the cloud if the pre-fetching algorithm retrieves
more data than is necessary, or less data than necessary and therefore has to
continuously retrieve additional data from the cloud. In addition, because the
tactic requires continuous connectivity between mobile devices and the cloud,

249

FR
Mobile device collects
data in the field that
has to be stored in
the cloud in raw or

processed form

Out-Bound
Pre-

Processing

+ Computing Power
+ Energy Efficiency

+ Bandwidth Efficiency
- Availability

FR
Mobile application

needs access to
data that is stored

in the cloud

In-Bound
Pre-

Processing

Continuous or
eventual connectivity

between mobile
devices, surrogates,

and the cloud

+ Computing Power
+ Energy Efficiency

+ Bandwidth Efficiency
+ Storage Efficiency

- Availability

NFR
Data delivery and

storage efficiency due
to mobile device

resource limitations

NFR
Continued operation despite

intermittent connectivity between
surrogates and the cloud

Pre-Fetching
+ Computing Power
+ Energy Efficiency

+/- Availability
+ Response Time

- Bandwidth Efficiency

+ Availability
+ Response Time
- Bandwidth Efficiency

+ Fault Tolerance

Continuous connectivity
between mobile devices and

surrogates

Figure 8.4: Decision Model for Data Staging

250

it also has a negative effect on availability.

8.4.2 Surrogate Provisioning

Figure 8.5 presents a decision model for selecting a surrogate provisioning
tactic. In the Pre-Provisioned Surrogate tactic (Section 3.2.3.1), offloaded
computation and/or data processing operations are already installed on the
surrogate at deployment time. This tactic is therefore a good match for when
there is a small, known set of computations or data processing operations that
can be preloaded on the surrogate. It is also a good match for usage contexts in
which multiple surrogates offer the same capabilities because it simplifies the
deployment process. Pre-provisioned surrogates have the advantage of shorter
provisioning times because the capabilities already reside on the surrogate. In
addition, they provide shorter response times to requests from mobile devices,
especially if capabilities are already started on the surrogate. However, pre-
provisioned surrogates offer very little flexibility in terms of capabilities because
they are limited by what is installed on them. Maintainability is also reduced
because changes to capabilities have to be propagated to all surrogates.

In the Surrogate Provisioning from the Cloud tactic (Section 3.2.3.3) what
is sent from the mobile device to the surrogate is the location of the offloaded
computation or data processing operations in the form of a URL for the sur-
rogate to download and install. This tactic offers greater flexibility than the
Pre-Provisioned Surrogate tactic because capabilities are not limited by what
is already installed on the surrogate, making it a good match for when there is a
large, known set of capabilities that can execute on a surrogate. However, these
capabilities need to exist in a repository in the cloud, and connectivity between
the surrogate and the repository is required for capabilities to be downloaded,
therefore affecting availability negatively. This tactic also improves maintain-
ability with respect to the Pre-Provisioned Surrogate tactic because changes
to capabilities only need to be propagated to the cloud repository. However,
provisioning time is increased with respect to the Pre-Provisioned Surrogate
tactic because the capabilities have to be downloaded from the repository and
then installed and started. This also increases response time, at least for the
first time the capability is executed.

In the Surrogate Provisioning from the Mobile Device tactic (Section 3.2.3.2),
the mobile device sends the offloaded computation or data processing opera-
tions to the surrogate at runtime. The surrogate installs the computation
inside an execution container and starts the application on behalf of the mo-
bile device. This tactic offers the greatest flexibility because of the potential for
executing any offloadable capability that resides on the mobile device, which

251

FR
Offload of a small, known set of
computations or data processing

operationsComputation
Offload or

Data Staging
Tactic

Offloadable code
available in a cloud

repository

+ Provisioning time
+ Response time

- Flexibility
- Maintainability

Surrogate
Provisioning

from the Mobile
Device

Pre-Provisioned
Surrogate

Surrogate
Provisioning

from the Cloud

Offloadable code available on
mobile device

FR
Offload of a large,

known set of
computations or data
processing operations

Connectivity
between surrogate

and the cloud

FR
Offload of a large,

potentially unknown
set of computations or

data processing
operations

+ Flexibility
+ Maintainability

- Availability
- Provisioning time

- Response time

++ Flexibility
- Provisioning time

- Response time
- Energy Efficiency

- Bandwidth Efficiency
- Maintainability

- Security

FR
Multiple

surrogates offer
the same

capabilities

+ Ease of deployment[alternatives]

Figure 8.5: Decision Model for Surrogate Provisioning

makes it a good match for public surrogates (Section 7.4.2.4) or other usage
contexts in which there is a large, potentially unknown set of capabilities that
could execute on a surrogate. However, provisioning time is increased because
the capability has to be transferred from the mobile device to the surrogate
and then installed and started. This also increases response time, at least for
the first time the offloaded capability is executed. Energy efficiency is nega-
tively affected because of the battery power required on the mobile device for
sending the offloaded computation. In addition, depending on the size of the
capability that is transferred, bandwidth efficiency could be negatively affected,
especially in resource-constrained and hostile environments (Sections 7.4.2.1
and 7.4.2.3). Maintainability is also reduced because changes to offloadable
capabilities have to be propagated to all mobile devices. Finally, security is
negatively affected because surrogates could be compromised by malicious code
uploaded from mobile devices.

252

8.4.3 Surrogate Discovery

Figure 8.6 presents a decision model for selecting a surrogate discovery tac-
tic. In the Local Surrogate Directory tactic (Section 3.2.4.1) the mobile device
maintains a list of surrogates, with their network addresses or URLs in addi-
tion to any information that can help the mobile device to select the optimal
surrogate in case more than one is available. This tactic has the lowest com-
plexity. However, because the list is stored locally on the mobile device, if
surrogate metadata changes or new surrogates are made available, a mobile
device will not have an automated way of updating the surrogate directory,
therefore having a negative effect on maintainability. It also reduces flexibility
because the mobile device is limited to the surrogates on its list. The low com-
plexity, along with the potential maintainability challenges, make this tactic a
better fit for usage contexts in which there is a relatively static, small number
of surrogates. It increases security because a local list will likely include only
surrogates that are trusted by the mobile device. If surrogates have informa-
tion that can be used for surrogate identification, such as a QR code or a screen
with configuration information, they could be added by the mobile device user
to the list of surrogates. This option requires initial proximity between mo-
bile devices and surrogates to scan or enter surrogate information, but would
improve maintainability and flexibility because surrogates can be added or
updated by the user. This tactic can also increase adaptability to varying op-
erational conditions if surrogate metadata is updated with offload execution
data, such as response time and network conditions, and used by surrogate
selection algorithms. It also has the potential to improve response/execution
time if the surrogate selection algorithm uses the updated metadata. How-
ever, because the surrogate selection algorithm runs on the mobile device, it
can decrease energy efficiency depending on the complexity of the algorithm
and the number of monitored variables.

In the Cloud Surrogate Directory tactic (Section 3.2.4.2) the mobile device
contacts a cloud server that maintains a list of surrogates. The cloud server
selects the optimal surrogate from the directory, based on data such as mobile
device characteristics, type of offload request, surrogate availability, surrogate
load, or any other data that is available in the directory or was provided by
the mobile device as query parameters, and sends its address back to the mo-
bile device. Having the surrogate directory in the cloud has the advantage
of a centralized location for surrogate registration. All surrogate metadata is
populated and updated in this central repository, which increases maintain-
ability. It also increases flexibility because all the mobile device needs to know
is the address of the cloud server, which maintains the list of all potential

253

FR
Relatively static, small
number of surrogates
available for offload

Computation
Offload or

Data Staging
Tactic + Complexity

+ Security
- Maintainability

- Flexibility

Surrogate
Broadcast

Local Surrogate
Directory

Cloud Surrogate
Directory

Mobile devices and
surrogates support

broadcast/multicast and
discovery protocols

FR
Dynamic, potentially

large number of
surrogates available

for offload

Connectivity
between mobile
device and the

cloud

FR
Surrogates have visual
information that can
be used for surrogate

identification

Initial physical
proximity between
mobile devices and

surrogates

+ Maintainability
+ Flexibility

NFR
Adaptation to varying
operational conditions

Surrogate metadata is updated
with offload execution data and

used by surrogate selection
algorithms

+ Adaptability
+ Response/Execution Time
- Energy Efficiency

+ Maintainability
+ Flexibility

+ Energy Efficiency
++ Security

- Availability

+ Adaptability
+ Response/Execution Time

+ Adaptability
+ Response/Execution Time
- Energy Efficiency

+ Maintainability
++ Flexibility

- Security

Intermediary
Cloud Surrogate

Directory

+ Maintainability
+ Flexibility

+ Energy Efficiency
++ Security

- Response/Execution Time
- - Availability

FR
Surrogate not known
to the mobile device

until runtime

[alternatives]

Figure 8.6: Decision Model for Surrogate Discovery

surrogates. The cloud server then selects the surrogate that is the best match
for the offloaded task. The centralization aspect enables this tactic to handle
a dynamic, potentially large number of surrogates available for offload. Se-
curity is highly increased by this tactic because the mobile device only needs
to trust the cloud surrogate directory server and can pre-exchange credentials
for authorization (Section 8.4.7). The surrogate directory server can also ex-
change credentials with its surrogates as part of the registration process, which
means that the directory would only contains trusted surrogates. However, re-
sponse/execution time can be increased because of the the additional directory

254

query time. In addition, availability is negatively affected because the mobile
device requires consistent connectivity to the cloud at least in the discovery
phase, which means that the cloud server becomes a single-point-of-failure if
it is unavailable to mobile devices for surrogate discovery.

In the Intermediary Cloud Surrogate Directory tactic (Section 3.2.4.2),
a variation of the Cloud Surrogate Directory Tactic, the surrogate directory
server does not return the selected surrogate address to the mobile device,
but rather forwards the offload request to the selected surrogate, and then
returns the results to the mobile device. In essence, the surrogate directory
server acts as an intermediary between the mobile device and the surrogate.
Similar to the Cloud Surrogate Directory tactic, it increases maintainability,
flexibility, energy efficiency, and security. An additional advantage of this tac-
tic is that because the directory server is involved in the communication with
the surrogates, it can increase adaptability to varying operational conditions
if surrogate metadata is updated with offload execution data, and has the po-
tential to improve response/execution time if the selection algorithm uses the
updated metadata. However, response/execution time can increase because
the mobile devices communicate with surrogates through the surrogate direc-
tory server and not directly, potentially offsetting any gains from updating
surrogate metadata with offload execution data. Considering that a surrogate
can serve multiple mobile devices, it is a potential bottleneck in the system.
In addition, availability is greatly decreased because the mobile device requires
consistent connectivity to the cloud in both the discovery and the offload
phases, which means that the cloud server becomes a single-point-of-failure.

In the Surrogate Broadcast tactic (Section 3.2.4.3), surrogates broadcast
or advertise their presence to mobile devices. This removes the burden of
having to keep surrogate directories up to date, which improves maintainabil-
ity. It creates a much more dynamic environment in which mobile devices
can discover nearby surrogates without needing to know their addresses in ad-
vance, or retrieving the addresses from a cloud server that could potentially
not be available when needed, therefore providing a high level of availability
and flexibility. The broadcast aspect enables this tactic to handle a dynamic,
potentially large number of surrogates available for offload. Providing security
is challenging because the surrogate may not be known to the mobile device
until runtime and therefore no security credentials have been exchanged to
generate trust between them (Section 8.4.7).Similar to the Local Surrogate
Directory tactic, it increases adaptability to varying operational conditions
and improves response/execution time, potentially reducing energy efficiency
depending on the complexity of the surrogate selection process.

255

8.4.4 Resource Optimization

Figure 8.7 presents a decision model for resource optimization. These tac-
tics are typically used to complement the Computation Offload tactic, but
could complement Data Staging tactics if the surrogates provide computation-
intensive data processing operations. The Runtime Partitioning tactic (Section
3.3.1.1) enables mobile systems to offload computation only if remote execu-
tion is better than local execution according to a defined optimization function.
The complexity of this optimization function can range from a simple check
to detect if a surrogate is available to a per-offload calculation based on code,
device, and network models. It increases availability because computation can
execute locally if offload conditions are not optimal. It also increases resource
and energy efficiency because offload decisions are made at runtime based on
the runtime environment. However, the execution of a very complex partition-
ing algorithm per offload operation could also lead to reduced energy efficiency.
As stated by the constraint in Figure 8.7, the offloaded code has to exist on
both the mobile device and the surrogate. This can lead to decreased main-
tainability, especially if the mobile and surrogate platforms are different, and
also reduces legacy leverage because the code would in many cases have to be
ported to also run on the mobile device. This tactic requires the development
and profiling of the models and input data that are used in the optimization
function, which can lead to increased development time. In addition, it is often
difficult to create accurate models of device, network, and code characteris-
tics, which can therefore lead to increased response time and reduced system
performance if the offload decision is not optimal [29].

The Runtime Profiling tactic (Section 3.3.1.2) enables mobile devices to
gather data about current conditions to update the profiling data and mod-
els that are used in the calculation of the optimization function. The use of
this tactic to complement the Runtime Partitioning tactic increases energy
efficiency and further increases resource efficiency because current conditions
are considered in the offload decision. Because the data used by the opti-
mization offload is updated either periodically or after every offload operation,
any errors in the initial models and data are adjusted over time, therefore in-
creasing system performance. A constraint for the use of this tactic, as shown
in Figure 8.7, is that profilers have to be built to gather data necessary for
the calculation of the optimization function, which can increase development
time. However, the execution of the profilers could also lead to reduced energy
efficiency if complexity and sampling frequency are high.

When computation offload systems are used for mission-critical or time
sensitive tasks, users may determine that, for example, reduced processing

256

Computation
Offload

Runtime
Partitioning

+ Availability
+ Resource Efficiency
+/- Energy Efficiency
- Maintainability
- Legacy Leverage
- Development Time
- Response/Execution Time
- System Performance

Runtime
Profiling

++ Resource Efficiency
+ System Performance
+/- Energy Efficiency
- Development Time

Offloaded code
must also be

available on the
mobile device

NFR
Adaptation
to varying
network

conditions

+ Adaptability

Profilers for optimization
function variables must be

available

User-Guided
Runtime

Partitioning

FR
User-controlled

preference
between
reduced

processing time/
increased

precision or
reduced energy

consumption

+ Availability
+ Resource Efficiency
+/- Energy Efficiency

+/- Response/Execution Time
- Maintainability

- Legacy Leverage
- System Performance

+ Adaptability

Resource-
Adapted

Computation
 / Resource-

Adapted
Input

++ Energy Efficiency
++ Response/Execution Time

- System Precision
-- Maintainability

Figure 8.7: Decision Model for Resource Optimization

time or increased precision are preferred over reduced energy consumption.
The assumption in this case is that the greater precision or reduced processing
time would consume more energy on the mobile device if executed locally. The
User-Guided Runtime Partitioning tactic (Section 3.3.1.1), a variation of the
Runtime Partitioning tactic, enables users to select the goal of the optimization
function therefore increasing availability. Similar to Runtime Partitioning, this
tactic increases availability, resource efficiency, and energy efficiency, at the
expense of decreased maintainability, legacy leverage, system performance, and
potentially energy efficiency and response/execution time. However, this tactic
can provide better response and execution time in mission-critical moments.

The Resource-Adapted Computation tactic (Section 3.3.1.3) enables sys-
tems to use different versions of offloadable code that match the resource char-
acteristics of mobile devices and surrogates (i.e., computation that runs on the

257

surrogate is more computation-intensive, and presumably more precise, than
the equivalent computation that runs on the mobile device). The Resource-
Adapted Input tactic (Section 3.3.1.3), a variation of the Resource-Adapted
Computation tactic, enables systems to have identical versions of offloadable
code but to operate on different input (e.g., lower or higher image resolution as
input to an image processing algorithm may lead to different energy consump-
tion). The difference with the previous tactics is that both energy efficiency
and response/execution are improved because computation is matched to the
node that is processing it. However, there is decreased system precision be-
cause the assumption is that the computation that runs on the mobile device
is not as precise as what runs on the surrogate. In addition, maintainability is
decreased because two versions of the equivalent code have to be maintained,
even if platforms are compatible.

8.4.5 Fault Tolerance

Figure 8.8 presents a decision model to select fault tolerance tactics to comple-
ment Computation Offload tactics. The Local Fallback tactic (Section 3.3.2.1)
enables mobile devices to use a local copy of the offloadable computation in
case the connectivity to the surrogate is lost, which provides fault tolerance and
increases availability. Because this tactic requires offloadable code to exist on
the mobile device and the surrogate, maintainability and legacy leverage are
decreased because there are multiple versions of the same code. Also, because
execution restarts on the mobile device after disconnection is detected, energy
efficiency is decreased because the computation executes locally. In addition,
response/execution time increases, especially if disconnection is detected close
to completion of execution on the surrogate. This is why this tactic is best fit
for stateless, request/response operations (Section 3.3.2.1).

The Alternate Communications tactic (Section 3.3.2.4) enables a system to
switch to an alternate, potentially less energy-efficient communications mech-
anism, to continue serving the mobile user in spite of disconnection, to provide
fault tolerance, and increase availability. While this tactic does not require
offloadable code to be available on both the mobile device and the surrogate,
it does require an alternate communications mechanism to exist between the
mobile device and the surrogate (e.g., SMS). Because this alternate commu-
nication mechanism could be less optimal in terms of energy consumption,
response time, and message size, therefore energy efficiency, response/execu-
tion time, and system utility could be affected negatively.

The Eager Migration tactic (Section 3.3.2.5) enables a surrogate to migrate
offloaded computation to a connected surrogate when it detects that it might

258

Computation
Offload

Local
Fallback

+ Availability
- Energy Efficiency

- Response/Execution Time
- System Utility

Offloaded code
must also be

available on the
mobile device

NFR
Continued operation
despite intermittent

connectivity between
mobile devices and

surrogates

+ Fault Tolerance

Alternate
Communications

FR
Support for multiple

connected surrogates

Eager
Migration /

Lazy
Migration

Alternate communication
mechanism is available between

mobile device and surrogate

NFR
Continued operation

despite devices moving out
of range of surrogates

+ Fault Tolerance

Connectivity between
surrogates exists

+ Fault Tolerance

++ Availability
- Complexity

-- Response/Execution Time

+ Availability
- Energy Efficiency
- Maintainability
- Legacy Leverage
- Response/Execution Time

Cached Results
+ Fault Tolerance
+ Availability

-/+ Response/Execution Time

Figure 8.8: Decision Model for Fault Tolerance for Computation Offload

not be able to continue serving the mobile device that generated the offload
request. The Lazy Migration tactic, a variation of the Eager Migration tac-
tic, does not migrate the computation, but rather continues execution of the
offloaded computation on the same surrogate and routes the responses to the
mobile device via a connected surrogate that is in range of the mobile device.
Availability is greatly increased because these tactics take a more proactive ap-
proach to detecting disconnection, as opposed to the other tactics which react
after disconnection has been detected. However, complexity increases due to

259

(1) support for multiple connected surrogates, (2) a mechanism to detect po-
tential disconnection from a mobile device, and (3) a mechanism to determine
the connected surrogate that will continue serving the mobile device. In Eager
Migration, response/execution time increases based on the size of the compu-
tation/container that has to be migrated between surrogates, although this is
a one-time cost upon migration. In Lazy Migration, response/execution time
increases due to the rerouting that takes place with every offload operation.

The Cached Results tactic (Section 3.3.2.3) enables surrogates to cache re-
sults of an offloaded operation if a mobile device becomes disconnected. The
results are then delivered to, or retrieved by, the mobile device upon recon-
nection. Fault tolerance and availability are increased because even though
the results are not immediately delivered, the system continues operating. For
this same reason, response time increases greatly for the initial offload opera-
tion. However, once a mobile device is able to reconnect, because the offload
operation has already been processed, the results are already available.

Figure 8.9 presents a decision model to select fault tolerance tactics to com-
plement Data Staging tactics. The Client-Side Data Caching tactic (Section
3.3.2.3), a variation of the Cached Results tactic, caches collected data on the
mobile device if there is no connectivity to the surrogate, and eventually sends
it to the surrogate when a connection is available. This tactic provides fault
tolerance and increases availability due to continued operation despite loss of
connectivity between the mobile device and the surrogate. However, because
data is stored on the mobile device until a surrogate is available and storage
is limited on the mobile device, it can lead to reduced storage efficiency, even
if data is deleted on the mobile device after it has been successfully uploaded
to the surrogate. In addition, data integrity is negatively affected due to the
potential for data loss if storage on the mobile devices becomes full.

The Opportunistic Mobile-Surrogate Data Synchronization tactic (Section
3.3.2.2) keeps data synchronized between mobile devices and surrogates dur-
ing periods of connection, such that the system can continue operating in
periods of disconnection. The use of this tactic provides fault tolerance and
increases availability. Because data is stored on the mobile device, response
time improves for data requests over having to send data requests to surro-
gates. However, limited storage and battery on mobile devices can lead to
storage inefficiency if the size of the data set to synchronize is large, and to
reduced energy efficiency depending if the complexity of the algorithms used
to keep data synchronized is high. In addition, if data sets are synchronized
that may never be used by the mobile apps running on the device, or data syn-
chronization policies do not match the operational environment, it can lead to
bandwidth inefficiency, especially in resource-constrained and hostile environ-

260

Out-Bound
Pre-

Processing

Opportunistic
Mobile-

Surrogate Data
Synchronization

In-Bound
Pre-

Processing

Client-Side Data
Caching

NFR
Continued operation despite

intermittent connectivity
between mobile devices and

surrogates

NFR
Continued operation
despite intermittent

connectivity between
surrogates and the cloud

Pre-Fetching

Opportunistic
Surrogate-Cloud

Data
Synchronization+ Availability

+ Response Time
- Bandwidth Efficiency

+ Fault Tolerance

+ Fault Tolerance

+ Fault Tolerance

+ Availability
+/- Storage Efficiency

- Data Integrity

+ Fault Tolerance

+ Availability
+ Response Time

- Storage Efficiency
- Energy Efficiency

- Bandwidth Efficiency
- System Utility

+ Availability
- Bandwidth Efficiency

- System Utility

Figure 8.9: Decision Model for Fault Tolerance for Data Staging

261

ments (Sections 7.4.2.1 and 7.4.2.3). Finally, system utility may be reduced if
data on the mobile device becomes stale when not synchronized over a long
period of time.

The Opportunistic Surrogate-Cloud Data Synchronization tactic (Section
3.3.2.2), a variation of the Opportunistic Mobile-Surrogate Data Synchroniza-
tion tactic, enables a system to continue operating in the event of discon-
nection between the surrogate and the cloud, and to synchronize data when
reconnection occurs. The use of this tactic provides fault tolerance and in-
creases availability. However, similar to the Opportunistic Mobile-Surrogate
Data Synchronization tactic, there can be a negative effect on system utility if
data becomes stale and also on bandwidth inefficiency if synchronized data is
never used.

8.4.6 Scalability and Elasticity

Figure 8.10 presents a decision model for selecting scalability and elasticity
tactics. These tactics are typically used to complement the Computation Off-
load tactic, but could also complement Data Staging tactics. The Just-in-Time
Containers tactic (Section 3.3.3.1) creates a container and/or an instance of
the offloaded code upon receipt of an offload request and then destroys the in-
stance of the offloaded code when it completes, therefore increasing scalability
and elasticity, which leads to increased resource efficiency on the surrogate.
However, because the instance is created at runtime, there is a response/exe-
cution time penalty to create the instance before computation can execute.

The Right-Sized Containers tactic (Section 3.3.3.2) creates execution con-
tainers that are of the appropriate size for the offloaded computation in order
to optimize resource usage on the surrogate. Similar to the Just-in-Time Con-
tainers tactic, scalability and elasticity, and resource efficiency, are increased
because execution containers are created at runtime, but also contributes to in-
creased response/execution time. There is even greater scalability and elasticity
because there is a better match of code requirements to execution containers.
However, there is potential for increased development time because offloadable
code has to be profiled to determine the optimal size of its execution container.

The Dynamically-Sized Containers tactic, a variation of the Right-Sized
Containers tactic (Section 3.3.3.2), starts offloaded computation in a container
of a predefined default size, but if an error occurs at runtime that indicates
that the container does not have the necessary computing power for the task,
a larger container is created and the offload request is moved to the new con-
tainer. As in the Right-Sized Containers tactic, scalability, elasticity, and re-
source efficiency are increased, at the expense of increased response/execution

262

Computation
Offload

Just-in-Time
Containers

+ Resource Efficiency

Dynamically-
Sized Containers

FR
Support for multiple

connected surrogates

Surrogate
Load

Balancing

NFR
Surrogate efficiency due to

resource limitations

++ Scalability / Elasticity
- Response/Execution Time

- Development Time

Connectivity between
surrogates exists

++ Scalability / Elasticity
- Response/Execution Time

- Complexity
+ Parallelism
+ Availability

+ Fault Tolerance

+ Scalability / Elasticity
- Response/Execution Time

Right-Sized
Containers

+ Resource Efficiency

+ Resource Efficiency

+ Resource Efficiency

+ Scalability / Elasticity
-- Response/Execution Time

+ Availability
+ Fault Tolerance

Figure 8.10: Decision Model for Scalability and Elasticity

time because containers are created at runtime. However, this tactic creates
the potential for even greater response/execution time due to the creation of
the new container and migration of the computation to the new container
when necessary, especially if the default container is not sized appropriately
(i.e., too small for many offloaded tasks). In exchange, this tactic provides
fault tolerance and increases availability because of the continued operation of
the offloaded task despite initially insufficient resource errors.

The Surrogate Load Balancing tactic (Section 3.3.3.3) enables surrogates to
send offloaded computation to other less-loaded, connected surrogates in order
to provide a better user experience to all the mobile devices that it serves.
Scalability and elasticity are greatly enhanced, as well as resource efficiency
because offload requests are balanced across multiple connected surrogates.
However, this tactic increases response/execution time for offload requests that
are migrated during execution. It also increases complexity of the system as
it requires at least a load balancer and a system monitor to detect when
thresholds have been reached and load have to to migrated. In exchange,

263

the tactic provides fault tolerance and increases availability because offload
requests are migrated before the system is overloaded and stops responding.

8.4.7 Security

One of the main findings from the primary studies (Section 2.6) is that there is
very little discussion of system-level concerns that have to be considered when
moving from experimental prototypes to operational systems. One of these
system-level concerns is security.

The decision model in Figure 8.11 shows that the Trusted Surrogate tac-
tic addresses two non-functional requirements related to security: (1) mobile
devices should only send requests to trusted surrogates, and (2) surrogates
should only accept requests from trusted mobile devices. Because these two
steps are typical of any trusted exchange between two system nodes, what is
shown in the decision model are the different options for implementing the tac-
tic. The decision model informally presents different options for implementing
the tactic instead of complementary tactics. Combinations of these options
could become variations of the Trusted Surrogates tactic if implemented and
validated in cyber-foraging systems.

8.4.7.1 Credential Exchange

Security credentials have to be exchanged in order to create a trusted rela-
tionship between mobile devices and surrogates. Examples of credentials that
could be used in a cyber-foraging system include username/password, symmet-
ric and asymmetric keys, certificates, biometrics (e.g., fingerprints, face recog-
nition, voice recognition, retinal scans), and behaviometrics (e.g., keystroke
analysis, handwriting, gestures). There are several options that could be used
to exchange credentials between a mobile device and a surrogate, including
some of the methods outlined in a survey by Alizadeh et al in [4] in the con-
text of mobile cloud computing.

1. Pre-Usage Credential Exchange: Credentials are exchanged prior to us-
age such that there is a pre-existing security relationship between a mo-
bile device and a surrogate. How this takes place could be as simple
as manually loading the credentials on each node, or could be a more
complex registration process. The advantage of pre-usage exchange is
reduced complexity as this is a well-known mechanism commonly used in
client/server systems. However, there is a negative effect on flexibility be-
cause mobile devices can only interact with surrogates with pre-existing

264

Computation
Offload or

Data Staging
Tactic

Trusted
Surrogates+ Security

- Response/Execution Time

Credential
Exchange

NFR
Mobile devices

should only
offload

computation or
stage data on

trusted
surrogates

NFR
Surrogates should

only process
computation

offload and data
staging requests

from trusted
mobile devices

Credential
Validation

Pre-Usage

Cloud-Mediated

Local

+ Complexity
- Flexibility
- Scalability

+ Flexibility
- Availability

++ Flexibility
- Resiliency

Local

Online

+ Resiliency
- Availability

- Response/Execution Time

- Resiliency

Figure 8.11: Decision Model for Security

security relationships. This method also may not scale for systems where
there are many-to-many relationships between mobile devices and sur-
rogates.

2. Cloud-Mediated Credential Exchange: In this method a security rela-
tionship does not have to pre-exist between mobile devices and surro-
gates. Credential exchange takes place as part of the offload process
the first time that a mobile device uses a surrogate. During the offload
process, the mobile device contacts a cloud-based system that is trusted
by the surrogate to register its credentials. Context and mobile device
sensors could be leveraged as part of multi-factor authentication for the
mobile device [4]. The cloud-based system validates the mobile device
credentials and, if valid, sends the mobile device the surrogate creden-
tials; it also sends the mobile device credentials to the surrogate. The
advantage of this method is that it provides greater flexibility because
it is not limited to surrogates with a pre-existing security relationship.

265

However, availability is decreased if the mobile device and the surrogate
are not connected to the intermediary cloud-based system to exchange
credentials.

3. Local Credential Exchange: In this method a security relationship does
not have to pre-exist between mobile devices and surrogates, and there
is no need for a cloud-based intermediary. Credential exchange happens
directly between a mobile device and a surrogate as part of the offload
process. This method offers the greatest flexibility because it enables a
mobile device to use any surrogate. However, it has a negative effect
on resiliency because of the security risks of not having a third party
to validate credentials. This method would have to rely on out-of-band
channels for securely pairing mobile devices and surrogates such as physi-
cal proximity, context, sensors, visual channels, and physical interactions
[37][53][79].

8.4.7.2 Credential Validation

Once credentials have been exchanged, either in advance or during the offload
process, these credentials have to be validated at runtime to make sure that
surrogates and mobile devices are legitimate.

1. Local Validation: Credentials are validated on each node according to
defined security policies. The disadvantage is the negative effect on re-
siliency because it does not protect against revoked credentials. Once
credentials have been exchanged there is no way to remove them unless
they have an expiration time after which they are no longer valid.

2. Online Validation: Credentials are sent to an online trusted authority for
validation. The advantage is that it protects against revoked credentials
because these are centrally validated with every interaction between a
mobile device and a surrogate. However, there is a negative effect on
availability because the offload cannot happen unless there is connectiv-
ity to the online trusted third party. In addition, response/execution time
increases because of the additional time needed for online validation.

8.5 Validation

After the execution of the case studies, the developers of the Tactical Cloudlets
(Chapter 4), GigaSight (Chapter 5), and AgroTempus (Chapter 6) systems

266

were presented with the decision models and asked to answer the following
questions to obtain their expert opinion on the correctness and usefulness of
the tactics. The developers of the Tactical Cloudlets and GigaSight systems
are experienced (>5 years of development experience) while the developer of
the AgroTempus system is junior (<1 year of development experience).

1. Are the decision models correct?
The developers of the three systems agreed that the decision models were

correct, clear, coherent, and covered the main questions that would arise when
doing a tradeoff analysis. The only comment that came from the developer
of the Tactical Cloudlets system was regarding the effect on response/execu-
tion time of the Cached Results tactics (Section 8.4.5). After some discussion
we agreed to separate the effect as negative for the initial offload operation
and positive when the mobile device reconnects, as is now shown in Figure 8.8.

2. Would the decision models have been useful to support decision making in
the development of your cyber-foraging system? Why?

The developers of the three systems found the decision models useful. They
found it very simple to use the “+ and -” notation to navigate through the
models and visually understand the effect of using the different tactics. One of
the experienced developers stated that it is valuable to have such an explicit
guide when thinking about the architecture of a system. Even though experi-
enced architects and developers already think in terms of design decisions and
system qualities, the model provides a tool to reflect and reason, and helps
them to be more thorough in their design considerations. The more junior
developer of the AgroTempus system said that it would have greatly helped
to have the decision model when he started the architecture of the system
because he would have made better informed decisions, especially because of
the explicit indication of benefits and tradeoffs. For inexperienced architects
the model is even more helpful because it not only gives them a tool to think
(like the experienced architects) but it also codifies past reusable knowledge
that they lack.

3. Would the decision models help with architecture evaluation, and particu-
larly identification of tradeoffs and risks? Why?

The developers of the three systems also agreed that the decision mod-
els would help with architecture evaluation. However, they all agreed that
it would be necessary to take a closer look at scenarios in which one tactic
has a positive effect and another has a negative effect, as described in Section
8.3. The decision models help to identify the tradeoffs, but not to quantify

267

the concrete effect because it varies depending on requirements and opera-
tional conditions. The specific example provided by one developer is related
to energy consumption. Sending one byte of information is typically more
power-hungry for a wireless network interface card (NIC) than receiving infor-
mation, but this also depends on the interference on the link and other factors
[3]. A future version of the decision model and tactics should include tools
and methods to profile the parameters that influence the positive or negative
effect on a system quality when using a particular tactic. This addition would
also favor an agile/iterative approach such that you start from tactics, you
build a prototype, and then you evaluate it using the recommended profiling
tool or method. This may lead to a refinement of the architecture based on
the results, possibly using a different tactic.

4. What else could the decision models be useful for?
Ideas from the developers included:

• Template for creating similar models for other types of systems

• Instrument for educating and communicating the different options and
complexities of developing cyber-foraging systems

• Input for building developer tools that (1) automatically generate com-
ponents based on the tactics. (2) serve as input for estimating cost
and effort for a system, (3) assign weights to the functional and non-
functional requirements such that it can guide the selection of tactics

• Aid for understanding system qualities that were likely influential when
reverse engineering a system

8.6 Related Work

Decision models have been used extensively in Software Engineering to model
the problem and solution space, and eventually map the former to the latter to
guide decision making. A well-known approach for creating decision models is
Questions-Options-Criteria (QOC) [81], where questions represent problems,
options map to candidate solutions, and criteria are used to determine how
well the options fare with respect to the questions at hand. Gu et al [50]
propose a template for decision making in service-oriented systems based on
QOC. Similarly, Zimmermann et al [130] present a tool for architecture de-
cision guidance across projects with QOC diagram suport. Another popular

268

approach from the field of Software Measurement is Goal Questions Metric
(GQM) [12]. The difference with QOC is that GQM does not look for candi-
date solutions; it only states the problem (in terms of the goal), then asks a
number of questions to refine the goal and finally measures the object of study
(e.g. product or process) according to the metrics. In essence, GQM allows to
model the problem according to the goals and questions, but it also provides
the metrics to be used for assessing an object and subsequently make decisions
to improve it.

We present a decision model for the domain of cyber-foraging systems that
links tactics to functional and non-functional requirements. Similarly, Gross
and Yu [49] propose an approach to support designers in selecting design pat-
terns based on their impact on non-functional requirements (represented as
goals and related in graphs). Zdun [124] proposes decision models made of
software patterns, by formalizing pattern relationships and further annotat-
ing them with effects on quality goals. This allows architects or designers to
parse through the design space by navigating from pattern to pattern until a
combination of selected patterns optimally meets the quality goals. Finally,
Harrison and Avgeriou [54] propose an approach to model and annotate how
tactics implementing specific quality attributes can fit within architecture pat-
terns. They focus on helping architects choose between tactics depending on
their compatibility with the overall architecture. Our focus is also tactic se-
lection but targeted at understanding their effect on system qualities.

8.7 Conclusions

This chapter presented a decision model for cyber-foraging systems that maps
functional and non-functional requirements to architectural tactics for cyber-
foraging. Each mapping is qualified with the benefits and tradeoffs of using
each tactic to help architects of cyber-foraging systems to understand the effect
of their decisions.

The decision model was validated by the developers of three cyber-foraging
systems who agreed on the correctness and usefulness of the model for archi-
tecture and design of these types of systems. We believe this is a valuable
instrument for moving cyber-foraging systems out of the labs and into real
operational settings.

Developing the decision model highlighted the many tradeoffs that archi-
tects must make when designing a system. It also highlighted the fact that
even though there is great value in the qualitative analysis supported by the
decision model, quantitative analysis is required in order to understand the

269

concrete impact of architecture decisions. We expect this thesis and the re-
sulting decision model to motivate future quantitative analyses to measure the
impact associated to the usage of the architectural tactics for cyber-foraging
systems, as will be further described in Section 9.2.2.

270

9
Conclusions

Cyber-foraging has tremendous potential for supporting mobile computing at
the edge. With increasing number of mobile devices and users [46][66], in-
creased network traffic cause by trends in the Internet of Things (IoT) [44][85],
and increasing complexity of an always-connected-user experience [45][87], there
is reason to believe that cyber-foraging will become a standard feature of mo-
bile applications. However, while there is a large amount of research in cyber-
foraging, the reality is that there are not many deployed, operational cyber-
foraging systems. As these systems become more prevalent due to their proven
benefits, in terms of energy efficiency, reduced latency, and increased avail-
ability, combined with the emergence of micro data centers and edge clouds, a
need will arise for guidance on their architecture and development. This thesis
starts to provide that guidance by presenting software architecture strategies
for cyber-foraging systems, in the form of architectural tactics and a decision
model. In this chapter we revisit the research questions presented in Chapter
1, summarize our contributions with respect to these questions, and discuss
future research.

9.1 Contributions

The goal of this thesis is to develop concrete software architecture guidance
for the development of cyber-foraging systems that meet critical system qual-
ities such as resource optimization, fault tolerance, scalability, and security,
while conserving resources on the mobile device. Therefore, the main research
question for this thesis is “What software architecture strategies can be used
to build cyber-foraging systems?” In Chapter 1 we identified four research
sub-questions that further characterize the research problem. This section

271

summarizes the answers to these questions according to our findings.

9.1.1 RQ1: What Software Architecture Design Deci-
sions for Cyber-Foraging Systems can be Identified
in the Literature?

Chapter 2 presented the results of a Systematic Literature Review (SLR) to
discover architectural design decisions in cyber-foraging systems. As an an-
swer to RQ1, a total of 58 primary studies were identified that contained 53
computation offload systems and 8 data staging systems. The identified 61
cyber-foraging systems were analyzed using a categorization of architecture
decisions related to what, when and where to offload computation and data
from mobile devices.

What we found from the analysis of the systems is that the main focus
of the studies is on the development of different and novel computation off-
load and data staging systems targeted at guaranteeing fidelity of results, and
optimizing attributes such as energy consumption, network bandwidth usage,
and performance/response time. For computation offload systems, the off-
load mechanisms range from dynamic approaches in which the computation
is provisioned from the mobile device to more static approaches in which the
computation already exists on the offload target. For data staging systems,
the capabilities of the offload target range from an extension of the mobile
device’s storage to sophisticated algorithms that predict and stage the data
that will likely be needed by the mobile device. As stated earlier, the number
of computation offload systems (53) is much larger than the number of data
staging systems (8). The architecture design decisions that we identified in
this systems served as the basis for the definition of the architectural tactics
presented in Chapter 3.

What we also learned from these studies is that although there is a large
amount of research in the area of cyber-foraging systems, there is very little dis-
cussion of system-level concerns that have to be addressed when moving from
experimental prototypes to operational systems. In particular, the analysis al-
lowed us to identify gaps and opportunities for research in (1) non-functional
requirements that are not widely addressed but are relevant to cyber-foraging
systems, such as ease of deployment, resiliency, and security, (2) system-level
architecture analysis, (3) large-scale evaluations, and (4) architectures for data
staging systems.

In summary, the results show that this is an area with many opportunities
for research that will enable cyber-foraging systems to become widely adopted

272

and move out of the labs and into real operational scenarios.

9.1.2 RQ2: What Architectural Tactics can be Derived
from the Identified Architectural Design Decisions?

Chapter 3 presented a catalog of architectural tactics for cyber-foraging that
was derived from the results of the systematic literature review on architectures
for cyber-foraging systems presented in Chapter 2. As an answer to RQ2, a to-
tal of 30 tactics were identified and divided into functional and non-functional
tactics. Functional tactics are broad and basic in nature and correspond to
the architectural elements that are necessary to meet cyber-foraging functional
requirements, such as computation offload, data staging, surrogate discovery,
and surrogate provisioning. Non-functional tactics are more specific and cor-
respond to architecture decisions made to promote certain quality attributes
such as resource optimization, fault tolerance, scalability and elasticity, and
security. Non-functional tactics have to be used in conjunction with functional
tactics.

To validate the architectural tactics we conducted three case studies to
investigate the use of the tactics in real cyber-foraging systems.

• Chapter 4 presents a case study based on Tactical Cloudlets, a compu-
tation offload system for use in tactical environments. Architecture re-
construction of the system was performed to identify implemented archi-
tectural tactics. Developers verified the identified tactics and answered
questions regarding their validity and utility.

• Chapter 5 presents a case study based on GigaSight, a data staging
system for scalable crowd-sourcing of video from mobile devices. Case
study protocol and developer involvement was the same as in the Tactical
Cloudlets system.

• Chapter 6 presents a case study based on AgroTempus, a computation
offload and data staging system targeted at agricultural knowledge ex-
change in resource-challenged regions. This was a new development. The
developer was observed and interviewed throughout the process to un-
derstand how the architectural tactics were used and how they influenced
the development process.

To further answer RQ2, the results of the case studies show not only the
validity of the tactics, but the potential for taking a tactics-driven approach to
fulfill functional and non-functional requirements for cyber-foraging systems.

273

9.1.3 RQ3: What are the Usage Domains and Contexts
(Defined in Terms of Functional and Non-Functional
Requirements) that Benefit from Cyber-Foraging?

Chapter 7 presented a characterization of the usage domains and contexts that
benefit from surrogate-based cyber-foraging, defined in terms of functional and
non-functional requirements. We started from the set of primary studies iden-
tified in Chapter 2 and conducted a literature study to identify usage contexts
and domains for cyber-foraging systems, and then mapped them to relevant
functional and non-functional requirements in each context. The goal of this
characterization is to provide context for software engineering life cycle ac-
tivities for cyber-foraging systems, such as requirements engineering, software
architecture, and quality assurance, with the intent of developing systems that
fully realize the benefits of cyber-foraging.

As an answer to RQ3, we identified seven usage contexts that ranged from
the typical offload of short computation operations, to mobile applications in
low coverage environments, to the much more demanding and visionary use
of public surrogates. A finding from the study is that each usage context
has non-functional requirements that can be both benefits and constraints.
What this means is that there are non-functional requirements that enable
a system to achieve the benefits of cyber-foraging, and there are other non-
functional requirements that, if not met, will compromise the benefits of cyber-
foraging for mobile systems. Understanding these tradeoffs is a motivator for
the definition of decision models such as the one presented in Chapter 8.

In addition, these usage contexts combined with the architectural tactics for
cyber-foraging identified in Chapter 3 provide a standard language and set of
reusable design decisions that will help in developing better and more standard
mobile systems that leverage all the potential benefits of cyber-foraging, as
well as mobile devices and operating systems that enable and facilitate these
benefits.

9.1.4 RQ4: How to Support Architectural Design Deci-
sion Making in Cyber-Foraging Systems?

Chapter 8 presented a decision model for cyber foraging systems that maps
functional and non-functional requirements to the architectural tactics pre-
sented in Chapter 3, and shows the relationships between tactics. The func-
tional and non-functional requirements are largely derived from the usage con-
texts in Chapter 7 and complemented with the requirements from the case
studies in Chapters 4, 5, and 6. The goal of the decision model is to guide the

274

architecture and evolution of cyber-foraging systems that meet their intended
functional and non-functional requirements, while understanding the effects of
architectural decisions.

To answer RQ4, we defined a process that starts with the selection of ba-
sic tactics for cyber foraging: computation offload, data staging, surrogate
provisioning, and surrogate discovery. Then, based on additional functional
and non-functional requirements, such as fault tolerance, resource optimiza-
tion, scalability/elasticity, and security, complementary tactics are selected. A
decision model was created for each set of tactics that maps functional and
non-functional requirements to architectural tactics for cyber-foraging. Each
mapping is qualified with the benefits and tradeoffs of using each tactic to help
architects of cyber-foraging systems to understand the effect of their decisions.
The decision model was validated by the developers of the cyber-foraging sys-
tems in the case studies who agreed on the correctness and usefulness of the
model for architecture and design of these types of systems.

While we believe that the decision model is a valuable instrument for mov-
ing cyber-foraging systems out of the labs and into real operational settings,
there is the need for more research in this area, which leads to the next section
on future research.

9.2 Future Research

This section concludes the thesis, but the work in software architecture strate-
gies for cyber-foraging systems has just started. Some ideas for future research
have already been discussed in previous chapters but we summarize them in
this section.

9.2.1 Extension of the Tactics Catalog

The case studies in Chapters 4, 5, and 6 presented a number of opportunities
for extension of the tactics catalog in several ways:

• The case studies showed that the existing cyber-foraging systems that
were evaluated, as well as the newly developed system, contained a gen-
eral implementation of the core essence of each tactic. However, small
variations were identified, or made to the implementation of the tactic,
to satisfy specific requirements or elements of the usage context, or due
to technology selection. As the tactics are used in the development and
evaluation of cyber-foraging systems, a valuable extension to the tactics

275

catalog would be to add variations to each tactic to address specific re-
quirements or constraints. In adding these variations, the tactics could
be annotated with the core elements (common across all variations) and
optional elements (specific to one or more variations).

• Consistent with the findings in Chapter 2 and in the case studies, there
are multiple system qualities that are not present in the tactics catalog
such as ease of deployment, manageability, recovery, privacy, and surro-
gate energy efficiency, or minimally covered qualities, such as security.
These are system qualities that are necessary for moving from experi-
mental prototypes to operational systems. A valuable extension to the
tactics catalog would be to add tactics for these types of requirements,
in order to provide full coverage for the requirements for the usage con-
texts presented in Chapter 7, and start addressing some of these critical
operational requirements.

• As more cyber-foraging systems are deployed, architects will discover
that technology selection decisions may enable or constrain the use of
certain tactics, such as the case with the Surrogate Broadcast tactic in
the AgroTempus system (Section 6.3.8.1). Annotating each tactic with
technology options and constraints would further increase the utility of
the catalog for decision making.

9.2.2 Quantitative Analysis of the Impact of Tactics Se-
lection

An observation resulting from the development of the decision model in Chap-
ter 8 is that the model helps to identify the tradeoffs related to tactics selection,
but not to quantify the impact of the selection because it varies depending on
requirements and operational conditions. For example, if the selection of a tac-
tic favors energy efficiency over availability, how much is the energy efficiency
gain compared to the availability loss?

Architecture guidance has a qualitative component and a quantitative com-
ponent, and they both provide value to software architects. The decision model
presented in Chapter 8 provides support for qualitative analysis of the trade-
foffs associated with tactics selection in the development of cyber-foraging
systems. The value of a tactics-based approach such as the one presented in
this thesis is that it helps a software architect design for system qualities, i.e.,
how do you architect a system for energy efficiency? A natural component and
quantitative component would be support for quantifying the energy efficiency

276

of the resulting architecture, in itself, but also relative for other architecture
options.

The advantage is that we know how to measure qualities in implemented
systems; for example:

• The development of the Tactical Cloudlets system presented in Chapter
4 required measuring cloudlet provisioning time, energy consumption on
the mobile device, payload size and response time, in order to decide on
the best method for provisioning cloudlets in the field.

• The development of the GigaSight system presented in Chapter 5 re-
quired measuring throughput, cloudlet performance, algorithm accuracy,
and energy consumption on the mobile device, in order to mainly un-
derstand the tradeoffs between performance and precision of different
deployment and replication options.

• Procaccianti et al in [99] empirically studied the energy impact of two
best practices for energy-efficient software. Although the system mea-
sured was not a cyber-foraging system, it represents the type of mea-
surements that would be necessary in order to quantify the tradeoffs of
architecture decisions.

A complementary quantitative component of the work presented in this
thesis is support for quantitative analysis of the impact of tactics selection, to
more clearly understand the tradeoffs. As an example, we have started work
to quantify the energy efficiency, bandwidth efficiency, and maintainability
associated to the different tactics for surrogate provisioning (pre-provisioning,
provisioning from the mobile device, and provisioning from the cloud). The
results of this work can then be added to the tactics catalog as concrete metrics
and measures, but also as benchmarks for architects to conduct their own
measurements.

9.2.3 Tools for the Development and Analysis of Cyber-
Foraging Systems

When the developers that validated the decision model were asked about other
uses for the model beyond decision-making, a common answer was that it could
be used as a basis for architecture analysis and code generation tools. Tactics
and tactic components could become the building blocks for modeling cyber-
foraging systems, and generating code from the models.

Related to the need or quantitative analyses, tools and methods to profile
the parameters that influence the positive or negative effect on a system quality

277

when using a particular tactic is a research area that would be very beneficial
for cyber-foraging, and architecture decision-making in general.

9.2.4 Architecture Patterns for Cyber-Foraging Systems

While the difference between patterns and tactics is a common topic of dis-
cussion in the software architecture community, Harrison and Avgeriou [54]
provide a distinction that is consistent with our findings: “Architecture pat-
terns describe the high-level structure and behavior of software systems as the
solution to multiple system requirements, whereas tactics are design decisions
that improve individual quality attribute concerns.” In essence, architecture
patterns are composed of multiple tactics in order to address multiple system
requirements. The development of architecture patterns for cyber-foraging sys-
tems based on the tactics in the catalog, that also maps to the usage contexts
in Chapter 7 is a natural continuation of this research.

278

Summary

Cyber-foraging is a technique to enable mobile devices to extend their com-
puting power and storage by offloading computation or data to more powerful
servers located in the cloud, or to proximate servers called surrogates. There
are two main forms of cyber-foraging. One is computation offload, which is
the offload of expensive computation in order to extend battery life and in-
crease computational capability. The second is data staging to improve data
transfers between mobile devices and the cloud by temporarily staging data in
transit on intermediate surrogates.

One of the main challenges of building cyber-foraging systems is the dy-
namic nature of the environments that they operate in. For example, the
connection to a surrogate may not be available when needed, or may be-
come unavailable during a computation offload or data staging operation. As
another example, multiple surrogates may be available but not all have the
required capabilities. Adding capabilities to deal with the dynamicity of the
environment has to be balanced against resource consumption on the mobile
device so as to not defeat the benefits of cyber-foraging. Being able to reason
about the behavior of a cyber-foraging system in light of this uncertainty is
key to meeting all its desired qualities, which is why software architectures are
especially important for cyber-foraging systems.

While there is a large amount of research in cyber-foraging, the reality
is that there are not many deployed, operational cyber-foraging systems. As
these systems become more prevalent due to their proven benefits, combined
with the emergence of micro data centers and edge clouds, a need will arise
for guidance on their architecture and development.

This dissertation starts providing this guidance in the form of software
architecture strategies for cyber-foraging systems. First, a catalog of archi-
tectural tactics for cyber-foraging systems is presented. These tactics were
validated through three case studies and can be used by software architects to
achieve system qualities such as resource optimization, fault tolerance, scalabil-
ity, and security, while conserving resources on the mobile device. Secondly, a
characterization of usage contexts for cyber-foraging, defined in terms of func-
tional and non-functional requirements is presented in order to understand the
usage contexts that benefit the most from cyber-foraging. Finally, a decision
model for cyber-foraging systems is presented that maps functional and non-
functional requirements for cyber-foraging systems to the set of architectural
tactics. The end goal is to help software architects extend their design reason-
ing towards cyber-foraging as a way to support the mobile applications of the
present and the future, while understanding the effects of their decisions.

279

Samenvatting

Cyber-foraging is een techniek die mobiele apparaten toestaat om hun re-
kenkracht en geheugen uit te breiden door het uitbesteden van berekeningen
en data naar krachtigere server in de cloud of naar naburige servers, zoge-
noemde surrogaten. Er zijn twee hoofdvormen van cyber-foraging. Eén vorm
is computation offload, waarbij zware berekeningen worden verplaatst naar een
server om de batterijduur en rekenkracht te verbeteren. De tweede vorm is
data staging, hiermee worden gegevensoverdrachten tussen mobiele apparaten
en de cloud verbeterd door het tijdelijk laden van gegevens in overdracht op
tussenliggende surrogaten.

Een van de belangrijkste uitdagingen bij het opzetten van cyber-foraging
systemen is het dynamische karakter van de omgevingen waarin deze wer-
ken. De verbinding met een surrogaat kan bijvoorbeeld niet beschikbaar zijn
wanneer deze nodig is, of kan onbeschikbaar worden gedurende computation
offload of data staging operaties. Daarnaast kan het bijvoorbeeld ook zo zijn
dat er meerdere surrogaten beschikbaar zijn, maar deze niet allemaal aan de
vereisten voldoen. Het toevoegen van functionaliteit voor het omgaan met
omgevingsdynamiek moet afgewogen worden tegen het extra verbruik op mo-
biele apparaten, om te voorkomen dat de voordelen van cyber-foraging teniet
worden gedaan. Het kunnen redeneren over het gedrag van een cyber-foraging
systeem in de context van deze onzekerheid is cruciaal om te voldoen aan alle
gewenste eigenschappen. Dit is waarom vooral software-architectuur belang-
rijk is voor cyber-foraging systemen.

Hoewel er veel onderzoek gedaan is naar cyber-foraging, zijn er in de prak-
tijk weinig operationele cyber-foraging systemen. Aangezien deze systemen
steeds belangrijker worden, vanwege hun aangetoonde voordelen in combina-
tie met de opkomst van micro data centra en edge clouds, zal er behoefte
ontstaan naar richtlijnen voor hun architectuur en ontwikkeling.

Dit proefschrift geeft een aanzet voor deze richtlijnen in de vorm van
software-architectuurstrategien voor cyber-foraging systemen. Ten eerste wordt
een catalogus van architectuurstrategien voor cyber-foraging systemen gepre-
senteerd. Deze strategien zijn gevalideerd door middel van drie case studies,
en kunnen gebruikt worden door software-architecten om eigenschappen zoals
resource-
optimalisatie, fouttolerantie en veiligheid te realiseren, zonder de mobiele ap-
paraten teveel te belasten. Ten tweede wordt een karakterisering van toepas-
singscontexten voor cyber-foraging gepresenteerd in de vorm van functionele en
niet-functionele eisen, om inzicht te bieden in welke toepassingscontexten het
meest geprofiteerd kan worden van cyber-foraging. Ten slotte wordt een beslis-

281

singsmodel voor cyber-foraging systemen gepresenteerd, waarin functionele en
niet-functionele eisen van cyber-foraging systemen worden gekoppeld aan de
gepresenteerde architectuurstrategien. Het uiteindelijke doel is om software-
architecten te helpen hun ontwerpen richting cyber-foraging systemen uit te
breiden, om zo goed genformeerd de mobiele applicaties van nu en de toekomst
te ondersteunen.

282

Bibliography

[1] Saeid Abolfazli, Zohreh Sanaei, Ejaz Ahmed, Abdullah Gani, and Ra-
jkumar Buyya. Cloud-based augmentation for mobile devices: Motiva-
tion, taxonomies, and open challenges. IEEE Communications Surveys
Tutorials, 16(1):337–368, 2014.

[2] JongHoon Ahnn and Miodrag Potkonjak. mHealthMon: Toward energy-
efficient and distributed mobile health monitoring using parallel offload-
ing. Journal of Medical Systems, 37(5):1–11, 2013.

[3] Farhan Azmat Ali, Pieter Simoens, Tim Verbelen, Piet Demeester, and
Bart Dhoedt. Mobile device power models for energy efficient dynamic
offloading at runtime. Journal of Systems and Software, 113:173 – 187,
2016.

[4] Mojtaba Alizadeh, Saeid Abolfazli, Mazdak Zamani, Sabariah Baharun,
and Kouichi Sakurai. Authentication in mobile cloud computing: A
survey. Journal of Network and Computer Applications, 2015.

[5] Pelin Angin and Bharat Bhargava. An agent-based optimization frame-
work for mobile-cloud computing. Journal of Wireless Mobile Networks,
Ubiquitous Computing, and Dependable Applications (JoWUA), 4:1–17,
2013.

[6] Trevor Armstrong, Olivier Trescases, Cristiana Amza, and Eyal de Lara.
Efficient and transparent dynamic content updates for mobile clients.
In Proceedings of the 4th International Conference on Mobile Systems,
Applications and Services, pages 56–68. ACM, 2006.

[7] Andrius Aucinas, Jon Crowcroft, and Pan Hui. Energy efficient mobile
M2M communications. In Proceedings of ExtremeCom ’12, 2012.

[8] Ali Bahrami, Changzhou Wang, Jun Yuan, and Anne Hunt. The work-
flow based architecture for mobile information access in occasionally con-
nected computing. In Proceedings of the IEEE International Conference
on Services Computing (SCC’06), pages 406–413. IEEE, 2006.

[9] Rajesh Krishna Balan, Darren Gergle, Mahadev Satyanarayanan, and
James Herbsleb. Simplifying cyber foraging for mobile devices. In Pro-
ceedings of the 5th International Conference on Mobile Systems, Appli-
cations and Services, MobiSys ’07, pages 272–285, New York, NY, USA,
2007. ACM.

283

[10] Niranjan Balasubramanian, Aruna Balasubramanian, and Arun
Venkataramani. Energy consumption in mobile phones: A measurement
study and implications for network applications. In Proceedings of the
9th ACM SIGCOMM Conference on Internet Measurement Conference,
IMC ’09, pages 280–293, New York, NY, USA, 2009. ACM.

[11] Baseline. Nine Mobility Trends You Must Watch in 2015,
2015. URL: http://www.baselinemag.com/mobility/slideshows/

nine-mobility-trends-you-must-watch-in-2015.html.

[12] Victor Basili, Gianluigi Caldiera, and H Dieter Rombach. The goal
question metric approach. Encyclopedia of Software Engineering, pages
528–532, 1994.

[13] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley, 3rd edition, 2012.

[14] Kathrin Berg, Judith Bishop, and Dirk Muthig. Tracing software prod-
uct line variability: From problem to solution space. In Proceedings of
the 2005 Annual Research Conference of the South African Institute of
Computer Scientists and Information Technologists on IT Research in
Developing Countries, SAICSIT ’05, pages 182–191, 2005.

[15] Pearl Brereton, Barbara Kitchenham, David Budgen, and Zhi Li. Using
a protocol template for case study planning. In Proceedings of the 12th
International Conference on Evaluation and Assessment in Software En-
gineering, 2008.

[16] Yu-Shuo Chang and Shih-Hao Hung. Developing collaborative applica-
tions with mobile cloud: A case study of speech recognition. Journal of
Internet Services and Information Security (JISIS), 1(1):18–36, 2011.

[17] Marat Charlaganov, Philippe Cudré-Mauroux, Cristian Dinu,
Christophe Guéret, Martin Grund, and Teodor Macicas. The en-
tity registry system: Implementing 5-star linked data without the web.
arXiv preprint arXiv:1308.3357, 2013.

[18] Guangyu Chen, B-T Kang, Mahmut Kandemir, Narayanan Vijaykrish-
nan, Mary Jane Irwin, and Rajarathnam Chandramouli. Studying en-
ergy trade offs in offloading computation/compilation in Java-enabled
mobile devices. IEEE Transactions on Parallel and Distributed Systems,
15(9):795–809, 2004.

284

http://www.baselinemag.com/mobility/slideshows/nine-mobility-trends-you-must-watch-in-2015.html
http://www.baselinemag.com/mobility/slideshows/nine-mobility-trends-you-must-watch-in-2015.html

[19] Bin Cheng and Michael Probst. HBB-NEXT I D4.4.1: Intermediate
middleware software components for cloud service offloading. Technical
report, HBB-NEXT Consortium 2013, 2013.

[20] Hao-hua Chu, Henry Song, Candy Wong, Shoji Kurakake, and Masaji
Katagiri. Roam, a seamless application framework. Journal of Systems
and Software, 69(3):209–226, 2004.

[21] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and
Ashwin Patti. CloneCloud: Elastic execution between mobile device
and cloud. In Proceedings of the 6th Conference on Computer Systems,
EuroSys ’11, pages 301–314, New York, NY, USA, 2011. ACM.

[22] Byung-Gon Chun and Petros Maniatis. Augmented smartphone applica-
tions through clone cloud execution. In Proceedings of the 12th Confer-
ence on Hot Topics in Operating Systems. USENIX Association, 2009.

[23] Cisco. Cisco Visual Networking Index: Global Mobile Data
Traffic Forecast Update, 20152020 White Paper, 2015. URL:
http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/visual-networking-index-vni/mobile-white-paper-

c11-520862.html.

[24] comScore, Inc. Number of Mobile-Only Internet Users Now Exceeds
Desktop-Only in the U.S., 2015. URL: http://www.comscore.com/

Insights/Blog/Number-of-Mobile-Only-Internet-Users-Now-

Exceeds-Desktop-Only-in-the-U.S.

[25] CTIA. Wireless Quick Facts, 2015. URL: http://www.ctia.org/your-
wireless-life/how-wireless-works/wireless-quick-facts.

[26] Eduardo Cuervo. Enhancing Mobile Devices through Code Offload. PhD
thesis, Duke University, 2012.

[27] Glenn Daneels, Jeroen Famaey, Steven Bohez, Pieter Simoens, and
Steven Latré. Upstream content scheduling in Wi-Fi DenseNets during
large-scale events. In 2015 IEEE GLOBECOM Workshops (GC Wk-
shps). IEEE, 2015.

[28] Hoang T Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A survey
of mobile cloud computing: architecture, applications, and approaches.
Wireless Communications and Mobile Computing, 13:1587–1611, 2011.

285

http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.comscore.com/Insights/Blog/Number-of-Mobile-Only-Internet-Users-Now-Exceeds-Desktop-Only-in-the-U.S
http://www.comscore.com/Insights/Blog/Number-of-Mobile-Only-Internet-Users-Now-Exceeds-Desktop-Only-in-the-U.S
http://www.comscore.com/Insights/Blog/Number-of-Mobile-Only-Internet-Users-Now-Exceeds-Desktop-Only-in-the-U.S
http://www.ctia.org/your-wireless-life/how-wireless-works/wireless-quick-facts
http://www.ctia.org/your-wireless-life/how-wireless-works/wireless-quick-facts

[29] Mian Dong and Lin Zhong. Self-constructive high-rate system energy
modeling for battery-powered mobile systems. In Proceedings of the 9th
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’11, pages 335–348, New York, NY, USA, 2011. ACM.

[30] Naod Duga. Optimality analysis and middleware design for heteroge-
neous cloud HPC in mobile devices. Master’s thesis, Addis Ababa Uni-
versity, 2011.

[31] Tore Dyba, T. Dingsoyr, and G.K. Hanssen. Applying systematic re-
views to diverse study types: An experience report. In First Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM 2007), pages 225–234, September 2007.

[32] Sebastian Echeverria, Grace A. Lewis, James Root, and Ben Brad-
shaw. Cyber-foraging for improving survivability of mobile systems.
In 2015 IEEE Military Communications Conference (MILCOM 2015),
pages 1421–1426, Oct 2015.

[33] Holger Endt and Kay Weckemann. Remote utilization of OpenCL for
flexible computation offloading using embedded ECUs, CE devices and
cloud servers. In Applications, Tools and Techniques on the Road to Ex-
ascale Computing, volume 22 of Advances in Parallel Computing, pages
133–140. IOS Press EBooks, 2011.

[34] Ericsson AB. Ericsson Mobility Report Appendix, Sub-Saharan Africa,
2013. URL: http://www.ericsson.com/res/docs/2013/emr-nov13-

rssa.pdf.

[35] Rodolfo G Esteves, Michael D McCool, and Christiane Lemieux. Real
options for mobile communication management. In 2011 IEEE GLOBE-
COM Workshops (GC Wkshps), pages 1241–1246. IEEE, 2011.

[36] Yidong Fang, Chris Nokleberg, and Dave Hughes. JSON.simple - A
simple Java toolkit for JSON - Google Project Hosting, 2012. URL:
https://code.google.com/p/json-simple/.

[37] Michael Farb, Yue-Hsun Lin, Tiffany Hyun-Jin Kim, Jonathan M. Mc-
Cune, and Adrian Perrig. SafeSlinger: Easy-to-use and secure public-key
exchange. In Proceedings of ACM Annual International Conference on
Mobile Computing and Networking (MobiCom), 2013.

286

http://www.ericsson.com/res/docs/2013/emr-nov13-rssa.pdf
http://www.ericsson.com/res/docs/2013/emr-nov13-rssa.pdf
https://code.google.com/p/json-simple/

[38] Niroshinie Fernando, Seng W Loke, and Wenny Rahayu. Mobile cloud
computing: A survey. Future Generation Computer Systems, 29:84–106,
2012.

[39] Tore Fjellheim, Stephen Milliner, and Marlon Dumas. Middleware sup-
port for mobile applications. International Journal of Pervasive Com-
puting and Communications, 1(2):75–88, 2005.

[40] Jason Flinn. Cyber foraging: Bridging mobile and cloud computing.
In Mahadev Satyanarayanan, editor, Synthesis Lectures on Mobile and
Pervasive Computing. Morgan & Claypool Publishers, 2012.

[41] Jason Flinn, Soyoung Park, and M. Satyanarayanan. Balancing perfor-
mance, energy, and quality in pervasive computing. In Proceedings of
the 22nd International Conference on Distributed Computing Systems,
pages 217–226, 2002.

[42] Jason Flinn, Shafeeq Sinnamohideen, Niraj Tolia, and Mahadev Satya-
narayanan. Data staging on untrusted surrogates. In Proceedings of the
2nd USENIX Conference on File and Storage Technologies (FAST03),
2003.

[43] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign patterns: elements of reusable object-oriented software. Pearson
Education, 1994.

[44] Gartner. Gartner Says 4.9 Billion Connected “Things” Will Be in Use
in 2015, 2015. URL: http://www.gartner.com/newsroom/id/2905717.

[45] Gartner. Gartner Says By 2018, More Than 50 Percent of Users Will
Use a Tablet or Smartphone First for All Online Activities, 2015. URL:
http://www.gartner.com/newsroom/id/2939217.

[46] GfK. Tech Trends 2015, 2015. URL: http://www.gfk.com/Documents/
GfK-TechTrends-2015.pdf.

[47] Ioana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and Gustavo
Alonso. Calling the cloud: Enabling mobile phones as interfaces to cloud
applications. In Jean M. Bacon and Brian F. Cooper, editors, Middleware
2009, volume 5896 of Lecture Notes in Computer Science, pages 83–102.
Springer Berlin Heidelberg, 2009.

[48] Sachin Goyal. A Collective Approach to Harness Idle Resources of End
Nodes. PhD thesis, School of Computing, University of Utah, 2011.

287

http://www.gartner.com/newsroom/id/2905717
http://www.gartner.com/newsroom/id/2939217
http://www.gfk.com/Documents/GfK-TechTrends-2015.pdf
http://www.gfk.com/Documents/GfK-TechTrends-2015.pdf

[49] Daniel Gross and Eric Yu. From non-functional requirements to design
through patterns. Requirements Engineering, 6(1):18–36, 2001.

[50] Qing Gu, P. Lago, and H. van Vliet. A template for SOA design decision
making in an educational setting. In 2010 36th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications (SEAA), pages
175–182, Sept 2010.

[51] Tao Guan. A System Architecture to Provide Enhanced Grid Access for
Mobile Devices. PhD thesis, University of Southampton, 2008.

[52] Kiryong Ha, Grace Lewis, Soumya Simanta, and Mahadev Satya-
narayanan. Cloud offload in hostile environments. Technical report,
Carnegie Mellon University, 2011.

[53] Jun Han, Yue-Hsun Lin, Adrian Perrig, and Fan Bai. MVSec: Secure
and easy-to-use pairing of mobile devices with vehicles. Technical Report
CMU-CyLab-14-006, Carnegie Mellon University, May 2014.

[54] Neil B Harrison and Paris Avgeriou. How do architecture patterns and
tactics interact? A model and annotation. Journal of Systems and Soft-
ware, 83(10):1735–1758, 2010.

[55] Shih-Hao Hung, Jeng-Peng Shieh, and Chen-Pang Lee. Migrating An-
droid applications to the cloud. International Journal of Grid and High
Performance Computing (IJGHPC), 3(2):14–28, 2011.

[56] Shigeru Imai. Task offloading between smartphones and distributed com-
putational resources. Master’s thesis, Rensselaer Polytechnic Institute,
2012.

[57] Anantharaman Narayana Iyer et al. Extending Android application pro-
gramming framework for seamless cloud integration. In 2012 IEEE First
International Conference on Mobile Services (MS), pages 96–104. IEEE,
2012.

[58] A. Jansen and J. Bosch. Software architecture as a set of architectural
design decisions. In 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2005), pages 109–120, 2005.

[59] Chris Jarabek, David Barrera, and John Aycock. ThinAV: truly
lightweight mobile cloud-based anti-malware. In Proceedings of the
28th Annual Computer Security Applications Conference, pages 209–218.
ACM, 2012.

288

[60] R. Jithin and Priya Chandran. Virtual machine isolation. In Recent
Trends in Computer Networks and Distributed Systems Security, volume
420 of Communications in Computer and Information Science, pages
91–102. Springer Berlin Heidelberg, 2014.

[61] JSON.org. Introducing JSON, 2015. URL: http://www.json.org/.

[62] Roelof Kemp, Nicholas Palmer, Thilo Kielmann, and Henri Bal. Cuckoo:
a computation offloading framework for smartphones. In Mobile Com-
puting, Applications, and Services, pages 59–79. Springer, 2012.

[63] Barbara Kitchenham and Stuart Charters. Guidelines for performing
systematic literature reviews in software engineering. Technical Report
EBSE 2007-001, Keele University and Durham University Joint Report,
2007.

[64] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen
Zhang. Thinkair: Dynamic resource allocation and parallel execution in
the cloud for mobile code offloading. In Proceedings IEEE INFOCOM
2012, pages 945–953. IEEE, 2012.

[65] Dejan Kovachev and Ralf Klamma. Framework for computation off-
loading in mobile cloud computing. International Journal of Interactive
Multimedia and Artificial Intelligence, 1(7):6–15, 2012.

[66] KPCB. Internet Trends 2015, 2015. URL: http://www.kpcb.com/

internet-trends.

[67] Mads Daro Kristensen. Empowering Mobile Devices Through Cyber For-
aging. PhD thesis, Aarhus University, 2010.

[68] Philippe Kruchten, Patricia Lago, and Hans van Vliet. Building up
and reasoning about architectural knowledge. In Christine Hofmeister,
Ivica Crnkovic, and Ralf Reussner, editors, Quality of Software Architec-
tures, volume 4214 of Lecture Notes in Computer Science, pages 43–58.
Springer Berlin Heidelberg, 2006.

[69] Karthik Kumar, Jibang Liu, Yung-Hsiang Lu, and Bharat Bhargava. A
survey of computation offloading for mobile systems. Mobile Networks
and Applications, 18(1):129–140, February 2013.

[70] Karthik Kumar and Yung-Hsiang Lu. Cloud computing for mobile users:
Can offloading computation save energy? Computer, 43(4):51–56, April
2010.

289

http://www.json.org/
http://www.kpcb.com/internet-trends
http://www.kpcb.com/internet-trends

[71] Suman Kundu, Jayanta Mukherjee, Arun K Majumdar, Bandana Ma-
jumdar, and Sirsendu Sekhar Ray. Algorithms and heuristics for effi-
cient medical information display in PDA. Computers in Biology and
Medicine, 37(9):1272–1282, 2007.

[72] Young-Woo Kwon and Eli Tilevich. Reducing the energy consumption of
mobile applications behind the scenes. In Proceedings of the 29th IEEE
International Conference on Software Maintenance (ICSM 2013), 2013.

[73] Patricia Lago and Paris Avgeriou. First workshop on sharing and
reusing architectural knowledge. SIGSOFT Software Engineering Notes,
31(5):32–36, September 2006.

[74] Byoung-Dai Lee. A framework for seamless execution of mobile ap-
plications in the cloud. In Recent Advances in Computer Science and
Information Engineering, pages 145–153. Springer, 2012.

[75] William Lehr and Lee W. McKnight. Wireless internet access: 3G vs.
WiFi? Technical Report 166, MIT Sloan School of Management, 2002.

[76] Grace Lewis, Sebastian Echeverria, Soumya Simanta, James Root, and
Ben Bradshaw. Cloudlet-based cyber-foraging in resource-limited envi-
ronments. Emerging Research in Cloud Distributed Computing Systems,
pages 92–121, 2015.

[77] Grace Lewis, Patricia Lago, and Giuseppe Procaccianti. Architecture
strategies for cyber-foraging: Preliminary results from a systematic lit-
erature review. In Paris Avgeriou and Uwe Zdun, editors, Proceed-
ings of the 8th European Conference on Software Architecture (ECSA
2014), volume 8627 of Lecture Notes in Computer Science, pages 154–
169. Springer International Publishing, 2014.

[78] Grace A Lewis, Sebastian Echeverŕıa, Soumya Simanta, Ben Bradshaw,
and James Root. Cloudlet-based cyber-foraging for mobile systems in
resource-constrained edge environments. In Companion Proceedings of
the 36th International Conference on Software Engineering, pages 412–
415. ACM, 2014.

[79] Yue-Hsun Lin, Ahren Studer, Yao-Hsin Chen, Hsu-Chun Hsiao, Li-
Hsiang Kuo, Jason Lee, Jonathan M. McCune, King-Hang Wang,
Maxwell Krohn, Phen-Lan Lin, Adrian Perrig, Hung-Min Sun, and Bo-
Yin Yang. SPATE: Small-group PKI-less authenticated trust establish-
ment. IEEE Transactions on Mobile Computing, 9:1666–1681, 2010.

290

[80] Richard K Lomotey and Ralph Deters. Architectural designs from mobile
cloud computing to ubiquitous cloud computing-survey. In 2014 IEEE
World Congress on Services (SERVICES), pages 418–425. IEEE, 2014.

[81] Allan MacLean, Richard M Young, Victoria ME Bellotti, and Thomas P
Moran. Questions, options, and criteria: Elements of design space anal-
ysis. Human–Computer Interaction, 6(3-4):201–250, 1991.

[82] Jerrid Matthews, Max Chang, ZhiNan Feng, Ravi Srinivas, and Mario
Gerla. PowerSense: power aware dengue diagnosis on mobile phones.
In Proceedings of the First ACM Workshop on Mobile Systems, Appli-
cations, and Services for Healthcare, page 6. ACM, 2011.

[83] Alan Messer, Ira Greenberg, Philippe Bernadat, Dejan Milojicic, Deqing
Chen, TJ Giuli, and Xiaohui Gu. Towards a distributed platform for
resource-constrained devices. In Proceedings of the 22nd International
Conference on Distributed Computing Systems, pages 43–51. IEEE, 2002.

[84] Dominik Messinger and Grace A Lewis. Application virtualizaton as a
strategy for cyber foraging in resource-constrained environments. Tech-
nical report, Carnegie Mellon Software Engineering Institute, 2013.

[85] mobiForge. Mobile Hardware Statistics 2015, 2015. URL:
https://mobiforge.com/research-analysis/mobile-hardware-

statistics-2015.

[86] mobiForge. Mobile Networks Statistics 2015, 2015. URL:
https://mobiforge.com/research-analysis/mobile-networks-

statistics-2015-0.

[87] mobiForge. Mobile User Behavior Statistics 2015, 2015. URL:
https://mobiforge.com/research-analysis/mobile-user-

behaviour-statistics-2015.

[88] Shivajit Mohapatra and Nalini Venkatasubramanian. Optimizing power
using a reconfigurable middleware. Technical report, UC Irvine, 2003.

[89] Mozilla Developer Network. Firefox OS, 2015. URL: https://

developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS.

[90] Mozilla Developer Network. IndexedDB, 2016. URL: https://

developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API.

291

https://mobiforge.com/research-analysis/mobile-hardware-statistics-2015
https://mobiforge.com/research-analysis/mobile-hardware-statistics-2015
https://mobiforge.com/research-analysis/mobile-networks-statistics-2015-0
https://mobiforge.com/research-analysis/mobile-networks-statistics-2015-0
https://mobiforge.com/research-analysis/mobile-user-behaviour-statistics-2015
https://mobiforge.com/research-analysis/mobile-user-behaviour-statistics-2015
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS
https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

[91] Object Refinery Limited. JFreeChart, 2014. URL: http://www.jfree.
org/jfreechart/.

[92] MinHwan Ok, Ja-Won Seo, and Myong-soon Park. A distributed re-
source furnishing to offload resource-constrained devices in cyber forag-
ing toward pervasive computing. In Network-Based Information Systems,
pages 416–425. Springer, 2007.

[93] Michael J O’Sullivan and Dan Grigoras. The cloud personal assistant
for providing services to mobile clients. In 2013 IEEE 7th International
Symposium on Service Oriented System Engineering (SOSE), pages 478–
485, 2013.

[94] OWM Inc. OpenWeatherMap, 2015. URL: http://openweathermap.
org/.

[95] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank
Leymann. Service-oriented computing: A research roadmap. Inter-
national Journal of Cooperative Information Systems, 17(02):223–255,
2008.

[96] Sehoon Park, Youngil Choi, Qichen Chen, and H.Y. Yeom. SOME: Selec-
tive offloading for a mobile computing environment. In 2012 IEEE Inter-
national Conference on Cluster Computing (CLUSTER), pages 588–591,
2012.

[97] Alex Sandy Pentland, Richard Fletcher, and Amir Hasson. Daknet:
Rethinking connectivity in developing nations. Computer, 37(1):78–83,
2004.

[98] Theophilos Phokas, Hariton Efstathiades, George Pallis, and MariosD.
Dikaiakos. Feel the world: A mobile framework for participatory sens-
ing. In Florian Daniel, George A. Papadopoulos, and Philippe Thiran,
editors, Mobile Web Information Systems, volume 8093 of Lecture Notes
in Computer Science, pages 143–156. Springer Berlin Heidelberg, 2013.

[99] Giuseppe Procaccianti, Hector Fernandez, and Patricia Lago. Empirical
evaluation of two best practices for energy-efficient software develop-
ment. Journal of Systems and Software, 2016.

[100] Lingjun Pu, Jingdong Xu, Xing Jin, and Jianzhong Zhang. SmartVirt-
Cloud: virtual cloud assisted application offloading execution at mobile
devices’ discretion. In 2013 IEEE Wireless Communications and Net-
working Conference (WCNC): SERVICES and APPLICATIONS, 2013.

292

http://www.jfree.org/jfreechart/
http://www.jfree.org/jfreechart/
http://openweathermap.org/
http://openweathermap.org/

[101] Moo-Ryong Ra, Anmol Sheth, Lily Mummert, Padmanabhan Pillai,
David Wetherall, and Ramesh Govindan. Odessa: enabling interactive
perception applications on mobile devices. In Proceedings of the 9th In-
ternational Conference on Mobile Systems, Applications, and Services,
MobiSys ’11, pages 43–56, New York, NY, USA, 2011. ACM.

[102] Kiran K Rachuri. Smartphones based Social Sensing: Adaptive Sam-
pling, Sensing and Computation Offloading. PhD thesis, University of
Cambridge, 2012.

[103] M Reza Rahimi, Nalini Venkatasubramanian, Sharad Mehrotra, and
Athanasios V Vasilakos. MAPCloud: mobile applications on an elas-
tic and scalable 2-tier cloud architecture. In Proceedings of the 2012
IEEE/ACM Fifth International Conference on Utility and Cloud Com-
puting, pages 83–90. IEEE Computer Society, 2012.

[104] Raspberry Pi Foundation. Raspberry Pi 2 Model B, 2015. URL: https:
//www.raspberrypi.org/products/raspberry-pi-2-model-b/.

[105] Raspbian. Welcome to Raspbian, 2015. URL: https://www.raspbian.
org/.

[106] Per Runeson and Martin Höst. Guidelines for conducting and reporting
case study research in software engineering. Empirical Software Engi-
neering, 14(2):131–164, 2009.

[107] M. Satyanarayanan. Pervasive computing: vision and challenges. IEEE
Personal Communications, 8(4):10–17, Aug 2001.

[108] Mahadev Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case
for VM-based cloudlets in mobile computing. IEEE Pervasive Comput-
ing, 8(4):14–23, 2009.

[109] Mahadev Satyanarayanan, Rolf Schuster, Maria Ebling, Gerhard Fet-
tweis, Hannu Flinck, Kaustubh Joshi, and Krishan Sabnani. An open
ecosystem for mobile-cloud convergence. IEEE Communications Maga-
zine, 53(3):63–70, 2015.

[110] Mahadev Satyanarayanan, Pieter Simoens, Yu Xiao, Padmanabhan Pil-
lai, Zhuo Chen, Kiryong Ha, Wenlu Hu, and Brandon Amos. Edge an-
alytics in the internet of things. IEEE Pervasive Computing, (2):24–31,
2015.

293

https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspbian.org/
https://www.raspbian.org/

[111] Cong Shi, Pranesh Pandurangan, Kangqi Ni, Juyuan Yang, Mostafa
Ammar, Mayur Naik, and Ellen Zegura. IC-Cloud: Computation off-
loading to an intermittently-connected cloud. Technical report, Georgia
Institute of Technology, 2013.

[112] Joao Nuno Silva, Luis Veiga, and Paulo Ferreira. SPADE: scheduler for
parallel and distributed execution from mobile devices. In Proceedings of
the 6th International Workshop on Middleware for Pervasive and Ad-hoc
Computing, pages 25–30. ACM, 2008.

[113] Pieter Simoens, Yu Xiao, Padmanabhan Pillai, Zhuo Chen, Kiryong Ha,
and Mahadev Satyanarayanan. Scalable crowd-sourcing of video from
mobile devices. In Proceedings of the 11th Annual International Confer-
ence on Mobile Systems, Applications, and Services, MobiSys ’13, pages
139–152, New York, NY, USA, 2013. ACM.

[114] Ya-Yunn Su and Jason Flinn. Slingshot: deploying stateful services in
wireless hotspots. In Proceedings of the 3rd International Conference on
Mobile Systems, Applications, and Services, MobiSys ’05, pages 79–92,
New York, NY, USA, 2005. ACM.

[115] The Apache Software Foundation. Apache Commons Codec, 2014. URL:
https://commons.apache.org/proper/commons-codec/.

[116] The jQuery Foundation. jQuery, 2015. URL: https://jquery.com/.

[117] Tim Verbelen, Pieter Simoens, Filip De Turck, and Bart Dhoedt. AIO-
LOS: Middleware for improving mobile application performance through
cyber foraging. Journal of Systems and Software, 85(11):2629–2639,
2012.

[118] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn
Regnell, and Anders Wesslén. Experimentation in Software Engineering.
Springer Science & Business Media, 2012.

[119] Yu Xiao, Pieter Simoens, Padmanabhan Pillai, Kiryong Ha, and Ma-
hadev Satyanarayanan. Lowering the barriers to large-scale mobile
crowdsensing. In Mobile Computing Systems and Applications, 2013.

[120] Fan Yang, Zhengping Qian, Xiuwei Chen, Ivan Beschastnikh, Li Zhuang,
Lidong Zhou, and Jacky Shen. Sonora: A platform for continuous
mobile-cloud computing. Technical report, Technical Report. Microsoft
Research Asia, 2012.

294

https://commons.apache.org/proper/commons-codec/
https://jquery.com/

[121] Kun Yang, Shumao Ou, and Hsiao-Hwa Chen. On effective offloading
services for resource-constrained mobile devices running heavier mobile
internet applications. IEEE Communications Magazine, 46(1):56–63,
2008.

[122] Lei Yang, Jiannong Cao, Yin Yuan, Tao Li, Andy Han, and Alvin Chan.
A framework for partitioning and execution of data stream applications
in mobile cloud computing. ACM SIGMETRICS Performance Evalua-
tion Review, 40(4):23–32, 2013.

[123] Ping Yu, Xiaoxing Ma, Jiannong Cao, and Jian Lu. Application mobility
in pervasive computing: A survey. Pervasive and Mobile Computing,
9:2–17, 2012.

[124] Uwe Zdun. Systematic pattern selection using pattern language gram-
mars and design space analysis. Software: Practice and Experience,
37(9):983–1016, 2007.

[125] Gu Zhang. From feature phones to smartphones, the road ahead.
GSMA Intelligence, 2015. URL: https://gsmaintelligence.com/

research/2015/01/from-feature-phones-to-smartphones-the-

road-ahead/456/.

[126] Xinwen Zhang, Won Jeon, Simon Gibbs, and Anugeetha Kunjithap-
atham. Elastic HTML5: Workload offloading using cloud-based web
workers and storages for mobile devices. In Mobile Computing, Applica-
tions, and Services, pages 373–381. Springer, 2012.

[127] Xinwen Zhang, Anugeetha Kunjithapatham, Sangoh Jeong, and Simon
Gibbs. Towards an elastic application model for augmenting the comput-
ing capabilities of mobile devices with cloud computing. Mobile Networks
and Applications, 16(3):270–284, 2011.

[128] Yang Zhang, Xue-tao Guan, Tao Huang, and Xu Cheng. A hetero-
geneous auto-offloading framework based on web browser for resource-
constrained devices. In Fourth International Conference on Internet and
Web Applications and Services (ICIW’09), pages 193–199. IEEE, 2009.

[129] Ying Zhang, Gang Huang, Wei Zhang, Xuanzhe Liu, and Hong Mei. To-
wards module-based automatic partitioning of Java applications. Fron-
tiers of Computer Science, 6(6):725–740, 2012.

295

https://gsmaintelligence.com/research/2015/01/from-feature-phones-to-smartphones-the-road-ahead/456/
https://gsmaintelligence.com/research/2015/01/from-feature-phones-to-smartphones-the-road-ahead/456/
https://gsmaintelligence.com/research/2015/01/from-feature-phones-to-smartphones-the-road-ahead/456/

[130] Olaf Zimmermann, Lukas Wegmann, Heiko Koziolek, and Thomas Gold-
schmidt. Architectural decision guidance across projects-problem space
modeling, decision backlog management and cloud computing knowl-
edge. In Software Architecture (WICSA), 2015 12th Working IEEE/I-
FIP Conference on, pages 85–94. IEEE, 2015.

[131] ZTE Corporation. ZTE Open C, 2015. URL: http://www.ztedevice.
com/product/b8fcc021-3e5b-4a96-8161-47ee8d4f42f1.html.

296

http://www.ztedevice.com/product/b8fcc021-3e5b-4a96-8161-47ee8d4f42f1.html
http://www.ztedevice.com/product/b8fcc021-3e5b-4a96-8161-47ee8d4f42f1.html

SIKS Dissertation Series

2009

1 Rasa Jurgelenaite (RUN) Symmetric
Causal Independence Models

2 Willem Robert van Hage (VUA) Evalu-
ating Ontology-Alignment Techniques

3 Hans Stol (UvT) A Framework for
Evidence-based Policy Making Using IT

4 Josephine Nabukenya (RUN) Improv-
ing the Quality of Organisational Policy
Making using Collaboration Engineering

5 Sietse Overbeek (RUN) Bridging Sup-
ply and Demand for Knowledge Intensive
Tasks: Based on Knowledge, Cognition,
and Quality

6 Muhammad Subianto (UU) Understand-
ing Classification

7 Ronald Poppe (UT) Discriminative
Vision-Based Recovery and Recognition
of Human Motion

8 Volker Nannen (VUA) Evolutionary
Agent-Based Policy Analysis in Dynamic
Environments

9 Benjamin Kanagwa (RUN) Design, Dis-
covery and Construction of Service-
oriented Systems

10 Jan Wielemaker (UvA) Logic program-
ming for knowledge-intensive interactive
applications

11 Alexander Boer (UvA) Legal Theory,
Sources of Law & the Semantic Web

12 Peter Massuthe (TUE, Humboldt-
Universitaet zu Berlin) Operating Guide-
lines for Services

13 Steven de Jong (UM) Fairness in Multi-
Agent Systems

14 Maksym Korotkiy (VUA) From
ontology-enabled services to service-
enabled ontologies (making ontologies
work in e-science with ONTO-SOA)

15 Rinke Hoekstra (UvA) Ontology Repre-
sentation: Design Patterns and Ontolo-
gies that Make Sense

16 Fritz Reul (UvT) New Architectures in
Computer Chess

17 Laurens van der Maaten (UvT) Feature
Extraction from Visual Data

18 Fabian Groffen (CWI) Armada, An
Evolving Database System

19 Valentin Robu (CWI) Modeling Pref-
erences, Strategic Reasoning and Col-
laboration in Agent-Mediated Electronic
Markets

20 Bob van der Vecht (UU) Adjustable Au-
tonomy: Controling Influences on Deci-
sion Making

21 Stijn Vanderlooy (UM) Ranking and Re-
liable Classification

22 Pavel Serdyukov (UT) Search For Exper-
tise: Going beyond direct evidence

23 Peter Hofgesang (VUA) Modelling Web
Usage in a Changing Environment

24 Annerieke Heuvelink (VUA) Cognitive
Models for Training Simulations

25 Alex van Ballegooij (CWI) RAM: Ar-
ray Database Management through Rela-
tional Mapping

26 Fernando Koch (UU) An Agent-Based
Model for the Development of Intelligent
Mobile Services

27 Christian Glahn (OU) Contextual Sup-
port of social Engagement and Reflection
on the Web

28 Sander Evers (UT) Sensor Data Manage-
ment with Probabilistic Models

29 Stanislav Pokraev (UT) Model-Driven
Semantic Integration of Service-Oriented
Applications

30 Marcin Zukowski (CWI) Balancing vec-
torized query execution with bandwidth-
optimized storage

31 Sofiya Katrenko (UvA) A Closer Look at
Learning Relations from Text

32 Rik Farenhorst (VUA) Architectural
Knowledge Management: Supporting Ar-
chitects and Auditors

33 Khiet Truong (UT) How Does Real Af-
fect Affect Affect Recognition In Speech?

34 Inge van de Weerd (UU) Advancing in
Software Product Management: An In-
cremental Method Engineering Approach

297

SIKS Dissertation Series

35 Wouter Koelewijn (UL) Privacy en Poli-
tiegegevens: Over geautomatiseerde nor-
matieve informatie-uitwisseling

36 Marco Kalz (OUN) Placement Support
for Learners in Learning Networks

37 Hendrik Drachsler (OUN) Navigation
Support for Learners in Informal Learn-
ing Networks

38 Riina Vuorikari (OU) Tags and self-
organisation: a metadata ecology for
learning resources in a multilingual con-
text

39 Christian Stahl (TUE, Humboldt-
Universitaet zu Berlin) Service Substi-
tution: A Behavioral Approach Based on
Petri Nets

40 Stephan Raaijmakers (UvT) Multinomial
Language Learning: Investigations into
the Geometry of Language

41 Igor Berezhnyy (UvT) Digital Analysis of
Paintings

42 Toine Bogers (UvT) Recommender Sys-
tems for Social Bookmarking

43 Virginia Nunes Leal Franqueira (UT)
Finding Multi-step Attacks in Computer
Networks using Heuristic Search and
Mobile Ambients

44 Roberto Santana Tapia (UT) Assess-
ing Business-IT Alignment in Networked
Organizations

45 Jilles Vreeken (UU) Making Pattern Min-
ing Useful

46 Loredana Afanasiev (UvA) Querying
XML: Benchmarks and Recursion

2010

1 Matthijs van Leeuwen (UU) Patterns
that Matter

2 Ingo Wassink (UT) Work flows in Life
Science

3 Joost Geurts (CWI) A Document En-
gineering Model and Processing Frame-
work for Multimedia documents

4 Olga Kulyk (UT) Do You Know What
I Know? Situational Awareness of Co-
located Teams in Multidisplay Environ-
ments

5 Claudia Hauff (UT) Predicting the Ef-
fectiveness of Queries and Retrieval Sys-
tems

6 Sander Bakkes (UvT) Rapid Adaptation
of Video Game AI

7 Wim Fikkert (UT) Gesture interaction at
a Distance

8 Krzysztof Siewicz (UL) Towards an Im-
proved Regulatory Framework of Free
Software. Protecting user freedoms in
a world of software communities and
eGovernments

9 Hugo Kielman (UL) A Politiele
gegevensverwerking en Privacy, Naar
een effectieve waarborging

10 Rebecca Ong (UL) Mobile Communica-
tion and Protection of Children

11 Adriaan Ter Mors (TUD) The world ac-
cording to MARP: Multi-Agent Route
Planning

12 Susan van den Braak (UU) Sensemaking
software for crime analysis

13 Gianluigi Folino (RUN) High Perfor-
mance Data Mining using Bio-inspired
techniques

14 Sander van Splunter (VUA) Automated
Web Service Reconfiguration

15 Lianne Bodenstaff (UT) Manag-
ing Dependency Relations in Inter-
Organizational Models

16 Sicco Verwer (TUD) Efficient Identifi-
cation of Timed Automata, theory and
practice

17 Spyros Kotoulas (VUA) Scalable Discov-
ery of Networked Resources: Algorithms,
Infrastructure, Applications

18 Charlotte Gerritsen (VUA) Caught in the
Act: Investigating Crime by Agent-Based
Simulation

19 Henriette Cramer (UvA) People’s Re-
sponses to Autonomous and Adaptive
Systems

20 Ivo Swartjes (UT) Whose Story Is It
Anyway? How Improv Informs Agency
and Authorship of Emergent Narrative

21 Harold van Heerde (UT) Privacy-aware
data management by means of data
degradation

298

SIKS Dissertation Series

22 Michiel Hildebrand (CWI) End-user
Support for Access to
Heterogeneous Linked Data

23 Bas Steunebrink (UU) The Logical Struc-
ture of Emotions

24 Zulfiqar Ali Memon (VUA) Modelling
Human-Awareness for Ambient Agents:
A Human Mindreading Perspective

25 Ying Zhang (CWI) XRPC: Efficient Dis-
tributed Query Processing on Heteroge-
neous XQuery Engines

26 Marten Voulon (UL) Automatisch con-
tracteren

27 Arne Koopman (UU) Characteristic Re-
lational Patterns

28 Stratos Idreos (CWI) Database Cracking:
Towards Auto-tuning Database Kernels

29 Marieke van Erp (UvT) Accessing Natu-
ral History: Discoveries in data cleaning,
structuring, and retrieval

30 Victor de Boer (UvA) Ontology Enrich-
ment from Heterogeneous Sources on the
Web

31 Marcel Hiel (UvT) An Adaptive Ser-
vice Oriented Architecture: Automati-
cally solving Interoperability Problems

32 Robin Aly (UT) Modeling Representa-
tion Uncertainty in Concept-Based Mul-
timedia Retrieval

33 Teduh Dirgahayu (UT) Interaction De-
sign in Service Compositions

34 Dolf Trieschnigg (UT) Proof of Con-
cept: Concept-based Biomedical Infor-
mation Retrieval

35 Jose Janssen (OU) Paving the Way for
Lifelong Learning: Facilitating compe-
tence development through a learning
path specification

36 Niels Lohmann (TUe) Correctness of ser-
vices and their composition

37 Dirk Fahland (TUe) From Scenarios to
components

38 Ghazanfar Farooq Siddiqui (VUA) Inte-
grative modeling of emotions in virtual
agents

39 Mark van Assem (VUA) Converting and
Integrating Vocabularies for the Seman-
tic Web

40 Guillaume Chaslot (UM) Monte-Carlo
Tree Search

41 Sybren de Kinderen (VUA) Needs-driven
service bundling in a multi-supplier set-
ting: the computational e3-service ap-
proach

42 Peter van Kranenburg (UU) A Compu-
tational Approach to Content-Based Re-
trieval of Folk Song Melodies

43 Pieter Bellekens (TUe) An Approach
towards Context-sensitive and User-
adapted Access to Heterogeneous Data
Sources, Illustrated in the Television Do-
main

44 Vasilios Andrikopoulos (UvT) A theory
and model for the evolution of software
services

45 Vincent Pijpers (VUA) e3alignment: Ex-
ploring Inter-Organizational Business-
ICT Alignment

46 Chen Li (UT) Mining Process Model
Variants: Challenges, Techniques, Ex-
amples

47 Jahn-Takeshi Saito (UM) Solving diffi-
cult game positions

48 Bouke Huurnink (UvA) Search in Audio-
visual Broadcast Archives

49 Alia Khairia Amin (CWI) Understanding
and supporting information seeking tasks
in multiple sources

50 Peter-Paul van Maanen (VUA) Adaptive
Support for Human-Computer Teams:
Exploring the Use of Cognitive Models of
Trust and Attention

51 Edgar Meij (UvA) Combining Concepts
and Language Models for Information
Access

2011

1 Botond Cseke (RUN) Variational Algo-
rithms for Bayesian Inference in Latent
Gaussian Models

2 Nick Tinnemeier (UU) Organizing Agent
Organizations. Syntax and Operational
Semantics of an Organization-Oriented
Programming Language

3 Jan Martijn van der Werf (TUe) Com-
positional Design and Verification of
Component-Based Information Systems

299

SIKS Dissertation Series

4 Hado van Hasselt (UU) Insights in Re-
inforcement Learning: Formal analysis
and empirical evaluation of temporal-
difference

5 Base van der Raadt (VUA) Enterprise
Architecture Coming of Age: Increasing
the Performance of an Emerging Disci-
pline

6 Yiwen Wang (TUe) Semantically-
Enhanced Recommendations in Cultural
Heritage

7 Yujia Cao (UT) Multimodal Informa-
tion Presentation for High Load Human
Computer Interaction

8 Nieske Vergunst (UU) BDI-based Gener-
ation of Robust Task-Oriented Dialogues

9 Tim de Jong (OU) Contextualised Mobile
Media for Learning

10 Bart Bogaert (UvT) Cloud Content Con-
tention

11 Dhaval Vyas (UT) Designing for Aware-
ness: An Experience-focused HCI Per-
spective

12 Carmen Bratosin (TUe) Grid Architec-
ture for Distributed Process Mining

13 Xiaoyu Mao (UvT) Airport under Con-
trol. Multiagent Scheduling for Airport
Ground Handling

14 Milan Lovric (EUR) Behavioral Finance
and Agent-Based Artificial Markets

15 Marijn Koolen (UvA) The Meaning of
Structure: the Value of Link Evidence for
Information Retrieval

16 Maarten Schadd (UM) Selective Search
in Games of Different Complexity

17 Jiyin He (UvA) Exploring Topic Struc-
ture: Coherence, Diversity and Related-
ness

18 Mark Ponsen (UM) Strategic Decision-
Making in complex games

19 Ellen Rusman (OU) The Mind ’ s Eye on
Personal Profiles

20 Qing Gu (VUA) Guiding service-oriented
software engineering: A view-based ap-
proach

21 Linda Terlouw (TUD) Modularization
and Specification of Service-Oriented
Systems

22 Junte Zhang (UvA) System Evaluation of
Archival Description and Access

23 Wouter Weerkamp (UvA) Finding Peo-
ple and their Utterances in Social Media

24 Herwin van Welbergen (UT) Behavior
Generation for Interpersonal Coordina-
tion with Virtual Humans On Specify-
ing, Scheduling and Realizing Multimodal
Virtual Human Behavior

25 Syed Waqar ul Qounain Jaffry (VUA)
Analysis and Validation of Models for
Trust Dynamics

26 Matthijs Aart Pontier (VUA) Vir-
tual Agents for Human Communication:
Emotion Regulation and Involvement-
Distance Trade-Offs in Embodied Con-
versational Agents and Robots

27 Aniel Bhulai (VUA) Dynamic website
optimization through autonomous man-
agement of design patterns

28 Rianne Kaptein (UvA) Effective Focused
Retrieval by Exploiting Query Context
and Document Structure

29 Faisal Kamiran (TUe) Discrimination-
aware Classification

30 Egon van den Broek (UT) Affective Sig-
nal Processing (ASP): Unraveling the
mystery of emotions

31 Ludo Waltman (EUR) Computational
and Game-Theoretic Approaches for
Modeling Bounded Rationality

32 Nees-Jan van Eck (EUR) Methodologi-
cal Advances in Bibliometric Mapping of
Science

33 Tom van der Weide (UU) Arguing to Mo-
tivate Decisions

34 Paolo Turrini (UU) Strategic Reasoning
in Interdependence: Logical and Game-
theoretical Investigations

35 Maaike Harbers (UU) Explaining Agent
Behavior in Virtual Training

36 Erik van der Spek (UU) Experiments
in serious game design: a cognitive ap-
proach

37 Adriana Burlutiu (RUN) Machine Learn-
ing for Pairwise Data, Applications for
Preference Learning and Supervised Net-
work Inference

38 Nyree Lemmens (UM) Bee-inspired Dis-
tributed Optimization

300

SIKS Dissertation Series

39 Joost Westra (UU) Organizing Adapta-
tion using Agents in Serious Games

40 Viktor Clerc (VUA) Architectural
Knowledge Management in Global Soft-
ware Development

41 Luan Ibraimi (UT) Cryptographically
Enforced Distributed Data Access Con-
trol

42 Michal Sindlar (UU) Explaining Behav-
ior through Mental State Attribution

43 Henk van der Schuur (UU) Process Im-
provement through Software Operation
Knowledge

44 Boris Reuderink (UT) Robust Brain-
Computer Interfaces

45 Herman Stehouwer (UvT) Statistical
Language Models for Alternative Se-
quence Selection

46 Beibei Hu (TUD) Towards Contextual-
ized Information Delivery: A Rule-based
Architecture for the Domain of Mobile
Police Work

47 Azizi Bin Ab Aziz (VUA) Exploring
Computational Models for Intelligent
Support of Persons with Depression

48 Mark Ter Maat (UT) Response Selection
and Turn-taking for a Sensitive Artificial
Listening Agent

49 Andreea Niculescu (UT) Conversational
interfaces for task-oriented spoken dia-
logues: design aspects influencing inter-
action quality

2012

1 Terry Kakeeto (UvT) Relationship Mar-
keting for SMEs in Uganda

2 Muhammad Umair (VUA) Adaptivity,
emotion, and Rationality in Human and
Ambient Agent Models

3 Adam Vanya (VUA) Supporting Archi-
tecture Evolution by Mining Software
Repositories

4 Jurriaan Souer (UU) Development of
Content Management System-based Web
Applications

5 Marijn Plomp (UU) Maturing Interor-
ganisational Information Systems

6 Wolfgang Reinhardt (OU) Awareness
Support for Knowledge Workers in Re-
search Networks

7 Rianne van Lambalgen (VUA) When the
Going Gets Tough: Exploring Agent-
based Models of Human Performance un-
der Demanding Conditions

8 Gerben de Vries (UvA) Kernel Methods
for Vessel Trajectories

9 Ricardo Neisse (UT) Trust and Privacy
Management Support for Context-Aware
Service Platforms

10 David Smits (TUe) Towards a Generic
Distributed Adaptive Hypermedia Envi-
ronment

11 J. C. B. Rantham Prabhakara (TUe)
Process Mining in the Large: Preprocess-
ing, Discovery, and Diagnostics

12 Kees van der Sluijs (TUe) Model Driven
Design and Data Integration in Semantic
Web Information Systems

13 Suleman Shahid (UvT) Fun and Face:
Exploring non-verbal expressions of emo-
tion during playful interactions

14 Evgeny Knutov (TUe) Generic Adapta-
tion Framework for Unifying Adaptive
Web-based Systems

15 Natalie van der Wal (VUA) Social
Agents. Agent-Based Modelling of Inte-
grated Internal and Social Dynamics of
Cognitive and Affective Processes

16 Fiemke Both (VUA) Helping people by
understanding them: Ambient Agents
supporting task execution and depression
treatment

17 Amal Elgammal (UvT) Towards a Com-
prehensive Framework for Business Pro-
cess Compliance

18 Eltjo Poort (VUA) Improving Solution
Architecting Practices

19 Helen Schonenberg (TUe) What’s Next?
Operational Support for Business Pro-
cess Execution

20 Ali Bahramisharif (RUN) Covert Visual
Spatial Attention, a Robust Paradigm for
Brain-Computer Interfacing

21 Roberto Cornacchia (TUD) Querying
Sparse Matrices for Information Re-
trieval

301

SIKS Dissertation Series

22 Thijs Vis (UvT) Intelligence, politie en
veiligheidsdienst: verenigbare groothe-
den?

23 Christian Muehl (UT) Toward Affective
Brain-Computer Interfaces: Exploring
the Neurophysiology of Affect during Hu-
man Media Interaction

24 Laurens van der Werff (UT) Evaluation
of Noisy Transcripts for Spoken Docu-
ment Retrieval

25 Silja Eckartz (UT) Managing the
Business Case Development in Inter-
Organizational IT Projects: A Method-
ology and its Application

26 Emile de Maat (UvA) Making Sense of
Legal Text

27 Hayrettin Gurkok (UT) Mind the Sheep!
User Experience Evaluation & Brain-
Computer Interface Games

28 Nancy Pascall (UvT) Engendering Tech-
nology Empowering Women

29 Almer Tigelaar (UT) Peer-to-Peer Infor-
mation Retrieval

30 Alina Pommeranz (TUD) Designing
Human-Centered Systems for Reflective
Decision Making

31 Emily Bagarukayo (RUN) A Learning by
Construction Approach for Higher Order
Cognitive Skills Improvement, Building
Capacity and Infrastructure

32 Wietske Visser (TUD) Qualitative multi-
criteria preference representation and
reasoning

33 Rory Sie (OUN) Coalitions in Coopera-
tion Networks (COCOON)

34 Pavol Jancura (RUN) Evolutionary anal-
ysis in PPI networks and applications

35 Evert Haasdijk (VUA) Never Too Old To
Learn: On-line Evolution of Controllers
in Swarm- and Modular Robotics

36 Denis Ssebugwawo (RUN) Analysis and
Evaluation of Collaborative Modeling
Processes

37 Agnes Nakakawa (RUN) A Collaboration
Process for Enterprise Architecture Cre-
ation

38 Selmar Smit (VUA) Parameter Tuning
and Scientific Testing in Evolutionary
Algorithms

39 Hassan Fatemi (UT) Risk-aware design
of value and coordination networks

40 Agus Gunawan (UvT) Information Ac-
cess for SMEs in Indonesia

41 Sebastian Kelle (OU) Game Design Pat-
terns for Learning

42 Dominique Verpoorten (OU) Reflection
Amplifiers in self-regulated Learning

43 Anna Tordai (VUA) On Combining
Alignment Techniques

44 Benedikt Kratz (UvT) A Model and Lan-
guage for Business-aware Transactions

45 Simon Carter (UvA) Exploration and Ex-
ploitation of Multilingual Data for Statis-
tical Machine Translation

46 Manos Tsagkias (UvA) Mining Social
Media: Tracking Content and Predicting
Behavior

47 Jorn Bakker (TUe) Handling Abrupt
Changes in Evolving Time-series Data

48 Michael Kaisers (UM) Learning against
Learning: Evolutionary dynamics of
reinforcement learning algorithms in
strategic interactions

49 Steven van Kervel (TUD) Ontologogy
driven Enterprise Information Systems
Engineering

50 Jeroen de Jong (TUD) Heuristics in Dy-
namic Sceduling: a practical framework
with a case study in elevator dispatching

2013

1 Viorel Milea (EUR) News Analytics for
Financial Decision Support

2 Erietta Liarou (CWI) MonetDB/Dat-
aCell: Leveraging the Column-store
Database Technology for Efficient and
Scalable Stream Processing

3 Szymon Klarman (VUA) Reasoning with
Contexts in Description Logics

4 Chetan Yadati (TUD) Coordinating au-
tonomous planning and scheduling

5 Dulce Pumareja (UT) Groupware Re-
quirements Evolutions Patterns

6 Romulo Goncalves (CWI) The Data Cy-
clotron: Juggling Data and Queries for a
Data Warehouse Audience

7 Giel van Lankveld (UvT) Quantifying In-
dividual Player Differences

302

SIKS Dissertation Series

8 Robbert-Jan Merk (VUA) Making ene-
mies: cognitive modeling for opponent
agents in fighter pilot simulators

9 Fabio Gori (RUN) Metagenomic Data
Analysis: Computational Methods and
Applications

10 Jeewanie Jayasinghe Arachchige (UvT)
A Unified Modeling Framework for Ser-
vice Design

11 Evangelos Pournaras (TUD) Multi-level
Reconfigurable Self-organization in Over-
lay Services

12 Marian Razavian (VUA) Knowledge-
driven Migration to Services

13 Mohammad Safiri (UT) Service Tailor-
ing: User-centric creation of integrated
IT-based homecare services to support in-
dependent living of elderly

14 Jafar Tanha (UvA) Ensemble Ap-
proaches to Semi-Supervised Learning
Learning

15 Daniel Hennes (UM) Multiagent Learn-
ing: Dynamic Games and Applications

16 Eric Kok (UU) Exploring the practical
benefits of argumentation in multi-agent
deliberation

17 Koen Kok (VUA) The PowerMatcher:
Smart Coordination for the Smart Elec-
tricity Grid

18 Jeroen Janssens (UvT) Outlier Selection
and One-Class Classification

19 Renze Steenhuizen (TUD) Coordinated
Multi-Agent Planning and Scheduling

20 Katja Hofmann (UvA) Fast and Reliable
Online Learning to Rank for Information
Retrieval

21 Sander Wubben (UvT) Text-to-text gen-
eration by monolingual machine transla-
tion

22 Tom Claassen (RUN) Causal Discovery
and Logic

23 Patricio de Alencar Silva (UvT) Value
Activity Monitoring

24 Haitham Bou Ammar (UM) Automated
Transfer in Reinforcement Learning

25 Agnieszka Anna Latoszek-Berendsen
(UM) Intention-based Decision Support.

A new way of representing and imple-
menting clinical guidelines in a Decision
Support System

26 Alireza Zarghami (UT) Architectural
Support for Dynamic Homecare Service
Provisioning

27 Mohammad Huq (UT) Inference-based
Framework Managing Data Provenance

28 Frans van der Sluis (UT) When Complex-
ity becomes Interesting: An Inquiry into
the Information eXperience

29 Iwan de Kok (UT) Listening Heads

30 Joyce Nakatumba (TUe) Resource-Aware
Business Process Management: Analysis
and Support

31 Dinh Khoa Nguyen (UvT) Blueprint
Model and Language for Engineering
Cloud Applications

32 Kamakshi Rajagopal (OUN) Networking
For Learning: The role of Networking in
a Lifelong Learner’s Professional Devel-
opment

33 Qi Gao (TUD) User Modeling and Per-
sonalization in the Microblogging Sphere

34 Kien Tjin-Kam-Jet (UT) Distributed
Deep Web Search

35 Abdallah El Ali (UvA) Minimal Mobile
Human Computer Interaction

36 Than Lam Hoang (TUe) Pattern Mining
in Data Streams

37 Dirk Börner (OUN) Ambient Learning
Displays

38 Eelco den Heijer (VUA) Autonomous
Evolutionary Art

39 Joop de Jong (TUD) A Method for En-
terprise Ontology based Design of Enter-
prise Information Systems

40 Pim Nijssen (UM) Monte-Carlo Tree
Search for Multi-Player Games

41 Jochem Liem (UvA) Supporting the Con-
ceptual Modelling of Dynamic Systems:
A Knowledge Engineering Perspective on
Qualitative Reasoning

42 Léon Planken (TUD) Algorithms for
Simple Temporal Reasoning

43 Marc Bron (UvA) Exploration and Con-
textualization through Interaction and
Concepts

303

SIKS Dissertation Series

2014

1 Nicola Barile (UU) Studies in Learning
Monotone Models from Data

2 Fiona Tuliyano (RUN) Combining Sys-
tem Dynamics with a Domain Modeling
Method

3 Sergio Raul Duarte Torres (UT) Infor-
mation Retrieval for Children: Search
Behavior and Solutions

4 Hanna Jochmann-Mannak (UT) Web-
sites for children: search strategies and
interface design - Three studies on chil-
dren’s search performance and evalua-
tion

5 Jurriaan van Reijsen (UU) Knowledge
Perspectives on Advancing Dynamic Ca-
pability

6 Damian Tamburri (VUA) Supporting
Networked Software Development

7 Arya Adriansyah (TUe) Aligning Ob-
served and Modeled Behavior

8 Samur Araujo (TUD) Data Integration
over Distributed and Heterogeneous Data
Endpoints

9 Philip Jackson (UvT) Toward Human-
Level Artificial Intelligence: Represen-
tation and Computation of Meaning in
Natural Language

10 Ivan Salvador Razo Zapata (VUA) Ser-
vice Value Networks

11 Janneke van der Zwaan (TUD) An Em-
pathic Virtual Buddy for Social Support

12 Willem van Willigen (VUA) Look Ma, No
Hands: Aspects of Autonomous Vehicle
Control

13 Arlette van Wissen (VUA) Agent-Based
Support for Behavior Change: Models
and Applications in Health and Safety
Domains

14 Yangyang Shi (TUD) Language Models
With Meta-information

15 Natalya Mogles (VUA) Agent-Based
Analysis and Support of Human Func-
tioning in Complex Socio-Technical Sys-
tems: Applications in Safety and Health-
care

16 Krystyna Milian (VUA) Supporting trial
recruitment and design by automatically
interpreting eligibility criteria

17 Kathrin Dentler (VUA) Computing
healthcare quality indicators automati-
cally: Secondary Use of Patient Data
and Semantic Interoperability

18 Mattijs Ghijsen (VUA) Methods and
Models for the Design and Study of Dy-
namic Agent Organizations

19 Vinicius Ramos (TUe) Adaptive Hyper-
media Courses: Qualitative and Quanti-
tative Evaluation and Tool Support

20 Mena Habib (UT) Named Entity Extrac-
tion and Disambiguation for Informal
Text: The Missing Link

21 Kassidy Clark (TUD) Negotiation and
Monitoring in Open Environments

22 Marieke Peeters (UU) Personalized Ed-
ucational Games: Developing agent-
supported scenario-based training

23 Eleftherios Sidirourgos (UvA/CWI)
Space Efficient Indexes for the Big Data
Era

24 Davide Ceolin (VUA) Trusting Semi-
structured Web Data

25 Martijn Lappenschaar (RUN) New net-
work models for the analysis of disease
interaction

26 Tim Baarslag (TUD) What to Bid and
When to Stop

27 Rui Jorge Almeida (EUR) Conditional
Density Models Integrating Fuzzy and
Probabilistic Representations of Uncer-
tainty

28 Anna Chmielowiec (VUA) Decentralized
k-Clique Matching

29 Jaap Kabbedijk (UU) Variability in
Multi-Tenant Enterprise Software

30 Peter de Cock (UvT) Anticipating Crim-
inal Behaviour

31 Leo van Moergestel (UU) Agent Technol-
ogy in Agile Multiparallel Manufacturing
and Product Support

32 Naser Ayat (UvA) On Entity Resolution
in Probabilistic Data

33 Tesfa Tegegne (RUN) Service Discovery
in eHealth

34 Christina Manteli (VUA) The Effect of
Governance in Global Software Devel-
opment: Analyzing Transactive Memory
Systems

304

SIKS Dissertation Series

35 Joost van Ooijen (UU) Cognitive Agents
in Virtual Worlds: A Middleware Design
Approach

36 Joos Buijs (TUe) Flexible Evolutionary
Algorithms for Mining Structured Pro-
cess Models

37 Maral Dadvar (UT) Experts and Ma-
chines United Against Cyberbullying

38 Danny Plass-Oude Bos (UT) Making
brain-computer interfaces better: im-
proving usability through post-processing

39 Jasmina Maric (UvT) Web Communi-
ties, Immigration, and Social Capital

40 Walter Omona (RUN) A Framework for
Knowledge Management Using ICT in
Higher Education

41 Frederic Hogenboom (EUR) Automated
Detection of Financial Events in News
Text

42 Carsten Eijckhof (CWI/TUD) Contex-
tual Multidimensional Relevance Models

43 Kevin Vlaanderen (UU) Supporting Pro-
cess Improvement using Method Incre-
ments

44 Paulien Meesters (UvT) Intelligent
Blauw: Intelligence-gestuurde politiezorg
in gebiedsgebonden eenheden

45 Birgit Schmitz (OUN) Mobile Games for
Learning: A Pattern-Based Approach

46 Ke Tao (TUD) Social Web Data Analyt-
ics: Relevance, Redundancy, Diversity

47 Shangsong Liang (UvA) Fusion and Di-
versification in Information Retrieval

2015

1 Niels Netten (UvA) Machine Learning
for Relevance of Information in Crisis
Response

2 Faiza Bukhsh (UvT) Smart auditing: In-
novative Compliance Checking in Cus-
toms Controls

3 Twan van Laarhoven (RUN) Machine
learning for network data

4 Howard Spoelstra (OUN) Collaborations
in Open Learning Environments

5 Christoph Bösch (UT) Cryptographically
Enforced Search Pattern Hiding

6 Farideh Heidari (TUD) Business Pro-
cess Quality Computation: Comput-
ing Non-Functional Requirements to Im-
prove Business Processes

7 Maria-Hendrike Peetz (UvA) Time-
Aware Online Reputation Analysis

8 Jie Jiang (TUD) Organizational Compli-
ance: An agent-based model for design-
ing and evaluating organizational inter-
actions

9 Randy Klaassen (UT) HCI Perspectives
on Behavior Change Support Systems

10 Henry Hermans (OUN) OpenU: design of
an integrated system to support lifelong
learning

11 Yongming Luo (TUe) Designing algo-
rithms for big graph datasets: A study
of computing bisimulation and joins

12 Julie M. Birkholz (VUA) Modi Operandi
of Social Network Dynamics: The Ef-
fect of Context on Scientific Collabora-
tion Networks

13 Giuseppe Procaccianti (VUA) Energy-
Efficient Software

14 Bart van Straalen (UT) A cognitive ap-
proach to modeling bad news conversa-
tions

15 Klaas Andries de Graaf (VUA) Ontology-
based Software Architecture Documenta-
tion

16 Changyun Wei (UT) Cognitive Coordina-
tion for Cooperative Multi-Robot Team-
work

17 André van Cleeff (UT) Physical and Dig-
ital Security Mechanisms: Properties,
Combinations and Trade-offs

18 Holger Pirk (CWI) Waste Not, Want
Not!: Managing Relational Data in
Asymmetric Memories

19 Bernardo Tabuenca (OUN) Ubiquitous
Technology for Lifelong Learners

20 Löıs Vanhée (UU) Using Culture and
Values to Support Flexible Coordination

21 Sibren Fetter (OUN) Using Peer-Support
to Expand and Stabilize Online Learning

22 Zhemin Zhu (UT) Co-occurrence Rate
Networks

23 Luit Gazendam (VUA) Cataloguer Sup-
port in Cultural Heritage

305

SIKS Dissertation Series

24 Richard Berendsen (UvA) Finding Peo-
ple, Papers, and Posts: Vertical Search
Algorithms and Evaluation

25 Steven Woudenberg (UU) Bayesian
Tools for Early Disease Detection

26 Alexander Hogenboom (EUR) Sentiment
Analysis of Text Guided by Semantics
and Structure

27 Sándor Héman (CWI) Updating Com-
pressed Column Stores

28 Janet Bagorogoza (TiU) Knowledge
Management and High Performance:
The Uganda Financial Institutions
Model for HPO

29 Hendrik Baier (UM) Monte-Carlo Tree
Search Enhancements for One-Player
and Two-Player Domains

30 Kiavash Bahreini (OU) Real-time Mul-
timodal Emotion Recognition in E-
Learning

31 Yakup Koç (TUD) On the Robustness of
Power Grids

32 Jerome Gard (UL) Corporate Venture
Management in SMEs

33 Frederik Schadd (TUD) Ontology Map-
ping with Auxiliary Resources

34 Victor de Graaf (UT) Gesocial Recom-
mender Systems

35 Jungxao Xu (TUD) Affective Body Lan-
guage of Humanoid Robots: Perception
and Effects in Human Robot Interaction

2016

1 Syed Saiden Abbas (RUN) Recognition of
Shapes by Humans and Machines

2 Michiel Christiaan Meulendijk (UU) Op-
timizing Medication Reviews through De-
cision Support: Prescribing a Better Pill
to Swallow

3 Maya Sappelli (RUN) Knowledge Work
in Context: User Centered Knowledge
Worker Support

4 Laurens Rietveld (VUA) Publishing and
Consuming Linked Data

5 Evgeny Sherkhonov (UVA) Expanded
Acyclic Queries: Containment and an
Application in Explaining Missing An-
swers

6 Michel Wilson (TUD) Robust Scheduling
in an Uncertain Environment

7 Jeroen de Man (VUA) Measuring and
Modeling Negative Emotions for Virtual
Training

8 Matje van de Camp (TiU) A Link to
the Past: Constructing Historical Social
Networks from Unstructured Data

9 Archana Nottamkandath (VUA) Trust-
ing Crowdsourced Information on Cul-
tural Artefacts

10 George Karafotias (VUA) Parameter
Control for Evolutionary Algorithms

11 Anne Schuth (UVA) Search Engines that
Learn from Their Users

12 Max Knobbout (UU) Logics for Mod-
elling and Verifying Normative Multi-
Agent Systems

13 Nana Baah Gyan (VUA) The Web,
Speech Technologies and Rural Develop-
ment in West Africa - An ICT4D Ap-
proach

14 Ravi Khadka (UU) Revisiting Legacy
Software System Modernization

15 Steffen Michels (RUN) Hybrid Probabilis-
tic Logics - Theoretical Aspects, Algo-
rithms and Experiments

16 Guangliang Li (UVA) Socially Intelligent
Autonomous Agents that Learn from Hu-
man Reward

17 Berend Weel (VUA) Towards Embodied
Evolution of Robot Organisms

18 Albert Meroño Peñuela (VUA) Refining
Statistical Data on the Web

19 Julia Efremova (Tu/e) Mining Social
Structures from Genealogical Data

20 Daan Odijk (UVA) Context & Semantics
in News & Web Search

21 Alejandro Moreno Célleri (UT) From
Traditional to Interactive Playspaces:
Automatic Analysis of Player Behavior
in the Interactive Tag Playground

22 Grace Lewis (VUA) Software Architec-
ture Strategies for Cyber-Foraging Sys-
tems

306

	Introduction
	Motivation
	Mobile Cloud Computing and Cyber-Foraging
	Software Architecture and Cyber-Foraging
	Research Questions
	Thesis at a Glance
	Research Methods
	Outline of Thesis and Publications

	A Systematic Literature Review of Architectural Design Decisions for Cyber-Foraging Systems
	Research Protocol
	Research Question
	Search Strategy
	Inclusion and Exclusion Criteria
	Validation

	Identification of Primary Studies
	Round 1
	Round 2
	Final Round

	Categorization of Primary Studies
	Studies Per Type
	Studies Per Year

	Threats to Validity
	Analysis of Primary Studies
	Categorization of Architecture Decisions
	Where to Offload
	When to Offload
	What to Offload

	Analysis Results
	Where to Offload
	When to Offload
	What to Offload

	Main Observations and Findings from Primary Studies
	Related Work
	Summary and Conclusions

	Architectural Tactics for Cyber-Foraging
	Introduction
	Functional Architectural Tactics for Cyber-Foraging
	Computation Offload
	Data Staging
	Pre-Fetching
	In-Bound Pre-Processing
	Out-Bound Pre-Processing

	Surrogate Provisioning
	Pre-Provisioned Surrogate
	Surrogate Provisioning from the Mobile Device
	Surrogate Provisioning from the Cloud

	Surrogate Discovery
	Local Surrogate Directory
	Cloud Surrogate Directory
	Surrogate Broadcast

	Non-Functional Architectural Tactics for Cyber-Foraging
	Resource Optimization
	Runtime Partitioning
	Runtime Profiling
	Resource-Adapted Computation

	Fault Tolerance
	Local Fallback
	Opportunistic Mobile-Surrogate Data Synchronization
	Cached Results
	Alternate Communications
	Eager Migration

	Scalability/Elasticity
	Just-in-Time Containers
	Right-Sized Containers
	Surrogate Load Balancing

	Security
	Trusted Surrogates

	Summary and Conclusions

	Case Study 1: Tactical Cloudlets — Cyber-Foraging for Computation Offload
	Introduction
	Case Study Design
	Research Questions
	Data Collection Procedure
	Analysis Procedure

	Results
	System Context
	System Requirements
	Functional Requirements
	Non-Functional Requirements

	System Architecture and Design
	Mapping of Architectural Design Decisions to Architectural Tactics
	Computation Offload
	Pre-Provisioned Surrogate
	Surrogate Broadcast
	Just-in-Time Containers

	Analysis
	Mapping between Tactics and Requirements
	Discussion of Tactics for System Enhancements
	Findings

	Threats to Validity

	Conclusions
	Acknowledgments

	Case Study 2: GigaSight — Cyber-Foraging for Data Staging
	Introduction
	Case Study Design
	Research Questions
	Data Collection Procedure
	Analysis Procedure

	Results
	System Context
	System Requirements
	Functional Requirements
	Non-Functional Requirements

	System Architecture and Design
	Mapping of Architectural Design Decisions to Architectural Tactics
	Out-Bound Pre-Processing
	Pre-Provisioned Surrogate
	Local Surrogate Directory
	Client-Side Data Caching

	Analysis
	Mapping between Tactics and Requirements
	Discussion of Tactics for System Enhancements
	Findings

	Threats to Validity

	Conclusions
	Acknowledgments

	Case Study 3: AgroTempus — Using Architectural Tactics for Cyber-Foraging Systems Development
	Introduction
	Case Study Design
	Research Questions
	Data Collection Procedure
	Analysis Procedure

	Results
	System Context
	System Requirements
	Functional Requirements
	Non-Functional Requirements
	Constraints and Assumptions

	Mapping of System Requirements to Architectural Tactics
	Computation Offload
	Out-Bound Pre-Processing
	Pre-Fetching
	Pre-Provisioned Surrogate
	Surrogate Broadcast
	Cached Results
	Client-Side Data Caching
	Just-in-Time Containers

	System Architecture and Design
	Mapping of Architectural Components to System Requirements
	Mapping of Architectural Components to Identified Architectural Tactics
	Computation Offload
	Out-Bound Pre-Processing
	Pre-Fetching
	Pre-Provisioned Surrogate
	Surrogate Broadcast
	Cached Results
	Client-Side Data Caching
	Just-in-Time Containers

	System Implementation
	Analysis
	System Evaluation
	Developer Observation and Feedback
	Findings

	Threats to Validity

	Conclusions
	Acknowledgments

	Characterization of Cyber-Foraging Usage Contexts
	Introduction
	Analysis
	Cyber-Foraging Usage Contexts
	Computation Offload Usage Contexts
	Usage Context 1: Computation-Intensive Mobile Applications (Short Operations)
	Dynamic Environments
	Usage Context 2: Mobile Applications in Low Coverage Environments.
	Usage Context 3: Computation-Intensive Mobile applications (Long Operations).
	Usage Context 4: Computation-Intensive Mobile Applications in Hostile Environments.
	Usage Context 5: Public Surrogates.

	Data Staging Usage Contexts
	Usage Context 6: Sensing Applications
	Usage Context 7: Data-Intensive Mobile Applications

	Summary and Conclusions

	Decision Model for Cyber-Foraging Systems
	Introduction
	Mapping the Problem Space to the SolutionSpace
	How to Use the Decision Models
	Decision Models for Cyber-Foraging Systems
	Data Staging
	Surrogate Provisioning
	Surrogate Discovery
	Resource Optimization
	Fault Tolerance
	Scalability and Elasticity
	Security
	Credential Exchange
	Credential Validation

	Validation
	Related Work
	Conclusions

	Conclusions
	Contributions
	RQ1: What Software Architecture Design Decisions for Cyber-Foraging Systems can be Identified in the Literature?
	RQ2: What Architectural Tactics can be Derived from the Identified Architectural Design Decisions?
	RQ3: What are the Usage Domains and Contexts (Defined in Terms of Functional and Non-Functional Requirements) that Benefit from Cyber-Foraging?
	RQ4: How to Support Architectural Design Decision Making in Cyber-Foraging Systems?

	Future Research
	Extension of the Tactics Catalog
	Quantitative Analysis of the Impact of Tactics Selection
	Tools for the Development and Analysis of Cyber-Foraging Systems
	Architecture Patterns for Cyber-Foraging Systems

