
Quality-of-Data Consistency Levels in HBase for GeoReplication∗

Álvaro García Recuero
Instituto Superior Técnico - UTL, Portugal

alvaro.recuero@ist.utl.pt

Luís Veiga
INESC-ID Lisboa, Distributed Systems Group

luis.veiga@inesc-id.pt

Abstract

This work first dives into the fundamentals of HBase
to later explore a tailored architecture model for geo-
replication in distributed systems, replacing the eventual
consistency by an adaptive consistency model, extend-
ing some of the main components of HBase rather than
building a middleware layer on top of it. Our aim is
to give a better understanding of what other replication
guarantees can such a system offer, its value to users,
and how a novel consistency model can be applied to its
core, in order to save wide area bandwidth costs and peak
loads w.r.t. replication overhead between data centers,
while catering for different users and applications needs
(e.g., regarding timeliness, number of pending updates,
divergence bounds). Therefore, this research is mainly
targeting replication mechanisms HBase currently does
not provide by assessing how one can extend those al-
ready in place and provided within its codebase.

1 Introduction and motivation
HBase is the open source version of BigTable [6], is
developed in Java and targets the management of large
amounts of information. HBase does not provide strong
consistency outside of regional servers in replicated sce-
narios within a cluster. There has also been some re-
cent research that addresses this shortcomings in geo-
replicated data center scenarios like [1]. HBase does not
use that approach, neither Paxos for synchronization of
replicas. On the other hand, replication between remote
sites is achieved with eventual consistency.

In Cloud Computing, replication of data in distributed
systems is becoming a major challenge with large
amounts of information that require consistency and high
availability as well as resilience to failures. Nowadays,
there are several solutions to the problem, none of them
applicable in all cases, as they are determined by the type
of system built and its end goals. As the CAP theorem
states [7], one can not ensure the three properties of a dis-
tributed system all at once, therefore applications have to
compromise and choose two out of three between consis-
tency, availability and tolerate or not partitions in the net-
work. Several other relaxed consistency techniques have

∗Álvaro García Recuero, Student, FAST’13 Work-in-Progress and
Poster.

been also devised in the area for innovative consistency
models but require redesigning application data types [2]
or intercepting and reflecting APIs [5] via middleware.

Fully distributed HBase deployments have one or
more master nodes (HMaster), which coordinate the en-
tire cluster, and many slave nodes (RegionServer), which
handle the actual data storage. Therefore a write-ahead
log (WAL) is used for data retention in replication for
high availability. Currently the architecture of Apache
HBase is prepared to provide eventual consistency, as
updates are replicated asynchronously between data cen-
ters. Thus, one can not predict accurately enough how
and when replication takes place or ensure a given level
of quality of service for delivering data to remote master
replicas.

Optimizing replicated data: This work follows a pre-
vious middleware research effort (VFC3) on adaptive
replication for quality of service presented to users in
geo-replicated scenarios [5]. The main goal is to incor-
porate a more flexible, fine-grained and adaptive consis-
tency model at the HBase core architecture level. That
feature can be part of HBase to have bandwidth savings
on inter-site data center replication, helping to avoid peak
transfer loads at times of high update rates, while still en-
forcing some quality-of-data to users regarding recency
(or number of pending updates and value divergence be-
tween replicas).

In that regard, latency can be reduced by imposing
some constrains (time bounds or others regarding num-
ber of pending updates and value divergence) on the
replication mechanisms of HBase providing a two-fold
advantage: i) ensure that a best-effort scenario does not
overload a network with thousands of updates that might
be too small (can be batched too if desired) and also and
more importantly, ii) updates can be prioritized so that it
is more able to achieve the quality of service agreed with
the user or application class.

2 Architecting a QoS layer for HBase
This section outlines the main internal mechanisms pro-
posed to include into HBase to rule updates selectively
during replication. For that, we briefly introduce the
core architecture of HBase and then dig into the proposed
changes for defining a work in progress with quality of
service for consistency of replicas.



With eventual consistency, updates and insertions
are propagated asynchronously between clusters so
Zookeeper is used for storing their positions in log files
that hold the next log entry to be shipped. To ensure
cyclic replication (master to master) and prevent from
copying same data back to the source, a sink location
with remote procedure calls invoked is put into place
with HBase. Therefore if we can control edits to be
shipped, we can also decide what is replicated and how
or when. In a similar research line, the VFC3 framework
defined the properties for a cloud tabular storage system
like HBase so that can be flexible enough to accommo-
date all the needs of users when using a distributed cache
in several data centers and locations during replication,
providing an adjustable model of consistency. Keeping
in mind that previous work, we plan to leverage the in-
ternal mechanisms of HBase regarding consistency.

To provide bounded consistency guarantees and a
QoS for HBase we are tuning its inner workings with
the same idea than for VFC3. With the existing com-
mand line CopyTable in HBase one can manually de-
fine what is going to be replicated and is useful for
cases where new replicas need to be put up to date.
We are focusing our implementation in keeping an or-
ganized list of items (extending the structure reflecting
updates to be shipped), where we can apply the QoS
principles. We apply a well defined bounded replication
model based on time constraints (t), sequence (number
of pending updates) and value (percentage of changes) in
qosEngine.enforceQoS(tableName, put).

This way, every new update is checked for QoS and
shipped for replication or delayed by insertion in a sorted
queue ordered by allowed delay. Any new updates
over previous ones (same data) are checked for number
of pending updates or value difference from previously
replicated update, and shipped or kept on list, accord-
ingly.

To evaluate the gains we can simulate three distant lo-
cations, Barcelona, Lisbon and Stockholm. Therefore we
set up a tool to create that illusion on delay of packets be-
tween sites, that is the unix built in tool netem (tc). We
are using a workloads generation and benchmarking tool
such as YCBS (Yahoo Cloud Benchmark Service), that
we are already familiar with for testing and experiment-
ing performance gains for our hypothesis about replica-
tion, but also standard tools (HBase shell) provided to
enable and operate replication in a cluster. We expect
to draw a solid evaluation and conclusions from the re-
sults obtained by having a specific data model to process
replication in various ways flexibly.

3 Conclusion
We briefly outline the main features of HBase replication
and those currently missing, noting the partial scope of

the work as for now. Performance in HBase improves
as the number of servers increases due to more memory
available [3], but regardless of that fact, it is not trivial
to scale always further following that approach. There-
fore, having ways of providing different levels of service
to users can save substantial traffic savings and therefore
bandwidth costs. For that, the novel topic presented with
selective replication based on QoS can help in deploy-
ments using HBase. Others have focused in providing an
extra layer of middleware on top of HBase for caching
reads and improve response times based on garbage col-
lection avoidance [4] but the downside is the need for
higher amounts of memory in place used as buffers. We
might also explore that and several other options in later
research efforts.

Acknowledgments: To my supervisor at IST and
KTH coordinator, L. Veiga and J. Montelius, for their
patience and support at all times, and specially to Sérgio
Esteves for his advice at INESC-ID.

References
[1] J. C. Corbett, J. Dean, M. Epstein, et al. Span-

ner: Google’s globally-distributed database. In
Proceedings of the 10th USENIX conference on
Operating Systems Design and Implementation,
OSDI’12, pages 251–264, Berkeley, CA, USA,
2012. USENIX Association.

[2] M. Shapiro, N. Preguiça, C. Baquero, M.Zawirski
Conflict-free replicated data types. Technical Re-
port RR-7687, July 2011.

[3] Carstoiu, D. and Cernian, A. and Olteanu, A.
Hadoop Hbase-0.20.2 performance evaluation. In
2010 4th International Conference on New Trends
in Information Science and Service Science, May,
2010, pages 84–87.

[4] L. Pi. Slabcache, caching in hbase.
http://blog.cloudera.com/blog/2012/01/caching-in-
hbase-slabcache/

[5] S. Esteves, J.N. Silva and L. Veiga. Quality-of-
service for consistency of Data Geo-replication in
Cloud Computing. Europar 2012, August 2012.

[6] Chang, Fay and Dean, Jeffrey and Ghemawat, San-
jay and Hsieh, et al. Bigtable: a distributed storage
system for structured data In Proceedings of the
7th USENIX Symposium on Operating Systems De-
sign and Implementation, OSDI ’06, pages 15–15,
Berkeley, CA, USA, 2006. USENIX

[7] Seth Gilbert and Nancy Lynch. Brewer’s Con-
jecture and the Feasibility of Consistent Available
Partition-Tolerant Web Services. SIGACT News,
33(2):51–59, 2002.


