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Abstract

It is well known that distributed systems pose serious difficul-
ties concerning memory management: when done manually,
it leads to memory leaks and dangling references causing ap-
plications to fail. We address this problem by presenting
a distributed garbage collection (DGC) algorithm for dis-
tributed systems supporting replicated data over wide area
networks.
Current DGC algorithms are not well suited for such sys-

tems because either (i) they do not consider the existence
of replication, or (ii) they impose severe constraints on scal-
ability by requiring causal delivery to be provided by the
underlying communication layer.
Our algorithm solves these problems by (i) adapting classi-

cal reference-counting DGC algorithms that were conceived
for non-replicated systems (e.g. indirect reference-counting,
SSP chains, etc.), and (ii) improving our previous algorithm
for replicated systems (i.e. Larchant).
The result is a DGC algorithm that, besides being correct

in presence of replicated data and independent of the proto-
col that maintains such replicas coherent among processes, it
does not require causal delivery to be ensured by the under-
lying communications support. In addition, it has minimal
performance impact on applications.

1 Introduction

Modern distributed applications sharing long-term data over
many places, geographically separated, appear each day.
Typical examples are found in the fields of concurrent en-
gineering, cooperative applications, etc.
Manual memory management is extremely difficult when

developing the aforementioned distributed applications. The
reason is that graphs of reachability are large, widely dis-
tributed and frequently modified through assignment opera-
tions executed by applications. In addition, data replicated
in many processes is not necessarily coherent making man-
ual memory management much harder. For these reasons
it is impossible to do manual memory management without
generating dangling references and/or memory leaks.
Automatic memory management, also known as Garbage

Collection (GC), is the single realistic option which is able to
maintain referential integrity (i.e. no dangling references or
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Figure 1: Safety problem of current DGC algorithms which
do not handle replicated data: z is erroneously considered
unreachable.

memory leaks) in Wide Area Replicated Memory (WARM)
systems. As a result, program reliability and programmer
productivity are clearly improved.

1.1 Shortcomings of Current Solutions

Current DGC algorithms [13, 14] are not well suited for
WARM systems based on data-shipping because of the fol-
lowing drawbacks: either (i) they do not consider the exis-
tence of replication, or (ii) they impose severe constraints on
scalability by requiring causal delivery to be supported by
the underlying communication layer.
The first drawback, i.e. not considering replicated data,

concerns all the classical DGC algorithms that were designed
for function-shipping based systems, such as Indirect Refer-
ence Counting (IRC) [12] or SSP Chains [15]. As a matter of
fact, these algorithms are not safe in presence of replicated
data, as explained now.
Consider Figure 1 in which an object x is replicated in

processes i and j; each replica of x is noted xi and xj, re-
spectively. Now, suppose that xi contains a reference to an
object z in another process k, xj points to no other object, xi

is locally unreachable and xj is locally reachable
1. Then, the

question is: should z be considered garbage? Classical DGC
algorithms consider that z is effectively garbage. However,
this is wrong because, in a WARM system, it is possible for
an application in j to “acquire” a replica of x in some other

1Locally (un)reachability is related to (un)accessibility from the en-
closing process’s local root.
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process, in particular, xi
2. Thus, the fact that xi is locally

unreachable in process i does not mean that x is globally un-
reachable; as a matter of fact, xi contents can be accessed by
an application in process j by means of an “acquire”. There-
fore, in a WARM system, a target object z is considered
unreachable only if the union of all the replicas of the source
object, x in this example, do not refer to it. We call this the
Union Rule (more details in Section 4.2.2).
The second drawback, i.e. imposing severe constraints

on scalability, affects current DGC algorithms conceived for
WARM systems, such as Larchant [4, 8]. As a matter of fact,
such algorithms are not scalable because they require the un-
derlying communication layer to support causal delivery.
So, in conclusion, classical DGC algorithms, such as IRC

and SSP Chains, are not safe for WARM systems but promise
to be scalable, in particular, do not require causal delivery;
on the other hand, WARM specific DGC algorithms, such as
Larchant, deals safely with replication but lacks scalability.
Thus, the main contribution of this work is the follow-

ing: showing how classical DGC algorithms (conceived for
function-shipping based systems) can be extended to handle
replication while keeping their scalability.
We do not address the issue of fault-tolerance, i.e. it is

out of the scope of the paper how the algorithm behaves
in presence of communication failures and processes crashes.
However, solutions similar to those found in classical DGC
algorithms can also be applied.
This paper is organized as follows. In Section 2 we present

the model of a WARM for which the DGC was defined. The
DGC algorithm is described in Sections 3 and 4. Section 5
highlights some of the most important implementation as-
pects. Section 6 presents some performance results from a
real application. The paper ends with some related work and
conclusions in Section 7 and 8, respectively.

2 WARM Model

This section presents the model for Wide Area Replicated
Memory (WARM). A WARM is a replicated distributed
memory spanning several processes. These processes are con-
nected in a network and communicate only by asynchronous
message passing. We indicate that a message M has been
sent from process i to process j as <send.M>i→j; the delivery
of that message is noted <deliver.M>i→j.
In a WARM, the only way to share information is by

replication of data, which can be done with a DSM based
mechanism[10]. Thus, processes do not use Remote Proce-
dure Call (RPC) to access remote data.
It’s worthy to note that application code inside a process

never sends messages explicitly. Instead, application code
access data always locally; transparently to the application

2In distributed systems with replicated data, an “acquire” operation
allows a process to update its local replica of a particular object with
the contents of another replica, of that same object, residing in some
other process with a data-shipping mechanism.

code, the WARM runtime system is responsible to replicate
data locally when needed.
Each participating process in the WARM encloses, at least,

the following entities: memory, mutator3, and a coherence
engine. In our WARM model, for each one of these entities,
we consider only the operations that are relevant for GC
purposes.
We believe that our model is sufficiently general to describe

most distributed systems supporting wide area applications
using data shipping. This model clearly defines the environ-
ment for which the DGC algorithm is conceived.

2.1 Memory Organization

An object is defined to be a consecutive sequence of bytes
in memory. Applications can have different views of objects
and can see them as language-level class instances, memory
pages, data base records, web pages, etc.
Objects can contain references pointing to other objects.

An outgoing inter-process reference is a reference to a
target object in a different process. An incoming inter-
process reference is a reference to an object that is pointed
from a different process. Our model does not restrict how
references are actually implemented. They can be virtual
memory pointers, URLs, etc.
An object is said to be reachable if it is attainable directly

or indirectly from a GC root (defined in Section 3.1). An
object is said to be unreachable if there is no reference path
(direct or indirect) from a GC root leading to that object.
The unit for coherence is the object. Any object can be

replicated (i.e. cached) in any process. A replica of object x

in process i is noted xi. Each process can cache a replica of
any object for reading or writing according to the coherence
protocol being used.

2.2 Mutator model

The single operation executed by mutators, which is relevant
for GC purposes, is reference assignment; this is the only
way for applications to modify the graph of objects.
The reference assignment operation executed by a mutator

in some process i is noted <x := y>i. This means that a
reference contained in object x is assigned to the value of a
reference contained in object y.4 This assignment operation
results in the creation of a new inter-process reference from
x to z, as illustrated in Figure 2.
Obviously, other assignments can delete references trans-

forming objects in garbage. For example, in Figure 2, if
the mutators in processes i and j perform <x := 0>i and

3The term mutator designates the application code which, from the
point of view of the garbage collector, mutates (or modifies) the reach-
ability graph of objects.

4This notation is not fully accurate but it simplifies the explanation
of the DGC algorithm. As a matter of fact, to be more precise we
should write x.ref = y.ref (C++ style notation). However, this improved
precision is not important for the DGC algorithm description and would
complicate it un-necessarily.
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Figure 2: Creation of a new inter-process reference to object
z through an assignment operation.

<y := 0>i, object z becomes unreachable, i.e. garbage, given
that there are no references pointing to it.

In conclusion, assignment operations (done by mutators)
modify the object graph either creating or deleting refer-
ences. An object becomes unreachable when the last refer-
ence to it disappears; when this occurs, such an object can
be safely reclaimed by the garbage collector because there is
no possibility for any process to access it.

2.3 Coherence Model

The coherence engine is the entity of the WARM that is
responsible to manage the coherence of replicas. The coher-
ence protocol effectively used varies from system to system
and depends on several factors such as the number of repli-
cas, distances between processes, and others. However, the
only coherence operation, which is relevant for GC purposes,
is the propagation of an object, i.e. the replication of an
object from one process to another. The propagation of an
object y from process i to process j is noted propagate(y)i→j.

We assume that any process can propagate a replica into
itself as long as the mutator causing the propagation holds a
reference to the object being propagated. Thus, if an object
x is locally unreachable in process i, the mutator in that
process can not force the propagation of x to some other
process; however, if some other process j holds a reference to
x, it can request x to be propagated from i to j (as occurs in
Figure 1).

We assume that, in each process, the coherence engine
holds two data structures, called inPropList and outPro-
pList; these indicate the process from which each object has
been propagated, and the processes to which each object has
been propagated, respectively.5. Thus, each entry of the in-

PropList/outPropList contains the following information (see
Figure 3):

5Usually, this information does exist in the coherence engine in order
to manage the replicas.
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Figure 3: inPropList and outPropList internal data.
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Figure 4: Coherence engine propagates object y from process
j to process i. The dashed line of yi means that initially, in
process i, y is not yet replicated in i.

• propObj - the reference of the object that has been
propagated into/to a process;

• propProc - the process from/to which the object
propObj has been propagated;

• sentUmess/recUmess - bit indicating if a unreach-
able message (more details in Section 3.1.2) has been
sent/received.

When an object is propagated to a process we say that its
enclosed references are exported from the sending process
to the receiving process; on the receiving process, i.e. the
one receiving the propagated object, we say that the object
references are imported.
Figure 4 illustrates the effect of a propagation. Object z

has no replicas. Initially, only process j caches a replica of
y; thus, both outPropList and inPropList of processes j and i

are empty, respectively. In addition, yj points to z. After y

has been replicated from process j to process i, a new inter-
process reference from yi to z is created; this is due to the
fact that the reference to z was exported from process j to
(be imported by) process i. The inPropList and outPropList

reflect this situation.
In order to understand how the DGC algorithm works it is

important to emphasize the following aspects concerning the
creation of inter-process references. The only way a process
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can create an inter-process reference is through the execu-
tion of only two operations: (i) reference assignment, which
is performed explicitly by the mutator, and (ii) object prop-
agation, which is performed by the coherence engine in order
to allow the mutator to access some object6.

3 Distributed Garbage Collection

Algorithm

In this section we describe the DGC algorithm in detail. We
start with an intuitive overview of the algorithm. Then,
we go into more detail by describing a prototypical exam-
ple which addresses all the aspects of the DGC algorithm.

3.1 Overview

The DGC algorithm is an hybrid of tracing and reference-
counting. Thus, each process has two GC components: a
local tracing collector, and a distributed collector. Each
process does its local tracing independently from any other
process. The local tracing can be done by any mark-and-
sweep based collector. The distributed collectors, based on
reference-counting, work together by changing asynchronous
messages, as described in the following sections. In the rest
of the paper we focus on distributed collection.

3.1.1 Data Structures

A stub describes an outgoing inter-process reference, from
a source process to a target process. A scion describes an
incoming inter-process reference, from a source process to a
target process. It is important to note that stubs and scions
do not impose any indirection on the native reference mech-
anism. In other words, they do not interfere either with the
structure of references or the invocation mechanism. They
are simply GC specific auxiliary data structures.
A stub stores in its internal data structures the following

information:

• OutRef - the reference of the target object;

• SourceObj - the reference of the local object containing
the outgoing inter-process reference;

• Scion - the identification of the corresponding scion;
and

• Chain - the identification of a stub or a scion in the
same process.

A scion stores in its internal data structures the following
information:

6For example, in some DSM-based systems, when the mutator tries
to access an object that is not yet cached locally, a page fault is gener-
ated; then, this fault is automatically recovered by the coherence engine
that obtains a replica of the faulted object from some other process.

• InRef - the reference of the target object;

• Stub - the identification of the corresponding stub; and

• Chain - the identification of a stub or a scion in the
same process.

Finally, a process’s GC root includes: (i) the lo-
cal root, i.e. stacks and static variables, (ii) the set of
scions of that process, and (iii) the lists inPropList and
outPropList.

3.1.2 Algorithm

The local and distributed collectors depend on each other to
perform their job in the following way. A local collector run-
ning inside a process traces the object graph locally cached;
the starting point of the trace is the process’s GC root. A
local tracing generates a new set of stubs; it is based on this
new set that the distributed collector, in that process, may
decide to update remote scions in other processes.

Local Collector The local collector starts the graph trac-
ing from the process’s local root and set of scions. For each
outgoing inter-process reference it creates a stub in the new
set of stubs. Once this tracing is completed, every object lo-
cally reachable by the mutator has been found (e.g. marked,
if a mark-and-sweep algorithm is used); objects not yet found
are locally unreachable; however, they can still be reachable
from some other process holding a replica of, at least, one of
such objects (as is the case of xi in Figure 1). To prevent the
erroneous deletion of such objects, the collector traces the
objects graph from the lists inPropList and outPropList,
and performs as follows.

• When a locally reachable object (previously discovered
by the local collector) is found, the tracing along that
reference path ends.

• When an outgoing inter-process reference is found the
corresponding stub is created in the new set of stubs.

• For an object which is reachable only from the inPro-

pList, a message unreachable is sent to the site from
where that object has been propagated; this sending
event is registered by changing a sentUmess bit in the
corresponding inPropList entry from 0 to 1.7

When a unreachable message reaches a process, this de-
livery event is registered by changing a recUmess bit in
the corresponding outPropList entry from 0 to 1.

• For an object which is reachable only from the outPro-

pList, and the enclosing process has already received a

7Note that from now on, the replica is not reachable by the local
mutator; if another propagate operation occurs bringing a new replica
of that same object into the process, the old replica remains locally
unreachable, and a new entry is created in the inPropList with the cor-
responding sentUmess set to 0.
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message sent/received by sent when
unreachable LGC/DGC object replica is reachable only from the inPropList
reclaim LGC/DGC all object replicas are reachable only from the inPropLists

newSetStubs DGC/DGC a new set of stubs is available

Table 1: GC related messages.

unreachable message from all the processes to which that
object has been previously propagated, a reclaim mes-
sage is sent to all those processes and the corresponding
entries in the outPropList are deleted; otherwise, nothing
is done.

When a process receives a reclaim message it deletes the
corresponding entry in the inPropList.

Distributed Collector The main ideas behind the DGC
algorithm can be summarized as follows.

• As already mentioned, an object can be reclaimed only
when all its replicas are no longer reachable. This is
ensured by tracing the objects graph from the lists in-

PropList and outPropList; objects that are reachable only
from these lists are not locally reachable (i.e. by the lo-
cal mutator); however, they can not be reclaimed with-
out ensuring their global unreachability, i.e. that none
of their replicas are accessible. This will be explained in
detail in the following sections.

• The DGC algorithm is independent of the particular co-
herence protocol implemented by the coherence engine.
In other words, the DGC algorithm does not require to
access coherent replicas.

• Whatever the coherence protocol, there is only one in-
teraction with the DGC algorithm. This interaction is
twofold: (i) immediately before a propagate message
is sent, the references being exported (contained in the
propagated object) must be found in order to create
the corresponding scions, and (ii) immediately before
a propagate message is delivered, the outgoing inter-
process references being imported must be found in or-
der to create the corresponding local stubs, if they do
not exist yet.8

• From time to time, possibly after a local collection,
the distributed collector sends a message called newSet-

Stubs; this message contains the new set of stubs that
resulted from the local collection; this message is sent
to the processes holding the scions corresponding to the
stubs in the previous stub set. In each of the receiving
processes, the distributed collector matches the just re-
ceived set of stubs with its set of scions; those scions
that no longer have the corresponding stub, are deleted.

8Note that this may result in the creation of chains of stub-scion
pairs, as it happens in the SSP Chains algorithm.

• As previously described, when a local collection takes
place two kinds of messages may be sent: unreachable

and reclaim. On the receiving process, these messages
are handled by the distributed collector that performs
the following operations: sets the recUmess bit in the
corresponding outPropList entry, and deletes the corre-
sponding entry in the inPropList, respectively.

• The DGC algorithm does not require the underlying
communication layer to support causal delivery.

Table 1 presents all the GC related messages of the model,
the components responsible for sending and receiving them,
and when they occur. In Table 2 we present all the events
with impact on the GC and the corresponding actions taken.
These two tables summarize the way GC is performed. In
the next sections we describe the DGC algorithm in more
detail.

4 Prototypical Example

We use a prototypical example, illustrated in Figures 5 and 6.
This example evolves along a sequence of steps covering all
the situations, relevant for GC, that occur in a WARM: (i)
creation of a new outgoing inter-process reference by means
of a propagate operation, (ii) creation of a new outgoing
inter-process reference by means of an assignment opera-
tion, and (iii) deletion of outgoing inter-process references
by means of assignment and propagate operations. We show
how all these occurrences affect the GC specific data struc-
tures and messages.

In the initial situation both x and y are cached in processes
i and j. However, only the replica yj points to object z in
process k. There is a single stub-scion pair (s2-s1) describing
the only outgoing inter-process reference from yj to z. For
the sake of simplicity of our description, we assume that this
stub-scion pair is created when the system boots.9

Then, the sequence of steps of the prototypical example
considers the following operations (see Figures 5 and 6; the
effects of the operations are shown in bold).

Step 1 - Propagate y from process j to process i; this
results in the creation of a new outgoing inter-process
reference from object y in i to object z in k.

9For example, the reference to z could be obtained from a name
service.
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Figure 5: Prototypical example (part 1).
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event occurs when action taken
reference exported propagate an object from a process create scion
reference imported propagate an object into a process create stub
object replica send unreachable message to
reachable only LGC runs the process with the corresponding

from the inPropList outPropList entry; set the sentUmess
bit accordingly

set the recUmess bit accordingly;
unreachable message unreachable message sent if all recUmess bits for a

received particular object are set, then
send the corresponding reclaim messages
and delete the outPropList entries

reclaim message received reclaim message sent delete the corresponding inPropList entry
newSetStubs message sent to the processes

new set of stubs available LGC runs holding the scions corresponding to
the previous set of stubs

newSetStubs message newSetStubs message sent compare set of stubs with set of scions;
received delete scions with no corresponding stubs

Table 2: GC related events.

Step 2 - The operation <x := y>i is performed by the
mutator in i; this creates a new outgoing inter-process
reference from object x in i to object z in k.

Step 3 - Propagate x from process i to process j; this
results in the creation of a new outgoing inter-process
reference from object x in j to object z in k.

Step 4 - The operation <y := 0>j is performed by the
mutator in j; this results in the deletion of an outgoing
inter-process reference from object y in j to object z in
k.

Step 5 - Propagate y from process j to process i; this
results in the deletion of an outgoing inter-process ref-
erence from object y in i to object z in k.

Step 6 - The operation <x := 0>i is performed by the
mutator in i; this results in the deletion of an outgoing
inter-process reference from object x in i to object z in
k.

Step 7 - the mutator in j deletes the reference from the
local root to object x.

Step 8 - the mutator makes xi unreachable by deleting
the reference from the local root; thus, every replica of
x becomes garbage.

The prototypical example presented above has two parts:
the first three steps results in the creation of new outgoing
inter-process references; the last five steps result in z becom-
ing unreachable. In the next sections we describe how the
DGC works in order to deal with this prototypical example.

4.1 Creation of Outgoing Inter-process Ref-

erences

In the prototypical example, the creation of outgoing inter-
process references occurs first by propagation (step 1), then
by reference assignment (step 2), and finally by propagation
again (step 3). We address these cases now.

4.1.1 Propagation

The first operation in the prototypical example is
propagate(y)j→i (Figure 5, step 1). Immediately before this
message is sent from process j, object y must be scanned for
references being exported. For each one of these references,
the corresponding scion must be created. In this case, y con-
tains only one reference (pointing to z); the corresponding
scion s3 is shown in bold. Note that the scion just created,
through its Chain field, refers to the already existing stub s2

(describing the outgoing inter-process reference from object
y to object z).
Immediately before propagate(y)j→i is delivered in process

i, object y has to be scanned for imported outgoing inter-
process references in order to create the corresponding stubs
in process i, if they do not exist yet. In the prototypical
example, y contains a single reference and there is no stub
describing it in process i. Thus, the corresponding stub s4 is
created (shown in bold); this stub, through its internal data
structures, refers to the scion previously created in process
j. Then, the mutator may freely access object y in process i.
Thus, the information stored in the stub-scion pair just

created, s4-s3,is the following:

• stub s4: OutRef refers to object z in process k, sourceObj

refers to object y in process i, Scion identifies the cor-
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responding scion s3 previously created in process j, and
Chain is null;

• scion s3: InRef refers to object z in process k, Stub iden-
tifies the corresponding stub s4 in process i, and Chain

refers to the stub describing the outgoing inter-process
reference from object y to object z.

It is worthy to note that the mutator does not have to be
blocked while the GC specific operations mentioned above
are executed (scanning the object being propagated and cre-
ating the corresponding scion and stub); such operations can
be executed in the background.
To summarize, there are the following rules:

Safety Rule I: Clean Before Send Propagate.
Before sending a propagate message for an object y

from a process j, y must be cleaned (i.e. it must
be scanned for references) and the corresponding
scions created in j.

Safety Rule II: Clean Before Deliver Propa-
gate. Before delivering a propagate message for
an object y in a process i, y must be cleaned (i.e.
it must be scanned for outgoing inter-process refer-
ences) and the corresponding stubs created in i, if
they do not exist yet.

4.1.2 Assignment

The second step of the prototypical example is the execution
of the operation < x := y>i. This results in the creation
of a new outgoing inter-process reference: from object x in
process i to z in process k. There is absolutely no operation
to be done on behalf of the DGC algorithm.
This might seem strange because, according to traditional

reference counting algorithms [18], each time a reference is
created, a counter (at least) must be incremented. In a
WARM, where mutators may create inter-process references
very easily and frequently, through a simple reference assign-
ment operation, such increment would be extremely ineffi-
cient. As a matter of fact, this would require instrumenting
every reference assignment and increment a counter accord-
ingly, possibly on some remote process. In the following sec-
tions it will become clear that such increment (or equivalent
operation) does not need to be performed immediately.

4.1.3 Propagation

The third step of the prototypical example is the propaga-
tion of object x from process i to process j. This results in
the creation of a new outgoing inter-process reference: from
object x in process j to object z in process k(shown in bold
in Figure 5, step 3).
According to Safety Rule Clean Before Send Propa-

gate, before the propagate message is sent, the following
has to be done in process i: scan object x, find its enclosed

references and create the corresponding scions. In this case,
object x has only one reference; thus, as a result of the scan,
scion s6 is created in process i (shown in bold, Figure 5, step
3).
In addition, it is created stub s5 describing the outgoing

inter-process reference from object x in process i to object z

in process k.10

According to Safety Rule Clean Before Deliver Prop-
agate, before the propagate message is delivered in process
j, object x must be cleaned and the corresponding stub s7

created (shown in bold, Figure 5, step 3).

4.2 Deletion of Outgoing Inter-process Ref-

erences

In the prototypical example, the deletion of outgoing inter-
process references occurs first by reference assignment, then
by propagation, then by reference assignment again, and fi-
nally by propagation again. After all these operations, object
z is unreachable. We address these steps now.

4.2.1 Assignments and Propagations

The fourth step of the prototypical example is the execution
of the operation <y := 0>j. This results in the deletion of
the outgoing inter-process reference, from object y to object
z (Figure 5, step 4). At this moment, there is absolutely no
operation to be done for GC purposes.
The fifth step of the prototypical example is

propagate(y)j→i. Given that the replica that is being
propagated to i no longer points to any object, after the
propagate is delivered, the outgoing inter-process reference
from object y in process i to z, is (implicitly) deleted
(Figure 5, step 5). At this moment, there is absolutely no
operation to be done for GC purposes. Note that, given that
the object being propagated contains no references, both
safety rules do not imply the execution of any particular
operation.
The sixth step of the prototypical example is the execution

of the operation <x := 0>i. This results in the deletion of
the outgoing inter-process reference, from object x in process
i to object z in process k (Figure 5, step 6). At this moment,
there is absolutely no operation to be done for GC purposes.
The seventh step of the prototypical example makes object

x in process j unreachable from the local root. The last step
makes object x in process i unreachable from the local root.
In both cases there is absolutely no operation to be done for
GC purposes.
So far, the DGC has performed no operation. In particu-

lar, no scion has been deleted. Consequently, object z, which
is no longer reachable, has not been reclaimed yet. This
will happen only after its protecting scion s1 in process k is
deleted and the local collector is executed. Now we address
the modification and deletion of stubs and scions.

10Note that if a local collection has previously taken place in process
i, stub s5 would have been already created.
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Figure 7: Timeline describing the GC operations after the 8th step of the prototypical example.

4.2.2 Collecting Garbage

In step 8 of the prototypical example we see that object z

will be reclaimed by the local collector in process k only after
its protecting scion s1 has been deleted. This scion will be
deleted only after the corresponding stub s2 in process j has
disappeared; this will occur only after all the chain of stub-
scion pairs s7-...-s3 gets deleted.

According to Section 3.1.2, the stubs and scions will dis-
appear as a result of the local and distributed collectors in
processes i and j, as explained now (see Figure 7).

1st LGC - The local collector in process i detects that
object x is reachable only from the inPropList; thus, a
message unreachable is sent to process j and the corre-
sponding sentUmess bit is set.

When this message is delivered in process j, the recUmess

bit in the corresponding entry of outPropList is set.

2nd LGC - The local collector in process j detects that
object x is reachable only from the outPropList and the
corresponding entry has its recUmess set; thus a mes-
sage reclaim is sent to process i and the entry in the
outPropList is deleted.

When this message is delivered in process i, the corre-
sponding entry in inPropList is deleted.

3rd LGC - As a result of a local collection in process
j, x is reclaimed and, consequently, stub s7 describing
its outgoing inter-process reference to object z is not in
the new set of stubs. This new set of stubs is sent as a
newSetStubs message from process j to process i; then,
the distributed collector in i deletes the corresponding
scion s6.

Note that stub s2, in spite of the fact that y in j holds
no outgoing inter-process reference anymore, is still in
the new set of stubs because is reachable from scion s3

through its Chain data structure.

4th LGC - As a result of a local collection in process i,
object x is reclaimed and the new set of stubs does not
contain any stub (s5 and s4, in particular) because there
are no outgoing inter-process references.

This new set of stubs is sent as a newSetStubs message
from process i to process j; then, the distributed collector
in j deletes the corresponding scion s3.

5th LGC - As a result of a local collection in process
j a new set of stubs is generated in which there is no
stub (i.e. s2) because there are no outgoing inter-process
references.

This new set of stubs is sent as a newSetStubs message
from process j to process k; then, the distributed collec-
tor in k deletes the corresponding scion s1.

6th LGC - Finally, a local collection occurs in process k

and object z is reclaimed.

In conclusion, we have the following rule for replicated
objects:

Safety Rule III: Union Rule. A target object
z is considered unreachable only if the union of all
the replicas of the source objects do not refer to it.

In the prototypical example the objects pointing to z were
the replicas of x and y. From Figure 7 it is clear that the
union rule is respected. In addition, it is clear that there is no
need for causal delivery to be ensured by the communication
layer.

5 Implementation

We implemented our WARM distributed and local garbage
collectors within a system called News Gathering (NG). In
this section we briefly describe the NG application; then,
we focus on the most important implementation aspects of
the DGC: how the safety rules are implemented, and the
stub/scion data structures.
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Figure 8: General architecture of the NG application. Ob-
viously, any number of sites is supported and not all are
forced to have both a client and a server, i.e. some can be
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Figure 9: Example of NG usage: i) browse the S2 web site,
ii) make-replicas of a page, iii) edit the replica, and iv) make
the replica available for others.

5.1 NG Application

NG is a web-based client-server application that we devel-
oped, to support the sharing of files over the web by means
of replication [17]. From the user point of view the client
side of NG is a normal web browser with an extra menu but-
ton called “make-replica”. This function allows the user to
propagate a file into his machine, i.e., to create a local replica
of the file he is looking at. Once replicated, the file can be
freely accessed with any other application (possibly making
the replicas to diverge). Later, this replica can be propa-
gated back to the site from where it came from by means
of a make-replica operation performed by other user running
on that site. (Figure 8 illustrates the general architecture of
this application.)

With NG, a typical user in site S1 browses the web (web
servers supporting the NG application) and makes-replicas
of some of the pages from, for example, the S2 site. These
pages are then edited by the user and, once ready, are made
available from the user’s local NG server. These replicas may
hold references to other (not locally replicated) S2 pages.
Thus, it is desirable that such pages in the S2 web site remain
available as long as there are references pointing to them.
Figure 9 illustrates this scenario.

The NG application, due to the WARM distributed
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Figure 10: Propagation of file F1.

garbage collector, ensures that such pages at the S2 site re-
main there as long as they are pointed from some other NG
site. In addition, files at the S2 site, which are no longer
referenced from any other NG site are automatically deleted
by the garbage collector. This means that neither dangling
references nor memory leaks occur.

The NG application is implemented in Java; this includes
the client code (that uses the Microsoft Internet Explorer
component) and the servlets running within an Apache web
server.

5.2 Distributed Garbage Collector

All the code of the local and distributed collectors is written
in Java. The local collector is implemented as a stand-alone
application. The distributed collector is implemented by the
servlets and by the client.

Basically, the code in the servlets implements the safety
rule Clean Before Send Propagate (applied when a make-
replica is requested); the client code implements the safety
rule Clean Before Deliver Propagate (applied when the reply
to a make-replica request is received). The implementation
of these rules consists on scanning the web pages being prop-
agated and creating the corresponding scions (at the server)
and stubs (at the client).

The first time a file is propagated, at the server site its
contents are scanned, the corresponding scions created, an
the enclosed set of URLs is kept in an auxiliary file. Later, if
this same page is propagated again, at the server site it only
has to be scanned again if it has been modified after the last
scan. The timeline presented in Figure 10 shows how the
scanning needed to enforce safety rules I and II relates to
the make-replica request of file F1.

Another important aspect concerning the implementation
of the garbage collectors (both local and distributed) is the
data structures supporting the stubs and scions. These were
conceived taking into account their use, in particular, to op-
timize the kind of information exchanged between sites that
occurs when a newSetStubs message is sent.

This message implies that the new set of stubs, resulting
from a local collection, is sent to the processes holding the
scions corresponding to the stubs in the previous stub set.
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file number scan stub hash time to
size of URLs time creation table serialize

time size
43563 326 38 3 19252 67

Table 3: Mean values obtained with all the files automati-
cally downloaded from the cnn.com site. (Sizes in bytes and
times in milliseconds.)

Then, in each of the receiving processes, the distributed col-
lector matches the just received set of stubs with its set of
scions; those scions that no longer have the corresponding
stub, are deleted.
Thus, stubs are grouped by site, i.e. there is one hash

table for each site holding scions corresponding to the stubs
in that table. Sending a new set of stubs to a particular site
is just a matter of sending the new hash table. The same
reasoning applies to scions: they are stored in hash tables,
each table grouping the scions whose corresponding stubs are
in the same site.

6 Performance

In this section we present the most relevant performance re-
sults concerning the DGC. The critical performance results
are those related to the implementation of safety rules I and
II.
Thus, we downloaded a well-known web site (cnn.com) and

ran on each file the code implementing the safety rules. All
results were obtained in a local 100 Mbits network, connect-
ing PCs with Windows NT, with 64 Mb of memory and a
Pentium II at 233 MHz.
We downloaded all the 155 HTML files of the cnn.com web

site11 and obtained for each one the time it takes to: scan it,
create the corresponding stubs, and serialize the hash table.
In this section, for clarity, we simply refer to the time it takes
to create stubs and their size because the same values apply
to scions.
In Table 3 we present, for each one of the 155 files: the

mean file size, the mean number of URLs enclosed in each
file, the mean time to scan a file, the mean time it takes to
create a stub in the corresponding hash table, the mean size
of the hash table containing all the stubs corresponding to all
the URLs enclosed in a file (that depends on the size of the
corresponding URL), and the mean time it takes to serialize
a hash table with all the stubs corresponding to a single file.
However, in a normal browsing session, the user does not

makes-replica of all the files. We expect the user to browse
a few top-level pages and then pick one or more branches of
the hierarchy. Some of these files will be replicated into the
users local computer.

11Using an automatic tool called WebReaper available from
http://www.otway.com/webreaper configured with a depth level of 5.

So, in order to obtain more realistic numbers, we per-
formed the following. We picked 10 files from the top of
the cnn.com hierarchy. These files are mostly entry points
to the others with more specific contents. We call this set of
files, the top-set. We also picked other 10 files representing
a branch of the cnn.com hierarchy. We call this set of files,
the branch-set.
In Tables 4 and 5, for each file in the top-set and in

the branch-set, respectively, we present the times mentioned
above along with the size of each file and the number of URLs
enclosed.
These performance results are worst-case because they as-

sume all the URLs enclosed in a file refer to a file in another
site, which is not the usual case. However, they give us
a good notion of the performance limits of the current im-
plementation. In particular, we see that the most relevant
performance costs are due to the scanning of a file and the se-
rialization of the hash table. However, we believe that these
values are acceptable taking into account the functionality
of the system, i.e. it ensures that no dangling references and
no memory leaks occur. In addition, when a user runs the
NG browser and accesses any web page without making a
local replica of any file, there is absolutely no performance
overhead due to DGC.
We can also conclude that the size on disk of the hash

table containing all the stubs for a file is about half the size
of the HTML file. This rather large size is mostly due the
size of the URLs which are responsible for about 90% of that
size. The size of the file containing the stubs can certainly
be reduced using regular compression techniques.

7 Related work

Much previous work in distributed garbage collection, such
as SSP Chains [15] or Network Objects [3], considers pro-
cesses communicating by messages (without shared mem-
ory), using a hybrid of tracing and counting. Each process
traces its internal pointers; references across process bound-
aries are counted as they are sent in messages.
Some object-oriented databases use a similar approach

[1, 5, 19], i.e. a partition can be collected independently
from the rest of the database. In particular, Thor is a re-
search OODB [11] that stores data in a small number of
servers. This data is cached at workstations for processing.
A Thor server counts references contained in objects cached
at a client. Thor defers counting references originating from
some object x cached at a client, until x is modified at the
server.
The work most directly related to this one is Skubiszewski

and Porteix’s GC-consistent cuts [16]. They consider asyn-
chronous tracing of an object-oriented database, with no dis-
tribution or replication. The collector is allowed to trace an
arbitrary database page at any time, subject to the following
ordering rule. For every transaction accessing a page traced
by the collector, if the transaction copies a pointer from one
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file file number scan stub hash URLs time to
name size of URLs time creation table size serialize

time size
europe.htm 49055 493 36 10 25485 22367 60
health.htm 102933 491 45 10 26268 23465 60
law.htm 79460 523 117 10 31373 30194 70
main.htm 67081 588 40 10 38548 34108 71
politics.htm 59079 470 90 10 25963 22939 60
showbiz.htm 71579 498 40 10 26481 24944 111
space.htm 58488 478 78 50 24835 23614 50
sports.htm 41778 366 27 10 23308 18908 60
tech.htm 49645 462 34 10 21820 20491 50
world.htm 54863 554 40 10 24489 23870 50

Table 4: Values for the top-set group of files. (Sizes in bytes, times in milliseconds.)

file file number scan stub hash URLs time to
name size of URLs time creation table size serialize

time size
index.htm 46960 360 27 10 22692 21400 60
default.htm 48419 380 33 10 24504 23870 50
01/index.htm 45504 369 95 10 22817 22444 60
02/index.htm 26753 200 16 20 14084 10789 40
03/index.htm 31834 279 22 10 18493 17033 50
04/index.htm 45247 360 26 10 21855 21656 50
05/index.htm 53778 411 30 10 25817 24490 60
06/index.htm 42476 362 25 10 22706 22081 70
01/default.htm 16843 150 20 10 8032 7934 10
02/default.htm 33473 173 24 10 8675 8090 30

Table 5: Values for the branch-set group of files in the branch world/europe. (Sizes in bytes, times in milliseconds.)

page to another, the collector either traces the source page
before the write, or traces both the source and the destina-
tion page after the write. The authors prove that this is a
sufficient condition for safety and liveness.

Most previous work on garbage collection in shared mem-
ory deals either with multiprocessors [2, 6] or with a small-
scale DSM [9, 7]. These authors make strong coherence as-
sumptions, and they ignore the fundamental issue of scala-
bility.

Yu and Cox [20] describe a conservative collector for the
TreadMarks DSM system. It uses partitioned GC on a pro-
cess basis; it is strongly integrated with TreadMarks and all
messages are scanned for possible contained pointers.

Previous work in DGC as IRC [12], SSP chains [15] and
Larchant [8] served as the starting point of the DGC algo-
rithm presented in this paper. Our new algorithm builds
on these previous two algorithms in such a way that com-
bines their advantages: no need for causal delivery support
to be provided by the underlying communicating layer (from
the first two), and capability to deal with replicated objects
(from Larchant).

8 Conclusions and Future Work

In this paper we presented a new DGC algorithm for a
WARM. The algorithm is general enough to be widely ap-
plicable given the minimal assumptions of the underlying
model.
The fundamental aspects of the DGC algorithm are the

following.

• It does not interfere with the protocol that maintains
the replicas coherent among the participating processes.
This means that the DGC does not require replicas to
be coherent.

• It does not require causal delivery to be supported by
the underlying communications layer. Given that sup-
porting causal delivery in wide area networks is difficult
and inefficient, this is a fundamental aspect to ensure
the DGC algorithm scalability.

• It is safe in presence of replicated objects, i.e. it respects
the union rule.
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We presented our DGC algorithm as an evolution of two
previous ones: a classical one designed for distributed sys-
tems based on function-shipping with no replication support,
SSP chains, and Larchant which is targeted to distributed
systems with replicated objects. However, it’s important to
note that any classical distributed garbage collection algo-
rithm based on reference-counting can be used instead of
SSP Chains (e.g. IRC). The only requirement would be its
integration with the WARM in such a way that the safety
rules are respected.
Concerning future research directions, we intend to ad-

dress the fault-tolerance of the DGC algorithm. In other
words, we are starting to study how the DGC algorithm
should be designed so that it can remain safe, live and com-
plete in spite of process crashes and permanent communica-
tion failures. We are also investigating how the DGC algo-
rithm is affected if the WARM is accessed using transactions.
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