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Abstract. Volunteer Computing (VC) harnesses computing resources
from idle machines around the world to execute independent tasks, fol-
lowing a centralized master/worker model.

We present BOINC-MR, a system able to run MapReduce applications
on top of BOINC, the most popular VC middleware in existence. We
describe BOINC-MR’s architecture and evaluate its performance with a
typical MapReduce application. Our results show that BOINC-MR yields
a performance increase of 64 % in application turnaround time and close
to 50 % reduction in bandwidth usage in the server side, when compared
to the unmodified BOINC system.
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1 Introduction

The use of personal computers’ computational power as a tool for science has
steadily increased in popularity. To this end, Volunteer Computing (VC) systems
have been extremely successful in bringing large numbers of donated compute
cycles together to form a large-scale virtual supercomputer. Applications running
on this infrastructure tackle problems from a wide range of scientific subjects,
from physics to biology, and are tailored for highly parallel number-crunching
computations.

BOINC [2] is a VC middleware that currently supports over 40 projects and
bolsters a user base of around 450 thousand active machines, making it the most
popular system in the world, rivaling the world’s supercomputers in computing
power. In its current implementation, the network topology is restricted to a
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strict master/worker scheme, generally with a fixed set of centrally managed
project computers distributing and retrieving results from network participants.

Such a centralized architecture is the source of a potential bottleneck in
the continuing evolution of Volunteer Computing systems. As projects gain in
popularity and their user-bases expand, network and storage requirements can
easily become more demanding, thus increasing the load on the server(s). There
are worrying signs of stagnation in the number of active users and projects [1],
and emerging problems in data distribution and storage [6].

Thus, one must look at alternative computing paradigms that may help Vol-
unteer Computing reach its untapped potential. MapReduce is a widely used
computing paradigm, proposed by Google [8], that has obtained considerable
support in Cloud Computing communities due to its simplicity, scalability and
performance in commodity clusters.

Our goal is to support MapReduce on top an insecure, unreliable VC envi-
ronment, by taking advantage of the vast improvements in network infrastruc-
ture and disk storage in the last mile of the Internet. In this paper, we present
BOINC-MR, a BOINC prototype that can run MapReduce jobs, and evaluate
its performance in a real-world scenario.

This paper is organized as follows: Section 2 gives background on BOINC
and MapReduce; Section 3 discusses the concepts we have just mentioned in
more depth; experimental results are presented in Section 4; Section 5 introduces
related work; and Section 6 concludes.

2 Background

This section introduces the BOINC system and MapReduce programming par-
adigm we based our research on.

In order to distribute its work units , each BOINC [2] project has to build its
data and executable code as well as setup and maintain their individual servers
and databases. Result validation is obtained through the use of task replicas, so
that upon task completion, a quorum must be reached by a majority of users
before an output can be considered correct.

Most Desktop Grids, such as BOINC or XtremWeb [3], have centralized
architectures, in which a server or coordinator is responsible for scheduling task
execution. There are exceptions [5], but they are either insignificant in scope or
tailored to a different environment.

Such architectures and the limited support for complex applications may have
brought on a significant problem: the number of active projects has stagnated.
This in turn has lead to a 15% decrease in the number of active users [1], a
number that is expected to dwindle unless new alternatives are presented that
may spark the interest of volunteers.

MapReduce is a software framework for parallel data-intensive computations
recently popularized by Google [8]; it is able to represent a wide range of applica-
tions, by providing an abstraction for parallel execution ("map”) and aggregation
of results ("reduce”).
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MapReduce input is initially split into several chunks, each to be executed
by an independent "map” task, assigned to each worker by a centralized master
node. Each worker node processes the map task it was given, and reports its
completion to the master. For the ”"reduce” step, a predetermined number of
reduce tasks are created, whose goal is to perform join operations on the map
outputs. All reduce inputs are therefore outputs from the previous map task.
Throughout the rest of the paper, we will be referring to them as map outputs.
Once all map outputs have been downloaded, the reduce task is executed and
its final result is saved.

3 BOINC-MR Architecture

BOINC-MR supports the MapReduce paradigm in an unreliable, unsecured In-
ternet environment. One of our main goals was to improve performance when
adapting MapReduce to BOINC. In order to achieve this, BOINC-MR decentral-
izes data distribution and removes unnecessary overhead from the central server
by leveraging inter-client transfers. MapReduce is an ideal framework to eval-
uate the impact of our proposition, since the map stage produces intermediate
results that are used as input by reduce tasks.

Map tasks are embarrassingly parallel, with no dependencies or any shared
data between them, which allowed us to use the traditional scheduling mecha-
nism when dealing with this step. The BOINC-MR map stage is shown in Fig. 1:
(1) A user (mapper) starts by requesting work from the projects central server;
(2) The server takes into account the workload of each mapper, as well as its
hardware and availability information, and dispatches work units that fit the
request; (3) Each mapper downloads input and executable files from the data
server, and runs the application. The computation results are then returned to
the central server. The server keeps track of which mapper is holding each output
file by storing that information in the database.

The reduce stage is depicted in Fig. 2: (1) A user (reducer) requests work
from the projects central server; (2) The scheduler appends to each reduce task



information the address (IP and port) of mappers holding output for the same
job; (3) The reducer then has the possibility of downloading the required input
files directly from the mappers. The server also stores a copy, thus providing
a failover mechanism in case of error and guaranteeing data availability. After
downloading all required files, each reducer executes its task and returns the
final result to the server.

3.1 BOINC-MR Client

A BOINC-MR client requests work by sending the server a message with host
characteristics and other information necessary for task scheduling. If there is
work available, the server reply includes information on the task to be executed
(mentioned in step (2) of Fig. 1 and 2). This task information allows clients to
identify which tasks belong to MapReduce jobs.

Once a map task is obtained, the BOINC-MR client acts as mapper and
runs the executable to produce the results. Mappers who have finished their
task make their output available for reducers to download. We consider mappers
to be hosting map outputs for as long as the files are available for download.
A BOINC-MR client only accepts incoming requests for its output files, while
rejecting messages that do not comply to a predefined file request template.
Each mapper will stop accepting connections if one of the following situations
occur: the BOINC-MR client is shut down; the MapReduce job has completed
successfully; or the mapper has reached a timeout in total hosting time.

If a BOINC-MR client obtains a reduce task, it becomes a reducer. After
parsing the task information (sent in step (2) of Fig. 2), the reducer is able
to identify which map output files can be downloaded directly from mappers
and which files are only available in the server. The BOINC-MR reducer always
attempts to download from a mapper before resorting to the server. Each map
output file may have multiple mappers hosting it, so the reducer goes through
each mapper in the list in order. The mapper address list is ordered randomly
at the server side, to prevent the overloading of a single BOINC-MR mapper.

We use a fall back mechanism for failed inter-client downloads. After n failed
attempts to download an output file directly from mappers, the reducer resorts
to downloading all missing files from the server.

3.2 MapReduce in BOINC Server

The BOINC-MR server must ensure a timely and valid transition between map
and reduce steps. It must be able to deal with both BOINC-MR and BOINC
clients, and provide information that allows each client to handle each task
according to is characteristics. In order to differentiate map tasks from ”"normal”
(non MapReduce) ones, we modify their templates by adding ” <mapreduce>"
tags with additional information such as job id and stage.

The BOINC-MR server uses an additional general configuration file to co-
ordinate between stages and handle task creation. This file is responsible for
defining global MapReduce parameters for each job, such as the number of map
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and reduce tasks. The server uses a dynamic work unit creation mechanism,
which is activated as soon as all map tasks have been returned and validated.
This mechanism takes all the information provided by the mappers hosting file
outputs to edit the necessary templates and insert reduce work units into the
server’s database.

Therefore, all reduce tasks sent to BOINC-MR clients (reducers) have the lo-
cation of the required input data, as IP addresses of mappers and as the projects
data server address (URL). It is worth noting that providing the server URL al-
lowed us to guarantee retro-compatibility with unmodified BOINC clients.

4 Experiments

To evaluate our prototype, we use PlanetLab [4], a distributed testbed designed
for applications deployed over the Internet. We present the results and imple-
mentation details in this section.

We use either 25 or 50 PlanetLab nodes as clients, and one node to act as
server. To evaluate our scenarios, we create a BOINC project to run the word
count MapReduce application. In word count, each map task receives a text
document as input, counts the number of words in it and outputs an intermediate
file with “word 1”7 pairs for each word found. The reduce step collects all the
map intermediate outputs and aggregates them into one final output. In our
experiments, we use an initial input file of 1 GB, divided into 100 chunks (10MB),
each to be handled by a different map task.

Our goal is to measure the performance of BOINC-MR when running MapRe-
duce applications, especially in two axis: application turnaround and server
bandwidth usage.

4.1 Network Bandwidth and Application Turnaround

We use either 25 or 50 client nodes, while the BOINC-MR server replicates
each task twice. Figure 3 shows the application turnaround time results. The
BOINC column corresponds to a scenario with 50 unmodified BOINC clients.



BOINC-MR-50 and BOINC-MR-25 represent 50 and 25 nodes, respectively, run-
ning BOINC-MR. While the difference in the Map stage is not significant, with
BOINC-MR doing slightly better, the Reduce stage shows remarkable improve-
ments. This speedup is due to the fact that BOINC-MR employs inter-client
transfers, and because the server spends more time uploading files with BOINC
clients. Therefore, it has a higher chance of experiencing higher load due to other
images running on its PlanetLab node. With respect to BOINC-MR clients, 25
nodes (BOINC-MR-25) performed worse than 50 nodes (BOINC-MR-50) in the
reduce stage. This was due to a smaller number of nodes hosting the map out-
put files. Overall, BOINC-MR takes less than half the time (46%) needed by the
unmodified BOINC to complete the MapReduce job.

In order to more accurately evaluate the overhead on the server, we measure
its bandwidth usage when running BOINC-MR clients. We do not present the
results of network traffic from clients to the server since the server downloads
the same amount of data from either BOINC-MR or BOINC clients. In both
cases, the server has to download the map and reduce output from each client.

Figure 4 presents the data uploaded by the central data server, when using
either BOINC-MR or BOINC clients. As BOINC-MR is faster than BOINC, its
experiment ends earlier, after 7000 seconds, while BOINC clients only finish at
the 12.000 second mark. We can observe an initial increase in uploaded data in
both scenarios, which corresponds to the distribution of map inputs from the
server to the clients. Around second 2000, the map tasks seem to have been
deployed since we reach a plateau in both scenarios, which is only interrupted
when the reduce step begins. The server running with BOINC-MR, clients has
a slight increase around second 4000 when it starts uploading the reduce task
executable file to clients. On the scenario with BOINC clients, however, we can
witness a steep slope in upload bandwidth from the central server to clients
around second 5000. The server, being the sole owner of reduce input files, must
upload all the data to clients. The server in the BOINC-MR scenario ends up
with around 2600 MBytes of uploaded data. On the other hand, using BOINC
clients forces the server to upload close to 5200 MBytes. This means that the
BOINC-MR client can cut the server’s upload bandwidth consumption in half.

4.2 Replication Factor

At this point, we evaluate the impact of the replication factor on the map task.
Figure 5 shows the results for our experiments with 2 and 3 replicas for the
map task. BOINC-2 and BOINC-3 represent the original BOINC client, with a
replication factor of 2 and 3, respectively. BOINC-MR2 and BOINC-MRS3 are the
corresponding BOINC-MR clients. For the unmodified BOINC, using a higher
replication factor helped speedup both the map and reduce stage. This can be
explained by the lower impact of a slower node. With only 2 replicated tasks,
both results are needed to validate the work unit, which means that any node
holding a task can slow down the whole computation by not returning it in time.
Having 3 nodes makes the slower one redundant.
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In the BOINC-MR client scenarios, we can see a slight speedup in the map
stage which is attributed to the aforementioned lower impact of slower nodes.
However, using 3 map task replicas produced worse results in the reduce step.
This was unexpected since having 1 more mapper to download map outputs from
should improve inter-client transfer speed. There are two explanations for these
results. First, the current version of our prototype does not use any heuristic
or complex algorithm when choosing which node to download each map output
from. Secondly, we can witness a recurring event that is presented in Fig. 6. In
cases with low replication such as this (2 reduce task replicas), one reducer’s
output cannot be discarded as there is no third or fourth reducer running. If
a slower reducer is able to obtain several tasks it will reduce the application
turnaround time. In Fig. 6, we can see that node 97 is 5 times slower than any
other node. This means that, even after all the other reducers have returned their
output, the MapReduce job will only end when this node returns its results.

5 Related Work

Combining the concepts of Cloud and Volunteer Computing has already been
proposed in [9], in which the authors studied the cost and benefits of using clouds
as a substitute for volunteers or servers.

There are two projects that have adapted MapReduce to a desktop grid.
MOON (MapReduce On opportunistic eNvironments) [10] is a Hadoop! exten-
sion that adds adaptive task and data scheduling mechanisms for an enterprise
desktop grid.

The work that most closely resembles ours was presented in [11], and, as
MOON, introduces MapReduce to desktop grids. XtremWeb has been used in
much smaller scale than BOINC, however, and its typical use scenario consists
of a federation of research labs.

! Apache Hadoop. http://hadoop.apache.org/



6 Conclusion

We have presented BOINC-MR, a working prototype that allows MapReduce
applications to run on top of a VC system, BOINC. Our results have shown that
we can have a significant improvement in both performance and server band-
width efficiency if we tailor this paradigm to our wide area environment. We have
shown that BOINC-MR takes less than half the time (46%) needed by the un-
modified BOINC to complete a word count MapReduce job. Furthermore, using
BOINC-MR clients can cut bandwidth consumption in half on the server side,
by successfully leveraging client’s resources. We have also detected an excessive
impact of slower nodes on application turnaround, when clients with limited
bandwidth obtain a large number of tasks.
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