
A

Consistency in Non-Transactional Distributed Storage Systems

Paolo Viotti, EURECOM
Marko Vukolić, IBM RESEARCH - ZURICH

Over the years, different meanings have been associated to the word consistency in the distributed systems
community. While in the ’80s “consistency” typically meant strong consistency, later defined also as lineariz-
ability, in recent years, with the advent of highly available and scalable systems, the notion of “consistency”
has been at the same time both weakened and blurred.

In this paper we aim to fill the void in literature, by providing a structured and comprehensive overview
of different consistency notions that appeared in distributed systems, and in particular storage systems
research, in the last four decades. We overview more than 50 different consistency notions, ranging from
linearizability to eventual and weak consistency, defining precisely many of these, in particular where
the previous definitions were ambiguous. We further provide a partial order among different consistency
predicates, ordering them by their semantic “strength”, which we believe will reveal useful in future research.
Finally, we map the consistency semantics to different practical systems and research prototypes.

The scope of this paper is restricted to non-transactional semantics, i.e., those that apply to single storage
object operations. As such, our paper complements the existing surveys done in the context of transactional,
database consistency semantics.

Categories and Subject Descriptors: H.3.4 [Information storage and retrieval]: System and software—
Distributed systems

General Terms: Design, Reliability, Verification

Additional Key Words and Phrases: Consistency, Distributed storage

ACM Reference Format:
Paolo Viotti, Marko Vukolić, 2016. Consistency in Non-Transactional Distributed Storage Systems. ACM
Comput. Surv. V, N, Article A (January YYYY), 35 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Faced with the inherent challenges of failures, communication/computation asynchrony
and concurrent access to shared resources, distributed system designers have continu-
ously sought to hide these fundamental concerns from users by offering abstractions
and semantic models of various strength. At first glance, the ultimate goal of a dis-
tributed system is seemingly simple, as it should ideally be just a fault-tolerant and
more scalable version of a centralized system. Namely, an ideal distributed system
should leverage distribution and replication to boost availability by masking failures,
provide scalability and/or reduce latency, but maintain the simplicity of use of a cen-
tralized system – and, notably, its consistency – providing the illusion of sequential
access. Such strong consistency criteria can be found in early seminal works that paved
the way of modern storage systems, e.g., [Lamport 1978; Lamport 1986a], as well as in
the subsequent advances in defining general, practical correctness conditions, such as
linearizability [Herlihy and Wing 1990].

Unfortunately, the goals of high availability and strong consistency, in particular
linearizability, have been identified as mutually conflicting in many practical circum-

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© YYYY ACM. 0360-0300/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 P. Viotti and M. Vukolić

stances. Negative theoretical results and lower bounds, such as the FLP impossibility
result [Fischer et al. 1985] and the CAP theorem [Gilbert and Lynch 2002], shaped
the design space of distributed systems. As a result, distributed system designers have
either to give up the idealized goals of scalability and availability, or relax consistency.

In recent years, the rise of commercial Internet-scale wide area computing caused
system designers to prefer availability over consistency, leading to the advent of weak
and eventual consistency [Terry et al. 1994; Saito and Shapiro 2005; Vogels 2008].
Consequently, much research has been focusing on attaining a better understanding
of those weaker semantics [Bailis and Ghodsi 2013], but also on adapting [Bailis et al.
2014] or dismissing and replacing stronger ones [Helland 2007]. Along this line of
research, tools have been conceived in order to deal with consistency at the level
of programming languages [Alvaro et al. 2011], data objects [Shapiro et al. 2011a;
Burckhardt et al. 2012] or data flows [Alvaro et al. 2014].

Today, however, after roughly four decades of intensive and exciting research on
various flavors of consistency, we lack a structured and comprehensive overview of
different consistency notions that appeared in distributed systems research, and storage
systems research, in particular.

This paper aims to help fill this void, by giving an overview of over 50 different
consistency notions, ranging from linearizability to eventual and weak consistency,
defining precisely many of these, in particular where the previous definitions were
ambiguous. We further provide a partial order among different consistency notions, or-
dering them by their semantic “strength”, which we believe will reveal useful in further
research. Finally, we map the consistency semantics to different practical systems and
research prototypes. The scope of this paper is restricted to non-transactional semantics
that apply to single storage object operations. We focus on non-transactional storage
systems as they have become increasingly popular in recent years due to their simple
implementations and good scalability. As such, our paper complements the existing
surveys done in the context of transactional, database consistency semantics (see, e.g.,
[Adya 1999]), which we omit for space limitations.

This survey is organized as follows. In Section 2 we define our model of a distributed
system and set up the framework for reasoning about different consistency semantics.
In order to ensure the broadest coverage of our work, we model the distributed system
as asynchronous, i.e., without predefined constraints on timing of computation and
communication. Our framework, which we derive from the work of Burckhardt [2014],
captures the dynamic aspects of a distributed system, through histories and abstract
executions of such systems. We define an execution as a set of actions (i.e., operations)
invoked by some processes on the storage objects through their interface. To analyze
executions we adopt the notion of history, i.e., the set of operations of a given execution.
Leveraging the information attached to the history, we are able to properly capture
the intrinsic complexity of executions. Namely, we can group and relate operations
according to their features (e.g., by the processes and objects they refer to, and by their
timings), or by the dynamic relationships established during executions (e.g., causality).
Additionally, abstract executions augment histories with orderings of operations that
account for the resolution of write conflicts and their propagation within the storage
system.

Section 3 brings the main contribution of our paper: a survey of more than 50
different consistency semantics proposed in the context of non-transactional distributed

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Consistency in Non-Transactional Distributed Storage Systems A:3

storage systems.1 We define many of these models employing the framework specified in
Section 2, i.e., using declarative compositions of logic predicates over graph entities. In
turn, these definitions enable us to establish the hierarchical partial order of consistency
semantics according to their semantic strengths (given in Figure 1 of Section 3). For
better readability, we also loosely classify consistency semantics into ten families, which
group them by their common traits.

We discuss our work in the context of related consistency surveys in Section 4 and con-
clude in Section 5. We further complement our survey with a summary of all consistency
predicates defined in this work (Appendix A). In addition, for all consistency models
mentioned in this work, we provide references to their original, primary definitions, as
well as pointers to research papers that propose related implementations (Appendix B).
Specifically, we reference implementations that appeared in recent proceedings of the
most relevant venues. We believe that this is a useful contribution on its own, as it
will allow distributed systems researchers and, in particular, students, to navigate
more easily through the very large number of research papers that deal with different
subtleties of consistency.

2. SYSTEM MODEL
In this section, we specify the main notions behind the reasoning about consistency
semantics carried out in the rest of this paper. We rely on the concurrent objects
abstraction, as presented by Lynch and Tuttle [1989] and by Herlihy and Wing [1990],
for the definitions of fundamental “static” elements of the system, such as objects and
processes. Moreover, to reason about dynamic behaviors of the system (i.e., executions),
we build upon the mathematical framework laid out in [Burckhardt 2014].

2.1. Preliminaries
Objects and Processes. We consider a distributed system consisting of a finite set of

processes, modeled as I/O automata [Lynch and Tuttle 1989], interacting with shared
(or concurrent) objects through a fully connected asynchronous communication network.
Unless stated otherwise, processes and shared objects (or, simply, objects) are correct,
i.e., they do not fail. Each process and object is identified by a unique identifier. We
define ProcessIds as the set of all process identifiers and ObjectIds as the set of all object
identifiers.

Additionally, each object has a unique object type. Depending on the type, the object
can assume values belonging to a defined domain denoted by Values,2 and it supports a
set of primitive operation types (i.e., OpTypes = {rd, wr, inc, . . .}) that provide the only
means to manipulate that object. For simplicity and without loss of generality, unless
specified otherwise, in this work we further classify operations as either reads (rd)
or writes (wr). Namely, we model as a write (or update) any operation that modifies
the value of the object, while, conversely, reads return to the caller the current value
held by the object’s replica without causing any change to it. We adopt the term object
replicas, or simply replicas, to refer to the different copies of a same named shared
object maintained in the storage system for fault tolerance or performance enhancement.
Ideally, replicas of the same shared object should hold the same data at any time. The
coordination protocols among replicas are however determined by the implementation
of the shared object.

1Note that, while this paper focuses on survey of consistency semantics proposed in the context of distributed
storage, our approach maintains generality as our consistency definitions are applicable to other replicated
data structures beyond distributed storage.
2For readability, we adopt a notation in which a set Values is implicitly parametrized by object type.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 P. Viotti and M. Vukolić

Time. Unless specified otherwise, we assume an asynchronous computation and
communication model, with no bounds on computation and communication latencies.
However, when describing certain consistency semantics, we will be using terms such
as recency or staleness. Such terms relate to the concept of real time, i.e., an ideal and
global notion of time that we use to reason about histories a posteriori, although it is
not accessible by processes during executions. We refer to the real time domain as Time,
which we model as the set of positive real numbers, i.e., R+.

2.2. Operations, Histories and Abstract Executions
Operations. We describe an operation issued by a process on a shared object as the

tuple (proc, type, obj, ival, oval, stime, rtime), where:

— proc ∈ ProcessIds is the id of the process invoking the operation.
— type ∈ OpTypes is the operation type.
— obj ∈ ObjectIds is the id of the object on which the operation is invoked.
— ival ∈ Values is the operation input value.
— oval ∈ Values ∪{∇} is the operation output value, or∇ if the operation does not return.
— stime ∈ Time is the operation invocation time.
— rtime ∈ Time ∪ {Ω} is the operation return time, or Ω if the operation does not return.

By convention, we use the special value t ∈ Values to represent the input value (i.e.,
ival) of reads and, possibly, the return value (i.e., oval) of writes. For simplicity, given
operation op, we will use the notation op.par to access its parameter named par as
expressed in the tuple (e.g., op.type represents its type, and op.ival its input value).

Histories. A history H is a set of operations. Intuitively, a history contains all opera-
tions invoked in a given execution. We further denote by H|wr (resp., H|rd) the set of
write (resp., read) operations of a given history H (e.g., H|wr = {op ∈ H : op.type = wr}).

We further define the following relations on elements of a history:3

— rb (returns-before) is a natural partial order on H based on real-time precedency.
Formally: rb , {(a, b) : a, b ∈ H ∧ a.rtime < b.stime}.

— ss (same-session) is an equivalence relation on H that groups pairs of operations
invoked by the same process — we say such operations belong to the same session.
Formally: ss , {(a, b) : a, b ∈ H ∧ a.proc = b.proc}.

— so (session order) is a partial order defined as: so , rb ∩ ss.
— ob (same-object) is an equivalence relation onH that groups pairs of operations invoked

on the same object. Formally: ob , {(a, b) : a, b ∈ H ∧ a.obj = b.obj}.
— concur as the symmetric binary relation designating all pairs of real-time concurrent

operations invoked on the same object. Formally: concur , ob \ rb.

For (a, b) ∈ rel we sometimes alternatively write a rel−→ b. We further denote by rel−1 the
inverse relation of rel. For the sake of a more compact notation, we use binary relation
projections. For instance, rel|wr→rd identifies all pairs of operations belonging to rel
consisting of a write and a read operation. Furthermore, if rel is an equivalence relation,
we adopt the notation a ≈rel b , [a

rel−→ b]. We recall that an equivalence relation rel on
set H partitions H into equivalence classes [a]rel = {b ∈ H : b ≈rel a}. We write H/ ≈rel

to denote the set of equivalence classes determined by rel.

3For better readability, we implicitly assume relations are parametrized by a history.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Consistency in Non-Transactional Distributed Storage Systems A:5

We complement the concur relation with the function Concur : H → 2H to denote the
set of write operations concurrent with a given operation:

Concur(a) , {b ∈ H|wr : (a, b) ∈ concur} (1)

Abstract executions. We model system executions using the concept of abstract execu-
tion, following Burckhardt [2014]. An abstract execution is a multi-graphA = (H, vis, ar)
built on a given history H, which it complements with two relations on elements of H,
i.e., vis and ar. Whereas histories describe the observable outcomes of executions, vis
and ar, intuitively, capture the non-determinism of the asynchronous environment (e.g.,
message delivery order), as well as implementation-specific constraints (e.g., conflict-
resolution policies). In other words, vis and ar determine the relations between pairs of
operations in a history that explain and justify its outcomes. More specifically:

— vis (visibility) is an acyclic natural relation that accounts for the propagation of write
operations. Intuitively, a be visible to b (i.e., a vis−→ b) means that the effects of a are
visible to the process invoking b (e.g., b may read a value written by a). Two write
operations are invisible to each other if they are not ordered by vis.

— ar (arbitration) is a total order on operations of the history that specifies how the
system resolves conflicts due to concurrent and invisible operations. In practice, such
total order can be achieved in various ways: through the adoption of a distributed
timestamping [Lamport 1978] or consensus protocol [Birman et al. 1991; Hadzilacos
and Toueg 1994; Lamport 2001], using a centralized serializer, or using a deterministic
conflict resolution policy.

Depending on constraints expressed by vis, during an execution processes may
observe different orderings of write operations, which we call serializations.

We further define the happens-before order (hb) as the transitive closure of the union
of so and vis, denoted by:

hb , (so ∪ vis)+ (2)

2.3. Replicated data types and return value consistency
Rather than defining the current system state as a set of values held by shared objects,
following Burckhardt [2014], we employ a graph abstraction called (operation) context,
which encodes the information of an abstract execution A, taking a projection on
visibility (vis) with respect to a given operation op. Formally, given C as the set of
contexts of all operations in a given abstract execution A, we define the context of an
operation op as:

C = cxt(A, op) , A|op,vis−1(op),vis,ar (3)

Further, we adopt the concept of replicated data type [Burckhardt 2014] to define the
type of shared object implemented in the distributed system (e.g., read/write register,
counter, set, queue, etc.). For each replicated data type, a function F specifies the
set of intended return values of an operation op ∈ H in relation to its context, i.e.,
F(op, cxt(A, op)). Using F , we can define return value consistency as:

RVAL(F) , ∀op ∈ H : op.oval ∈ F(op, cxt(A, op)) (4)

Essentially, return value consistency is a predicate on abstract executions that guaran-
tees that the return value of any given operation of that execution will belong to the set
of its intended return values.

Given operation b ∈ H and its context cxt(A, b), we let a = prec(b) be the (unique)
latest operation preceding b in ar, such that: a.oval 6= ∇∧ a ∈ H|wr ∩ vis−1(b). In other

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 P. Viotti and M. Vukolić

words, prec(b) is the last write visible to b according to the ordering specified by ar. If no
such preceding operation exists (e.g., if b is the first operation of the execution according
to ar), by convention prec(b).ival is a default value equal to ⊥.

In this paper we adopt the read/write register (i.e., read/write storage) as reference
replicated data type, which is defined by the following intended return value function:

Freg(op, cxt(A, op)) = prec(op).ival (5)

Note that, while the focus of this survey is on read/write storage, the consistency
predicates defined in this paper take F as a parameter, and therefore directly extend to
other replicated data types.

2.4. Consistency semantics
Following Burckhardt [2014], we define consistency semantics, sometimes also called
consistency guarantees, as conditions on attributes and relations of abstract executions,
expressed as first-order logic predicates. We write A |= P if the consistency predicate
P is true for abstract execution A. Hence, defining a consistency model amounts to
collecting all the required consistency predicates and then specifying that histories
must be justifiable by at least an abstract execution that satisfies them all.

Formally, given history H and A as the set of all possible abstract executions on H, we
say that history H satisfies some consistency predicates P1, . . .Pn if it can be extended
to some abstract execution that satisfies them all:

H |= P1 ∧ · · · ∧ Pn ⇔ ∃A ∈ A : H(A) = H ∧A |= P1 ∧ · · · ∧ Pn (6)

In the notation above, given the abstract execution A = (H, vis, ar), H(A) denotes H.

3. NON-TRANSACTIONAL CONSISTENCY SEMANTICS
In this section we analyze and survey the consistency semantics of systems which
adopt single operations as their primary operational constituent (i.e., non-transactional
consistency semantics). The consistency models described in the rest of the paper appear
in Figure 1, a comprehensive graph that proposes a partial ordering of consistency
semantics according to their semantic strength, as well as a more loosely defined
clustering into families of consistency models. This classification draws both from
strength of different consistency semantics and from the underlying common factors
that underpin their definitions.

In the remainder of this section we examine each family of consistency semantics.
Section 3.1 introduces linearizability and other strong consistency models, while in
Section 3.2 we consider eventual and weak consistency. Next we analyze PRAM and
sequential consistency (Section 3.3), and, in Section 3.4, the models based on the concept
of session. Section 3.5 proposes an overview of consistency semantics explicitly dealing
with causality, while in Section 3.6 we study staleness-based models. This is followed
by an overview of fork-based models (Section 3.7). Section 3.8 and 3.9 respectively deal
with tunable and per-object semantics. Finally, we survey the family of consistency
models based on synchronization primitives (Section 3.10).

3.1. Linearizability and related “strong” consistency semantics
The gold standard and the central consistency model for non-transactional systems is
linearizability, defined by Herlihy and Wing [1990]. Roughly speaking, linearizability
is a correctness condition that establishes that each operation shall appear to be applied
instantaneously at a certain point in time between its invocation and its response.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Consistency in Non-Transactional Distributed Storage Systems A:7

L
inearizability

Sequential

R
egular

Safe

Eventual

C
ausal+

R
eal-tim

e
causal

C
ausalR

ead-your-w
rites

(R
Y

W
)

M
onotonic R

eads
(M

R
)

W
rites-follow

-reads
(W

FR
)

M
onotonic W

rites
(M

W
)

PR
A

M

(FIFO
)

Fork

Fork*

Fork-join
causal

B
ounded

fork-join
causal

Fork
sequential

Eventual
linearizability

Tim
ed serial

&
 ∆,Γ-atom

icity

Processor

Fork-based
m

odels

Slow
m

em
ory

Per-object
m

odels

Per-record
tim

eline
&

C
oherence

Tim
ed

causal

B
ounded

staleness
&

D
elta

W
eak

fork-lin.
Strong

eventual

Q
uiescent

W
eak

k-regular

k-safe

PB
S

k-staleness

k-atom
icity

R
elease

W
eak ordering

Location

Scope

Lazy release

Entry

Synchronized
m

odels

C
ausal

m
odels

Staleness-based
m

odels

Per-object
causal

Per-key
sequential

Prefix
linearizable

Prefix
sequential

PB
S

t-visibility

H
ybrid

Tunable
R

ationing
R

edB
lue

C
onit

V
ector-field

PB
S <k,t>-staleness

C
om

posite and tunable
m

odels

Session m
odels

Eventual
serializability

Fig. 1: Hierarchy of non-transactional consistency models.
A directed edge from consistency semantics A to consistency semantics B means that any execution that

satisfies B also satisfies A. Underlined models explicitly reason about timing guarantees.
ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 P. Viotti and M. Vukolić

Linearizability, often informally dubbed strong consistency,4 has been for long regarded
as the ideal correctness condition at which distributed storage implementations should
aim. Linearizability features a locality property: a composition of linearizable objects is
itself linearizable – hence, linearizability enables modular design and verification.

Although very intuitive to understand, the strong semantics of linearizability make
it challenging to implement. In this regard, Gilbert and Lynch [2002], formally proved
the CAP theorem, an assertion informally presented in previous works [Johnson and
Thomas 1975; Davidson et al. 1985; Coan et al. 1986; Brewer 2000], that binds lin-
earizability to the ability of a system of maintaining a non-trivial level of availability
when confronted with network partitions. In a nutshell, the CAP theorem states that
in presence of network partitions a distributed storage system has to sacrifice either
availability or linearizability.

Burckhardt [2014] breaks down linearizability into three components:

LINEARIZABILITY(F) , SINGLEORDER ∧ REALTIME ∧ RVAL(F) (7)

where:

SINGLEORDER , ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : vis = ar \ (H ′ ×H) (8)

and

REALTIME , rb ⊆ ar (9)

In other words, SINGLEORDER imposes a single global order that defines both vis and ar,
whereas REALTIME constrains arbitration (ar) to comply to the returns-before partial
ordering (rb). Finally, RVAL(F) specifies the return value consistency of a replicated
data type. We recall that, as per Eq. 5, in case of read/write storage this is the value
written by the last write (according to ar) visible to a given read operation rd.

A definition tightly related to that one of linearizability had been previously provided
by Lamport [1986b] for the atomic register semantic. Lamport describes a single-
writer multi-reader (SWMR) shared register to be atomic iff each read operation not
overlapping a write returns the last value actually written on the register, and the
read values are the same as if the operations had been performed sequentially (i.e.,
without overlapping). Essentially, this definition implies the existence of a point in
time (the linearization point) at which each operation is actually applied on the shared
register.5 It is easy to show that atomicity and linearizability are equivalent for read-
write registers. However, linearizability is a more general condition designed for generic
shared data structures that allow for a broader set of operational semantics than those
offered by registers.

Besides atomic registers, Lamport [1986b] defines two slightly weaker semantics for
SWMR registers: safe and regular. In absence of read-write concurrency, they both
guarantee that a read returns the last written value, exactly like the atomic semantics.
The difference between the three resides in the allowed set of return values for a read
operation concurrent with a write. Namely, with a safe register, a read concurrent with
some write may return any value. On the other hand, with a regular register, a read
operation concurrent with some writes may return either the value written by the
most recent complete write, or a value written by a concurrent write. This difference is
illustrated in Figure 2.

4Note that the adjective “strong” has also been used in literature to identify indistinctly linearizability and
sequential consistency (which we define in Section 3.3), as they both entail single-copy-semantics and require
that a single ordering of operations be observed by all processes.
5The existence of an instant at which each operation becomes atomically visible had originally been postulated
by Lamport [1983].

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Consistency in Non-Transactional Distributed Storage Systems A:9

P
A

P
B

P
C

WRITE(1) WRITE(2)

READ() : x

READ() : 1

Fig. 2: An execution exhibiting read-write concurrency (real time flows from left to right). The
register is initialized to 0. Atomic (linearizable) semantics allow x to be 0 or 1. Regular semantics

allow x to be 0, 1 or 2. With safe semantics x may be any value.

Formally, regular and safe semantics can be defined as follows:

REGULAR(F) , SINGLEORDER ∧ REALTIMEWRITES ∧ RVAL(F) (10)

SAFE(F) , SINGLEORDER ∧ REALTIMEWRITES ∧ SEQRVAL(F) (11)

where

REALTIMEWRITES , rb|wr→op ⊆ ar (12)

is a restriction of real-time ordering only for writes (preceding reads or other writes),
and

SEQRVAL(F) , ∀op ∈ H : Concur(op) = ∅ ⇒ op.oval ∈ F(op, cxt(A, op)) (13)

which restricts the return value consistency only to read operations that are not concur-
rent with any write.

3.2. Weak and eventual consistency
At the opposite end of the consistency spectrum lies weak consistency. Although this
term has been traditionally used in literature to identify any consistency model weaker
than sequential consistency, recent works [Vogels 2008; Bermbach and Kuhlenkamp
2013] associate it to a more specific albeit rather vague definition: a weakly consistent
system does not guarantee that reads return the most recent value written, and several
(often underspecified) requirements have to be satisfied for a value to be returned. In
effect, weak consistency does not provide ordering guarantees – hence, no synchroniza-
tion protocol is actually required. Even though this model might seem to have limited
usability, it is in fact implemented in situations in which having a synchronization
protocol would be too costly, and a fortuitous exchange of information between replicas
can be good enough. For example, a typical use case for weak consistency are the relaxed
caching policies that can be applied across various tiers of a web application, or even
the cache implemented in web browsers.

Eventual consistency is a slightly stronger notion than weak consistency. Namely,
under eventual consistency, replicas converge towards identical copies in the absence of
further updates. In other words, if no new write operations are invoked on the object,
eventually all reads will return the same value. Eventual consistency was first defined
by Terry et al. [1994] and then further popularized more than a decade later by Vogels
[2008] with the advent of highly available storage systems (i.e., AP systems in the
CAP theorem parlance). Eventual consistency is especially suited in contexts where
coordination is not practical or too expensive (e.g., in mobile and wide area settings)
[Saito and Shapiro 2005]. Despite its wide adoption, eventual consistency leaves to the
application programmer the burden of dealing with transient anomalies – i.e., behaviors
deviating from that of an ideal linearizable execution. Hence, a quite large body of
recent work has been aiming to achieve a better understanding of its subtle implications
[Bermbach and Tai 2011; Bernstein and Das 2013; Bailis and Ghodsi 2013; Bailis et al.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 P. Viotti and M. Vukolić

2014]. At its core, eventual consistency constrains replicas’ eventual state (i.e., their
convergence): in fact it does not provide any guarantees about recency and ordering of
operations. Burckhardt [2014] proposes a formal definition of eventual consistency:

EVENTUALCONSISTENCY(F) ,

EVENTUALVISIBILITY ∧ NOCIRCULARCAUSALITY ∧ RVAL(F) (14)

where:

EVENTUALVISIBILITY , ∀a ∈ H,∀[f] ∈ H/ ≈ss:

|{b ∈ [f] : (a
rb−→ b) ∧ (a

vis
b)}| <∞ (15)

and

NOCIRCULARCAUSALITY , acyclic(hb) (16)

that is, the acyclic projection of hb, defined in Eq. 2. EVENTUALVISIBILITY mandates
that, eventually, operation op will be visible to another operation op′ invoked after the
completion of op.

In an alternative attempt at clarifying the definition of eventual consistency, Shapiro
et al. [2011a] identify the following properties from replicas’ viewpoint:

— Eventual delivery: if some correct replica applies a write operation op, op is eventually
applied by all correct replicas;

— Convergence: all correct replicas that have applied the same write operations eventu-
ally reach equivalent state;

— Termination: all operations complete.

To this definition of eventual consistency, Shapiro et al. [2011a] add the following
constraint:

— Strong convergence: all correct replicas that have applied the same write operations
have equivalent state.

In other words, this last property guarantees that any two replicas that have applied
the same (possibly unordered) set of writes will hold the same data. A storage system
enforcing both eventual consistency and strong convergence is said to implement strong
eventual consistency.

We capture strong convergence from the perspective of read operations, by requiring
that reads which have the identical sets of visible writes return the same values.

STRONGCONVERGENCE , ∀a, b ∈ H|rd : vis−1(a)|wr = vis−1(b)|wr ⇒ a.oval = b.oval
(17)

Then, strong eventual consistency can be defined as:

STRONGEVENTUALCONSISTENCY(F) ,

EVENTUALCONSISTENCY(F) ∧ STRONGCONVERGENCE (18)

Quiescent consistency [Herlihy and Shavit 2008] requires that if an object stops
receiving updates (i.e., becomes quiescent), then the execution is equivalent to some
sequential execution containing only complete operations. Although this definition
resembles eventual consistency, it does not guarantee termination: a system that
does not stop receiving updates will not reach quiescence, thus replicas convergence.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Consistency in Non-Transactional Distributed Storage Systems A:11

Following [Burckhardt 2014], we formally define quiescent consistency as:

QUIESCENTCONSISTENCY(F) , |H|wr| <∞⇒
∃C ∈ C : ∀[f] ∈ H/ ≈ss: |{op ∈ [f] : op.oval /∈ F(op, C)}| <∞ (19)

3.3. PRAM and sequential consistency
Pipeline RAM (PRAM or FIFO) consistency [Lipton and Sandberg 1988] prescribes that
all processes see write operations issued by a given process in the same order as they
were invoked by that process. On the other hand, processes may observe writes issued
by different processes in different orders. Thus, no global total ordering is required.
However, the writes from any given process (session) must be serialized in order, as if
they were in a pipeline – hence the name. We define PRAM consistency by requiring
the visibility partial order to be a superset of session order:

PRAM , so ⊆ vis (20)

As proved by Brzezinski et al. [2003], PRAM consistency is ensured iff the system
provides read-your-write, monotonic reads and monotonic writes guarantees, which we
will introduce in Section 3.4.

In a storage system implementing sequential consistency all operations are serial-
ized in the same order on all replicas, and the ordering of operations determined by
each process is preserved. Formally:

SEQUENTIALCONSISTENCY(F) , SINGLEORDER ∧ PRAM ∧ RVAL(F) (21)

Thus, sequential consistency, first defined in [Lamport 1979], is a guarantee of ordering
rather than recency. Like linearizability, sequential consistency enforces a common
global order of operations. Unlike linearizability, sequential consistency does not require
real-time ordering of operations across different sessions: only the real-time ordering
of operations invoked by the same process is preserved (as in PRAM consistency).6
A quantitative comparison of the power and costs involved in the implementation of
sequential consistency and linearizability is presented by Attiya and Welch [1994].

P
A

P
B

W1

W2

W3

W4

W5

W6 W8

W7

Fig. 3: An execution with processes issuing write operations on a shared object.
Black spots are the chosen linearization points.

Figure 3 shows an execution featuring two processes issuing write operations on a
shared object. Let us suppose that the two processes also continuously perform read
operations. Each process will observe a certain serialization of the write operations. If
we were to assume that the system respects PRAM consistency, those two processes
might observe, for instance, the following two serializations:

SPA
: W1 W2 W3 W5 W4 W7 W6 W8 (S.1)

SPB
: W1 W3 W5 W7 W2 W4 W6 W8 (S.2)

If the system implemented sequential consistency, then SPA
would be equal to SPB

and it would respect the ordering of operations imposed by each writing process. Thus,

6In Section 3.10 we present processor consistency: a model whose semantic strength stands between those of
PRAM and sequential consistency.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 P. Viotti and M. Vukolić

any of (S.1) or (S.2) would be acceptable. On the other hand, assuming the system
implements linearizability, and assigning linearization points as indicated by the points
in Figure 3, (S.3) would be the only allowed serialization:

SLin : W1 W3 W2 W4 W5 W6 W8 W7 (S.3)

3.4. Session guarantees
Session guarantees were first described by Terry et al. [1994]. Although originally de-
fined in connection to client sessions, session guarantees may as well apply to situations
in which the concept of session is more loosely defined and it just refers to a specific
process’ point of view on the execution. We note that previous works in literature have
classified session guarantees as client-centric models [Tanenbaum and van Steen 2007].

Monotonic reads states that successive reads must reflect a non-decreasing set of
writes. Namely, if a process has read a certain value v from an object, any successive
read operation will not return any value written before v. Intuitively, a read operation
can be served only by those replicas that have executed all write operations whose
effects have already been observed by the requesting process. In effect, we can represent
this by saying that, given three operations a, b, c ∈ H, if a vis−−→ b and b so−→ c, where b and
c are read operations, then a

vis−−→ c, i.e., the transitive closure of vis and so is included
in vis.

MONOTONICREADS , ∀a ∈ H,∀b, c ∈ H|rd : a
vis−−→ b ∧ b so−→ c⇒ a

vis−−→ c

, (vis; so|rd→rd) ⊆ vis (22)

Read-your-writes guarantee (also called read-my-writes [Terry et al. 2013; Burck-
hardt 2014]) requires that a read operation invoked by a process can only be carried out
by replicas that have already applied all writes previously invoked by the same process.

READYOURWRITES , ∀a ∈ H|wr,∀b ∈ H|rd : a
so−→ b⇒ a

vis−−→ b

, so|wr→rd ⊆ vis (23)

Let us assume that two processes issue read and write operations on a shared object
as in Figure 4.

P
A

P
B

W1

W2

R1

W4

W3

R2 R3

Fig. 4: An execution with processes issuing read and write operations on a shared object.

Given such execution, PA and PB could observe the following serializations, which
satisfy the read-your-write guarantee but not PRAM consistency:

SPA
: W1 W3 W4 W2 (S.4)

SPB
: W2 W4 W3 W1 (S.5)

We note that some works in literature refer to session consistency as a special case of
read-your-writes consistency that can be attained through sticky client sessions, i.e.,
those sessions in which the process always invokes operations on a given replica.

In a system that ensures monotonic writes a write is only performed on a replica
if the replica has already performed all previous writes of the same session. In other

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Consistency in Non-Transactional Distributed Storage Systems A:13

words, replicas shall apply all writes belonging to the same session according to the
order in which they were issued.

MONOTONICWRITES , ∀a, b ∈ H|wr : a
so−→ b ⇒ a

ar−→ b , so|wr→wr ⊆ ar (24)

Writes-follow-reads, sometimes called session causality, is somewhat the converse
concept of read-your-write guarantee as it ensures that writes made during the session
are ordered after any writes made by any process on any object whose effects were seen
by previous reads in the same session.

WRITESFOLLOWREADS , ∀a, c ∈ H|wr,∀b ∈ H|rd : a
vis−−→ b ∧ b so−→ c⇒ a

ar−→ c

, (vis; so|rd→wr) ⊆ ar (25)

We note that some of the session guarantees embed specific notions of causality,
and that in fact, as proved by Brzezinski et al. [2004], causal consistency – which we
describe next – requires and includes them all.

3.5. Causal models
The commonly accepted notion of potential causality in distributed systems has been
enclosed in the definition of the happened-before relation introduced by Lamport [1978].
According to this relation, two operations a and b are ordered if (a) they are both part of
the same thread of execution, (b) b reads a value written by a, or (c) they are related
by a transitive closure leveraging (a) and/or (b). This notion, originally defined in the
context of message passing systems, has been translated to a consistency condition for
shared-memory systems by Hutto and Ahamad [1990]. The potential causality relation
establishes a partial order over operations which we represent as hb in (2). Hence, while
operations that are potentially causally7 related must be seen by all processes in the
same order, operations that are not causally related (i.e., causally concurrent) may be
observed in different orders by different processes. In other words, causal consistency
dictates that all replicas agree on the ordering of causally related operations [Hutto
and Ahamad 1990; Ahamad et al. 1995; Mahajan et al. 2011]. This can be expressed as
the conjunction of two predicates [Burckhardt 2014]:

— CAUSALVISIBILITY , hb ⊆ vis
— CAUSALARBITRATION , hb ⊆ ar

Hence, causal consistency is defined as:

CAUSALITY(F) , CAUSALVISIBILITY ∧ CAUSALARBITRATION ∧ RVAL(F) (26)

Figure 5 represents an execution with two processes writing and reading the value of
a shared object, with arrows indicating the causal relationships between operations.

P
A

P
B

W1

R1

W2

W3

W4

R2 W6

W5

Fig. 5: An execution with processes issuing operations on a shared object.
Arrows express causal relationships between operations.

7While the most appropriate terminology would be “potential causality”, for simplicity, hereafter we will use
“causality”.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 P. Viotti and M. Vukolić

Assuming the execution respects PRAM but not causal consistency, we might have the
following serializations:

SPA
: W1 W2 W4 W5 W3 W6 (S.6)

SPB
: W3 W6 W1 W2 W4 W5 (S.7)

Otherwise, with causal consistency (which implies PRAM), we could have obtained
these serializations:

SPA
: W1 W3 W2 W4 W5 W6 (S.8)

SPB
: W1 W2 W3 W4 W6 W5 (S.9)

Recent work by Bailis et al. [2012] promotes the use of explicit application-level
causality, which is a subset of potential causality,8 for building highly available dis-
tributed systems that would entail less overhead in terms of coordination and metadata
maintenance. Furthermore, an increasing body of research has been drawing attention
on causal consistency, considered as an optimal tradeoff between user-perceived cor-
rectness and coordination overhead, especially in mobile or geo-replicated applications
[Lloyd et al. 2011; Bailis et al. 2013; Zawirski et al. 2015].

Causal+ (or convergent causal) consistency [Lloyd et al. 2011] mandates, in addition
to causal consistency, that all replicas should eventually and independently agree
on conflicts resolution. In fact, causally concurrent write operations may generate
conflicting outcomes which in convergent causal consistent systems are handled in the
same way by commutative and associative functions. Essentially, causal+ strengthens
causal consistency with strong convergence (see Equation (17)), which mandates that
all correct replicas that have applied the same write operations have equivalent state.
In a sense, causal+ consistency augments causal consistency with strong convergence,
in the vein strong eventual consistency [Shapiro et al. 2011a] strengthens eventual
consistency. Hence, causal+ consistency can be expressed as:

CAUSAL+(F) , CAUSALITY(F) ∧ STRONGCONVERGENCE (27)

Real-time causal consistency has been defined in [Mahajan et al. 2011] as a stricter
condition than causal consistency that enforces an additional condition: causally con-
current write operations that do not overlap in real-time must be applied according to
their real-time order.

REALTIMECAUSALITY(F) , CAUSALITY(F) ∧ REALTIME (28)

where REALTIME is defined as in (9).
We note that although [Lloyd et al. 2011] classifies real-time causal consistency as

stronger than causal+ consistency, they are actually incomparable, as real-time causality
— as defined in [Mahajan et al. 2011] — does not imply strong convergence. Of course,
one can devise a variant of real-time causality that respects strong convergence as well.

Attiya et al. [2015] define observable causal consistency as a strengthening of causal
consistency for multi-value registers (MVR) that enforces the exposure of concurrency
between operations when this concurrency may be inferred by processes from their
observations. Observable causal consistency has also been proved to be the strongest
consistency model satisfiable for a certain class of highly-available data stores imple-
menting MVRs.

8As argued in [Bailis et al. 2012], the application-level causality graph would be smaller in fanout and depth
with respect to the traditional causal one, because it would only enclose relevant causal relationships, hinging
on application-level knowledge and user-facing outcomes.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Consistency in Non-Transactional Distributed Storage Systems A:15

3.6. Staleness-based models
Intuitively, staleness based models allow reads to return old, stale written values. They
provide stronger guarantees than eventually consistent semantics, but weak enough to
allow for more efficient implementations than linearizability. In literature, two common
metrics are employed to measure staleness: (real) time and data (object) versions.

To the best of our knowledge, the first formalization of a consistency model explicitly
dealing with time-based staleness is proposed by Singla et al. [1997] as delta consis-
tency. According to delta consistency, writes are guaranteed to become visible at most
after t+ delta time units. Moreover, delta consistency is defined in conjunction with an
ordering criterion (which is reminiscent of the slow memory consistency model, that we
postpone to Section 3.9): writes to a given object by the same process are observed in
the same order by all processes, but no global ordering is enforced for writes to a given
object by different processes.

In an analogous way, timed consistency models, as defined by Torres-Rojas et al.
[1999], restrict the sets of values that read operations may return by the amount of time
elapsed since the preceding writes. Specifically, in a timed serialization all reads occur
on time, i.e., they do not return stale values when there are more recent ones that have
been available for more than ∆ units of time – ∆ being a parameter of the execution. In
other words, similarly to delta consistency, if a write operation is performed at time t,
the value written by this operation must be visible by all processes by time t+ ∆.

Mahajan et al. [2010] define a consistency condition named bounded staleness
which at its core is very similar to that of timed and delta semantics: a write operation
of a given process becomes visible to other processes no later than a fixed amount of
time. However, this definition is also related to the use of a periodic message (i.e., a
beacon) which allows each process to keep up with updates from other processes or
suspect of missing updates.

The differences among delta consistency, timed reads and bounded staleness are
in fact matter of subtle operational details that derive from the diverse contexts and
practical purposes for which those models were developed. Hence, we can describe
in formal terms the core semantics expressed by delta consistency, timed consistency
models and bounded staleness as the following condition:

TIMEDVISIBILITY(∆) , ∀a ∈ H|wr,∀b ∈ H,∀t ∈ Time :

a.rtime = t ∧ b.stime = t+ ∆⇒ a
vis−−→ b (29)

Timed causal consistency [Torres-Rojas and Meneses 2005] guarantees that each
execution respects the partial ordering of causal consistency and that all reads are on
time, with tolerance ∆:

TIMEDCAUSALITY(F ,∆) , CAUSALITY(F) ∧ TIMEDVISIBILITY(∆) (30)

As depicted in Figure 1, due to the timed visibility term, timed causal is a semantic
condition stronger than causal consistency.

Similarly, timed serial consistency [Torres-Rojas and Meneses 2005] combines the
real-time global ordering guarantee with the timed serialization constraint. Hence, a
timed serial consistent execution with ∆ = 0 would in fact be linearizable.
Golab et al. [2011] describe ∆-atomicity, a semantic condition which is in fact equiv-
alent to timed serial consistency. Namely, according to ∆-atomicity read operations
may return either the value written by the last preceding write, or the value of a write
operation returned up to ∆ time units ago. In a follow-up work [Golab et al. 2014], the
same authors propose a novel metric called Γ which entails fewer assumptions and
is more robust than ∆ against clock skews. The corresponding consistency semantics,

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 P. Viotti and M. Vukolić

Γ-atomicity, expresses, as ∆-atomicity, a “deviation” in time of a given execution from
a linearizable one having the same operations’ outcomes.
We express the core notion of ∆-atomicity, Γ-atomicity and timed serial consistency in
the following predicate:

TIMEDLINEARIZABILITY(F ,∆) ,

SINGLEORDER ∧ TIMEDVISIBILITY(∆) ∧ RVAL(F) (31)

Figure 6 illustrates an execution featuring read operations of which outcomes should
depend on a fixed timing parameter ∆.

P
A

P
B

W1

W2 R1

W3

R2 W6

W4 W5

 

Fig. 6: An execution with processes issuing operations on a shared object.
Hatched rectangles highlight the ∆ parameter of staleness-based read operations.

If we were to assume that, despite the timing parameter, PA and PB observed the
following serialization:

SPA,B
: W2 W6 W1 W3 W4 W5 (S.10)

then such execution would be sequentially consistent but it would not satisfy timed
serial consistency requirements. Thus, this execution serves as hint of the relative
strenghts of sequential and timed serial consistency models as represented in Fig. 1.

Prefix consistency [Terry et al. 1995; Terry 2013], also dubbed timeline consistency
[Cooper et al. 2008], grants readers the guarantee of observing an ordered sequence
of writes which nonetheless may not contain the most recent ones. So it expresses a
constraint in matter of ordering rather than recency of writes: the read value is the
result of a specific sequence of writes upon whose order all replicas have agreed. This
pre-established order is supposedly reminiscent of that one imposed by sequential
consistency. Thus, we could rename prefix consistency as prefix sequential consistency,
whereas a version abiding real-time constraints would be called prefix linearizable
consistency. Formally, we describe prefix sequential consistency as:

PREFIXSEQUENTIAL(F) , SINGLEORDER ∧MONOTONICWRITES ∧ RVAL(F) (32)

where the term named MONOTONICWRITES implies that the ordering of writes belong-
ing to the same session is respected, as defined in (24). Similarly, we express prefix
linearizable consistency as:

PREFIXLINEARIZABLE(F) , SINGLEORDER ∧ REALTIMEWW ∧ RVAL(F) (33)

where

REALTIMEWW , rb|wr→wr ⊆ ar (34)

In a study on quorum-based replicated systems with malicious faults, Aiyer et al.
[2005] formalize relaxed semantics that tolerate limited version-based staleness. Sub-
stantially, K-safe, K-regular and K-atomic (or K-linearizability) generalize the
register consistency conditions previously introduced in [Lamport 1986a] and described

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Consistency in Non-Transactional Distributed Storage Systems A:17

in Section 3.1, by permitting reads non-overlapping concurrent writes to return one of
the latest K values written. For instance K-linearizability can be formalized as:9

K-LINEARIZABLE(F ,K) ,

SINGLEORDER ∧ REALTIMEWW ∧ K-REALTIMEREADS(K) ∧ RVAL(F) (35)

where

K-REALTIMEREADS(K) , ∀a ∈ H|wr,∀b ∈ H|rd,∀PW ⊆ H|wr,∀pw ∈ PW :

|PW | < K ∧ a ar−→ pw ∧ pw rb−→ b ∧ a rb−→ b⇒ a
ar−→ b (36)

Finally, Bailis et al. [2012] build on these results a series of probabilistic models to
predict the staleness of reads performed on eventually consistent quorum-based stores.
They provide definitions of Probabilistically Bounded Staleness (PBS) k-staleness and
PBS t-visibility. While the first describes a probabilistic model which restricts the
staleness of values returned by read operations, the latter limits probabilistically the
time before a write becomes visible. The combination of these two models is named PBS
〈k, t〉-staleness. In a sense, PBS k-staleness is a probabilistic weakening ofK-atomicity,
i.e., the one that with probability equal to 1 becomes K-linearizability. Similarly, PBS
t-visibility is a probabilistic weakening of timed visibility.

3.7. Fork-based models
Inherent trust limitations that arise in the context of outsourced storage and computa-
tions [Cachin et al. 2009b; Vukolić 2010] has revamped the research on algorithms and
protocols expressly conceived to deal with Byzantine faults [Lamport et al. 1982], i.e
faults that encompass arbitrary and malicious behavior. In the Byzantine fault model,
faulty processes and shared objects may tamper data (within the limits of cryptography)
or perform other arbitrary operations in order to deliberately disrupt executions.

Together with these algorithms, new consistency models were defined that reshaped
the correctness conditions in accordance to what is actually attainable when coping
with such strong fault assumptions. Whereas in the context of several untrusted storage
repositories Byzantine fault tolerance could be applied to mask certain fault patterns
[Vukolić 2010; Bessani et al. 2013] and even implement strong consistency semantics
(e.g., linearizability) [Bessani et al. 2014; Dobre et al. 2014], when dealing with a
single untrusted storage repository, the situation is different and the consistency needs
to be relaxed [Cachin et al. 2009b]. Feasible consistency semantics in the context of
interactions of correct clients with untrusted (Byzantine) storage have been captured
within the family of fork-based consistency models. In a nutshell, systems dealing with
untrusted storage aim at providing linearizability when the storage is correct, but
(gracefully) degrade to weaker consistency models, specifically, fork-based consistency
models, when the storage exhibits a Byzantine fault.

The forefather of this family of models is fork (or fork-linearizable) consistency, intro-
duced by Mazières and Shasha [2002]. In short, a fork-linearizable system guarantees
that if the storage system causes the visible histories of two processes to differ even
for just a single operation, they may never again observe each other’s writes after
that without the server being exposed as faulty. Specifically, any divergence in the
histories observed by different groups of correct processes can be easily spotted by using
any available communication protocol between them (e.g., out-of-band communication,
gossip protocols, etc.). Fork-linearizability respects session order (PRAM semantics)

9Strictly speaking, K-linearizability implicitly assumes K initial writes (i.e., writes with input value ⊥)
[Aiyer et al. 2005].

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 P. Viotti and M. Vukolić

and real-time arbitration, thus can be expressed as follows:

FORKLINEARIZABILITY(F) , PRAM ∧ REALTIME ∧ NOJOIN ∧ RVAL(F) (37)

where the NOJOIN predicate stipulates that clients whose sequences of visible opera-
tions (also called views) have been forked by an adversary, cannot be joined again:

NOJOIN , ∀ai, bi, aj , bj ∈ H : ai 6≈ss aj ∧ (ai, aj) ∈ ar \ vis ∧ ai �so bi ∧ aj �so bj

⇒ (bi, bj), (bj , bi) /∈ vis (38)

A subsequent model named fork* consistency was defined in [Li and Mazières 2007]
in order to allow the design of protocols that would offer better performance and liveness
guarantees. Fork* consistency relaxes the conditions of fork consistency by allowing
forked groups of processes to observe at most one common operation issued by a certain
correct process.

FORK*(F) , READYOURWRITES ∧ REALTIME ∧ ATMOSTONEJOIN ∧ RVAL(F) (39)

where

ATMOSTONEJOIN ,∀ai, aj ∈ H : ai 6≈ss aj ∧ (ai, aj) ∈ ar \ vis⇒

∧ |{bi ∈ H : ai �so bi ∧ (∃bj ∈ H : aj �so bj ∧ bi
vis−→ bj}| ≤ 1

∧ |{bj ∈ H : aj �so bj ∧ (∃bi ∈ H : ai �so bi ∧ bj
vis−→ bi}| ≤ 1

(40)

Notice that, unlike fork-linearizability, fork* does not respect monotonicity of reads
(and hence PRAM) [Cachin et al. 2011].

Fork-sequential consistency [Oprea and Reiter 2006; Cachin et al. 2009a] requires
that whenever an operation becomes visible to multiple processes, all these processes
share the same history of operations occurring before that operation. Therefore, when-
ever a process reads a certain value written by another process, the reader is guaranteed
to share with the writer process the set of visible operation that precede that write
operation. Essentially, similarly to sequential consistency, a global order of operations
is ensured up to a common visible operation. Formally:

FORKSEQUENTIAL(F) , PRAM ∧ NOJOIN ∧ RVAL(F) (41)

Mahajan et al. define fork-join causal consistency (FJC) as a weaker variant of
causal consistency that can preserve safeness and availability in spite of Byzantine
faults [Mahajan et al. 2010]. In a fork-join causal consistent storage system if a write
operation op issued by a correct process depends on a write operation op′ issued by any
process, then, at every correct process, op′ becomes visible before op. In other words,
FJC enforces causal consistency among correct processes. Besides, partitioned groups
of processes are allowed to reconcile their histories through merging policies, since
inconsistent writes by a Byzantine process are treated as concurrent writes by multiple
virtual processes. Bounded fork-join causal [Mahajan et al. 2011] refines this clause
by limiting the number of forks accepted from a faulty node and thus bounding the
number of virtual nodes needed to represent each faulty node.

Finally, weak fork-linearizability [Cachin et al. 2011] relaxes fork-linearizability
conditions in two ways: (1) after being partitioned in different groups, two processes
may share the visibility of one more operation (i.e., at-most-one-join, as in fork* con-
sistency) and (2) the real-time order of the last visible operation by each process may
not be preserved (i.e., weak real-time order). These two conditions enable the design
of protocols that allow for improved liveness guarantees (i.e., wait freedom). Weak

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Consistency in Non-Transactional Distributed Storage Systems A:19

fork-linearizability can be expressed as:

WEAKFORKLIN(F) , PRAM∧K-REALTIME(2)∧ATMOSTONEJOIN∧RVAL(F) (42)

where K-REALTIME(2) predicate is equivalent K-REALTIMEREADS(2) defined in Equa-
tion 36, when generalized to all operations (i.e., when the predicate holds ∀op ∈ H).
We note that weak fork-linearizability and fork* consistency are incomparable [Cachin
et al. 2011].

3.8. Composite and tunable semantics
To bridge the gap between strongly consistent and efficient implementations, several
works have proposed consistency models that entail the use of different semantics in an
adaptive fashion according to the contingent tradeoffs of performance and correctness.10

The idea of distinguishing operations’ consistency requirements by their semantics
dates back to the shared-memory systems era. In that context, consistency models that
employed different ordering constraints depending on operations’ types (e.g., acquire
and release, rather than read/write data accesses) were called hybrid, whereas those
that did not operate distinctions were referred to as uniform [Mosberger 1993; Dubois
et al. 1986; Gharachorloo et al. 1990].

A first formal definition which presents a similar diversification was proposed by
Attiya and Friedman [1992] for shared-memory multiprocessors. Hybrid consistency
is defined as a model requiring a concerted adoption of weak and strong consistency
semantics. In a hybrid consistent system strong operations are guaranteed to be seen
in some sequential order by all processes (as in sequential consistency), while weak
operations are designed to be fast, and they eventually become visible by all processes
(much like in eventual consistency). Weak operations are only guaranteed to be ordered
according to their interleaving with strong operations: if two operations belong to
the same session and one of them is strong, then their relative order of invocation is
respected and visible by all processes.

In a similar manner, Ladin et al. [1992] tackle the tradeoff between performance and
consistency by assigning to each operation an ordering type. Causal operations respect
causality ordering among them, forced operations are delivered in the same order at all
relicas, and immediate operations are performed as they return and they are delivered
by each replica in same order with respect to all other operations.

Eventual serializability11 is described in [Fekete et al. 1996] as a condition that
requires a partial ordering of operations which eventually settle to a total order. Accord-
ing to this model, operations might be strict or non-strict. Strict operations are required
to be stable as soon as they obtain a response, while non-strict ones may be reordered
afterwards. An operation is said to be stable if the prefix of operations preceding it
reached a final total order. Fekete et al. [1996] envision an implementation in which
processes issue operations attaching to them both the list of identifiers of operations
that must be ordered before the requested operation, and a flag that indicates the
type of operation (i.e., strict or non-strict). The final global and total order achieved by
operations can be regarded as a sequential consistency ordering as no real-time notion
is involved.

Similarly, Serafini et al. [2010], distinguish strong and weak operations. While strong
operations are immediately linearized, weak ones are linearized only eventually. Weak
operations are thus said to respect eventual linearizability. Weak operations are in

10We do not formulate formal definitions for tunable semantics considering that they can be expressed by
combining the logical predicates reported in the rest of the paper.
11We remark that despite the affinity of its name with those of popular transactional consistency models,
eventual serializability has been conceived for non-transactional storage systems.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 P. Viotti and M. Vukolić

fact designed to terminate despite failures, and can therefore violate linearizability for
a finite period of time. Essentially, eventual linearizability mandates that operations
must be ordered according to their real-time ordering, yet this applies only to operations
invoked after a certain time t. Therefore, earlier operations may have observed incon-
sistent histories and can be temporarily ordered in an arbitrary manner. Ultimately,
the operations in a system that implements eventual linearizability gravitate towards
a total order that satisfies real-time constraints.

Krishnamurthy et al. [2002] propose a QoS model that allows client applications of
a distributed storage system to express their consistency requirements. According to
their requirements, clients are then directed by a middleware towards a specific group
of replicas implementing synchronous or lazy replication schemes, thus applying strong
or weak consistency semantics. This framework is said to provide tunable consistency.

In the same vein, Li et al. [2012] propose RedBlue consistency. With RedBlue
consistency operations are flagged as blue or red depending on several conditions such
as their commutativity and the respect of invariants. According to such classification,
operations are then executed locally and replicated in an eventually consistent manner,
or serialized with respect to each other through synchronous coordination. In a follow-
up work, Li et al. [2014] implement and evaluate a system that would relieve the
programmer from having to choose the right consistency level for each operation by
exploiting a combination of automatic static and dynamic code analysis.

Yu and Vahdat [2002] propose a continuous consistency spectrum based on three met-
rics: staleness, order error and numerical error. Those metrics are embedded in a conit
(portmanteau of “consistency unit”), which is a three-dimensional vector that quantifies
the divergence from an ideal linearizable execution. Numerical error accounts for the
number of write operations that are already globally applied but not yet propagated
to a given replica of a certain object. Order error quantifies the number of writes at
any replica that are subject to reordering, while staleness bounds the real-time delay
of writes propagation among replicas. Those metrics are an attempt to capture the
semantics of some fundamental dimensions of consistency, notably those related to the
general requirements of agreement on state and update ordering. Note that, according
to this model, and unlike timed consistency (see Section 3.6), time-based staleness is
defined from the replicas’ viewpoint rather than with respect to the timing of individual
operations.

Similarly, Santos et al. [2007] aim at quantifying the divergence of data object replicas
by using a three-dimensional consistency vector. Originally designed for distributed
multiplayer games on ad-hoc networks, vector-field consistency mandates for each
object a vector κ = [θ, σ, ν] that bounds its staleness in a particular view of the virtual
world. In particular, the vector establishes the maximum divergence of replicas in time
(θ), number of updates (σ), and object value (ν). Unlike conit, this model brings about
a notion of locality-awareness as it describes consistency as a vector field deployed
throughout the gaming virtual environment.

Later works put forward tunable consistency as a suitable model for cloud storage,
since it would enables more flexible quality of service (QoS) policies and service-level
agreements (SLAs). Kraska et al. [2009] envision consistency rationing, which would
entail adapting the consistency level at runtime by taking into account economic
concerns. Similarly, Chihoub et al. [2012] explore the possibility of a self-adaptive
protocol that dynamically adjusts consistency to meet the application needs. In a
sequent work, Chihoub et al. [2013] add the monetary cost to the equation and study
its tradeoffs with consistency in cloud settings. Terry et al. [2013] advocate the use of
declarative consistency-based SLAs that would allow users of cloud key-value stores
to attain a better awareness of the inherent performance-correctness tensions. This

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Consistency in Non-Transactional Distributed Storage Systems A:21

approach has been subsequently implemented as a declarative programming model for
tunable consistency by Sivaramakrishnan et al. [2015].

In another attempt at providing stronger consistency semantics for geo-replicated
storage, Balegas et al. [2015] introduce explicit consistency. Besides providing even-
tual consistency, a replicated store implementing explicit consistency ensures that
application-specific correctness rules (i.e., invariants) be respected during executions.
In a follow-up work, Gotsman et al. [2016] propose a proof rule to help programmers in
the task of assigning fine-grained restrictions on operations in order to respect data
integrity invariants.

Finally, in the context of combining different consistency models, it is worth also men-
tioning systems that turn eventual consistency of data (provided by modern commodity
cloud storage services) into linearizability, by relying on comparably small volumes of
metadata stored separately from data in linearizable storage. In independent efforts,
this technique was recently proposed under the names of consistency anchor [Bessani
et al. 2014] and consistency hardening [Dobre et al. 2014].

3.9. Per-object semantics
Per-object (or per-key) semantics have been defined to express consistency constraints
on a per-object basis. Intuitively, per-object ordering semantics allow for more efficient
implementations than global ordering semantics, i.e., across invocations on all objects,
taking advantage of techniques such as sharding and state partitioning.

Slow memory, defined by Hutto and Ahamad [1990], is a weaker variant of PRAM
consistency. A shared-memory system implementing this condition requires that all
processes see the writes of a given process to a given object in the same order. In other
words, slow memory delineates a per-object weakening of PRAM consistency:

PEROBJECTPRAM , (so ∩ ob) ⊆ vis (43)

An important concept in this family of semantics is that of coherence [Gharachorloo
et al. 1990] (or cache consistency [Goodman 1989]) which was first introduced as
correctness condition of memory hierarchies in shared-memory multiprocessor systems
[Dubois et al. 1986]. Coherence ensures that what has been written to a specific memory
location becomes visible in some sequential order by all processors, possibly through
their local caches. In other words, coherence requires operations to be globally ordered
on a per-object basis. A very similar notion has been coined in recent works [Cooper et al.
2008; Lloyd et al. 2011] as per-record timeline consistency. This condition, described
in relation to replicated storage, ensures that for each individual key (or object), all
processes observe the same ordering of operations. Formally, we capture such condition
with the following predicate:

PEROBJECTSINGLEORDER ,

∃H ′ ⊆ {op ∈ H : op.oval = ∇} : ar ∩ ob = vis ∩ ob \ (H ′ ×H) (44)

Moreover, a system in which executions respect ordering of operations by a certain
process on each object and a global ordering of all operations invoked on each object,
would implement a semantic condition that we could name as per-object sequential
consistency:

PEROBJECTSEQUENTIAL(F) ,

PEROBJECTSINGLEORDER ∧ PEROBJECTPRAM ∧ RVAL(F) (45)

Processor consistency, defined by Goodman [1989] and formalized by Ahamad et al.
[1993], is expressed by two conditions: (a) writes issued by a process must be observed

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 P. Viotti and M. Vukolić

in the order in which they were issued, and (b) if there are two write operations to the
same object, all processes observe these operations in the same order. Evidently, the two
conditions just mentioned are in fact PRAM and per-record timeline consistency, thus:

PROCESSORCONSISTENCY(F) , PEROBJECTSINGLEORDER ∧ PRAM ∧ RVAL(F)
(46)

In addition, few works in literature (e.g., [Moraru et al. 2013]) mention per-object
linearizability, which is in fact equivalent to linearizability on a per-object basis, due to
its locality property [Herlihy and Wing 1990].

We further note that one could compose other arbitrary consistency models by refining
some of the predicates mentioned in this work to match only operations performed
on individual objects. As a case in point, Burckhardt et al. [2014] describe per-object
causal consistency as a restriction of causal consistency on a per-object basis, which
leverages the per-object happens-before order, defined as: hbo , ((so ∩ ob) ∪ vis)+.

3.10. Synchronized models
For completeness, in this section we overview semantic conditions defined in the ’80s
and early ’90s in order to model the correctness of multiprocessor shared-memory
systems. In order to exploit the computational parallelism of these systems, and, at
the same time, to cope with the different performance of the various components (e.g.,
memories, interconnections, processors, etc.), buffering and caching layers were adopted.
Consequently, the fundamental challenge of this kind of architecture is making sure that
all memories reflect a common, consistent view of shared data. Thus, system designers
employed synchronization variables, i.e., special shared objects that only expose two
operations, named acquire and release. The synchronization variables are used as a
generic abstraction for implementing logical fences meant to control concurrent accesses
to shared data objects. In other words, synchronization variables protect the access to
shared data through the implementation of mutual exclusion by means of low level
primitives (e.g., locks) or high-level language constructs (e.g., critical sections). While
the burden of using such tools is left to the programmer, the system is supposed to
distinguish the accesses to shared data from those to the synchronization variables,
possibly by implementing and exposing specific low level instructions.

Sequential consistency [Lamport 1979] (which we defined in Section 3.3) was initially
adopted as ideal correctness condition for multiprocessors shared-memory systems.
Weak ordering12 as described by Dubois et al. [1986] represents a convenient weak-
ening of sequential consistency that brings about performance improvements. In a
system that implements weak ordering: (a) all accesses to synchronization variables
must be strongly ordered, (b) no access to a synchronization variable is allowed before
all previous reads have been completed, and (c) processes cannot perform reads before
issuing an access to a synchronization variable. In particular, Dubois et al. [1986] define
operations as strongly ordered if they comply with two specific criteria that constrain
the ordering of operations according to their session ordering and relatively to some
special instructions supported by pipelined cache-based systems. Weak ordering has
been subsequently redefined in terms of coordination requirements between software
and hardware. Namely, Adve and Hill [1990] define a synchronization model as a set of
constraints on memory accesses that specify how and when synchronization needs to be
enforced. Given this definition, “a hardware is weakly ordered with respect to a given
synchronization model if and only if it appears sequentially consistent to all software
that obey the synchronization model”.

12Some works in literature refer to weak ordering as to “weak consistency”. We chose to avoid this equivocation
by adopting its original nomenclature.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Consistency in Non-Transactional Distributed Storage Systems A:23

Release consistency, presented by Gharachorloo et al. [1990], is a weaker extension
of weak ordering that exploits further detailed information about synchronization
operations (i.e., acquire and release) and non-synchronization accesses. Operations
have to be labelled before execution by the programmer (or the compiler) as strong or
weak. Hence, this widens the classification operated by weak ordering, which included
just synchronization and non-synchronization labels. Similarly to hybrid consistency
(see Section 3.8), strong operations are ordered according to processor or sequential
consistency, whereas the ordering of weak operations is just restricted by the relative
ordering with respect to the strong operations invoked by the same process.

Subsequently, several algorithms that slightly alter the original implementation
of release consistency have been designed. For instance, lazy release consistency
[Keleher et al. 1992] is a relaxed implementation of release consistency in which actions
that enforce consistency are postponed from the release to the next acquire operation.
The rationale of lazy release consistency is reducing the number of messages and the
amount of data exchanged in a distributed shared-memory system implemented in
software. On the same line, the protocol called automatic update release consistency
[Iftode et al. 1996a] aims at improving performance substantially over software-only
implementation of lazy release consistency, by using an automatic update mechanism
provided by a virtual memory mapped network interface.

Bershad and Zekauskas [1991] define entry consistency by strengthening the relation
between synchronization objects and the data which they guard. According to entry
consistency, every object has to be guarded by a synchronization variable. Thus, in a
sense, this model is a location-relative weakening of a consistency semantic, similarly
to the models surveyed in Section 3.9. Moreover, entry consistency operates a further
distinction of the synchronization operations in exclusive and non-exclusive. Thanks
to these features, reads can occur with a greater degree of concurrency, thus enabling
better performance.

Scope consistency [Iftode et al. 1996b] claims to offer most of the potential per-
formance advantages of entry consistency, without requiring explicit binding of data
to synchronization variables. The key intuition of scope consistency is the use of an
abstraction called scope to implicitly capture the relationship between data and syn-
chronization operations. Consistency scopes can be derived automatically from the use
of synchronization variables in the program, thus easing the work of programmers.

With the definition of location consistency, Gao and Sarkar [2000] forwent the basic
assumption of memory coherence [Gharachorloo et al. 1990], i.e., the property that
ensures that all writes to the same object are observed in the same order by all pro-
cesses (see Section 3.9). Thus, they explored the possibility of executing multithreaded
programs in a correct manner by just exploiting a partial order on writes to shared
data. Similarly to entry consistency, in location consistency each object is associated
to a synchronization variable. However, thanks to the relaxed undelying ordering con-
straint, Gao and Sarkar [2000] prove that location consistency can be more efficient
and equivalently strong when it is applied to settings with low data contention between
processes.

4. RELATED WORK
Several works in literature have provided overviews on consistency models. In this
section we classify these works according to their different perspectives.

Shared-memory systems. Gharachorloo et al. [1990] proposed a classification of shared
memory access policies, specifically regarding their concurrency control semantics (e.g.,
synchronization operations versus read/write accesses). Mosberger [1993] adopted this
classification to conduct a study on the memory consistency models popular at that

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 P. Viotti and M. Vukolić

time and their implementation tradeoffs. Adve and Gharachorloo [1996] summarized in
a practical tutorial the informal definitions and related issues of consistency models
most commonly adopted in shared-memory multiprocessor systems.

Several subsequent works developed uniform frameworks and notations to represent
consistency semantics defined in literature [Adve and Hill 1993; Raynal and Schiper
1997; Bataller and Bernabéu-Aubán 1997]. Most notably, Steinke and Nutt [2004]
provide a unified theory of consistency models for shared memory systems based on
the composition of few fundamental declarative properties. In turn, this declarative
and compositional approach outlines a partial ordering over consistency semantics.
Similarly, a treatment of composability of consistency conditions had been carried out
in [Friedman et al. 2003].

While all these works proved to be valuable and formally sound, they represent only
a limited portion of the consistency semantics relevant to modern non-transactional
storage systems.

Distributed storage systems. In more recent years, researchers have been proposing
categorizations of the most influential consistency models for modern storage sys-
tems. Namely, Tanenbaum and van Steen [2007] proposed the client-centric versus
data-centric classification, while Bermbach and Kuhlenkamp [2013], expanded such
classification and provided descriptions for the most popular models. While practical
and instrumental in attaining a good understanding of the consistency spectrum, these
works propose informal treatments based on a simple dichotomous categorization which
falls short of capturing some important consistency semantics. With this survey we
aim at improving over these works, as we adopt a formal model based on first-order
logic predicates and graph theory. We derived this model from the one proposed in
[Burckhardt 2014], which we modified and expanded in order to enable the definition
of a wider and richer range of consistency semantics. Moreover, whereas Burckhardt
[2014] focuses mostly on session and eventual semantics, we cover a broader ground
including more than 50 different consistency semantics.

Measuring consistency. A concurrent research trend has been straining to design
uniform and rigorous frameworks to measure consistency in both shared memory
systems and, more recently, in distributed storage systems. Namely, while some works
have proposed metrics to assess consistency [Yu and Vahdat 2002; Golab et al. 2014],
others have devised methods to verify, given an execution, whether it satisfies a certain
consistency model [Misra 1986; Gibbons and Korach 1997; Anderson et al. 2010]. Finally,
due to the loose definitions and opaque implementations of eventual consistency, recent
research has tried to quantify its inherent anomalies as perceived from a client-side
perspective [Wada et al. 2011; Patil et al. 2011; Bermbach and Tai 2011; Rahman et al.
2012; Lu et al. 2015]. In this regard, our work provides a more comprehensive and
structured overview of the metrics that can be adopted to evaluate consistency.

Transactional systems. Readers interested in pursuing a formal treatment of the
most important consistency models for transactional storage systems may refer to
[Adya 1999]. Similarly, other works by Harris et al. [2010] and by Dziuma et al. [2014]
complement this survey with overviews on models specifically designed for transactional
memory systems. Finally, some recent research [Burckhardt et al. 2012; Cerone et al.
2015] adopted variants of the same framework used in this paper to propose axiomatic
specifications of transactional consistency models.

5. CONCLUSION
In this work we presented an overview of the most relevant consistency models for
non-transactional storage systems. Thanks to our methodical approach, we were able

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Consistency in Non-Transactional Distributed Storage Systems A:25

to highlight subtle yet meaningful differences among consistency models, thus helping
scholars and practitioners attain a better understanding of the tradeoffs involved.

To describe consistency semantics we adopted a mathematical framework based on
graph theory and first-order logic. As first contribution of this work, we developed such
formal framework as an extension of the one presented in [Burckhardt 2014]. The
framework is comprehensive and useful in capturing different factors involved in the
executions of a distributed storage system.

We used this framework to formulate formal definitions for the most popular of
the over 50 consistency semantics we analyzed. For the rest of them, we presented
informal descriptions which provide insights about their feature and relative strenghts.
Moreover, thanks to the axiomatic approach we adopted, we laid out a clustering of
semantics according to criteria which account for their natures and common traits.
In turn, both the clustering and the formal definitions helped us building a partial
ordering of consistency models (see Figure 1). We believe this partial ordering of
semantics will prove convenient both in designing more precise and coherent models,
and in evaluating and comparing the correctness of systems already in place. Finally, as
further contribution, we provide in Appendix B an ordered list of all the models analyzed
in this work, along with references to their definitions and main implementations in
research literature.

ACKNOWLEDGMENTS

We would like to thank Alysson Bessani, Christian Cachin, Marc Shapiro, and the anonymous reviewers for
their helpful comments on this work. This research was supported in part by the EU projects CloudSpaces
(FP7-317555) and SUPERCLOUD (Horizon 2020 programme, grant No. 643964).

REFERENCES
Sarita Adve and Mark D. Hill. 1990. Weak Ordering - A New Definition. In International Symposium on

Computer Architecture. 2–14.
Sarita V. Adve and Kourosh Gharachorloo. 1996. Shared Memory Consistency Models: A Tutorial. IEEE

Computer 29, 12 (1996), 66–76.
Sarita V. Adve and Mark D. Hill. 1993. A Unified Formalization of Four Shared-Memory Models. IEEE Trans-

actions on Parallel and Distributed Systems 4, 6 (1993), 613–624. DOI:http://dx.doi.org/10.1109/71.242161
Atul Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic Implementations for Distributed

Transactions. Ph.D. MIT, Cambridge, MA, USA. Also as Technical Report MIT/LCS/TR-786.
Mustaque Ahamad, Rida A. Bazzi, Ranjit John, Prince Kohli, and Gil Neiger. 1993. The Power of Processor

Consistency. In ACM Symposium on Parallel Algorithms and Architectures (SPAA), 1993. 251–260.
DOI:http://dx.doi.org/10.1145/165231.165264

Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. 1995. Causal Memory:
Definitions, Implementation, and Programming. Distributed Computing 9, 1 (1995), 37–49.

Amitanand S. Aiyer, Lorenzo Alvisi, and Rida A. Bazzi. 2005. On the Availability of Non-strict Quorum
Systems. In Distributed Computing (DISC), 2005. 48–62. DOI:http://dx.doi.org/10.1007/11561927 6

Sérgio Almeida, João Leitão, and Luı́s Rodrigues. 2013. ChainReaction: a causal+ consistent datastore based
on chain replication. In European Conference on Computer Systems (EuroSys), 2013. 85–98.

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and David Maier. 2014. Blazes: Coordination anal-
ysis for distributed programs. In IEEE Conference on Data Engineering (ICDE), 2014. 52–63.
DOI:http://dx.doi.org/10.1109/ICDE.2014.6816639

Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. 2011. Consistency Analysis in
Bloom: a CALM and Collected Approach. In Conference on Innovative Data Systems Research (CIDR),
2011. 249–260. http://www.cidrdb.org/cidr2011/Papers/CIDR11 Paper35.pdf

David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee, Lawrence Tan, and Vijay
Vasudevan. 2009. FAWN: a fast array of wimpy nodes. In ACM Symposium on Operating Systems
Principles (SOSP), 2009. 1–14. DOI:http://dx.doi.org/10.1145/1629575.1629577

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1109/71.242161
http://dx.doi.org/10.1145/165231.165264
http://dx.doi.org/10.1007/11561927_6
http://dx.doi.org/10.1109/ICDE.2014.6816639
http://www.cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
http://dx.doi.org/10.1145/1629575.1629577

A:26 P. Viotti and M. Vukolić

Eric Anderson, Xiaozhou Li, Mehul A. Shah, Joseph Tucek, and Jay J. Wylie. 2010. What Consistency Does
Your Key-value Store Actually Provide?. In Hot Topics in System Dependability (HotDep’10). USENIX
Association, Berkeley, CA, USA, 1–16. http://dl.acm.org/citation.cfm?id=1924908.1924919

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Memory Robustly in Message-Passing
Systems. J. ACM 42, 1 (1995), 124–142. DOI:http://dx.doi.org/10.1145/200836.200869

Hagit Attiya, Faith Ellen, and Adam Morrison. 2015. Limitations of Highly-Available Eventually-Consistent
Data Stores. In ACM Symposium on Principles of Distributed Computing (PODC), 2015. ACM, Donostia-
San Sebastián, Spain, 385–394. DOI:http://dx.doi.org/10.1145/2767386.2767419

Hagit Attiya and Roy Friedman. 1992. A Correctness Condition for High-Performance Multipro-
cessors (Extended Abstract). In ACM Symposium on Theory of Computing, 1992. 679–690.
DOI:http://dx.doi.org/10.1145/129712.129778

Hagit Attiya and Jennifer Welch. 1994. Sequential Consistency versus Linearizability. ACM Transactions on
Computer Systems (TOCS) 12, 2 (May 1994), 99–122.

Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2012. The potential dangers of
causal consistency and an explicit solution. In ACM Symposium on Cloud Computing (SOCC), 2012. 22.
DOI:http://dx.doi.org/10.1145/2391229.2391251

Peter Bailis, Alan Fekete, Joseph M. Hellerstein, Ali Ghodsi, and Ion Stoica. 2014. Scalable atomic visibility
with RAMP transactions. In ACM International Conference on Management of Data (SIGMOD), 2014.
27–38. DOI:http://dx.doi.org/10.1145/2588555.2588562

Peter Bailis and Ali Ghodsi. 2013. Eventual Consistency Today: Limitations, Extensions, and Beyond. Queue
11, 3 (March 2013), 20:20–20:32. DOI:http://dx.doi.org/10.1145/2460276.2462076

Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Bolt-on causal consistency. In ACM
SIGMOD International Conference on Management of Data (SIGMOD), 2013. 761–772.

Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, and Ion Stoica. 2012.
Probabilistically Bounded Staleness for Practical Partial Quorums. VLDB 5, 8 (2012), 776–787.

Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, and Ion Sto-
ica. 2014. Quantifying eventual consistency with PBS. VLDB Journal 23, 2 (2014), 279–302.
DOI:http://dx.doi.org/10.1007/s00778-013-0330-1

Jason Baker, Chris Bond, James C. Corbett, J. J. Furman, Andrey Khorlin, James Larson, Jean-Michel
Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. 2011. Megastore: Providing Scalable, Highly
Available Storage for Interactive Services. In Conference on Innovative Data Systems Research (CIDR),
2011. 223–234.

Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno M. Preguiça, Mahsa Najafzadeh,
and Marc Shapiro. 2015. Putting consistency back into eventual consistency. In European Conference on
Computer Systems (EuroSys), 2015. 6. DOI:http://dx.doi.org/10.1145/2741948.2741972

Jordi Bataller and José M. Bernabéu-Aubán. 1997. Synchronized DSM Models. In Parallel Processing
(Euro-Par), 1997. 468–475. DOI:http://dx.doi.org/10.1007/BFb0002771

Nalini Moti Belaramani, Michael Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani, Praveen Yalagandula,
and Jiandan Zheng. 2006. PRACTI Replication. In Symposium on Networked Systems Design and
Implementation (NSDI), 2006. http://www.usenix.org/events/nsdi06/tech/belaramani.html

David Bermbach and Jörn Kuhlenkamp. 2013. Consistency in Distributed Storage Systems - An Overview of
Models, Metrics and Measurement Approaches. In Networked Systems (NETYS), 2013. 175–189.

David Bermbach and Stefan Tai. 2011. Eventual Consistency: How Soon is Eventual? An Evaluation of Ama-
zon S3’s Consistency Behavior. In Workshop on Middleware for Service Oriented Computing (MW4SOC
’11). ACM, New York, NY, USA, 1:1–1:6. DOI:http://dx.doi.org/10.1145/2093185.2093186

Philip A. Bernstein and Sudipto Das. 2013. Rethinking eventual consistency. In ACM SIG-
MOD International Conference on Management of Data (SIGMOD), 2013. 923–928.
DOI:http://dx.doi.org/10.1145/2463676.2465339

Brian N. Bershad and Matthew J. Zekauskas. 1991. Midway: Shared Memory Parallel Programming with
Entry Consistency for Distributed Memory Multiprocessors. Technical Report.

Alysson Neves Bessani, Miguel Correia, Bruno Quaresma, Fernando André, and Paulo Sousa. 2013. DepSky:
Dependable and Secure Storage in a Cloud-of-Clouds. ACM Transactions on Storage (TOS) 9, 4 (2013),
12. DOI:http://dx.doi.org/10.1145/2535929

Alysson Neves Bessani, Ricardo Mendes, Tiago Oliveira, Nuno Ferreira Neves, Miguel Correia, Marcelo
Pasin, and Paulo Verı́ssimo. 2014. SCFS: A Shared Cloud-backed File System. In USENIX Annual
Technical Conference (ATC), 2014. 169–180. https://www.usenix.org/conference/atc14/technical-sessions/
presentation/bessani

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dl.acm.org/citation.cfm?id=1924908.1924919
http://dx.doi.org/10.1145/200836.200869
http://dx.doi.org/10.1145/2767386.2767419
http://dx.doi.org/10.1145/129712.129778
http://dx.doi.org/10.1145/2391229.2391251
http://dx.doi.org/10.1145/2588555.2588562
http://dx.doi.org/10.1145/2460276.2462076
http://dx.doi.org/10.1007/s00778-013-0330-1
http://dx.doi.org/10.1145/2741948.2741972
http://dx.doi.org/10.1007/BFb0002771
http://www.usenix.org/events/nsdi06/tech/belaramani.html
http://dx.doi.org/10.1145/2093185.2093186
http://dx.doi.org/10.1145/2463676.2465339
http://dx.doi.org/10.1145/2535929
https://www.usenix.org/conference/atc14/technical-sessions/presentation/bessani
https://www.usenix.org/conference/atc14/technical-sessions/presentation/bessani

Consistency in Non-Transactional Distributed Storage Systems A:27

Kenneth Birman, Andre Schiper, and Pat Stephenson. 1991. Lightweight causal and atomic group multicast.
ACM Transactions on Computer Systems (TOCS) 9, 3 (1991), 272–314.

Vita Bortnikov, Gregory Chockler, Alexey Roytman, and Mike Spreitzer. 2010. Bulletin Board: A Scalable and
Robust Eventually Consistent Shared Memory over a Peer-to-peer Overlay. Operating Systems Review
44, 2 (April 2010), 64–70. DOI:http://dx.doi.org/10.1145/1773912.1773929

Marcus Brandenburger, Christian Cachin, and Nikola Knezevic. 2015. Don’t trust the cloud, verify: integrity
and consistency for cloud object stores. In ACM International Systems and Storage Conference (SYSTOR).
16:1–16:11. http://doi.acm.org/10.1145/2757667.2757681

Eric A. Brewer. 2000. Towards robust distributed systems (abstract). In ACM Symposium on Principles of
Distributed Computing (PODC), 2000. 7. DOI:http://dx.doi.org/10.1145/343477.343502

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris,
Anthony Giardullo, Sachin Kulkarni, Harry C. Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun
Song, and Venkateshwaran Venkataramani. 2013. TAO: Facebook’s Distributed Data Store for the Social
Graph. In USENIX Annual Technical Conference (ATC), 2013. 49–60. https://www.usenix.org/conference/
atc13/technical-sessions/presentation/bronson

Jerzy Brzezinski, Cezary Sobaniec, and Dariusz Wawrzyniak. 2003. Session Guarantees to Achieve PRAM
Consistency of Replicated Shared Objects. In Parallel Processing and Applied Mathematics (PPAM), 2003.
1–8.

Jerzy Brzezinski, Cezary Sobaniec, and Dariusz Wawrzyniak. 2004. From Session Causality to Causal
Consistency. In Workshop on Parallel, Distributed and Network-Based Processing (PDP), 2004. 152–158.
DOI:http://dx.doi.org/10.1109/EMPDP.2004.1271440

Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Foundations and Trends in Programming
Languages, Vol. 1. now publishers. 1–150 pages. http://research.microsoft.com/apps/pubs/default.aspx?
id=230852

Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Benjamin P. Wood. 2012. Cloud
Types for Eventual Consistency. In Object-Oriented Programming (ECOOP), 2012. 283–307.
DOI:http://dx.doi.org/10.1007/978-3-642-31057-7 14

Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. 2014. Replicated data types:
specification, verification, optimality. In ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL). 271–284. DOI:http://dx.doi.org/10.1145/2535838.2535848

Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sagiv. 2012. Eventually Consistent
Transactions. In European Symposium on Programming (ESOP), Held as Part of ETAPS 2012. 67–86.
DOI:http://dx.doi.org/10.1007/978-3-642-28869-2 4

Michael Burrows. 2006. The Chubby Lock Service for Loosely-Coupled Distributed Systems. In Symposium
on Operating Systems Design and Implementation (OSDI), 2006. 335–350. http://www.usenix.org/events/
osdi06/tech/burrows.html

Christian Cachin, Idit Keidar, and Alexander Shraer. 2009a. Fork Sequential Consistency is Blocking. Inform.
Process. Lett. 109, 7 (2009), 360–364.

Christian Cachin, Idit Keidar, and Alexander Shraer. 2009b. Trusting the cloud. SIGACT News 40, 2 (2009),
81–86. DOI:http://dx.doi.org/10.1145/1556154.1556173

Christian Cachin, Idit Keidar, and Alexander Shraer. 2011. Fail-Aware Untrusted Storage. SIAM Journal on
Computing (SICOMP) 40, 2 (2011), 493–533. DOI:http://dx.doi.org/10.1137/090751062

Christian Cachin, Abhi Shelat, and Alexander Shraer. 2007. Efficient fork-linearizable access to untrusted
shared memory. In ACM Symposium on Principles of Distributed Computing (PODC). 129–138.

Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam McKelvie, Yikang Xu,
Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas, Chakravarthy Uddaraju, Hemal
Khatri, Andrew Edwards, Vaman Bedekar, Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim
ul Haq, Muhammad Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin
McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas. 2011. Windows Azure Storage: a
highly available cloud storage service with strong consistency. In ACM Symposium on Operating Systems
Principles (SOSP). 143–157.

Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. 2015. A Framework for Transactional Consis-
tency Models with Atomic Visibility. In Conference on Concurrency Theory, (CONCUR), 2015. 58–71.
DOI:http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.58

Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel Antoniu, and Marı́a S. Pérez-Hernández. 2012. Harmony:
Towards Automated Self-Adaptive Consistency in Cloud Storage. In IEEE International Conference on
Cluster Computing (CLUSTER), 2012. 293–301.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/1773912.1773929
http://doi.acm.org/10.1145/2757667.2757681
http://dx.doi.org/10.1145/343477.343502
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
http://dx.doi.org/10.1109/EMPDP.2004.1271440
http://research.microsoft.com/apps/pubs/default.aspx?id=230852
http://research.microsoft.com/apps/pubs/default.aspx?id=230852
http://dx.doi.org/10.1007/978-3-642-31057-7_14
http://dx.doi.org/10.1145/2535838.2535848
http://dx.doi.org/10.1007/978-3-642-28869-2_4
http://www.usenix.org/events/osdi06/tech/burrows.html
http://www.usenix.org/events/osdi06/tech/burrows.html
http://dx.doi.org/10.1145/1556154.1556173
http://dx.doi.org/10.1137/090751062
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.58

A:28 P. Viotti and M. Vukolić

Houssem-Eddine Chihoub, Shadi Ibrahim, Gabriel Antoniu, and Marı́a S. Pérez-Hernández. 2013. Consistency
in the Cloud: When Money Does Matter!. In Symposium on Cluster, Cloud, and Grid Computing (CCGrid),
2013. 352–359.

Brian A. Coan, Brian M. Oki, and Elliot K. Kolodner. 1986. Limitations on Database Availability when
Networks Partition. In ACM Symposium on Principles of Distributed Computing, 1986. 187–194.
DOI:http://dx.doi.org/10.1145/10590.10606

Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and David Maier. 2012. Logic
and lattices for distributed programming. In ACM Symposium on Cloud Computing (SOCC), 2012. 1.
DOI:http://dx.doi.org/10.1145/2391229.2391230

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon, Hans-Arno
Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. 2008. PNUTS: Yahoo!’s hosted data serving
platform. VLDB 1, 2 (2008), 1277–1288.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak,
Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and
Dale Woodford. 2013. Spanner: Google’s Globally Distributed Database. ACM Transactions on Computer
Systems (TOCS) 31, 3 (2013), 8.

Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. 1985. Consistency in Partitioned Networks.
Comput. Surveys 17, 3 (1985), 341–370.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. 2007. Dynamo: amazon’s
highly available key-value store. In ACM Symposium on Operating Systems Principles (SOSP). 205–220.

Dan Dobre, Paolo Viotti, and Marko Vukolić. 2014. Hybris: Robust Hybrid Cloud Storage. In ACM Symposium
on Cloud Computing (SOCC), 2014. 12:1–12:14. DOI:http://dx.doi.org/10.1145/2670979.2670991

Jiaqing Du, Calin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. 2014. GentleRain: Cheap and Scalable
Causal Consistency with Physical Clocks. In ACM Symposium on Cloud Computing (SOCC), 2014.
4:1–4:13. DOI:http://dx.doi.org/10.1145/2670979.2670983

Michel Dubois, Christoph Scheurich, and Faye A. Briggs. 1986. Memory Access Buffering in Multiprocessors.
In International Symposium on Computer Architecture (ISCA). 434–442.

Dmytro Dziuma, Panagiota Fatourou, and Eleni Kanellou. 2014. Consistency for Transactional Memory
Computing. Bulletin of the EATCS 113 (2014). http://eatcs.org/beatcs/index.php/beatcs/article/view/288

Alan Fekete, David Gupta, Victor Luchangco, Nancy A. Lynch, and Alexander A. Shvartsman. 1996.
Eventually-Serializable Data Services. In ACM Symposium on Principles of Distributed Computing, 1996.
300–309. DOI:http://dx.doi.org/10.1145/248052.248113

Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward W. Felten. 2010. SPORC: Group
Collaboration using Untrusted Cloud Resources. In Symposium on Operating Systems Design and
Implementation (OSDI), 2010. 337–350. http://www.usenix.org/events/osdi10/tech/full papers/Feldman.
pdf

Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. 1985. Impossibility of Distributed Consensus with
One Faulty Process. J. ACM 32, 2 (1985), 374–382. DOI:http://dx.doi.org/10.1145/3149.214121

Roy Friedman, Roman Vitenberg, and Gregory Chockler. 2003. On the composability of consistency conditions.
Inform. Process. Lett. 86, 4 (2003), 169–176. DOI:http://dx.doi.org/10.1016/S0020-0190(02)00498-2

Guang R. Gao and Vivek Sarkar. 2000. Location Consistency-A New Memory Model and Cache Consistency
Protocol. IEEE Trans. Comput. 49, 8 (2000), 798–813. DOI:http://dx.doi.org/10.1109/12.868026

Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip B. Gibbons, Anoop Gupta, and John L.
Hennessy. 1990. Memory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors.
In International Symposium on Computer Architecture. 15–26.

Phillip B. Gibbons and Ephraim Korach. 1997. Testing Shared Memories. SIAM Journal on Computing
(SICOMP) 26, 4 (1997), 1208–1244. DOI:http://dx.doi.org/10.1137/S0097539794279614

Seth Gilbert and Nancy A. Lynch. 2002. Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. SIGACT News 33, 2 (2002), 51–59.

Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas E. Anderson. 2011. Scalable
consistency in Scatter. In ACM Symposium on Operating Systems Principles (SOSP). 15–28.

Wojciech M. Golab, Xiaozhou Li, and Mehul A. Shah. 2011. Analyzing consistency properties for fun and
profit. In ACM Symposium on Principles of Distributed Computing (PODC), 2011. 197–206.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/10590.10606
http://dx.doi.org/10.1145/2391229.2391230
http://dx.doi.org/10.1145/2670979.2670991
http://dx.doi.org/10.1145/2670979.2670983
http://eatcs.org/beatcs/index.php/beatcs/article/view/288
http://dx.doi.org/10.1145/248052.248113
http://www.usenix.org/events/osdi10/tech/full_papers/Feldman.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Feldman.pdf
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1016/S0020-0190(02)00498-2
http://dx.doi.org/10.1109/12.868026
http://dx.doi.org/10.1137/S0097539794279614

Consistency in Non-Transactional Distributed Storage Systems A:29

Wojciech M. Golab, Muntasir Raihan Rahman, Alvin AuYoung, Kimberly Keeton, and Indranil Gupta. 2014.
Client-Centric Benchmarking of Eventual Consistency for Cloud Storage Systems. In IEEE Conference on
Distributed Computing Systems (ICDCS), 2014. 493–502. DOI:http://dx.doi.org/10.1109/ICDCS.2014.57

James R Goodman. 1989. Cache consistency and sequential consistency. Technical Report no. 61. SCI Commi-
tee.

Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. 2016. ’Cause I’m
Strong Enough: Reasoning about Consistency Choices in Distributed Systems. In ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL). http://lip6.fr/Marc.Shapiro/
papers/CISE-POPL-2016.pdf

Rachid Guerraoui and Marko Vukolic. 2006. How fast can a very robust read be?. In ACM Symposium on Prin-
ciples of Distributed Computing (PODC), 2006. 248–257. DOI:http://dx.doi.org/10.1145/1146381.1146419

Vassos Hadzilacos and Sam Toueg. 1994. A modular approach to fault-tolerant broadcasts and related
problems. Technical Report. Cornell University, Department of Computer Science.

Seungyeop Han, Haichen Shen, Taesoo Kim, Arvind Krishnamurthy, Thomas E. Anderson, and David Wether-
all. 2015. MetaSync: File Synchronization Across Multiple Untrusted Storage Services. In USENIX An-
nual Technical Conference (ATC), 2015. 83–95. https://www.usenix.org/conference/atc15/technical-session/
presentation/han

Tim Harris, James R. Larus, and Ravi Rajwar. 2010. Transactional Memory, 2nd edition. Morgan & Claypool
Publishers. DOI:http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011

Pat Helland. 2007. Life beyond Distributed Transactions: an Apostate’s Opinion. In Conference on Innovative
Data Systems Research (CIDR), 2007. 132–141. http://www.cidrdb.org/cidr2007/papers/cidr07p15.pdf

Maurice Herlihy and Nir Shavit. 2008. The art of multiprocessor programming. Morgan Kaufmann. I–XX,
1–508 pages.

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent
Objects. ACM Transactions on Programming Languages and Systems (TOPLAS) 12, 3 (1990), 463–492.

Phillip W. Hutto and Mustaque Ahamad. 1990. Slow Memory: Weakening Consistency to Enchance Concur-
rency in Distributed Shared Memories. In International Conference on Distributed Computing Systems
(ICDCS). 302–309.

Liviu Iftode, Cezary Dubnicki, Edward W. Felten, and Kai Li. 1996a. Improving Release-Consistent Shared
Virtual Memory Using Automatic Update. In IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 1996. 14–25. DOI:http://dx.doi.org/10.1109/HPCA.1996.501170

Liviu Iftode, Jaswinder Pal Singh, and Kai Li. 1996b. Scope Consistency: A Bridge Between Release Con-
sistency and Entry Consistency. In ACM Symposium on Parallel Algorithms and Architectures (SPAA),
1996. 277–287.

Paul R. Johnson and Robert H. Thomas. 1975. Maintenance of duplicate databases. RFC 677. RFC Editor.
http://www.rfc-editor.org/rfc/rfc677.txt http://www.rfc-editor.org/rfc/rfc677.txt.

Peter J. Keleher, Alan L. Cox, and Willy Zwaenepoel. 1992. Lazy Release Consistency for Software
Distributed Shared Memory. In International Symposium on Computer Architecture, 1992. 13–21.
DOI:http://dx.doi.org/10.1145/139669.139676

Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. 2009. Consistency Rationing in the
Cloud: Pay only when it matters. VLDB 2, 1 (2009), 253–264.

Sudha Krishnamurthy, William H. Sanders, and Michel Cukier. 2002. An Adaptive Framework for Tunable
Consistency and Timeliness Using Replication. In Dependable Systems and Networks (DSN), 2002. 17–26.

Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. 1992. Providing High Availability
Using Lazy Replication. ACM Transactions on Computer Systems (TOCS) 10, 4 (1992), 360–391.
DOI:http://dx.doi.org/10.1145/138873.138877

Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured storage system.
Operating Systems Review 44, 2 (2010), 35–40. DOI:http://dx.doi.org/10.1145/1773912.1773922

Subramanian Lakshmanan, Mustaque Ahamad, and H. Venkateswaran. 2001. A Secure and Highly Available
Distributed Store for Meeting Diverse Data Storage Needs. In Dependable Systems and Networks (DSN),
2001. 251–260. DOI:http://dx.doi.org/10.1109/DSN.2001.941410

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed System. Communications of
the ACM (CACM) 21, 7 (1978), 558–565.

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Programs. IEEE Trans. Comput. 28, 9 (1979), 690–691.

Leslie Lamport. 1983. Specifying Concurrent Program Modules. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 5, 2 (1983), 190–222. DOI:http://dx.doi.org/10.1145/69624.357207

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1109/ICDCS.2014.57
http://lip6.fr/Marc.Shapiro/papers/CISE-POPL-2016.pdf
http://lip6.fr/Marc.Shapiro/papers/CISE-POPL-2016.pdf
http://dx.doi.org/10.1145/1146381.1146419
https://www.usenix.org/conference/atc15/technical-session/presentation/han
https://www.usenix.org/conference/atc15/technical-session/presentation/han
http://dx.doi.org/10.2200/S00272ED1V01Y201006CAC011
http://www.cidrdb.org/cidr2007/papers/cidr07p15.pdf
http://dx.doi.org/10.1109/HPCA.1996.501170
http://www.rfc-editor.org/rfc/rfc677.txt
http://www.rfc-editor.org/rfc/rfc677.txt
http://dx.doi.org/10.1145/139669.139676
http://dx.doi.org/10.1145/138873.138877
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1109/DSN.2001.941410
http://dx.doi.org/10.1145/69624.357207

A:30 P. Viotti and M. Vukolić

Leslie Lamport. 1986a. On Interprocess Communication. Part I: Basic Formalism. Distributed Computing 1,
2 (1986), 77–85.

Leslie Lamport. 1986b. On Interprocess Communication. Part II: Algorithms. Distributed Computing 1, 2
(1986), 86–101.

Leslie Lamport. 2001. Paxos Made Simple. SIGACT News 32, 4 (2001), 51–58.
DOI:http://dx.doi.org/10.1145/568425.568433

Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The Byzantine Generals Prob-
lem. ACM Transactions on Programming Languages and Systems (TOPLAS) 4, 3 (1982), 382–401.
DOI:http://dx.doi.org/10.1145/357172.357176

Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, and John K. Ousterhout. 2015. Implementing
linearizability at large scale and low latency. In ACM Symposium on Operating Systems Principles
(SOSP), 2015. 71–86. DOI:http://dx.doi.org/10.1145/2815400.2815416

Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: certified causally consistent distributed
key-value stores. In ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL). http://doi.acm.org/10.1145/2837614.2837622

Cheng Li, João Leitão, Allen Clement, Nuno M. Preguiça, Rodrigo Rodrigues, and Viktor Vafeiadis. 2014.
Automating the Choice of Consistency Levels in Replicated Systems. In USENIX Annual Technical Con-
ference (ATC), 2014. 281–292. https://www.usenix.org/conference/atc14/technical-sessions/presentation/
li cheng 2

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo Rodrigues. 2012.
Making Geo-replicated Systems Fast As Possible, Consistent when Necessary. In Symposium on Operating
Systems Design and Implementation (OSDI), 2012 (OSDI’12). USENIX Association, Berkeley, CA, USA,
265–278. http://dl.acm.org/citation.cfm?id=2387880.2387906

Jinyuan Li, Maxwell N. Krohn, David Mazières, and Dennis Shasha. 2004. Secure Untrusted Data Repository
(SUNDR). In Symposium on Operating System Design and Implementation (OSDI), 2004. 121–136.

Jinyuan Li and David Mazières. 2007. Beyond One-Third Faulty Replicas in Byzantine Fault Tolerant
Systems. In Symposium on Networked Systems Design and Implementation (NSDI), 2007.

Richard J. Lipton and Jonathan S. Sandberg. 1988. PRAM: A scalable shared memory. Technical Report
CS-TR-180-88. Princeton University.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t settle for eventual:
scalable causal consistency for wide-area storage with COPS. In ACM Symposium on Operating Systems
Principles (SOSP). 401–416.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2013. Stronger Semantics for
Low-latency Geo-replicated Storage. In Symposium on Networked Systems Design and Implementation
(NSDI), 2013 (nsdi’13). USENIX Association, Berkeley, CA, USA, 313–328. http://dl.acm.org/citation.cfm?
id=2482626.2482657

Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun Song, Wendy Tobagus, San-
jeev Kumar, and Wyatt Lloyd. 2015. Existential consistency: measuring and understanding consis-
tency at Facebook. In ACM Symposium on Operating Systems Principles (SOSP), 2015. 295–310.
DOI:http://dx.doi.org/10.1145/2815400.2815426

Nancy A. Lynch and Mark R. Tuttle. 1989. An introduction to input/output automata. CWI Quarterly 2 (1989),
219–246.

Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. 2011. Consistency, availability, and convergence. Technical
Report TR-11-22. Computer Science Department, University of Texas at Austin.

Prince Mahajan, Srinath T. V. Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi, Michael Dahlin, and
Michael Walfish. 2010. Depot: Cloud Storage with Minimal Trust. In Symposium on Operating Systems
Design and Implementation (OSDI), 2010. 307–322.

Dahlia Malkhi and Michael K. Reiter. 1998a. Byzantine Quorum Systems. Distributed Computing 11, 4
(1998), 203–213. DOI:http://dx.doi.org/10.1007/s004460050050

Dahlia Malkhi and Michael K. Reiter. 1998b. Secure and Scalable Replication in Phalanx. In Symposium on
Reliable Distributed Systems (SRDS), 1998. 51–58. DOI:http://dx.doi.org/10.1109/RELDIS.1998.740474

David Mazières and Dennis Shasha. 2002. Building Secure File Systems out of Byzantine Storage. In ACM
Symposium on Principles of Distributed Computing (PODC), 2002. 108–117.

Jayadev Misra. 1986. Axioms for Memory Access in Asynchronous Hardware Systems. ACM Transactions on
Programming Languages and Systems (TOPLAS) 8, 1 (1986), 142–153.

Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is more consensus in Egali-
tarian parliaments. In ACM Symposium on Operating Systems Principles (SOSP), 2013. 358–372.
DOI:http://dx.doi.org/10.1145/2517349.2517350

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/568425.568433
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1145/2815400.2815416
http://doi.acm.org/10.1145/2837614.2837622
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_cheng_2
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_cheng_2
http://dl.acm.org/citation.cfm?id=2387880.2387906
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dx.doi.org/10.1145/2815400.2815426
http://dx.doi.org/10.1007/s004460050050
http://dx.doi.org/10.1109/RELDIS.1998.740474
http://dx.doi.org/10.1145/2517349.2517350

Consistency in Non-Transactional Distributed Storage Systems A:31

David Mosberger. 1993. Memory Consistency Models. Operating Systems Review 27, 1 (1993), 18–26.
DOI:http://dx.doi.org/10.1145/160551.160553

Alina Oprea and Michael K. Reiter. 2006. On Consistency of Encrypted Files. In Distributed Computing
(DISC), 2006. 254–268.

Swapnil Patil, Milo Polte, Kai Ren, Wittawat Tantisiriroj, Lin Xiao, Julio López, Garth Gibson, Adam Fuchs,
and Billie Rinaldi. 2011. YCSB++: benchmarking and performance debugging advanced features in
scalable table stores. In ACM Symposium on Cloud Computing (SOCC) in conjunction with SOSP 2011.
9. DOI:http://dx.doi.org/10.1145/2038916.2038925

Dorian Perkins, Nitin Agrawal, Akshat Aranya, Curtis Yu, Younghwan Go, Harsha V. Madhyastha, and
Cristian Ungureanu. 2015. Simba: tunable end-to-end data consistency for mobile apps. In European
Conference on Computer Systems (EuroSys), 2015. 7. DOI:http://dx.doi.org/10.1145/2741948.2741974

Karin Petersen, Mike Spreitzer, Douglas B. Terry, Marvin Theimer, and Alan J. Demers. 1997. Flexible
Update Propagation for Weakly Consistent Replication. In ACM Symposium on Operating Systems
Principles (SOSP), 1997. 288–301. DOI:http://dx.doi.org/10.1145/268998.266711

Muntasir Raihan Rahman, Wojciech M. Golab, Alvin AuYoung, Kimberly Keeton, and Jay J. Wylie. 2012.
Toward a Principled Framework for Benchmarking Consistency. Computing Research Repository
abs/1211.4290 (2012).

Jun Rao, Eugene J. Shekita, and Sandeep Tata. 2011. Using Paxos to Build a Scalable, Consistent, and Highly
Available Datastore. VLDB 4, 4 (2011), 243–254.

Michel Raynal and André Schiper. 1997. A suite of definitions for consistency criteria in
distributed shared memories. Annales des Télécommunications 52, 11-12 (1997), 652–661.
DOI:http://dx.doi.org/10.1007/BF02997620

Peter L. Reiher, John S. Heidemann, David Ratner, Gregory Skinner, and Gerald J. Popek. 1994.
Resolving File Conflicts in the Ficus File System. In USENIX Summer 1994 Technical Con-
ference, 1994. 183–195. https://www.usenix.org/conference/usenix-summer-1994-technical-conference/
resolving-file-conflicts-ficus-file-system

Hyun-Gul Roh, Myeongjae Jeon, Jinsoo Kim, and Joonwon Lee. 2011. Replicated abstract data types:
Building blocks for collaborative applications. J. Parallel and Distrib. Comput. 71, 3 (2011), 354–368.
DOI:http://dx.doi.org/10.1016/j.jpdc.2010.12.006

Yasushi Saito and Marc Shapiro. 2005. Optimistic replication. Comput. Surveys 37, 1 (2005), 42–81.
Nuno Santos, Luı́s Veiga, and Paulo Ferreira. 2007. Vector-Field Consistency for Ad-Hoc Gaming. In

ACM/IFIP/USENIX Middleware Conference, 2007. 80–100.
Marco Serafini, Dan Dobre, Matthias Majuntke, Péter Bokor, and Neeraj Suri. 2010. Eventually Linearizable

Shared Objects. In ACM Symposium on Principles of Distributed Computing (PODC), 2010. 95–104.
Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. 2011a. Conflict-Free Replicated

Data Types. In Stabilization, Safety, and Security of Distributed Systems (SSS), 2011. 386–400.
DOI:http://dx.doi.org/10.1007/978-3-642-24550-3 29

Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. 2011b. Convergent and Commutative
Replicated Data Types. Bulletin of the EATCS 104 (2011), 67–88.

Alexander Shraer, Christian Cachin, Asaf Cidon, Idit Keidar, Yan Michalevsky, and Dani Shaket. 2010.
Venus: verification for untrusted cloud storage. In ACM Cloud Computing Security Workshop (CCSW).
19–30.

Atul Singh, Pedro Fonseca, Petr Kuznetsov, Rodrigo Rodrigues, and Petros Maniatis. 2009. Zeno: Eventually
Consistent Byzantine-Fault Tolerance. In Symposium on Networked Systems Design and Implementation
(NSDI), 2009. 169–184. http://www.usenix.org/events/nsdi09/tech/full papers/singh/singh.pdf

Aman Singla, Umakishore Ramachandran, and Jessica K. Hodgins. 1997. Temporal Notions of Synchroniza-
tion and Consistency in Beehive. In ACM Symposium on Parallel Algorithms and Architectures (SPAA),
1997. 211–220. DOI:http://dx.doi.org/10.1145/258492.258513

Krishnamoorthy C. Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. 2015. Declarative program-
ming over eventually consistent data stores. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2015. 413–424. DOI:http://dx.doi.org/10.1145/2737924.2737981

Robert C. Steinke and Gary J. Nutt. 2004. A unified theory of shared memory consistency. J. ACM 51, 5
(2004), 800–849. DOI:http://dx.doi.org/10.1145/1017460.1017464

Andrew S. Tanenbaum and Maarten van Steen. 2007. Distributed systems - principles and paradigms (2. ed.).
Pearson Education. I–XVIII, 1–686 pages.

Doug Terry. 2013. Replicated data consistency explained through baseball. Communications of the ACM
(CACM) 56, 12 (2013), 82–89.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/160551.160553
http://dx.doi.org/10.1145/2038916.2038925
http://dx.doi.org/10.1145/2741948.2741974
http://dx.doi.org/10.1145/268998.266711
http://dx.doi.org/10.1007/BF02997620
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/resolving-file-conflicts-ficus-file-system
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/resolving-file-conflicts-ficus-file-system
http://dx.doi.org/10.1016/j.jpdc.2010.12.006
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://www.usenix.org/events/nsdi09/tech/full_papers/singh/singh.pdf
http://dx.doi.org/10.1145/258492.258513
http://dx.doi.org/10.1145/2737924.2737981
http://dx.doi.org/10.1145/1017460.1017464

A:32 P. Viotti and M. Vukolić

Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and Brent B. Welch. 1994.
Session Guarantees for Weakly Consistent Replicated Data. In Parallel and Distributed Information
Systems (PDIS). 140–149.

Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Marcos K. Aguilera,
and Hussam Abu-Libdeh. 2013. Consistency-based service level agreements for cloud storage. In ACM
Symposium on Operating Systems Principles (SOSP), 2013. 309–324.

Douglas B. Terry, Marvin Theimer, Karin Petersen, Alan J. Demers, Mike Spreitzer, and Carl
Hauser. 1995. Managing Update Conflicts in Bayou, a Weakly Connected Replicated Stor-
age System. In ACM Symposium on Operating Systems Principles (SOSP), 1995. 172–183.
DOI:http://dx.doi.org/10.1145/224056.224070

Francisco J. Torres-Rojas, Mustaque Ahamad, and Michel Raynal. 1999. Timed Consistency for Shared
Distributed Objects. In ACM Symposium on Principles of Distributed Computing (PODC), 1999. 163–172.

Francisco J. Torres-Rojas and Esteban Meneses. 2005. Convergence Through a Weak Consistency Model:
Timed Causal Consistency. CLEI electronic journal 8, 2 (2005).

Werner Vogels. 2008. Eventually Consistent. Queue 6, 6 (Oct. 2008), 14–19.
DOI:http://dx.doi.org/10.1145/1466443.1466448

Marko Vukolić. 2010. The Byzantine Empire in the Intercloud. SIGACT News 41, 3 (Sept. 2010), 105–111.
DOI:http://dx.doi.org/10.1145/1855118.1855137

Hiroshi Wada, Alan Fekete, Liang Zhao, Kevin Lee, and Anna Liu. 2011. Data Consistency Properties and
the Trade-offs in Commercial Cloud Storage: the Consumers’ Perspective. In Conference on Innovative
Data Systems Research (CIDR), 2011. 134–143.

Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V. Madhyastha. 2013.
SPANStore: cost-effective geo-replicated storage spanning multiple cloud services. In ACM Symposium
on Operating Systems Principles (SOSP), 2013. 292–308.

Haifeng Yu and Amin Vahdat. 2002. Design and evaluation of a conit-based continuous consistency model for
replicated services. ACM Transactions on Computer Systems (TOCS) 20, 3 (2002), 239–282.

Marek Zawirski, Nuno Preguiça, Sérgio Duarte, Annette Bieniusa, Valter Balegas, and Marc Shapiro. 2015.
Write Fast, Read in the Past: Causal Consistency for Client-side Applications. ACM/IFIP/USENIX
Middleware Conference, 2015.

A. SUMMARY OF CONSISTENCY PREDICATES

LINEARIZABILITY(F) SINGLEORDER ∧ REALTIME ∧ RVAL(F)

SINGLEORDER ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : vis = ar \ (H ′ ×H)

REALTIME rb ⊆ ar

REGULAR(F) SINGLEORDER ∧ REALTIMEWRITES ∧ RVAL(F)

SAFE(F) SINGLEORDER ∧ REALTIMEWRITES ∧ SEQRVAL(F)

REALTIMEWRITES rb|wr→op ⊆ ar

SEQRVAL(F) ∀op ∈ H : Concur(op) = ∅ ⇒ op.oval ∈ F(op, cxt(A, op))

EVENTUALCONSISTENCY(F) EVENTUALVISIBILITY ∧ NOCIRCULARCAUSALITY ∧
RVAL(F)

EVENTUALVISIBILITY ∀a ∈ H, ∀[f] ∈ H/ ≈ss: |{b ∈ [f] : (a
rb−→ b)∧(a

vis
b)}| <∞

NOCIRCULARCAUSALITY acyclic(hb)

STRONGCONVERGENCE ∀a, b ∈ H|rd : vis−1(a)|wr = vis−1(b)|wr ⇒ a.oval = b.oval

STRONGEVENTUALCONS.(F) EVENTUALCONSISTENCY(F) ∧ STRONGCONVERGENCE

QUIESCENTCONSISTENCY(F) |H|wr| <∞⇒ ∃C ∈ C : ∀[f] ∈ H/ ≈ss: |{op ∈ [f] :
op.oval /∈ F(op, C)}| <∞

PRAM so ⊆ vis

SEQUENTIALCONSISTENCY(F) SINGLEORDER ∧ PRAMCONSISTENCY ∧ RVAL(F)

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/224056.224070
http://dx.doi.org/10.1145/1466443.1466448
http://dx.doi.org/10.1145/1855118.1855137

Consistency in Non-Transactional Distributed Storage Systems A:33

MONOTONICREADS ∀a ∈ H, ∀b, c ∈ H|rd : a
vis−→ b ∧ b

so−→ c⇒ a
vis−→ c ,

(vis; so|rd→rd) ⊆ vis

READYOURWRITES ∀a ∈ H|wr, ∀b ∈ H|rd : a
so−→ b⇒ a

vis−→ b , so|wr→rd ⊆ vis

MONOTONICWRITES ∀a, b ∈ H|wr : a
so−→ b⇒ a

ar−→ b , so|wr→wr ⊆ ar

WRITESFOLLOWREADS ∀a, c ∈ H|wr, ∀b ∈ H|rd : a
vis−→ b ∧ b

so−→ c⇒ a
ar−→ c ,

(vis; so|rd→wr) ⊆ ar

CAUSALVISIBILITY hb ⊆ vis

CAUSALARBITRATION hb ⊆ ar

CAUSALITY(F) CAUSALVISIBILITY ∧ CAUSALARBITRATION ∧ RVAL(F)

CAUSAL+(F) CAUSALITY(F) ∧ STRONGCONVERGENCE

REALTIMECAUSALITY(F) CAUSALITY(F) ∧ REALTIME

TIMEDVISIBILITY(∆) ∀a ∈ H|wr, ∀b ∈ H, ∀t ∈ Time : a.rtime = t ∧ b.stime =

t + ∆⇒ a
vis−→ b

TIMEDCAUSALITY(F ,∆) CAUSALITY(F) ∧ TIMEDVISIBILITY(∆)

TIMEDLINEARIZABILITY(F ,∆) SINGLEORDER ∧ TIMEDVISIBILITY(∆) ∧ RVAL(F)

PREFIXSEQUENTIAL(F) SINGLEORDER ∧MONOTONICWRITES ∧ RVAL(F)

PREFIXLINEARIZABLE(F) SINGLEORDER ∧ REALTIMEWW ∧ RVAL(F)

REALTIMEWW rb|wr→wr ⊆ ar

K-LINEARIZABLE(F ,K) SINGLEORDER ∧ REALTIMEWW ∧
K-REALTIMEREADS(K) ∧ RVAL(F)

K-REALTIMEREADS(K) ∀a ∈ H|wr, ∀b ∈ H|rd, ∀PW ⊆ H|wr, ∀pw ∈ PW : |PW | <
K ∧ a

ar−→ pw ∧ pw
rb−→ b ∧ a

rb−→ b⇒ a
ar−→ b

FORKLINEARIZABILITY(F) PRAM ∧ REALTIME ∧ NOJOIN ∧ RVAL(F)

NOJOIN ∀ai, bi, aj , bj ∈ H : ai 6≈ss aj ∧ (ai, aj) ∈ ar \ vis ∧ ai �so

bi ∧ aj �so bj ⇒ (bi, bj), (bj , bi) /∈ vis

FORK*(F) READYOURWRITES ∧ REALTIME ∧ ATMOSTONEJOIN ∧
RVAL(F)

ATMOSTONEJOIN ∀ai, aj ∈ H : ai 6≈ss aj ∧ (ai, aj) ∈ ar \ vis⇒ |{bi ∈ H :

ai �so bi ∧ (∃bj ∈ H : aj �so bj ∧ bi
vis−→ bj}| ≤ 1 ∧ |{bj ∈ H :

aj �so bj ∧ (∃bi ∈ H : ai �so bi ∧ bj
vis−→ bi}| ≤ 1

FORKSEQUENTIAL(F) PRAM ∧ NOJOIN ∧ RVAL(F)

WEAKFORKLIN(F) PRAM∧K-REALTIME(2)∧ATMOSTONEJOIN∧RVAL(F)

PEROBJECTPRAM (so ∩ ob) ⊆ vis

PEROBJECTSINGLEORDER ∃H ′ ⊆ {op ∈ H : op.oval = ∇} : ar∩ob = vis∩ob\ (H ′×H)

PEROBJECTSEQUENTIAL(F) PEROBJECTSINGLEORDER ∧ PEROBJECTPRAM ∧
RVAL(F)

PROCESSORCONSISTENCY(F) PEROBJECTSINGLEORDER ∧ PRAM ∧ RVAL(F)

PEROBJECTHAPPENSBEFORE hbo , ((so ∩ ob) ∪ vis)+

Table II: Summary of consistency predicates listed in the paper.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 P. Viotti and M. Vukolić

B. PRIMARY REFERENCES

Models Definitions Implementations13

Atomicity [Lamport 1986b] [Attiya et al. 1995]
Bounded fork-join
causal

[Mahajan et al. 2011] -

Bounded staleness [Mahajan et al. 2010] -
Causal [Lamport 1978; Hutto and

Ahamad 1990; Ahamad et al.
1995; Mahajan et al. 2011]

[Ladin et al. 1992; Birman
et al. 1991; Lakshmanan
et al. 2001; Lloyd et al. 2013;
Du et al. 2014; Zawirski et al.
2015; Lesani et al. 2016]

Causal+ [Lloyd et al. 2011] [Petersen et al. 1997;
Belaramani et al. 2006;
Almeida et al. 2013]

Coherence [Dubois et al. 1986] -
Conit [Yu and Vahdat 2002] -
Γ-atomicity [Golab et al. 2014] -
∆-atomicity [Golab et al. 2011] -
Delta [Singla et al. 1997] -
Entry [Bershad and Zekauskas

1991]
-

Eventual [Terry et al. 1994; Vogels
2008]

[Reiher et al. 1994; DeCandia
et al. 2007; Singh et al. 2009;
Bortnikov et al. 2010;
Bronson et al. 2013]

Eventual
linearizability

[Serafini et al. 2010] -

Eventual
serializability

[Fekete et al. 1996] -

Fork* [Li and Mazières 2007] [Feldman et al. 2010]
Fork [Mazières and Shasha 2002;

Cachin et al. 2007]
[Li et al. 2004;
Brandenburger et al. 2015]

Fork-join causal [Mahajan et al. 2010] -
Fork-sequential [Oprea and Reiter 2006] -
Hybrid [Attiya and Friedman 1992] -
K-atomic [Aiyer et al. 2005] -
K-regular [Aiyer et al. 2005] -
K-safe [Aiyer et al. 2005] -
k-staleness [Bailis et al. 2012] -
Lazy release [Keleher et al. 1992] -
Linearizability [Herlihy and Wing 1990] [Burrows 2006; Baker et al.

2011; Glendenning et al.
2011; Calder et al. 2011;
Corbett et al. 2013; Han et al.
2015; Lee et al. 2015]

Location [Gao and Sarkar 2000] -
Monotonic reads [Terry et al. 1994] [Terry et al. 1995]

13In case of very popular consistency semantics (e.g., causal consistency, atomicity/linearizability), we only
cite a subset of known implementations.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

Consistency in Non-Transactional Distributed Storage Systems A:35

Monotonic writes [Terry et al. 1994] [Terry et al. 1995]
Observable causal [Attiya et al. 2015] -
PBS 〈k, t〉-staleness [Bailis et al. 2012] -
Per-object causal [Burckhardt et al. 2014] -
Per-record timeline [Cooper et al. 2008; Lloyd

et al. 2011]
[Andersen et al. 2009]

PRAM [Lipton and Sandberg 1988] -
Prefix [Terry et al. 1995; Terry

2013]
-

Processor [Goodman 1989] -
Quiescent [Herlihy and Shavit 2008] -
Rationing [Kraska et al. 2009] -
Read-your-writes [Terry et al. 1994] [Terry et al. 1995]
Real-time causal [Mahajan et al. 2011] -
RedBlue [Li et al. 2012] -
Regular [Lamport 1986b] [Malkhi and Reiter 1998a;

Guerraoui and Vukolic 2006]
Release [Gharachorloo et al. 1990] -
Safe [Lamport 1986b] [Malkhi and Reiter 1998b;

Guerraoui and Vukolic 2006]
Scope [Iftode et al. 1996b] -
Sequential [Lamport 1979] [Rao et al. 2011]
Slow [Hutto and Ahamad 1990] -
Strong eventual [Shapiro et al. 2011a] [Shapiro et al. 2011b; Conway

et al. 2012; Roh et al. 2011]
Timed causal [Torres-Rojas and Meneses

2005]
-

Timed serial [Torres-Rojas et al. 1999] -
Timeline [Cooper et al. 2008] [Rao et al. 2011]
Tunable [Krishnamurthy et al. 2002] [Lakshman and Malik 2010;

Wu et al. 2013; Perkins et al.
2015; Sivaramakrishnan
et al. 2015]

t-visibility [Bailis et al. 2012] -
Vector-field [Santos et al. 2007] -
Weak [Vogels 2008; Bermbach and

Kuhlenkamp 2013]
-

Weak
fork-linearizability

[Cachin et al. 2011] [Shraer et al. 2010]

Weak ordering [Dubois et al. 1986] -
Writes-follow-reads [Terry et al. 1994] [Terry et al. 1995]

Table IV: Definitions of consistency semantics and some of their implementations in literature.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction
	System model
	Preliminaries
	Operations, Histories and Abstract Executions
	Replicated data types and return value consistency
	Consistency semantics

	Non-transactional consistency semantics
	Linearizability and related ``strong" consistency semantics
	Weak and eventual consistency
	PRAM and sequential consistency
	Session guarantees
	Causal models
	Staleness-based models
	Fork-based models
	Composite and tunable semantics
	Per-object semantics
	Synchronized models

	Related work
	Conclusion
	Summary of consistency predicates
	Primary references

